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Introduction

The purpose of importance measures (IM) is to assess how much a single
component, a subsystem, a basic event, a part of a process or some such
contributes to the failure risk of a system. This contribution may be analysed for a
specific time instance (time-dependent importance measures), over the mission
time of the system (time-independent importance measures), or disregarding
probabilities (structural importance measures).

A closely associated concept is that of sensitivity measures. They purport to
measure how much the failure risk of the whole system changes when small
changes are made to the failure probability of the component under study.

Importance measures can be put to use in several ways. In risk management, IMs
indicate subsystems where reliability improvement will pay high dividends in
terms of lowered risk for the whole system; thus the risk profile of a system can

be balanced. They are also used in safety classification. They can be used in the
optimization of test intervals and allowed repair times. If risk modeling is still
underway (or perhaps has been taken into reconsideration), IMs tell which parts of
the system to model more accurately, and which parts can be treated more
cursorily.

Thus, for any probabilistic risk assessment method, a reliability measure that fits
the method will significantly increase its applicability. It is therefore of great
theoretical and practical interest to find an IM suitable for the dynamic flowgraph
methodology (DFM), because none have been proposed so far in the literature.

The purpose of this short notice is twofold. First, an attempt is made to formulate

some requirements for an IM and properties of a good one, all regarding the DFM.
Second, a small literature survey is made to examine to what degree existing 1Ms,
developed for other models, would suit DFM.

It is assumed that the reader knows the basics of both DFM and IMs in reliability
theory. For DFM, some introductions are found in [16] and [19]. For IMs, the
basics can be found in [4] and [26].

Requirements of importance measures for DFM

General requirements

The practical use of IM’s induces some general requirements. Some of these are

¢ Robustness. When comparing e.g. component IM’s, it is usually
required that the ranking provided by the IM is insensitive to
uncertainties. This robustness requirement is usually better filled by
relative IM’s than absolute IM’s.

e Informativeness. An importance measure should have meaning and be
descriptive to the user and within the decision problem at hand. For
example, IM’s that measure how total risk changes when a component
becomes more or less reliable are informative. On the other hand, IM’s
that assume all failure probabilities to be equal are not.
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e Scope, versatility and adaptability. For some decision problems, only a
few importance measures are available; for some others, the spectrum of
IM’s is much larger. An importance measure that is applicable to a
variety of tasks is usually preferred by the user to one that isn’t.
Examples of this applicability are use for measuring the importance of
groups of components instead of a single component, use for both fault
trees and for reliability block diagrams, use for both static and dynamic
reliability models, etc. The fewer assumptions an IM requires, the more
adaptable it is. It is a merit to an IM that it can easily be adapted to new
situations.

e Ease of computation. Methods that don’t set high requirements on
computational resources are better than ones that do.

Special features of DFM models

DFM models are dynamic, i.e., the values of variables at a given time instance
may depend on the values of some variables at previous time instances. Thus,
importance measures have to take into account the time dimension in one way or
another. In this context, the time dimension doesn't include the whole system's
mission time but just the time span of the events leading to a top event. This time
span naturally varies with the top event.

Another facet of DFM models' dynamicity is that they may contain feedback
loops. Thus, they may in principle contain arbitrarily lengthy sequences leading to
a failure. Further, choosing the number of time steps is part of DFM modelling,
but currently there exists no formal method to find out the shortest time span that
produces all relevant prime implicants for a top event. A method for recognizing
prime implicants that reoccur when the number of time steps is increased, and a
method for recognizing patterns of prime implicants and when all relevant
patterns have been found (i.e. increasing the number of time steps doesn’t produce
new patterns) are needed. The former task is easy, the latter less so.

The variables of DFM models may assume their value from sets of more than two
possible values. None of these values may necessarily be interpreted as failure;
rather, a failure may consist e.g. of a variable staying in a given value for too
many consecutive time instances. Thus, the works/fails interpretation generally
applicable to traditional reliability models cannot generally be applied to DFM
(although it is often possible to formulate a DFM model in such a way that some
states of some variables can be interpreted as failure). In particular, the concept of
failure probability of a component doesn't necessarily have a meaning for all
variables in DFM.

A DFM model is a finite-state machine representation of the system. Its variables
don’t necessarily represent all the relevant features of a component. Thus, DFM's
use of variables — rather than components — is a diversion from classical
reliability. A single component (e.g. a pump) might be described by several
variables (e.g pressure, flow, electrical current intake etc.). Therefore, when a
component’s reliability is an issue, it might not be straightforward to figure out
how traditional IMs should be applied; again, group importance measures might
help here.



WT RESEARCH REPORT VTT-R-00525-11

2.3

5 (21)

DFM and other reliability models

There are three kinds of traditional system failure probability models for which
importance measures have been proposed: reliability block diagrams, fault trees
and Markov models.

