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ABSTRACT 

Concrete is a so called quasibrittle material which, despite predominantly elastic material response, 

exhibits in tension loading a stable non-linear fracture response, when tested under displacement 

control. The reason for the non-linearity is the development of a fracture process zone, in front of 

the crack, due to micro-cracking and crack bridging. The effect of the fracture process zone is to 

make the specimen sense the crack as being longer than a0+a. The fracture process zone causes 

thus an effective increase in the crack driving force and apparent fracture resistance. Here, a novel 

LEFM based estimate of the effective stress intensity factor and the effective crack growth at 

maximum load in a fracture mechanics test is used to obtain a simple power law approximation of 

the effective K-R curve. It is shown that it is applicable to the description of not only different size 

specimens, but also specimens with varying geometry. The method is based on a new theoretical 

estimate of the effective crack growth corresponding to maximum load. 
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NOMENCLATURE 

a Crack length 

a0 Initial crack length 

a0e Effective initial crack length for an unnotched specimen 

B Specimen thickness 

c Constant related to specimen geometry 

C Constant in Bažant size effect expression 

C(T) Compact tension specimen 

DEC(T) Double edge cracked tension specimen 

H Compact tension specimen width 

G Energy release rate 

K Stress intensity factor 

KIC Fracture toughness for a completely brittle material 

KIeff Effective stress intensity factor corresponding to a0 + aeff 

K1mm Stress intensity factor corresponding to 1 mm crack growth [N/mm
3/2

] 

K-R curve Dependence between stress intensity factor and crack growth (KIr) 

m Power in power law expression for effective K-R curve 

P Load 

Pmax Maximum load 

PZ Active fracture process zone 

S Span width in SE(B) specimen 

SE(B) Single edge cracked bend specimen 

W Specimen height 

W0 Normalising constant 

a Crack growth 

aeff Effective crack growth 

aeffPmax Effective crack growth corresponding to maximum load 

f Tensile stress 

nomW Nominal stress for specimen height W 



1 INTRODUCTION 

Concrete is a so called quasibrittle material which, despite predominantly elastic material response, 

exhibits in tension loading a stable non-linear fracture response, when tested under displacement 

control (Fig. 1 [1]). The reason for the non-linearity is the development of a fracture process zone, 

in front of the crack, due to micro-cracking and crack bridging. An excellent review of the physical 

fracture process of concrete has been given in e.g. [2] and need not be covered here in any more 

detail. Here, the focus is on the fracture mechanical description of the effect of the fracture process 

zone on the structural behaviour of the test specimen and prediction of size effects.  

The cracking of concrete is schematically presented in Fig. 2. The shaded area in Fig. 2, relates to 

the micro-cracked material. The part of the micro-cracked material, lying in front of the 

macroscopic crack (including initial crack length a0 and extended crack a), constitutes the active 

fracture process zone. In this region the material cohesion is weakened due to the micro-cracking. 

The effect of the fracture process zone is to make the specimen sense the crack as being longer than 

a0+a. The fracture process zone causes thus an effective increase in the crack driving force. The 

effect of the fracture process zone is similar in nature to the Irwin plasticity correction [3] for 

metals. 

The part of the micro-cracked material that becomes engulfed in the crack wake, is no longer 

actively affecting the crack driving force, but it has absorbed energy related to the micro-crack 

surfaces. This has the effect of increasing the materials effective fracture resistance (Fig. 3).  

Often, fracture toughness tests of concrete are actually assessed by estimating an effective stress 

intensity factor and effective crack length [4], to derive an effective K-R curve in line with the 

ASTM E561 – 10 test standard [5]. This procedure is still, however, not widely used, partly due to 

the question regarding the significance of the effective crack length and effective crack driving 

force. Another method called the double-K or double-G criterion is based on the estimate of the 

stress intensity at the onset of first crack extension (with a non-developed fracture process zone) 

and the stress intensity corresponding to maximum load in the test [4]. This method is really an 

improvement of the classical tests where the maximum load has been combined with the initial 

crack length (a0) to obtain a nominal fracture toughness value. The challenge with the double-K 

criterion lies in the reliable detection of the moment of crack initiation, which is almost invisible on 

the load-displacement record. Also, the estimation of the crack length at maximum load contains an 

experimental challenge and the necessity to combine both estimates of the crack tip displacement 



and load displacement. This prevents the method from becoming a simple quality assurance type of 

fracture toughness estimate. 

