
This document is downloaded from the
Digital Open Access Repository of VTT

VTT
http://www.vtt.fi
P.O. box 1000
FI-02044 VTT
Finland

By using VTT Digital Open Access Repository you are
bound by the following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other
intellectual property rights, and duplication or sale of all or
part of any of this document is not permitted, except
duplication for research use or educational purposes in
electronic or print form. You must obtain permission for
any other use. Electronic or print copies may not be
offered for sale.

Title Implementing dynamic flowgraph methodology
models with logic programs

Author(s) Karanta, Ilkka
Citation Journal of Risk and Reliability,

Vol. 227 (2013) No: 3, Pages: 302 - 314
Date 2013
URL http://dx.doi.org/10.1177/1748006X13484425
Rights SAGE Publications. This post-print version of

the article can be downloaded for personal use
only.

http://dx.doi.org/10.1177/1748006X13484425

Implementing dynamic flowgraph methodology models with logic programs

Ilkka Karanta1

VTT, Espoo, Finland

Abstract: The dynamic flowgraph methodology (DFM) is a promising way to find the prime implicants of a
top event for a dynamic system possibly containing digital subsystems. This paper demonstrates how to
express dynamic flowgraph methodology models as logic programs, and top events as queries to those
programs, in a natural and comprehensible way. Computation of the logic program lists the prime implicants
of a top event in the system. We also present and implement an algorithm for computing the probability of
the top event from its prime implicants. Together, computation of prime implicants and calculation of top
event probability from these constitute a complete way of finding a system’s failure probability. Logic
programs, implemented in this paper in the leading logic programming language Prolog, enable rapid
prototyping of DFM models. The logic programming framework introduced here could also be utilized in
teaching DFM in risk analysis courses.

Keywords: dynamic flowgraph methodology, logic programming, Prolog, dynamic PRA

1. Introduction

The reliability analysis of dynamic systems is becoming more and more important. Still more important is
the reliability analysis of systems containing digital (computerized) subsystems; indeed, lack of sufficient
evidence of the reliability of e.g. digital automation subsystems in nuclear power plants may in some cases
have delayed their eventual commissioning. Appropriate methods for the reliability analysis of dynamic
systems possibly containing digital subsystems are therefore of great importance to the industry, and also a
field of active study within the reliability research community.

The dynamic flowgraph methodology (DFM) [1] is a reliability modeling framework that can handle both
dynamic systems and systems containing digital subsystems. It has been claimed [2], with some justification,
that DFM and Markov models are the two main contenders for the reliability analysis of such systems. The
main advantage of DFM when compared to such classical methods as fault and event trees is that DFM is
“capable of modeling some of the essential logic and dynamic characteristics of
hardware/software/firmware/process interactions which are difficult to represent” using the latter [3]. Thus, a
viable way to describe and analyze DFM models programmatically should be of great interest to analysts,
researchers and teachers in the reliability analysis field.

A drawback in the practical implementation and teaching of DFM is that relatively few software alternatives
are available to the aspiring applier of DFM. The present author knows of only two DFM implementations.
DYMONDA [4] is a full-fledged commercial implementation of DFM; however, its price may hinder its
adoption to educational and research purposes, and the unavailability of its source code makes it difficult to
experiment with DFM extensions etc. A DFM implementation developed at VTT (the workplace of the
present author), YADRAT [5], is not available outside of VTT.

It seems therefore that a need exists for a programmatic tool for the definition and solution of DFM models.
Since no open-source implementation of DFM is currently publicly available, a viable alternative is to find a
method to implement DFM models programmatically from scratch. It is natural to set some requirements for
such a method as follows:

the description of DFM models should be simple and natural from the DFM point of view
the method should include means of finding the solution of DFM models
the language in which DFM models are described should be readily available, preferably with open-
source implementations

1 VTT, Box 1000 (VM3), FI-02044 VTT, Finland. e-mail: ilkka.karanta@vtt.fi

This paper describes a DFM model implementation method that satisfies these requirements, based on logic
programming and the most commonly used logic programming language, Prolog.

The paper is organized as follows. In section 2 we take an elementary look at DFM; the basic concepts of
DFM modeling and analysis are explained. In section 3 we introduce the basic concepts of logic
programming, with a view of reliability modeling for industrial systems. Section 4 presents a method of
implementing DFM models with Prolog. Section 5 considers the problem of calculating the probability of the
top event, given the corresponding set of prime implicants; an algorithm is given for the purpose. Section 6
describes a small example, the reliability analysis of a simple pump, that illustrates the concepts outlined in
the previous sections. Section 7 puts the results in context, showing how they might be used in practice and
describing the relative merits of using Prolog. Finally, section 8 concludes.