Reliability block diagrams — for which structural IMs are often determined — are
structured as directed graphs, and so are DFM models. However, there are
important differences, too. Reliability block diagrams have an input and an output,
and the system works if there is a path from the input to the output. DFM models
don’t necessarily have a well-defined input or output, and there are no well-
defined works/fails states; rather, the user of a DFM model defines a condition of
interest as a conjunction of (variable, value, time instance) triplets as a top event,
and DFM computation consists of finding prime implicants leading to the top
event. However, the top event need not describe a failure of the system; rather, it
is any condition of interest.

Fault trees differ from DFM in three essential ways. First, they are static. Second,
their variables are Boolean. Third, each fault tree corresponds to a top event, and
thus top events and system models are usually inseparable in them (a fault tree can
be constructed modularly to enable reuse, but this modularity isn’t an inherent
property of fault trees). These differences mean that many central concepts of
fault trees — such as coherence and relevance — don't apply to DFM's. The
relevance of individual variables in DFM varies, because the participation of
individual variables in DFM to the prime implicants varies with the top event; one
might define relevance of a variable relative to a top event, though.

Markov models are closest to DFM models of the three classical system failure
probability models. Thus, it would seem that IMs developed for Markov models
would be especially good candidates for DFM IMs.

A brief look at the literature

Importance measures have been the subject of active research interest since late
1960's. The purpose of this overview is to find IMs that would have meaning and
suitability for application to DFM, and therefore only a small selection of research
concerning IMs is surveyed.

We go through the IMs that were deemed most significant by experts in [29];
these can be assumed to be the most used IMs in practice . These include the risk
reduction worth (RRW), risk achievement worth (RAW), Fussell-Vesely,
Birnbaum, criticality importance, and partial derivative (sensitivity) measures.
Further, we take a look at IMs for multi-state systems and Markov models, since
these model classes bear some similarity to DFM. A promising IM introduced
since the writing of [29], the differential importance measure (DIM), will also be
discussed briefly. Also time-independent IMs will be discussed.

In what follows, a basic event is understood to mean that a component fails.

The set of prime implicants (or minimal cut sets if the system is coherent)
contains all relevant information about the reliability of a system with respect to a
top event. Therefore it is sufficient to consider IMs that apply to the set of prime
implicants of a system, and this applies to both structural and probabilistic IMs.
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However, when one seeks IMs that are independent of a top event, observing
prime implicants alone is not sufficient.

A prime implicant in DFM is a logical conjunction of formulae ¢; Each of these
formulae indicates the logical statement that a certain time-dependent variable x(t)

has a certain value v at a certain time instance T: ¢, : (xj (Te) =V ) for some j, k

and |. For example, the fact that the value of the variable “valve position” is
“open” at time T=-1 might be expressed as the formula ValvePosition(-1)=Open.
The value v, that x;(t) takes, satisfies v, € Y;; here Y, is the set of possible values
for xi(t). For example, the set of the valve position’s possible values could be
Y= {open, semiopen, closed} .The formulae of a prime implicant are unique in
the sense that no two formulae within a prime implicant share the same j and k;

that is, a variable cannot have two distinct values at the same time instance within
a prime implicant. A single prime implicant is then of the form

Plk:§0k1/\§0k2/\~--/\§0kmk 1)

Where my is the cardinality of the k™ prime implicant (the number of formulae in
it). The set of prime implicants for a DFM model and a top event can then be
listed as

Pl ={PI,Pl,,...,PI } @)
And the probability of the top event occurring is
P(TOP)=P(PI,vPl,v...vPl) 3)

If the probabilities

def

P(Xi(T):Vj): Pir (4)

are known and their variables independent, the probability of the prime implicant
Pl happening is simply the (arithmetic) product of the probabilities of its
indicator variables, pi;:. That is,

P(PI k)= pi1~j1~Tl ' pi2~j2~T2 pimk'jmk 'ka (5)

The probability of PI happening — i.e. that any of the prime implicants in it
happens - can be computed in the usual manner using the inclusion-exclusion
development, the method of disjoint products or Kitt's method (see [21], chapter
5).

There are two kinds of IMs: structural and probabilistic. Structural importance
factors measure the importance of a component from the system’s topology
(expressed by reliability block diagram, flow diagram etc.) and other structural
information, without reference to actual probabilities. Probabilistic IMs describe
the amount that a single component (or a group of components) contributes to the
total failure probability of a system.
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Structural importance measures

The main benefit of structural importance measures is that no information about
actual probabilities is needed. Here we consider the well-known Birnbaum's
measure of structural importance and the structural importance measure of Barlow
and Proschan. Some other structural importance measures are cut-importance and
node criticality, and a lesser-known but promising measure called joint criticality.
An overview of these can be found in [22].

