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1 Introduction

This document describes a system called Rubic, or Rubic Real-time N-cube Data
Server, meant for the purposes of on-line analytical processing (OLAP) of fast-paced
industrial processes. The system is named after Enro Rubik, in tribute to his ingenious
Rubik's cube.

This work is the result of the I-OLAP project performed at VTT Information Technology
during 1998. The related documents are:

•  "Opportunities of OLAP in Industrial Applications" [Kiviniemi 1998]

In the report, state-of-the-art of OLAP technologies is summarized, together with the
survey of commercial products. The basic concepts of aggregates, dimensions and
data cubes are explained. Requirements of industrial OLAP are proposed and some
implementation scenarios suggested.

•  "Lazy Aggregates for Real-Time OLAP" [Kiviniemi & Wolski 1999]

The report contains a proposal for an optimized aggregation recalculation algorithm.
Thanks to the algorithm, the resource requirements needed for maintaining up-to-
date values in a multi-level and multi-dimensional  data cube structures are drasti-
cally reduced. In the presence of a continuous raw data load, only a fraction of ag-
gregates have to be recalculated if a source data element changes. The algorithm is
implemented in the Rubic system.

The core part of Rubic is the Rubic Aggregate Engine   a stand-alone process which
recalculates aggregates and runs the optimization algorithms. The Rubic system also
incorporates a regular edition RapidBase 2 Server which is used to store both the process
data and the data cube (aggregates) data. RapidBase triggers are used to invoke computa-
tions in the Aggregate Engine. The system may be run in a prototype setup whereby the
process data is supplied by a data generator.

The principles of aggregate modeling in the form of aggregate lattice is discussed in Sec-
tion 2. In Section 3, the principles of using relational tables for data cube modeling, and
triggers for real-time aggregate calculations are presented. In Section 4, the architecture
of the Rubic prototype system is described. Section 5 contains the detailed design of the
Rubic lattice (or N-cube) metamodel.  The Aggregate Engine algorithms are presented in
Section 6. Section 7 contains the description of the concrete operational setup used in the
prototype demonstration. Section 8 concludes the report.
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2 Aggregate mode ling

In this section we describe, how a data is are modeled in the Rubic system. We assume,
that the user explicitly specifies dimensions and facts which the user is interested in. After
that, the system maintains the data cube [Gray & al. 1996] based on this specification.
Contrary to traditional data warehousing approach, the cube must be externally consistent
with the source data when the source data values are changed. However, due to inaccu-
racy of a source data, the consistency criteria can be relaxed. We call this a lazy aggregate
approach [Kiviniemi & Wolski 1999].

2.1 Aggregate lattice

We model our data cube as a lattice as described in [Harinarayan, Rajamaran & Ullman
1996]. Consider the following example. The user has specified the analysis requirements
with a schema

(A,B,C,D,fact),

where A, B, C and D are the attributes of the source table  to be analyzed. In sequel we
call these attributes as dimensions. A fact is a numeric value of a source table to be ag-
gregated. Assume that fact is summarized with an aggregation function avg(). The one
aggregate can be computed with an SQL statement

select aggregate_list,sum(fact)
from source_table_name
group by aggregate_list

where aggregate_list is a transitive closure of attributes (A,B,C,D) and
source_table_name is a table to be analyzed. The lattice size is then  24=16 aggregates.

To perform OLAP queries efficiently, we need to precompute all aggregates in the lattice
and store results to the database tables. After precomputation, subsequent analysis can be
performed using these precomputed aggregates. However, when a source table is modi-
fied, all aggregates must be modified respectively to maintain external consistency of the
lattice.
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Figure 2.1.  Aggregate lattice

Consider lattice in the Figure 2.1. All aggregates can be calculated directly from the base
data with the SQL statement shown above. Due to performance reasons, we assume that
the uppermost aggregate is calculated directly from the base data and lower-level aggre-
gates can be calculated based on upper aggregates. For example, consider we have the
aggregate (A,B,C) already computed. Then the aggregate (A,B) can be computed

select A,B,sum(fact)
from aggregate_ABC
group by A,B.