2. The dynamic flowgraph methodology

The dynamic flowgraph methodology (DFM) is an approach to modeling and analyzing the behavior of
dynamic systems for reliability/safety assessment and verification [1]. DFM models express the logic of the
system in terms of causal relationships between physical variables and states of the control systems; the time
aspects of the system (execution of control commands, dynamics of the process) are represented as a series
of discrete state transitions. DFM can be used for identifying how certain postulated events may occur in a
system; the result is a set of prime implicants (multi-state analogue of minimal cut sets) that can be used to
identify system faults resulting e.g. from unanticipated combinations of software logic errors, hardware
failures, human errors and adverse environmental conditions. DFM has been used to assess the reliability of
nuclear power plant control systems [6], but also of space rockets [7] and chemical batch processes [8].

DFM models are directed graphs, analyzed at discrete time instances. They consist of variable and condition
nodes; causality and condition edges; and transfer and transition boxes. Each node represents a variable that
may be in one of two or more given states at each time instance. The state of a given node at a given time
instance depends on the states of its input nodes; this dependence is given for each variable as a decision
table. The state of a variable can change at discrete time instances; it is determined by the states of its input
variables. Each node can have several inputs but only one output — the state of its variable at the time
instance considered. The state of the variable can act as an input to possibly several other variables. The state
of a node at time t is determined by
• the states of its input nodes at a single instance of time (say, t n)
• the lag n, an integer that tells how many time instances it takes for an input to cause the state of the
present node.

The state of a variable — as a function of the states of its input variables — is determined by a decision
table. A decision table is an extension of the truth table where each variable can obtain one of any finite
number of states. The decision table contains a row for each possible combination of input variable states.
Each row tells what state the variable takes, given that its inputs take the given values. The maximum
possible number of rows in the decision table is the product of the numbers of states of the input nodes.

There might be variables in the model that don’t have input variables at all; the state of such a variable at any
time instance is not determined by anything (except perhaps boundary conditions), and thus can be assigned
to any of its possible values. In the following, we call such variables independent variables, and variables
that have input variables (and whose state is thus determined by a decision table) dependent variables.
Independent variables often represent chance events, and in particular, component failures.

We use a simplified notation that differs somewhat from the notation introduced in [1]; this simplification
doesn’t affect the semantics of the models. The distinction between causality and condition edges, and the
distinction between condition and variable nodes, are for documenting purposes only, and they are therefore
ignored in this paper. However, we distinguish the difference between independent and dependent variables:
the former are marked by a square, and the latter by a circle. Boxes exist for representing the decision tables;
however, decision tables may just as well be assigned to nodes directly, and therefore boxes can be dropped
from the diagrams. The time lags associated with transition boxes are, in the simplified notation, attached to
the edges.

After construction, the DFM model can be analyzed in two different modes, deductive and inductive [8]. In
inductive analysis, event sequences are traced forward in time, from causes to effects. This corresponds to
simulation of the model, or the generation of an event tree. In deductive analysis, event sequences are traced
backward in time, from effects to causes; this corresponds to the generation of a fault tree. In this paper, we
will consider only deductive analysis, or the task of finding the possible reason(s) of a system’s failure.
However, inductive analysis can be implemented in a logic program, too.

A deductive analysis starts with the identification of a particular system condition of interest (a top event);
usually this condition corresponds to a failure. To find the root causes of the top event, the model is
backtracked for a predefined number of time steps through the network of nodes, edges, transfer and
transition boxes. This means that the model is worked backward in the cause-and-effect flow (that is,
backward in time) to find what states of variables - and at what time instances - are needed to produce the top
event. A useful analogy is that deductive analysis corresponds to minimal cut set search of a fault tree. The
result of a deductive analysis is a set of prime implicants, PI={PI1,PI2,…,PIn}.

A prime implicant PIi is a set of triplets (V, S, T), also known as literals [9]; a literal is a claim that variable V
is in a state S at time T. When all the literals in the prime implicant are true, the top event results;
furthermore, dropping any literal out from the prime implicant would produce a set of literals that would not
cause the top event. Prime implicants are similar to minimal cut sets of fault tree analysis, except that prime
implicants are timed and they deal with multi-valued variables (fault trees deal with Boolean variables).

The prime implicants are minimal descriptions of conditions that lead to the top event. Furthermore, the
value of a dependent variable depends deterministically on the values of its input variables, that is, a given
combination of input variable values for a dependent variable always leads to the value for the variable given
by the decision table. Therefore only values of the independent variables and the initial values of the
dependent variables leading to the top event are listed in the prime implicant.