Birnbaum’s measure of structural importance

Birnbaum’s measure of structural importance [6], I 4, is the oldest and perhaps
the best-known structural IM. It is the proportion of state vectors where the
component x; is critical — i.e. where changing x; from working to non-working
would result to the system failure — to all state vectors where x; works (of which
there are 2" in an n-component system).

Is4 cannot be directly applied to DFM models because there isn't necessarily any
state of a variable that can be interpreted as failure (if there were, Ig, could be
applied as such). However, an analogous measure can be defined as

Card({P1,|x,  PI,,Pl, € PI})
Card(PI) ©)

e orm (Xi)=

where the numerator is the number of prime implicants containing the variable c;
(note that in the context of DFM we talk about variables, not components), and
the denominator is the total number of prime implicants (PI) of the top event.

Here we denote % € Pl, whenever P, contains a condition of the form X; (t) =V
for some t and v.

Iz prm Can easily be extended to a group importance measure: if several DFM
variables correspond to the component, then the numerator is the number of prime
implicants containing any of these variables.

Structural importance measure of Barlow and Proschan

The structural importance measure of Barlow and Proschan [3] is based on the
assumption that all components have a common reliability po, and that po is
distributed uniformly over [0,1]. It can be defined as

1

)=[(R@,.p')-R(0;.p' JHp, @)
0
Where R(li,p‘) is the system failure probability when x, =1 and p' is the vector
of probabilities p; = P(x; =1), with the assumption that p; = p, for j=1i;
R(Oi , p‘) is defined correspondingly.

A similar importance measure can easily be formulated for DFM, if we assume
that we consider the importance of a DFM variable within a formula only. Let this
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formula be @, = (x,(T,)=v,(x;)). Further, let us denote with R(P(¢, )=1) the
system failure probability when ¢, surely happens, and with R(P(goj ): 0) the
system failure probability when ¢, surely doesn’t happen. Then a modified
version of the Barlow-Proschan measure for DFM can be defined as

e o (1) = j(R(P((P,- )=1)-R(P(p;)=0)kp, (8)

0

In the more general setting, when we are considering the importance of a variable
in general, or a group of variables, the situation becomes more complicated. It

would be straightforward to set p;;: =1 for all jand t in R(li p' ) and p;j: =0 for

alljand tin R(Oi p' ) However, the same variable can take different values at the

same time instance. Setting the probability of all these events would be
contradictory, because they clearly are mutually exclusive.

A way out of this quandary is to consider R when at least one of the formulae
containing x; holds versus R when none of them hold. Let us denote the set of

formulae in PI that have Xx; as their variable by
®(x,)={p, :3t,v such that ¢, = (x;(t) =v)}. Then we can define

(R(V(pj yox eCD(Xi))— R(/\—l(pj yox eCD(Xi)) Po

O e

I BP,DFM (Xi ) =

(9)

Computing this integral is conceptually easy, because R(v; :¢; € d(x)) and

R(A—g; :¢; € ©(x,))are polynomials of the probabilities pi,j,t. when the variables

are independent. However, computations may become quite involved because
when calculating the system failure probability with the conjunction ve; in
effect, we may have quite many alternatives to go through.

A somewhat lighter alternative is to consider the maximal and minimal impacts
that the variable can make, given that the other variables are integrated as in (8).

For illustration purposes, let us assume that the variable X, can be in two states,
and that the probabilities p;1 and p;» of these states appear in the prime implicants.
pi1 and pi2 are interrelated in the sense that p,, + p,, <1. Then we can define

IBP,DFM (Xi) = j J’ivl"'j'(maXR(Xi)_min R(Xi) dp, "dpi,z ---dp, (20)

0 0 vieY; vieY;

It is easy to generalize this to the case where a variable may be in several states,
which appear in the prime implicants. Then the constraint set by mutual

exclusivity is Z p.; <1, and the upper bound in the integrals are of the form
i
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1 1=pa1-pi—py2

1
- (xi): max |- .[ '[ "'IR(Xi)dpo"'dpk,sdpk,z"'dpn
0

vieY;

0 0
1 P l-pea—he2 1 (11)
_|‘*/ng|p .[ '[ ""[R(Xi)dpo"'dpk,sdpk,z"'dpn
o 0 0 0

An example of the calculation is given in section 4.

Importance measures for fault trees

Importance measures for fault trees are central to the subject of this report, but
well-known. The interested reader can find more on these in, e.g., [6][11][12][29].