We have now a set of aggregates of a problem domain modeled as a single lattice. For
efficient analysis, all aggregates to be used in analysis should be materialized, i.e. the
values of the aggregate is precomputed and stored into the database. However, it is not
practical to materialize all the aggregates in the lattice for several reasons:

•  each materialized aggregate consumes memory,

•  raw data updates has to be propagated (perhaps only on demand) to each materialized
aggregate.

The reasons listed above make it essential to scale down as much as possible the number
of materialized aggregates. On the other hand, we must keep in mind that the less materi-
alized aggregates the more time shall take a query based on the aggregates on the aver-
age. Figure 2.2 presents an example of a partly materialized lattice. In this figure, solid
box indicates materialized and dotted box unmaterialized aggregates.
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Figure 2.2.  A lattice with some aggregates materialized

The problem in materialization is, how the materialized aggregates should be selected. In
the literature, there are several different approaches to solve the problem. A greedy algo-
rithm by [Harinarayan, Rajamaran & Ullman 1996] is one possible approach in selecting
appropriate aggregates to be materialized. One obvious drawback of the algorithm is that
the number of materialized aggregates has to be fixed in advance. Typically a real-time
application is main memory based and the amount of main memory to use to materialize
aggregates is limited. We have to fix, with a parameter, the maximum amount of memory
for each materialization process. Also, the fixed number of materialized views could be
changed to a more elegant solution, where the number of materialized aggregates depends
on the absolute benefit the materialized aggregates bring to the set of materialized aggre-
gates.

2.2 Lazy aggregates

Aggregate lattice must be externally consistent with base data from which the lattice is
calculated. However, in real applications, data is often inaccurate or missing, so the
analysis application may have some tolerance in result data. The lazy aggregate method
delays aggregate recalculation until the error band of the aggregate exceeds specified
tolerance.

The method assumes that aggregates are modeled as a lattice. Normally, when a new
value arrives, the lattice is recomputed to maintain external consistency of the lattice. In
our lazy aggregate approach, the new value is used to adjust the error band of the next
level aggregate of the lattice. When the error band of the aggregate exceeds prespecified
tolerance, the aggregate recomputation is scheduled. After recomputation the modifica-
tion is propagated into the lattice keeping whole lattice within tolerance limit.

By principle, implementing the lazy aggregate method is straightforward with trigger
mechanism. However, aggregate materialization issues and using time as a dimension
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induces problems to the lazy aggregate processing. Consider lattice presented in Figure
2.2. There are two main problems: how the error band value is propagated to next level
over non-materialized aggregates, and how the performance of the aggregate recomputa-
tion degrades due to unmaterialized aggregates as a source of computation. Consider, for
example, materialized aggregate (C,D). The aggregate can be computed using the  on
materialized aggregate (A,B,C,D) thus skipping one level in the lattice. However, com-
puting the aggregate (C,D) from a high level aggregate may be too time consuming. One
solution is to select materialized aggregates so, that there is a transitive line to the upper-
most level aggregate.

3 Ut iliz ing RapidBase in aggregate c alculations

Maintaining of the materialized aggregate views could be done in several ways. Aggre-
gates could be updated, for example, as soon as new data items are inserted, existing ones
are updated or by using regular intervals.

Because there could be hundreds of transactions per second in the process database, it is
obvious that updating materialized aggregates after each transaction would be much too
inefficient. On the other hand, using regular intervals would be also too inefficient, be-
cause the aggregates are made unavailable for querying during updates.

3.1 Computing lazy aggregates

In the RapidBase, ECA (Event Condition Action) triggers are implemented. Triggers are
active objects, which internally reacts to predefined actions, for example, to update trans-
actions. Triggers can also call predefined external actions, which can fire new triggers
and so on. By using these triggers, it is possible to maintain aggregates by using the lazy
aggregate algorithm.

3.1.1 Lazy aggregates with triggers

The general concept of lazy aggregates with triggers is shown in Figure 3.1. There is a
lattice that consists of three dimensions (A, B, C) and corresponding aggregates. For each
aggregates, there is defined a ECA trigger (t1 - t9). For simplicity, the measurement val-
ues are not shown in Figure 3.1.