As a compromise to the use of the classical nominal load maximum stress intensity factor, a special 

size effect expression has been proposed by Bažant. (See e.g. [6]). The Bažant size effect 

expression is versatile and has been shown to describe well the size effect in load maximum values 

of concrete and other quasibrittle materials. The Bažant size effect expression for load maximum 

(Pmax) can be expressed in the form of Eq. (1). B and W denote the fracture toughness specimen 

thickness and width and f corresponds to the tensile stress of the material. The constant c accounts 

for specimen geometry and W0 is a normalising constant. The constants c and W0 are determined by 

fitting to test results from different size specimens of identical geometry. Apparently the only 

weakness with the size effect expression is that a comparison between different loading geometries 

is not possible without the inclusion of additional fitting parameters [7]. 
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Here, a LEFM based estimate of the effective stress intensity factor and the effective crack growth 

at maximum load in a fracture mechanics test is used to obtain a simple power law approximation 

of the effective K-R curve that is applicable to the description of not only different size specimens, 

but also specimens with varying geometry. 

 

2 FRACTURE MECHANICAL ESTIMATE OF MAXIMUM LOAD 

In the case of metals, the materials tearing resistance is usually well described with a simple power 

law expression. Assuming, that the evolution of the fracture process zone and its effect on the 

effective materials fracture resistance behaves similarly to metals, also the effective stress intensity 

factor as a function of the effective crack growth should be possible to approximate with a power 

law in the form of Eq. (2). 
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m

Ieff mm effK K a   (2) 

For metals, when the tearing resistance is expressed in J-integral units, the power m is close to 0.5 

or less. Thus, in K units the power should be in the vicinity of 0.25. If the fracture process zone size 



is very small compared to the crack growth, a, the power m will be small. If it is large compared to 

a, the power m should be closer to 0.25 or even above. When the relation between crack growth 

and fracture process zone no longer exists, the power m is expected to grow uncontrollable. This is 

not, however, expected to occur until well beyond the maximum load value. 

The effective stress intensity factor is related to load and the effective crack length by Eq. (3). 
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Eq. (3) differs from the classically used nominal stress intensity factor, which is calculated using 

only the initial crack size (a0). The nominal stress intensity factor under-predicts the true effective 

crack driving force and should not be used in the assessment of quasibrittle materials. 

Combining Eqs. (2) and (3) leads to a relation between load and effective crack growth, Eq. (4). 
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When the derivative of Eq. (4) (dP/da) is 0, the load and effective crack length correspond to 

maximum load. This leads to the relation between power m and effective crack extension in the 

form of Eq. (5) [8]. 
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Eq. (5) is general and can be applied to any geometry for which the shape function f(a/W) is known. 

A numerical inversion of Eq. (5) is quite simple. One can tabulate a set of a0, m and aeffPmax values 

for a desired geometry and then a specific equation may be fitted to the data, or the information can 

be interpolated from the table. As an example, the solutions for the standard SE(B) and C(T) 

specimens are shown graphically in Figs 4a and b. An approximate solution for the standard SE(B) 

specimen with span width S/W = 4 is given by Eq. (6) and for the standard C(T) specimen with 

H/W = 0.6 is given in Eq. (7). 
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It is important to note that Eqs. (6) and (7) are applicable only for standard specimen geometries. 

Especially in the case of the SE(B) specimen often different S/W ratios are used in the tests. For 

such tests, the standard f(a/W) expression can be adjusted e.g. by Eq. (8) [9] to be used together 

with its derivative in Eq. (5).  
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The analysis consists of solving the power m and K1mm iteratively by combining Eqs (4) and (5) to 

provide the correct maximum load values for different size and/or geometry specimens. The result 

is obtained in the form of the effective K-R curve in the form of Eq. (2) which then can be used for 

the evaluation of other geometries. 