Fussell-Vesely

Perhaps the most well-known importance measure for fault trees is the Fussell-
Vesely importance measure (FV). It can be defined as the conditional probability
that a minimal cut set containing the component c; has failed, given that the
system has failed [26]. Utilizing the well-known formula for conditional
probability, it is easy to see that

F{Lmj Mcs}j
i _ j=t

FVi(a) = % =\ (12)
Fr(U MCSKJ

k=1

Here q is the vector of component failure probabilities, R; is the probability that a
cut set containing the component c; fails (here expressed as the frequency of
minimal cut sets containing ¢;), and R is the system failure probability (here
expressed as the frequency of minimal cut sets). The FV depends on the top event
because it is a function of minimal cut sets.

Formulation of FV for DFM is straightforward. Just replace the minimal cut sets
by prime implicants in (12), noticing that a prime implicant is listed in the
numerator if it contains the variable with any value at any time instance. The
probabilities (frequencies) in the numerator and denominator can easily be
computed (see the beginning of this chapter, page 5).

Opeer] Af0e]

P(
DFMFV, (q) =% =

P(QPIKJ ~ P(PI)

Here P!7 denotes a prime implicant of the top event that contains the variable x;.

(13)

It is easy to extend FV to calculating the importance of a component in situations
where several DFM variables correspond to a single component (e.g. the pressure
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and flow in a pipe). The only thing to be changed is that all prime implicants
containing those variables are included in the numerator in (12). This can be seen
as the Fussell-Vesely group importance measure for DFM.

Birnbaum

The Birnbaum importance measure [6] can be defined as

IB, = R(x, =1) - R(X, =0) (14)

Here, R(x;=1) is the probability that the system fails given that the component c;
has failed, and R(x;=0) is the probability that the system fails given that the
component ¢; is assumed perfectly reliable (i.e. the corresponding basic event
never to happen).

It is evident that we cannot define a similar IM for DFM because DFM variables
don't necessarily assume works/fails states (of course, in a DFM model where this
interpretation can be made, the ordinary Birnbaum importance measure can be
used). However, an analogous IM can be defined using the set of prime implicants
for a top event. The starting point of the generalized measure is that the Birnbaum
measure represents the maximal and minimal values that the top event probability
can take, when the state of the variable x; can be chosen freely.

Let P(x(T,)=v;;)=1 mean that variable x; surely yields the value v, ; at the
time instance T, . Similarly, let P(x (T,) =v;;) =0 meanthat x; surely doesn’t
yield the value v, ; at the time instance T, . Then, assuming e.g. that variable

¢, =% (T,)=v,; and P(x (T,) =v,;)=11in (5),

P(Plk‘xi(Tk):Vi,j):P(¢1)'1“'P(¢mk) (15)
and
P(Plfx () =vi;) = P(&)-0-P(g, ) =0 (16)

Further, denote by v, (x;(T,)) the event that x; yields the value v, ; at time
instance T, . Finally, let {v;x))} denote a set of value assignments for x; for all

time instances T, . Now we can define the Birnbaum importance measure for
DFM as

DFMIB. = max R—- min R
I {"j(xi(Tk))} {"j(xi(Tk))} (17)

That is, the Birnbaum measure for DFM is the risk of the top event occurring
when the variable x; is assigned the worst possible value minus the risk of the top
event occurring when the variable x; is assigned the best possible value at each
time instance (note that the worst and best values can be different at different time
instances).
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Extending this Birnbaum measure for DFM to groups of variables is
straightforward. If the group contains e.g. the variables x; and x;, the group
Birnbaum measure for DFM is
GroupDFMIB, | = max R- min R
P il {Vj(xi (Tk))}x{vj(x| (Te ))} {"j(xi (T ))}x{vj(x| (Tk))} (18)

A remark on the computational effort of these maximization and minimization
tasks is in order. If we assume that the variable has n possible states, and the
DFM model is considered for m steps, there are only mn evaluations to be made
for a complete evaluation of all the possibilities. Typically, both m and n are
small, and therefore the maximization and minimization tasks are computationally
easy.

Risk reduction worth

Risk reduction means the reduction in system failure probability when the
component (or basic event) we are analyzing surely works (or surely doesn't
occur):

RR, = R—R(x, =0) (19)

Here, as above, R is the nominal system failure probability, and R(x;=0) is the
probability that the system fails given that the basic event x; surely doesn't occur
(or the component is perfectly reliable).

Risk reduction worth is the ratio of these failure probabilities, i.e.

R
=R =0) (20)

Using the ideas of section 3.2.2, it is easy to formulate similar IMs for DFM. For
risk reduction this becomes

DFMRR, = R—R(p(x,)=0) (21)

That is, we consider the difference between the nominal system failure probability
and the failure probability when variable i is assumed to receive values that
minimize risk.

For risk reduction worth this becomes

R
RRW, = ————— (22)

" Rlp(x)=0)

Again as in section 3.2.2, it is straightforward to extend these IMs to group
importance measures.
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Risk achievement worth

Risk achievement means the difference between the system failure probability
when the component/variable/basic event i is perfectly reliable or never occurs,
and the nominal system failure probability.