The following two definitions will be referred to in sections 5 and 6. A literal L1 (V1,S1,T1) is said to be
consistent with literal L2 (V2,S2,T2) if the following condition holds: V1= V2 T1= T2 S1= S2. This means
that all other pairs of literals are consistent except those where the same variable V1 obtains a different state
at the same time instance.

A prime implicant PI1 is said to be mutually consistent with another prime implicant PI2, if all of the literals
of PI1 are consistent with all the literals of PI2. This means that the two prime implicants can hold
simultaneously. If two prime implicants are not mutually consistent, they are said to be mutually
inconsistent. For example, let 1 (, , 2), (, , 1)PI temperature hot cooling low and

1 (, , 2), (, , 2)PI temperature medium cooling off . These two prime implicants are mutually
inconsistent, because the variable temperature cannot be both hot and medium at time -2.

After PI has been determined, the probability of the top event can be computed. We will come back to this in
section 5.

2.1. A small example

Consider the following system. A pump pumps water into a vessel from an infinite source, and the water
flows out from the vessel. The flow through the pump is controlled by a water level measurement so that if
there is too much (or an adequate amount of) water, the pump stops, and if there is too little water, the pump
starts. To keep the system as simple as possible, we don’t consider the water level measurement directly but
assume that it always measures the true water level in the vessel, and transfers this information to the pump
without delay. The goal of the system is to keep the water level appropriate.

Assume that there is only one way that the components of the system can fail: the pump can stop working
(i.e. the flow is zero no matter what is should be). This failure mode is represented by the independent
variable pumpFailure.

We now represent the system in DFM. We will use a simplified notation where boxes are not represented,
and there are no variable or condition nodes, or causality or condition edges; instead, the notation
distinguishes independent nodes from dependent nodes by denoting the former with a square and the latter
with a circle (Figure 1). The time delays are marked in the edges; when the delay is 0, the delay is not
marked.

waterLevel pumpFlow

pump
failure

t=-1
t=-1

Figure 1. A DFM model of a simple vessel-and-pump system

The variable waterLevel may be in one of three possible states: low, normal or high. The variable pumpFlow
has only two distinct possible states in this model: zero and full. PumpFailure may be in one of two distinct
states: no and yes. The decision table of the variable waterLevel is as follows:

Table 1. The decision table of the variable waterLevel.

The decision table of the variable pumpFlow is as follows:

Table 2. The decision table of the variable pumpFlow.

Some possible literals of the pump system are, for example, (pumpFailure,no,-1), and (waterLevel,normal,-
2). The previous literal expresses the statement that at time -1 (one time step before the origin), the value of
pumpFailure is “no”; in other words, the pump has not failed at that time.

This example will be further developed in section 6.

3. Logic programming and Prolog

In logic programming [15], a program consists of a description of the logical relations present in the problem
to be solved. The program doesn’t contain an explicit description of a solution method. The logic
programming system tries to solve the problem using deduction. In the following, we will use the
nomenclature of [16].

waterLevel(-1) pumpFlow waterLevel
low zero low
normal zero low
high zero normal
low full normal
normal full high
high full high

waterLevel(-1) pumpFailure pumpFlow
low no full
normal no full
high no zero
low yes zero
normal yes zero
high yes zero

The basic structure of a logic program is called a term. A term may be a constant, a variable or a compound
term. A compound term consists of a functor and a sequence of one or more arguments. For example, the
compound term status(valve1, broken) consists of the functor status and the arguments
valve1 and broken. This compound term might be used to indicate the condition that the status of the
valve valve1 is broken.

A logic program consists of statements called clauses (also known as rules). Each clause is a universally
quantified logical sentence of the form

1 2 kA B B B (1)

where A, 1, , kB B are terms. The left-hand side of the rule, A, is called the head, and the conjunction on the
right-hand-side is known as the body. The clause is read declaratively: “A is implied by the conjunction of

1, , kB B “. For example, we might want to state that a certain pump works if it is not broken and if it gets
electricity. We could express this as the clause
works(pump1) status(pump1,not_broken) gets_electricity(pump1).

If the right-hand side of (1) is empty (i.e. no terms are needed to imply A), the sentence is called a fact, and
consists of the term A alone. For example, we might want to state the fact that the pipe pipe1 feeds the
vessel vessel1 by stating the fact feeds(pipe1,vessel1).

Once we have a logic program, we want to know if a certain state of affairs is implied by the program. This
state of affairs is represented by a query. A query is a logical conjunction of terms. For example, we might
want to know if both pump1 and pump2 work; a query for finding this out could be works(pump1)
works(pump2).