The events are send by RapidBase Server, as the fact tables containing aggregated attrib-
utes, are updated. Each event fires a corresponding trigger. For example, if some transac-
tion updates a fact table that contains values, which measurements (e.g. average) are ag-
gregated to (A, B, C), a trigger (not shown in Figure 3.1) is fired. Firing the trigger causes
updating the aggregate A1A2A3, that will further fire trigger t1.

Firing the trigger t1 causes updating the aggregate (A ,B). And when aggregate (A, B) is
updated, it will fire trigger t4, which would finally lead to updating aggregate (A) and
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(B). This would mean, that the aggregate (A) would be recomputed every time when
attributes A, B or C are updated.

Figure3.1. Lazy aggregates with triggers.

For performance reasons, this not feasible way to update aggregates. Therefore, a com-
putations called lazy aggregates are attached to the triggers.

The triggers are defined in such a way that aggregates are recomputed only when a prede-
fined tolerance invariant is violated. The tolerance invariant denotes here the maximum
error tolerated in a value. The tolerance invariant could be expressed relatively, e.g. as of
percentages.

As can be seen in Figure 2, the detailed aggregate recomputation at any level  l takes
place in the following steps.

1. Event detection: a change of data source at level l+1 is detected.

2. Condition evaluation: the tolerance invariant at level l is checked.

3. Action execution (conditional): the aggregate at level l is recomputed.
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As a result, the change to base data (facts) is propagated rightward the lattice in an opti-
mized way and number of recomputation phases is highly decreased.

Aggregate engine calculations and the handling of the tolerance invariance are described
more accurately in section 6.

4 Rubic architec ture 

The Rubic N-cube Data Server has been implemented and tested using the configuration
shown in Fig. 4.1. Both the process data and the N-cube data is stored within the Rapid-
Base 2 Server. The Rubic Aggregate Engine is responsible for optimized aggregate recal-
culations. The process data generator is a continuous data source simulating the industrial
process.

Different models shown in Fig. 4.1. are implemented as (relational) tables. The lattice
metamodel is a generic model which captures the structure of any lattice represented in
the system. The metamodel tables are populated when a concrete lattice model (imple-
mented as tables representing a given lattice) is loaded into the system. The lattice model
represents the N-cube of aggregates calculated from the process model. The triggers initi-
ating the aggregate calculation are also included. The lattice model is populated by the
Lattice Initializer program. The process model depicts the real industrial process of some
pre-defined configuration.

The application-specific parts of the architecture are: the process model, the lattice model
and the process data generator.

Rubic 
Aggregate

Engine
V. 1.0

RapidBase 2

Lattice Initializer
(runs at startup)

Process data
generator

     Lattice
   meta-
model

     Lattice
   meta-
model

   Process
model

   Process
model

    Lattice
model

    Lattice
model

Lattice
system
table
definitions

Process
table
definitions and
initialisation

Lattice
table
definitions
and trigger
definitions

CREATE TABLE

CREATE TABLE
INSERT

CREATE TABLE
CREATE TRIGGER INSERTUPDATE

Cubic data
reports

Triggerred 
update events

Lattice structure

Node values

Lattice updates

• tolerance
evaluation

• aggregate
calculation

Reporting Tool
(Excel)

Reporting Tool
(Excel)

ODBC DriverODBC Driver

Fig. 4.1.  Architecture of the Rubic demonstration system.

The operation is initiated when the RapidBase Server is started. The definition scripts
shown on the left side of Fig. 4.1 are loaded and executed automatically. Then, all the
other processes are started. The contents of the N-cube available in the RapidBase Server
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is continuously up-to-date and within specified tolerance constraints. Various multidi-
mensional queries can be made from within a reporting tool like Excel, by using regular
SQL queries.

If the system is used in a real environment, the application specific components have to
be replaced. In place of using the data generator, the real data from the process would be
fed into the system.

5 Rubic N-cube m etam odel

In a general case, before using a data cube in a database, a database command to initialize
the data cube structures has to be issued.  With this command, the attributes of the lattice,
used to describe the cube, are defined by the user. In Rubic, the lattice description, form-
ing the metadata of the data cube, is defined by way of running a database script file
containing appropriate metadata initializations (lattice table creations, etc.).