RA =R(x =1)-R (23)

Analogously to section 0, risk achievement worth is the ratio of the two risks:

RAW, = w (24)

Extending these to DFM proceeds in the manner of section 0.
Criticality importance

Criticality importance [14] is an extension of the Birnbaum importance measure.
It takes into account the risk that component i fails (or variable xi=1).

CR = R(x, =1)-R(x, =0)
R

P(X =D =P (25)

Where pi is the failure probability of component i.

When trying to find an analogue of criticality importance for DFM models, the
first problem is that there isn't necessarily any state of any variable in a DFM
model that can be interpreted as failure state. However, if we just want to analyse
a certain state of a certain variable (regardless of whether it is a failure state or
not), and if the failure probability of the component remains constant over the
time span considered, it is again straightforward to formulate a DFM version of
this IM (see section 3.2.2).

On the other hand, if the failure probability of the component varies with time
during the timespan considered in the DFM model, things get more complicated.
Which probability of the p;(t) at different time instances should we take to the IM?
The mean of pj(t) in the time period considered? The maximum of pj(t) in the time
period? This is an interesting research question, but of rather little practical
relevance, and therefore it will not be pursued further here.

Sensitivity
Sensitivity is the partial derivative of the system'’s failure probability with respect

to the failure probability of component i:

pp, - R

. op; (26)



WT RESEARCH REPORT VTT-R-00525-11

3.2.7

13 (21)

When applying this to DFM, the first question concerns the time extension:
should we apply to the variable at a single time instance or at all time instances?
If it is applied at a single time instance, the partial derivative can be calculated
easily at least in principle: just find the total failure probability of the system in
terms of the prime implicants — a sum of multinomials of the pi's — take only the
terms containing p,, factorize p; out of the multinomials and compute the value of
the resulting expression. Usually one is more interested in the variable's overall
contribution to the total failure probability. However, the variable's values at
different time instances might make a different contribution to the total failure
probatility. Therefore, equating the variable's values at different time instances
doesn't seem like a good idea.

If the variable receives a given value at all the time points considered with equal
probability, this problem is solved. Again, one can use the total risk as a
multinomial of the individual probabilities, and calculate its derivative with
respect to the probability.

The second question concerns the range of the variable. Should we consider the
variable at different states as equal? Again, the variable at different states make a
different contribution to the failure probability, but the sensitivity of each state
can be calculated from the set of prime implicants. This sensitivity corresponds to
type 2 importance measures in multistate system reliability analysis (section 3.3).

One way around these problems might be to adopt the approach taken in the
calculus of variations: find the maximal contribution that small perturbations to
the variable can make. However, since DFM variables are discrete-valued (and
the values of a variable are unordered), this approach is problematic.

Another way is not to try find the sensitivity of system failure probability to a
variable, but instead to a parameter — perhaps shared by several variables. Such a
parameter might be human error probability, maintenance interval etc. Again,
finding sensitivity in this case is straightforward.

All in all, calculating the sensitivity of total risk to variations in individual
variables is a difficult research question. However, when the failure probabilities
don't vary with time, and we settle to finding the sensitivity of the total risk to the
variable at a given value, the problem is easily solvable.

Differential importance measure

The differential importance measure (DIM) [9] is a relatively new measure with
certain attractive properties, such as additivity (i.e. The DIM of a group of basic
events or parameters is the sum of individual DIMSs). Its purpose is to measure the
importance of proposed changes that affect component properties and multiple
basic events. It is the fraction of the total change in the system'’s failure probability
that is due to a change in the parameter (or basic event) considered.

@ dXi

oX;

z OR dxj
ax,.

j=1

DIM(x;) = (27)

Again, we run into the same problems in the general DFM setting as in calculating
sensitivity (section 3.2.6): it is not clear how to treat a variable in different states
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or at different time instances. If we again adopt the stance that DIM is computed
for only a variable at a time instance, or for a parameter (such as maintenance
period), it is quite straightforward to see how to calculate DIM for a DFM model.

Importance measures for multi-state systems

Multi-state systems in reliability theory are systems where components and the
system aren't simply working or failed, but there are intermediate stages between
these two extremes. There are two kinds of multi-state systems: those where the
components have a binary state space (works/fails) but the system as a whole may
be in one of several states; and those where the components, too, may be in more
than two states.

If the system's state vector is x — each x; corresponding to the state of component i
—and ¢(x) its structure function, mapping the states of the individual components
to the total system's state, we may present the system's failure probability as

MR, = P(4(x) > d) (28)

Where d is a constant demand that the system must satisfy. More general
formulations of reliability for multi-state systems are also possible [12][25].