For a constant geometry and fixed initial crack size ratio (a0/W), the effective crack growth is 

directly related to the specimen width (W). This makes a comparison with the Bažant size effect 

expression quite simple. When the Bažant size effect expression is written in the form of maximum 

load stress ratio for 2 specimen widths (W1 and W2), the result can be expressed in the form of Eq. 

(9). The corresponding K-R curve size effect can be expressed in the form of Eq. (10). The two size 

effects are compared graphically, for realistic values of the constants C and m in Fig. 5. The 

difference between the two size effects is strikingly small, within realistic experimental size ranges. 
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Next, the two size effect expressions are compared on actual test data. 

 

3 ASSESSMENT OF MAXIMUM LOAD DATA 

Fig. 6 shows maximum load data as a function of specimen size for self-similar concrete and mortar 

specimens [7]. When accounting for the effective crack growth at maximum load, the effective 

stress intensity factor K-R curve can be fitted to the maximum load data. The result is shown as the 

solid line in Fig. 6. The Bažant size effect fit to the data is shown as a dashed line. The two 

descriptions of the two data sets are practically indistinguishable. Two differences between mortar 

and concrete can be seen from the analysis. The power m is much smaller for the mortar than for the 

concrete. This indicates that the facture process zone for mortar is clearly smaller and less 

dependent on loading level than for concrete. This is likely due to a bridging cohesive stress of 

coarse aggregates in concrete, which increases the size of the fracture process zone and enhances 

the power m. On the other hand is K1mm smaller for concrete than mortar. Physically, K1mm 

represents more the pure fracture toughness of the material, without the enhancing effect of the 

fracture process zone. This value is smaller for concrete than for mortar, possibly due to a higher 

density of mortar than concrete, but another reason is also possible. The overall effect is that for 

small specimens mortar shows a higher maximum load than concrete, whereas the relation is 

reversed for large specimens. 

Fig. 7 shows maximum load data and resulting effective K-R estimates for sound and degraded self-

similar concrete specimens of different size [10]. Similarly to before, the K-R curves were fitted to 

the maximum load data, accounting for the effective crack growth at maximum load. Also here, for 

all three cases, the K-R curve size effect and the Bažant size effect are practically indistinguishable. 

The effect of the Calcium Leaching degradation is mainly to lower the K-R curves, i.e. decrease the 

facture process zone size (Fig. 7d). All three conditions show closely similar initiation behaviour, 

whereas the leached conditions show smaller m values, indicating a smaller fracture process zone. 

This is connected to the cohesive zone characteristics of the process zone, but the physical reason is 

unknown. 

Fig. 8 shows maximum load data for C(T) specimens of different size and thickness, but with a 

constant initial crack length ratio [11]. Because the specimen thickness varies, the load is 

normalised with the thickness to clarify the effect of specimen width on the maximum load. The 



effective K-R curve, based on the effective crack growth at maximum load described the data well. 

Again, the K-R curve size effect and the Bažant size effect are practically indistinguishable. 

The above examples dealt with self-similar specimens with a constant initial crack length ratio. Fig. 

9 shows two data sets for constant size SE(B) specimens with varying crack length. Fig. 9a 

corresponds to standard specimens with S/W = 4 [12], whereas Fig. 9b refers to four point bending 

specimens corresponding to pure bending [13]. In both cases, the effective K-R curve describes the 

maximum load very well.  

Fig. 10a compares the maximum load for four different specimen sizes with four different initial 

crack lengths [2]. All the different maximum load KIeff – aeff, data pairs fall on a common power-

law curve (Fig. 10b). Thus, a single effective K-R curve describes both the size effect as well as the 

effect of crack length. Another example of this is shown in Fig 11, where varying crack length data 

from three different specimen sizes [14] are shown to be well described with a single effective K-R 

curve. Originally the smallest specimen size data was discarded as representing incomparable data 

due to a too small specimen size. Therefore the power law effective K-R curve was only fitted to 

the two larger specimen sizes. However, the use of the effective K-R curve describes well all three 

specimen sizes. Fig. 11 includes also another “small” specimen data set [15] representing the same 

type of concrete. The points denoted as squares with crosses lie very close to the other “small” 

specimen data (open squares), indicating that the fracture toughness of the concretes is similar. 