5.1 RapidBase and the lattice metadata

5.1.1 The lattice

We now concentrate on the case where the RapidBase Server is used as the database,
capable of handling complex group-by queries efficiently using the data cube structures
of the Server. The lattice model itself is well defined in the literature, and an example of
such a construction is depicted in Fig. 2.1.

In the typical case of a lattice, attribute values are considered to be literals of some basic
type. In our data model, we have also attributes which are in fact histories of values. In
the lattice model, these attributes are dealt equally with basic attributes. A differentiation
of the basic and history attribute has to be done on the metadata description level and, of
course, on the aggregate table level.

5.1.2 The lattice metadata

We need a lattice metadata table(s) in the RapidBase Server to describe the lattice struc-
tures. When designing the structure of the metadata table(s), at least the following issues
has to be taken into account:

•  the lattice has to be identified (in general case, more than one lattice can co-exist in the
system),

•  each node has to be identified (all the nodes of the lattice model has to have an identi-
fier. For example, the example lattice in Fig. 2.1 has 16 nodes),

•  the aggregate function (sum, average, …) has to be identified,
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•  attributes,  building up the lattice, have to be identified, including the knowledge of
the source table and the source column,

•  the information of the materialization status has to be known for each lattice node,

•  the knowledge of per-lattice attributes have to be found somewhere,

•  the history granularity for a lattice (data cube) has to be identified,

•  the arcs between lattice nodes in the lattice model have to be identified.

Based on the requirements above, the following concept model can be produced (Fig.
5.1).

**

1

detailed*

1

summarized*

lattice_node

identifier
table name of the node

materialized

lattice

identifier
aggregate function name
source tab name
fact column name
history granularity

lattice_attribute

identifier
name
source column name

lattice_node_relationSource table column

lattice level of the node

tolerance

Figure 5.1. The concept model of the system.

The following tables are used as the lattice system tables in the RapidBase Server. The
types for the columns in the tables are selected using the efficiency characteristics of
RapidBase.
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 lattice_node_id smallint
 lattice_id smallint
 node_table_name char[28]
 node_level smallint
 materialized bit

lattice_nodes

 lattice_attribute_id smallint
 lattice_id smallint
 attribute_name char[1]
 source_column_name char[28]

lattice_attributes

 summarized_node smallint
 detailed_node smallint
 aggregated_attribute smallint
 active_calculation_path bit

lattice_node_relations

lattices

 lattice_id smallint
 aggr_funct_name char[28]
 source_table_name char[28]
 fact_column_name char[28]
 history_granularity smallint
 tolerance float
 max_level smallint

 lattice_node_id smallint
 lattice_attribute_id smallint

lattice_node_attributes

Figure 5.2. The lattice system table schema in the RapidBase Server.

lattices: lattice_id is a unique identifier of a lattice (a data cube). aggr_funct_name tells
the name of the aggregate function used with this lattice. source_table_name is the name
of the raw data table of the lattice. All the raw data is collected in that table.
fact_column_name is the name of the fact column in the source data table. his-
tory_granularity is an integer value telling the granularity of the history attributes of the
lattice. tolerance is the percentage level of the accuracy of the aggregate values tolerated
for the aggregates of this lattice. max_level tells the maximum level of the lattice. Note,
the level zero is also used, so max_level+1 is the number of levels in the lattice.

lattice_attributes: lattice_attribute_id and lattice_id compose a key for the lat-
tice_attributes table. attribute_name is the name of the attribute in question. The attrib-
utes are named in the alphabetic order, starting from the character A (see the reason for
this convention in the next sub-section). source_column_name is the name of the source
data table column the attribute value is from.

lattice_nodes: lattice_node_id and lattice_id compose a key for the lattice_nodes table.
node_table_name is the name of the node table (in the RapidBase Server). node_level
tells the level to which this node belongs in the lattice model (see Figure 1 for an example
of lattice levels). materialized is a flag indicating the materialization status of the node.

lattice_node_attributes: lattice_node_id and lattice_attribute_id  are the only columns of
the table forming also the key of the table.

lattice_node_relations: summarized_node and detailed_node identify the nodes of the
relation. aggregated_attribute is the attribute the detailed table has in its group by -clause
and summarized table has not. active_calculation_path is an indicator which tells whether
or not the path is used in the aggregate calculations. The set of active calculation paths is
fixed in the Rubic System but it is in our intention to develop, in the future, the system
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such a way that the set of calculation path would vary dynamically along side with the
materialization status of lattices.