Note that a multi-state system can be converted to a Boolean system in a way that
a decimal number can be converted to a binary number. It is also easy to convert

the multi-state system's failure risk to a binary variable: the condition ¢(X)2 d s
a binary condition (either true or false). However, dealing with a multi-state
system as such (rather than its Boolean equivalent) leads to better representational
economy and conceptual clarity.

There are two kinds of importance measures for multistate systems [24]: type 1
IM's measure how a specific component affects the system's reliability. Birnbaum,
RAW and FV can be directly extended to multistate setting [24]; however, these
extensions only consider the possible state levels and not the probability of a
component being in that state. [24] also developed a set of composite IM's that
take the probabilities into account: mean absolute deviation, mean multi-state
reliability achievement worth and mean multi-state Fussell-Vesely. [17] extended
Birnbaum's measure to the multistate case via an importance vector, and [31]
extended this to a componentwise IM.

Type 2 IM's measure how a particular state or set of states of a specific
component affect multistate reliability. [32] extends RAW, RRW, Fussell-Vesely
and Birnbaum to a multi-state setting using Monte Carlo simulation.

It is for the time being unclear whether, and to what extent, importance measures
developed for multistate systems can be adapted for DFM. A significant
conceptual difference between multistate systems and DFM models is that the
latter don't consider performance levels but, rather, top events. If the DFM model
represents a multistate system, the top event may be formulated in a way that
describes failure to reach the required performance level.

Importance measures for Markov chains

Markov models are considered to be the main alternative to DFM in dynamic
reliability analysis [1]. Therefore it is tempting to think that importance and
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sensitivity measures developed for Markov models would be applicable to DFM,
too. However, the present approaches to the problem [27][28] seem to rely on
perturbation of the transition rates matrix. Thus the application of Markov model
importance measures to DFM boils down to finding equivalent of the transition
rates matrix in DFM. Formulation of a meaningful transition rates matrix for a
DFM model is an open research problem.

Time-dependent importance measures

Time-independent importance measures [5][23] aim to evaluate the importance of
a component or a failure mode over the mission time of the system. The
motivation for this is that the reliability of individual components varies with
time, and thus, to get a comprehensive understanding of a component's
contribution to the system'’s reliability we need to take into account the system's
entire mission time.

The usual way to formulate a time-independent IM is to take a time-dependent IM
and integrate it over the system's mission time. This is possible for a DFM model,
too, if the nature of the individual probabilities' time-dependence of the model is
known.

Application example

Garrett and Apostolakis present a case study of applying DFM to a space-based
reactor control system [15]. The reactor provides power to a spacecraft operating
in a strategic defense initiative (SDI) environment. The control system controls
the power production of the reactor by moving its control rods if measurements
from the reactor imply a need for it. The purpose of the control system is to start
or stop the system at the operator’s command, to maintain the desired power level,
and to ensure that the fuel temperature does not exceed a given maximum value.
The control system raises the power level by raising the control rods, lowers it by
lowering the control rods, and monitors the reactor attributes (fuel temperature,
power level and startup rate). A human operator specifies the target power level,
and may issue start and stop commands.

The central variables of the DFM model are listed in Table 1.

variable | explanation Relevant states

DR State of the rod motion in max — maximum movement speed

RP Rod position full in — rods are fully inserted

T Fuel temperature melt (>1800 C) — above the melting point
of the fuel

hot (1400, 1800 C) — above the shutdown
override action temperature but below
melting point

TS Temperature sensor status | low — temperature sensor claims that fuel
temperature is low

null — temperature sensor doesn’t give a
reading

MS Rod drive motor status stalled

Table 1. variables of the example model
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We assume that each of these variables can yield some other states. For example,
the fuel temperature can yield a value smaller than 1400 degrees. For all variables,
we call these other states normal.

For illustration purposes, we use the following probabilities for each event that
occurs in a prime implicant. The probability figures are invented. The abscissae of
the figures have been chosen to be different prime numbers, so that the
contribution of each to the top event can be more easily analyzed.

Variable | state formula probability probability value
RP Full in o P1 11E-5

T hot ®, P2 7,00E-03

T melt (0N P3 1,30E-04

TS low @, P4 3,00E-03

TS null ®s Ps 5,00E-05

MS stalled o Ps 1,70E-04

Table 2. Probabilities of each variable being in a certain state at time instance -1.