These examples show the descriptive power of the power law effective K-R curve estimated based 

on the maximum load values. The validity and the restriction of the method are discussed next. 

 

4 DISCUSSION 

The proposed method relies on the assumption that the effective K-R curve up to maximum load 

can be approximated by a simple power law. Karihaloo and Nallathambi [16] collected a large 

number of SE(B) data and estimated from the experimental load-displacement traces, the relation 

between initial crack length and the effective (based on effective compliance) crack length 

corresponding to maximum load. Their results have been reproduced in Fig. 12. Included in the 

figure are theoretical estimates from Eq. (6) for the m values 0.1 and 0.45. It should be pointed out 

that the theoretical estimates are for a fixed span width of S/W = 4, whereas the Karihaloo and 

Nallathambi data contains specimens with varying span widths. A shorter span width increases the 

shear stresses in the specimen, having the effect of increasing the size of the fracture process zone. 



This translates into a larger m value. Overall, the Karihaloo and Nallathambi data provides a strong 

validation of Eq. (6) and the assumption that the effective K-R curve up to maximum load can be 

approximated by a simple power law. 

 

Even though the effective K-R curve describes well the specimen size and crack length effect, it 

does not mean that it would be insensitive to constraint effects. A low-constraint geometry will have 

the effect of increasing the size of the fracture process zone, thus increasing the effective fracture 

toughness. An example of this is shown in Fig. 13 [7], where different size double edge cracked 

tensile specimens for concrete and mortar, with a constant initial a0/W ratio, are analysed by the 

effective K-R curve method. The materials are the same as shown in Fig. 6 for SE(B) specimens. As 

can be expected, the Bažant size effect and the K-R curve size effect produce a similar description 

of the size effect. However, comparison to Fig. (6) shows an important difference in the K-R curve 

description. The KIeff corresponding to an effective crack growth of 1 mm is only little affected by 

the specimen type. The power m is, however, clearly larger for the DEC(T) specimens than for the 

SE(B) specimens. The relative behaviour between concrete and mortar is however unaffected. This 

example highlights the strong effect of loading mode on the fracture process zone development. 

In a cracked specimen, the fracture process zone size is initially controlled by the effective stress 

intensity factor connected to the crack. In an uncracked (plain) specimen the fracture process zone 

size will be controlled by the overall stress distribution. In a bend specimen, the stresses change 

relative to the width. Thus it is expected that the fracture process zone in a plain bend specimen 

behaves like a proportionally sized crack. This was investigated in Fig. 14, with maximum load data 

for different size SE(B) specimens corresponding to cracked (a0/W = 1/3) and uncracked specimens 

[17]. The effective K-R curve was first fitted to the cracked specimens and then, the resulting power 

law was used to predict the maximum loads for the uncracked specimens. Assuming an effective 

initial crack length of a0e/W = 0.035 provides an excellent description of the uncracked specimen 

data. This means that, when the crack starts macroscopically to grow in the uncracked specimens, 

the effective crack length due to the partially damaged fracture process zone is 0.035∙W. The power 

m, is not affected emphasizing that the effective power law K-R curve, to a large extent, is the 

product of the fracture process zone evolution. 

The effective K-R curve describes well the specimen behaviour up to maximum load. This is 

exemplified in Fig. 15, where SE(B) data for limestone is analysed. Fig. 15a, shows the maximum 

load values for self-similar specimens of different size [18]. Even though limestone differs from 



concrete, the fracture process is sufficiently similar to enable the use of limestone as an example. 