5.1.3 Lattice node tables

The lattice node tables in the RapidBase Server are named using the following naming
convention:

L + latticeID + lattice_attribute_name*

A table name starts always with the letter ‘L’ which stands for the word Lattice. The lat-
tice identifier follows immediately and finally the attributes used to group by the data are
listed in the alphabetical order. For example, the following lattice node tables could be
present in the system:

L1AB
L3DGHL

The former one is the node table of a lattice 1 (identifier) with grouping columns A and
B. The latter is the node table of a lattice 3 (identifier) with grouping attributes D, G, H
and L.

In the Rubic demonstration system, all the lattice node tables start with L1 (only one
lattice is defined, and its identifier is 1).

A lattice node table includes the following columns

•  one column for each dimension the node table is grouped by. The column names are
identical with the actual source column names,

•  value of the fact (aggregate value),

•  current error band of the node,

•  the number of elements (rows) in a more detailed aggregate level, used to compute the
aggregate.

Fig. 5.3 depicts an example of one possible lattice node table.
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L1ABC

 motor.type char[28]
 power_range char[28]
 year_manufactured smallint
 fact float
 error_band float
 elements smallint

Figure 5.3. One possible lattice node table.

6 Rubic N-cube algor ithm s

The Rubic N-cube algorithms are presented in this section. These algorithms are used to
implement functionality needed to set up and maintain a data cube, Rubic N-cube. It is
assumed, that lattice metadata is installed and all lattice structures are created before these
algorithms can be used.

6.1 Lattice initialization

Before the aggregate engine can be started, the lattice must be initialized. The initializa-
tion process populates all lattice nodes. The uppermost level node is calculated based on
the raw data (see Figure 2.1). Another nodes are calculated based on their upper level
predecessors. The aggregate calculation is performed separately to all lattice nodes.

With standard SQL, each aggregate can be calculated with the GROUP BY -operator.
However, current version of RQL language does not support such an operation. In this
prototype,  aggregate calculation is performed in the following way. The source table of
the aggregate is scanned sequentially in ascending dimension order. The aggregate is
calculated while scanning. When any of the dimension values changes, the current calcu-
lation total is inserted as aggregated value and the calculation is restarted. The lattice
initialization algorithm is presented in Figure 6.1.
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XORNode selection

identify all nodes in specified level
for all identified nodes

XORLevel selection

for all aggregate levels (descending)

XORFetch node metadata

fetch node table name
specify fact column name

XORPopulate one node

Construct population selection clause
Execute selection clause
For all fetched rows

XORCheck dimension values

Are all dimension values equal to previous ones

XORNot equal

Perform cumulative calculation XOREqual

Insert aggregate record
Clear intermediate results
Perform cumulative calculation

XOREnd of source data

Insert aggregate recordloop

loop

end of level

node populated

done

loop

not equal done all dimensions equal done

all dimensions processed

done

all levels processed

Figure 6.1. Lattice initialization algorithm

6.2 Aggregate engine calculations

The aggregate engine is responsible for real-time aggregate calculations. It receives trig-
gering events from the RapidBase Server whenever a value is changed, or a new value is
added. When an event is triggered, some information is carried to the action process. This
information includes the name of the table and the OID of the row causes triggering, val-
ues of all dimensions and a fact value. All triggered events are handled serially in one
aggregate engine process. When a new event is triggered while another event is in serv-
ice, the new event is queued to a FIFO queue.

At the beginning of event processing, the relevant aggregate nodes are identified. The
node is considered to be relevant, when it is calculated directly from the node from where
the triggering is caused. The flag active_calculation_path in lattice metadata is used to
determine this. The aggregate engine iterates through all identified tables and finds the
aggregated rows. For all these rows, the tolerance invariant is checked. When the invari-
ant is not violated, the error band of the identified row is updated. When the invariant is
violated, aggregate value is calculated from the node caused the triggering and the error
band of the identified row is set to zero. The algorithm is described in Figure 6.2.