For brevity, we denote

def

P(0) 9)

Garrett and Apostolakis consider the following top event, corresponding to the
reactor failing to scram upon high temperature:

—~(DR(0)=in max) A ((T(~1) = hot) v (T (- 1) = melt)) (30)
For this top event, they obtain the seven prime implicants listed in Table 3.
Pl |PI Expressed as events
#
1 | (RP(-1)=full in) A (T(-1)=hot) O,
2 | (RP(-1)=full in) A (T(-1)=melt) N
3 | (TS(-1)=low) A (T(-1)=hot) 0, NQ,
4 | (TS(-1)=null) A (T(-1)=hot) 0, A Qs
S5 | (TS(-1)=null) A (T(-1)=melt) N
6 | (MS(-1)=stalled) A (T(-1)=hot) NN
7 | (MS(-1)=stalled) A (T(-1)=melt) N

Table 3. The prime implicants of the top event (30)

First we calculate an expression for the total risk R using the inclusion-exclusion
development. Remember that R = P(TOP) = P(PI, v...v Pl,). In principle, we

should apply the inclusion-exclusion development to all PI’s subsets, the number
of which is 2'=128. However, we note for example that P1; and PI, cannot occur
simultaneously because the formulae (T(-1)=hot) and (T(-1)=melt) are mutually
exclusive. Taking all such exclusivity constraints into account, we obtain
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:
> P(PI;)
i=1
R= —(P(Pl, APL,)+P(PI,APl,)+P(Pl API;)+P(Pl, API) 31)
+P(PI, APL,)+P(Ply APl )+ P(Pl, API)+P (Pl API,))
+P(PI, APl APl )+ P(Pl, API, APl )+P(Pl, API; API,)

Assuming independence between the formulae we can calculate the individual
probabilities in (31). For example,

P(PI,)=p,p, (32)

Then, the risk R can be expressed in terms of formulae as

p1p2+ p1p3+ p2p4+ p2p5+ p3p5+p2pe+p3p5_(p1p2p4+
R="pp,Ps+ P PsPs+ P PsPs + PyPsPs + Py PyPs + Py Ps Ps + PsPs Pg)
+ Py P, Py P + PP, Ps P + Py P3 Ps Pg

(33)

R can be computed from (33) and Table 2 to be 2,33E-05.
Now we can calculate the values of structural importance measures for each of
these variables.

For the Birnbaum measure of structural importance, this is easy. Just calculate the
number of prime implicants where probabilities corresponding to the variable
exist, and divide that by the total number of prime implicants.

For the Barlow-Proschan measure, the calculation is somewhat more involved.
For illustration purposes, let us consider the calculation of the measure for the

variable TS. The set of possible states Y = {normal, low, null}. The only other
variable that takes two distinct values in the prime implicants is T.

We get the following integral that has to be evaluated for each of the possible
states of TS:

111-p, 1
o (19)= oo 2X, [ [ [(ROS)Wncochdp
) 111-p, 1
_TSe{nomall,rI]ow,null}l-! -([ -([(R(TS))ddepsdpzdpl
We get the following possibilities for the integral, from which we select the
smallest and the largest:
TS P P 111-p, 1
) @ T T IR oo
0 0 0

0
low 1 0 7124

null 0 1 1/3
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| normal [0 |0 | 1/4 |

Table 4. Computation of the Barlow-Proschan structural importance measure for the variable

TS

As readily seen from Table 4, the maximum is 1/3 and the minimum is 1/4, and so
the Barlow-Proschan measure for TS is 1/12. A side result is that the maximum is
obtained when TS=null.

The computation of the Barlow-Proschan importance measure for the other
variables proceeds similarly. All in all, we get the following table.

Variable | Birnbaum Barlow-Proschan
RP 2/7=0.286 | 1/24

T 77=1 11/24

TS 3/7=0.429 |1/12

MS 2/7=0.286 | 1/24

Table 5. Some structural importance measures for the reactor control system model and top

event (30)

As we see, T is the most important variable by both structural importance
measures. This is natural since T occurs in every prime implicant. The two
structural importance measures are consistent in the sense that they give the same
ranking for the variables: T is the most important, TS the second, and RP and MS
are third, being equally important. This naturally raises the hypothesis that the
DFM analogues of Birnbaum and Barlow-Proschan structural importance
measures defined in sections 3.1.1 and 3.1.2 are as consistent in more general
settings.

Probabilistic importance measures can be computed similarly. Here we consider
only the importance of variables, not that of formulae. Calculation of the
importance measures is demonstrated by examples.

Let us first consider how to compute the Fussell-Vesely importance measure for
variable TS. We need to know the probability that any prime implicant containing
TS occurs. We note from table 3 that there are three prime implicants containing
TS, namely prime implicants 3, 4, and 5. Further, we note that none of these prime
implicants can occur at the same time, because either TS or T would yield two
different values at the same time instance. Thus, the sought probability is given by

35
P(P|3VP|4VP|5)=p2p4+p2p5+p3p5 (35)

and the Fussell-Vesely importance measure for TS is given by
P(PISVPI4VPI5) (36)

DFMFV, = .