The power law K-R curve was fitted to the maximum load data in Fig. 15a. Then, the K-R curve 

estimate was used to predict the load displacement up to maximum load for the three different 

specimen sizes (Figs 15b,c,d). For the prediction, the crack is first advanced several small steps of 

aeff. Next the K-R curve is used to estimate the KIeff and P corresponding to a + aeff. Finally the 

estimated load is used to calculate the displacement corresponding to a + aeff, from the theoretical 

compliance. Considering the scatter of individual load-displacement traces, the prediction up to 

maximum load is excellent. Thus, this very simple power law K-R procedure can be used to predict 

the non-linearity in concrete and stone structures up to maximum load. 

Beyond maximum load, the connection between the effective crack length and the fracture process 

zone size breaks up. This is highlighted in Fig. 16 where concrete specimens, whose maximum load 

data were presented in Fig. 7a. The load-displacement data was extracted from [1], so that for each 

specimen size representative upper and lower bound load-displacement traces were digitised. The 

effective crack length was estimated directly from the individual load-displacement data pairs, 

assuming that all the non-linearity is due to effective crack growth. Fig. 16a shows the effective 

crack driving force versus absolute effective crack growth and Fig. 16b shows the effective crack 

driving force versus proportional crack growth. Also included in the plots is the effective K-R curve 

estimated for the maximum load values in Fig. 7a. It is seen that for crack growth up to maximum 

load and slightly beyond, the effective K-R curve follows the absolute effective crack growth, 

whereas for large crack growths the effective K-R curve follows the proportional effective crack 

growth. This is a direct result of the fracture process zone evolution. Prior to maximum load, the 

fracture process zone is controlled by the fracture mechanical loading introduced by the crack. At 

some point, the connection between process zone size and the effective crack length breaks up. 

Finally, when the facture process zone has fully engulfed the crack and possibly extended to the 

free surface, the fracture process zone size develops as if there was no single crack in the structure. 

The present method is not in all respects entirely new. The assessment method proposed e.g. by 

Bažant [19] contains similarities to the power law K-R curve, in the respect of trying to estimate the 

amount of effective crack growth at maximum load. The use of the power law curve shape to 

describe the effective crack driving force versus effective crack length and the resulting theoretical 

estimate of the effective crack growth at maximum load is, however, unique. In all, the proposed 

power low K-R procedure can be regarded as a simplification to the method proposed in [19]. The 

power law method contains also similarities to an analytical cohesive zone method, which has been 

applied to describe the size effect in SE(B) specimens [20, 21]. The power law method is, however, 



much easier to use and provides an at least as good description of the size effect as can be seen by 

comparing Fig. (11) with Figs (4-6) in [21]. The advantage of the power law procedure lies in the 

very simple quantification of the fracture process zone development. A small power m indicates a 

brittle material, where the fracture process zone remains small throughout the fracture process. This 

is the case for m values of the order of 0.1 and below. The other extreme is a large m value in which 

case the material is crack insensitive and the damage comes mainly from the fracture process zone 

evolution. The method enables also the quantification of constraint in terms of the power m. 

The procedure results in the estimate of the effective stress intensity factor corresponding to 1 mm 

effective crack growth. This parameter is easily correlated to the initiation toughness estimated in 

the double-K criterion test [4]. For example, for the 160 mm specimens in Fig. 11, Xu and 

Reinhardt [4] have estimated the average initiation toughness to be 26.7 N/mm
3/2

 and for the 320 

mm specimens 24.6 N/mm
3/2

. This compares nearly exactly with the 1 mm value of 24.8 N/mm
3/2

 

obtained for the combined analysis of the two specimen sizes as shown in Fig. 11.  

 

5 SUMMARY AND CONCLUSIONS 

Concrete is a so called quasibrittle material which, despite predominantly elastic material response, 

exhibits in tension loading a stable non-linear fracture response, when tested under displacement 

control. The reason for the non-linearity is the development of a fracture process zone, in front of 

the crack, due to micro-cracking and crack bridging. The effect of the fracture process zone is to 

make the specimen sense the crack as being longer than a0+a. The fracture process zone causes 

thus an effective increase in the crack driving force and apparent fracture resistance. The fracture 

modelling of concrete has been considered a mature theory. However, Present state of the art testing 

and assessment methods are somewhat cumbersome to use. Here, a LEFM based estimate of the 

effective stress intensity factor and the effective crack growth at maximum load in a fracture 

mechanics test is used to obtain a simple power law approximation of the effective K-R curve. It is 

shown that it is applicable to the description of not only different size specimens, but also 

specimens with varying geometry. The method is based on a new theoretical estimate of the 

effective crack growth corresponding to maximum load. 