Algorithm gets all metainformation directly from the metadata tables. If this is found
inefficient, the metadata information must be fetched into memory while starting the
aggregate engine. The algorithm assumes, that all dimensions in the data cube are static.
Thus, no dimension values can be inserted into lattice after the lattice has been initialized.
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XOR
checking one table

 get the latest error band
 get the aggregation size
 calculate delta error band
 check tolerance invariant

XOR
Bypassing

update error band in the node

XOR
Recalculating aggregate

Recalculate the aggregate of the row from active path 
the tolerance invariant has been violated at.

Set error band to zero

XOR
Data capturing

get tables the next lower lever in active path

for all identified tables
  
   

new value in a node table

invariant violated
not violated

start

done

done

done

All done

Figure 6.2. The aggregate engine algorithm

7 De monstrat ion suit e

The demonstration suite is built of generic components and application-specific compo-
nents. Application-specific parts and the configuration of the demonstration system are
described here.

7.1 Process model

The purpose of the process model is to follow measurement values of the motors of paper
machines. The automatically generated measurement values of a single motor are: tem-
perature, tension and torque.

7.1.1 Entity model of the process

In the demonstration, a single paper machine, located at some location, is divided to ma-
chine parts. Correspondingly, each machine part is divided to drive sections and finally,
drive sections are divided to motors. Because the demonstration suite contains several
paper machines, there are tens of motors that are to be followed simultaneously.

The entity model of  the process model is shown in Figure 7.1.
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<<History>>Time Serie

Temperature
Tension
Torque

Figure 7.1. The entity model of the demonstration process.

7.1.2 RapidBase table model of the process

Demonstration table model is formulated by using the entity model shown in Figure 7.1.
In Figure 7.2 is shown the RapidBase tables, attributes and attribute types that are con-
structed in order to follow measurement values of paper machine motor. As seen in Fig-
ure 7.2, the model contains only one time series (Motor.Measurement) that contains all
the measurement values.

Motor.Factory = Location.Factory

Motor

Motor_Id integer
Motor_Name varchar (30)
Description varchar (256)
Type varchar(10)
Section integer
Power_Range varchar (15)
Factory varchar(30)
Year_Manufactured char(4)

Measurement history

Drive_Section

Number of drives integer
Section integer
Machine_Part_Id integer Machine_Part

Name varchar (20)
Machine_Part_id integer
Machine_Id int

Machine

Machine_Id integer
Name varchar (20)
Manufacturer varchar (30)
Factory varchar (30)

Location

Factory varchar (30)
City varchar (20)
Country varchar (20)

Motor.Section = Drive_Section.Section

Drive_Section.Machine_Part_Id = Machine_Part.Machine_Part_Id

Machine_Part.Machine_Id = Machine.Machine_Id

Machine_Factory = Location.Factory

Series (size 10000)

Temperature float
Power float
Torque float

Figure 7.2. RapidBase tables of demonstration model.
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7.2 Lattice

The RapidBase tables shown in Figure 7.2, construct the base data of the demonstration.
From the base data, the data cube lattice is generated by selecting the attributes to be
followed and selecting the fact that is calculated from a measurement value or values

The attributes to be followed in data cube lattice are: Motor.Type, Motor.Power_Range,
Motor.Factory, Motor.Year_Manufactured and Fact.

The fact is calculated from Motor.Temperature and it is: AVG(Motor.Temperature). The
selected attributes are mapped to the lattice seen in Figure 2.1 in a following way:

•  Attribute Motor.Type is  A,

•  Motor.Power_Range is B,

•  Motor.Factory is C and

•  Motor.Year_Manufactured is D.

The corresponding lattice tables are formulated by using the selected attributes and the
Rubic n-cube metamodel described in section 5.

7.3 Demonstration setup

The Rubic prototype consists of several different types of files: executable programs,
parameter files associated to programs, and RQL scripts. In this section, we describe all
files related to the prototype. For each file, only a brief overview is given. Actual proto-
type running instructions are packed to the prototype distribution as a README -file.
Executable programs and their parameter files are listed in Table 7.1. RQL scripts for
metadata and data initialization are listed in Table 7.2. Miscellaneous RQL scripts for
system maintenance etc. are listed in Table 7.3.