The Fussell-Vesely importance measure can be computed similarly for the other
variables. The results are shown in Table 7.
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VIr

For the Birnbaum importance measure, let us again consider the variable TS. For
our purposes, it has three possible values (normal, low, null). Since there is only
one time instance considered, we will find out which of these values produces the
maximal risk and the minimal risk. For the maximization task, this happens by

letting the probabilities P(¢,) and P(¢,) alternatively take the value 1 or their
nominal value. We get the following possibilities:

E P(o.) P (o) RTS)
low 1 0 7,00E-03
null 0 1 7.13E-03
normal 0 0 2E-06

Table 6. The total risk when TS yields the values low, null, and normal.
It is easy to see that the maximal risk is obtained when TS=null surely (i.e. with

probability 1), and the minimal risk when TS=normal. The Birnbaum importance
of TS is then calculated by the subtraction 0,007131-2E-06=0,007129216.

Risk reduction worth and risk achievement worth are computed similarly.

Variable | F-V BB RRW RAW
3,36E- | 0,00711 7,78E-07 | 7,11E-03
RP 02
T 1 0,00333 2,33E-05 | 3,31E-03
9,15e- | 0,00713 2,14E-05 | 7,11E-03
TS 01
5,19e- 1 0,00711 1,21E-06 | 7,11E-03
MS 02

Table 7. Some probabilistic importance measures for the reactor control system model and
top event (30)

Note that although the Birnbaum and RAW importances of RP equal that of MS at
the precision used, in the results Birnbaum is slightly smaller for MS than RP,
whereas RAW is slightly larger for MS than RP. The importances of MS and RP
should be close to each other, since the two variables are in the same position
structurally (see the prime implicants in Table 3); however, some variation
between them should be expected since the probabilities of the respective
formulae are different.

T is the most important variable by Fussell-Vesely and risk reduction worth,
whereas TS is the most important variable by Birnbaum and risk achievement
worth. R is less important than MS by all four probabilistic importance measures.

5 Independence of importance measures from the top event

As we have seen, the most useful importance measures depend on the top event
considered. One of the primary advantages of DFM models, however, is the
separation of the system model from the top event. Therefore it is natural to
ponder how to formulate importance measures that are independent of the top
event.
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One way would be to define a new top event that would be a disjunction of a set
of representative top events, and then proceed as normally with the calculation of
the importance measures. This, however, might be computationally tedious due to
the large number of prime implicants corresponding to the original top events.

Another way to accomplish a (near) independence of the importance measure
from a top event is to combine the IMs for several top events. This combined IM
would then represent the importance of a component in these top events. If the top
events present, e.g., all the ways that a system can fail, the corresponding
composite importance measure would describe the importance of a component to
the system's failure in general. This would be advantageous in situations where
several top events have already been analyzed and components importance
measures been determined for some components of interest. One way to define
such a composite importance measure is

N
IM=3" p®IM, (37)

i=1

Where IM is the composite importance measure over the set of top events, Pi™ s
the probability of the top event i, N is the number of top events considered, and
IM; is the importance measure of the system with regard to the top event i. Thus
each top event-dependent importance measure is weighted by the probability of its
top event. If the importances of the top events in terms of their consequences
differ, corresponding weights can be added in equation (37).

Other approaches are of course possible. For example, the Fussell-Vesely
importance measure (section 3.2.1) could be extended so that in the nominator
would be the number of all distinct prime implicants for any top event considered
that contained the variable, and in the denominator the number of all distinct
prime implicants for the top events considered.

Conclusions

We have seen that importance measures equivalent or analogical to Fussell-
Vesely, Birnbaum, risk achievement worth and risk reduction worth can be
formulated for DFM models. These analogues have the advantage that they can be
used for arbitrary combinations of variables (e.g. groups). Model sensitivity can
be applied to DFM only in a limited sense to the importance of states of variables.
Application of importance measures developed for Markov models to DFM
models is an open research question.

It would be advantageous to be able to evaluate the importance of components in
a DFM model for the system's mission time. Therefore conceptual and
mathematical work is needed in time-independent importance measures for DFM.
Model sensitivity in the context of DFM models is clearly a research area where
more work needs to be done, both conceptual and mathematical.

More research needs to be done also in the application of ideas from multistate
system importance measures to DFM.

Explicit considerations of group importance measures [18] were left out of this
report. However, they are as important in DFM as they are in classical reliability
theory, and even more so: in a DFM model, several variables might correspond to
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a single component, for example the pressure and flow in a pipe. It is therefore of
great practical importance that the importance measures defined in this report can
directly be applied to groups of components.

Importance measures for multi-phase missions [30] in the context of DFM are
also a promising research direction. However, research in modelling multi-phase
missions with DFM is needed in general, and is a prerequisite to defining such
importance measures.

There is a need for a practical study of importance measures in the DFM context.
This could consist of applying the IMs developed in this paper to various DFM
models and top events, and interpreting the results from the model's point of view.
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