It can be concluded that: 

 The presented procedure results in a simple two parameter description of the effective 

fracture resistance of quasibrittle materials. 



 The procedure describes the specimen size effect on maximum load values with equal 

accuracy to the Bažant size effect expression. 

 The procedure describes the effect of initial crack length on the maximum load values. 

 The procedure enables the construction of the load-displacement dependence up to 

maximum load. 

 The procedure enables a simple classification of the materials fracture process zone 

evolution.  

 The procedure can be used in the context of the so called double-K criterion to describe the 

effective initiation toughness value. 

 The procedure can be used to examine constraint effects on the materials fracture process 

zone evolution. 

 In the future, the procedure may be used to assist damage mechanics type modelling of the 

failure of quasibrittle materials. 
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Figures 

Figure 1. Example of a typical load-displacement relationship for concrete in a SE(B) fracture 

toughness test [1]. 

Figure 2. Schematic presentation of the fracture process of concrete. The initial crack length is a0 

and the macroscopic extended crack is a. PZ is the size of the active fracture process zone.  

Figure 3. Schematic definition of the difference between an ideally brittle and a quasibrittle 

material. 

Figure 4. Effective crack growth corresponding to maximum load for standard SE(B) and C(T) 

specimens. 

Figure 5. Comparison between Bažant size effect expression and simple K-R curve size effect. 

Figure 6. Comparison of Bažant size effect expression and simple K-R curve size effect for concrete 

and mortar representing SE(B) specimens with a constant initial a0/W ratio [7]. The process zone 

size for mortar is, based on the smaller power, smaller than for concrete. 

Figure 7. The effect of degradation by Calcium Leaching on the fracture behaviour and effective K-

R curve of concrete SE(B) specimens with a constant a0/W ratio [10]. 

Figure 8. Comparison of Bažant size effect expression and simple K-R curve size effect for concrete 

C(T) specimens with variable thickness and a constant a0/W ratio [11]. 

Figure 9. Use of the power-law K-R expression to describe the effect of crack length on the 

maximum load. Data taken from [12] (a) and [13] (b). 

Figure 10. The maximum load for four different specimen sizes with four different initial crack 

lengths are all described by a single K-R curve [2]. 

Figure 11. The maximum load for three different specimen sizes with strongly varying initial crack 

lengths are all described by a single K-R curve. The data has been taken from [14]. The squares 

marked by a cross are from [15], but their behaviour is practically identical to the other specimens. 

Figure 12. Estimate of effective crack length at maximum load, Eq. (6), compared to Karihaloo and 

Nallathambi experimental data from SE(B) specimens with varying S/W [16]. 



Figure 13. Comparison of Bažant size effect expression and simple K-R curve size effect for 

concrete (a) and mortar (b) representing DEC(T) specimens with a constant initial a0/W ratio [7]. 

The low constraint DEC(T) geometry produces a larger process zone than the high constraint SE(B) 

geometry (See Fig. 6) and this is reflected in the form of a steeper effective K-R curve. The process 

zone size for mortar is, based on the smaller power, for both specimen geometries smaller than for 

concrete. 

Figure 14. Effective initial crack length corresponding to an unnotched SE(B) specimen based on 

cracked specimen data. Data taken from [17]. 

Figure 15. The prediction of load displacment dependence up to maximum load, based on simple 

effective K-R curve fitting to maximum load data. Data taken from [18]. 