AggregateEngine.exe Aggregate engine executable program
AggEngine.ini Parameter file for aggregate engine
datagen.exe Data generator executable program
datagen.ini Parameter file for data generator
LatticeInit.exe Lattice initializer executable program

Table 7.1. Executable programs and their parameter files

The AggregateEngine.exe has a responsibility of  handling triggered event and perform-
ing aggregate calculations. The parameters for aggregate engine are name of the com-
puter, where RapidBase server is located (usually localhost), user name in the server, and
action server name (must be AGGREGATEENGINE). The aggregate engine gets all
relevant information from the lattice metadata with the lattice id 1.
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The datagen.exe generates data based on five parameters. The first two parameters are
name of the computer, where RapidBase server is located and the user name in the server.
The third parameter tells the number of motors in the process model. The last two pa-
rameters are random walk dispersion values for the torque and tension. The temperature
of each motor are calculated from torque and tension by using following function:

temperature = (tension – torque)/25

LatticeInit.exe is used to initialize contents of the aggregate lattice. Before running this
program, lattice metadata must be installed for lattice id 1. Also raw data table must be
populated and  lattice tables for lattice id 1 must be created and empty. The lattice initial-
izer reads all records from raw data table, finds all dimension combinations and calculates
the aggregate avg(). The results are inserted into appropriate lattice tables.

metastructures.rql Create lattice metadata structures
metafiller.rql Populate lattice metadata for lattice id 1
latticetables.rql Create lattice table for lattice id 1
enginetriggers.rql Install triggers for lattice id 1
processmodel.rql Create process model tables and populate
largeprocessmodel.rql Enhance model with additional motors

Table 7.2. RQL scripts for metadata and data initialization

The metastructures.rql creates all metadata structures to be used in aggregate calculations.
The demonstration system is populated to these structures with script metafiller.rql. The
definitions of the demonstration lattice tables are stored in file latticetables.rql. Appropri-
ate triggers are created with a script enginetriggers.rql. Note that these triggers fire only
on update events. Thus, engine triggers can be securely installed before lattice initializa-
tion.

The process model table definitions and static initialization values are stored in file proc-
essmodel.rql. In this context static values means, that all other values but measurements
are inserted at beginning of the demonstration (e.g. Location and Machine tables are
filled).  In the other hand, new paper machines could be (and should also) be added to the
model during the demonstration in order to test  dynamic behavior of the demonstration.
The initial process model consists of 12 motors. The model can be enhanced with a script
largeprocessmodel.rql. The enhanced process model consist of 72 motors.

demoinit.rql Execute all scripts from Table 7.2

startup.rql Same as above, executed during startup

droplattice.rql Drop all lattice tables

Table 7.3. Miscellaneous RQL scripts
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8 Re sult s and conclusions

The lazy aggregates algorithm saves a vast amount of calculations. To conclude that, we
tested the prototype with a random walk experiment, which was designed to simulate a
true industrial process. In our experiment, tension and torque values are incremented or
decremented with a random value periodically, and temperature was calculated on the
basis of the new tension and torque values. The delta value for random walk was 50 for
torque and 150 for tension. We let tension and torque had the domain 3000-4500 and
500-750, respectively. Thus, the temperature had the domain 90-160. At the beginning of
the experiment, tension, torque and temperature were initialized in the middle of their
domains. The data generator performs a random walk for tension and torque periodically
with a delay of 5 seconds. The experiment was performed with small and large process
models, having 12 or 72 motor, respectively. The tolerance value was varied from 0% to
30%. As a result, the number of lattice node recalculations was identified. The experi-
mental results are presented in Figure 8.3.
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Figure 8.3. Experimental results for random walk experiment

Implementation of Rubic demonstrated that efficient real-time data cube calculation is
possible. By using a fast, main-memory-based database system and an appropriate opti-
mization algorithm, the derived aggregate values may be kept up-to-date at required accu-
racy and tolerable cost.
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