Figure 16. Normalisation of effective crack driving force versus effective crack growth for self-

similar SE(B) specimens of different size. Data extracted from [1]. Fig. 16a shows the effective 

crack driving force versus absolute effective crack growth and Fig. 16b shows the effective crack 

driving force versus proportional crack growth. Also included in the plots is the effective K-R curve 

estimated for the maximum load values in Fig. 7a. 
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Figure 1. Example of a typical load-displacement relationship for concrete in a SE(B) fracture 

toughness test [1]. 

 

 

Figure 2. Schematic presentation of the fracture process of concrete. The initial crack length is a0 

and the macroscopic extended crack is a. PZ is the size of the active fracture process zone.  

 



 

Figure 3. Schematic definition of the difference between an ideally brittle and a quasibrittle 

material. 
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Figure 4. Effective crack growth corresponding to maximum load for standard SE(B) and C(T) 

specimens. 
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Figure 5. Comparison between Bažant size effect expression and simple K-R curve size effect. 
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Figure 6. Comparison of Bažant size effect expression and simple K-R curve size effect for concrete 

and mortar representing SE(B) specimens with a constant initial a0/W ratio [7]. The process zone 

size for mortar is, based on the smaller power, smaller than for concrete. 
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Figure 7. The effect of degradation by Calcium Leaching on the fracture behaviour and effective K-

R curve of concrete SE(B) specimens with a constant a0/W ratio [10]. 
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Figure 8. Comparison of Bažant size effect expression and simple K-R curve size effect for concrete 

C(T) specimens with variable thickness and a constant a0/W ratio [11]. 
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Figure 9. Use of the power-law K-R expression to describe the effect of crack length on the 

maximum load. Data taken from [12] (a) and [13] (b). 

 

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14 Kumar & Barai

Concrete SE(B)

B = 100 mm, S/W = 4a
0
/W = 0.2

a
0
/W = 0.3

a
0
/W = 0.4

a
0
/W = 0.5

K
Ieff

 = 19.3a
0.2

eff

 

 

P
m

a
x
 [

k
N

]

W [mm]

a)

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40
b)

Kumar & Barai

Concrete SE(B)

W = 100...400 mm

B = 100 mm, S/W = 4

K
Ieff

 = 19.3a
0.2

eff

 

 

K
Ie

ff
 [

N
/m

m
3

/2
]

a
eff

 [mm]

a
0
/W = 0.2

a
0
/W = 0.3

a
0
/W = 0.4

a
0
/W = 0.5

 

Figure 10. The maximum load for four different specimen sizes with four different initial crack 

lengths are all described by a single K-R curve [2]. 
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Figure 11. The maximum load for three different specimen sizes with strongly varying initial crack 

lengths are all described by a single K-R curve. The data has been taken from [14]. The squares 

marked by a cross are from [15], but their behaviour is practically identical to the other specimens. 
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Figure 12. Estimate of effective crack length at maximum load, Eq. (6), compared to Karihaloo and 

Nallathambi experimental data from SE(B) specimens with varying S/W [16]. 
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Figure 13. Comparison of Bažant size effect expression and simple K-R curve size effect for 

concrete (a) and mortar (b) representing DEC(T) specimens with a constant initial a0/W ratio [7]. 

The low constraint DEC(T) geometry produces a larger process zone than the high constraint SE(B) 

geometry (See Fig. 6) and this is reflected in the form of a steeper effective K-R curve. The process 

zone size for mortar is, based on the smaller power, for both specimen geometries smaller than for 

concrete. 
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Figure 14. Effective initial crack length corresponding to an unnotched SE(B) specimen based on 

cracked specimen data. Data taken from [17]. 
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Figure 15. The prediction of load displacment dependence up to maximum load, based on simple 

effective K-R curve fitting to maximum load data. Data taken from [18]. 
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Figure 16. Normalisation of effective crack driving force versus effective crack growth for self-

similar SE(B) specimens of different size. Data extracted from [1]. Fig. 16a shows the effective 

crack driving force versus absolute effective crack growth and Fig. 16b shows the effective crack 

driving force versus proportional crack growth. Also included in the plots is the effective K-R curve 

estimated for the maximum load values in Fig. 7a. 