The computation of a logic program is a constructive proof of a goal statement (query) from the program.
The logic programming system produces this computation automatically once the user has typed in the
query. In practice, the system starts with the top level goal (query) and expands it to lowel level goals via
clauses until it has satisfied all the compound terms in the query. If the query contains free variables, the
answer that the system outputs is a combination of bindings for the variables that satisfies the query; the
system outputs as many (even all) answers to the query as the user wishes. If the query doesn’t contain free
variables, the system outputs yes, if the goal is satisfiable, or no if it isn’t.

The Prolog programming language is an implementation of some basic logic programming constructs,
including the ones introduced above. Additionally, Prolog has some extra-logical constructs to facilitate the
programmer’s work. Several Prolog implementations exist and some of those are freely available, such as
SWI-Prolog [17] and Ciao Prolog [18].

There are some aspects to Prolog’s syntax that are worth mentioning here. First, variables are written starting
with a capital letter and constants starting with a lowercase letter; thus, in feeds(Pipe,vessel) Pipe
is a variable but vessel is a constant. Second, the logical conjunction is denoted by a comma (,).

4. Representation of DFM models in Prolog

A DFM model can be represented as a logic program in a relatively compact way. The basic ideas are that a
DFM literal is represented by a Prolog term; that a single row in a decision table is represented by a Prolog
clause; and that these representations carry also the necessary information about maximum number of time
steps and the prime implicant under construction.

4.1. Representation of decision tables

Each row in a decision table corresponds to a clause in Prolog. Let the row considered be

x1 t1 x2 t2 … xn tn y
value1 lag1 value2 lag2 … valuen lagn valuey

If only the information given in the decision table needs to be represented, this row can be expressed in
Prolog as
literal(y, valuey,T) :- T1 is T-lag1, literal(x1, value1,T1),

T2 is T-lag2, literal(x2, value2,T1),…,
Tn is T-lagn, literal(xn, valuen,Tn).

However, we need to express also some logical and computational information concerning each row in the
decision table:

we need to construct a prime implicant. To do that, we need a place to store the literals that have so
far been found to belong to the prime implicant. A natural way of doing this is to represent the prime
implicant as a list of literals, stored in a variable. The prime implicant is then constructed by
accumulating the relevant literals to the variable. The value of this variable can then be given as an
answer to the top level query (a top event).
we need to stop the computation when the maximum number of time steps, defined by the user, has
been taken. To do that, we need to compare the current number of time steps to the maximal number.
we need a way to guarantee that the result is consistent (see section 2). In practice, since state
transitions in DFM are deterministic, we need to consider only the initial values and values of
independent variables (although it might be more efficient to check consistency when a single literal
is generated).

The accumulation of a solution is best done by inserting two variables in a literal: one that contains the
solution so far, and one that contains the insertions resulting from the application of the current rule. Taking
care that the number of time steps taken does not exceed the maximum, a simple test is sufficient.

literal(y,val,T,Tmax,L1,Ln) :- T > Tmax,
T1 is T-lag1, literal(x1, val1,T1,L1,L2),
T2 is T-lag2, literal(x2, val2,T1,L2,L3),
…,
Tn is T-lagn, literal(xn, valn,Tn,Lm,Ln).

The list L1 is the collection of literals collected so far (when this row in the decision table is called). Ln is the
collection of literals that results from the application of the literals in this row of the decision table. Each
application of a literal takes the result of the application of the previous literal and produces a new list that
contains the previous literals and whatever new literals the application of the literal created.

Consistency could be checked for each rule. However, this can be inefficient. A more efficient method is to
check the consistency only when needed, i.e. when generating an initial value of a dependent variable or a
value of an independent variable. We’ll consider consistency in section 4.2.

4.2. Representation of initial and boundary values

If the maximum number of time steps has been taken in the analysis, the value of the present variable is
taken as such; it is an initial value that tells what value the variable must take initially in order to produce the
prime implicant being constructed.

Representing initial values is straightforward: just verify that the initial value is consistent with the initial
values collected so far, and if it is, insert it to the list of literals collected so far. The initial value is consistent
with the literals collected so far if the literals do not contain one with the same variable and time instance but
a different value. The representation of an initial value of a dependent variable is as follows:

literal(y,val,T,Tmax,L1,[i(y,val,T)|L1]) :- T Tmax,
consistent(i(y,val,T),L1).

In practical implementation, it is advantageous to avoid inserting the same literal many times in a prime
implicant; to avoid this, a separate clause is needed that does not insert anything into the prospective prime
implicant but does not interfere with the computation, either:

literal(y,val,T,Tmax,L,L) :- T Tmax, find(i(y,val,T),L).

A boundary value is a value that the variable necessarily takes at a given time instance. If the variable would
take that value at every time instance, its representation would be easy: just drop all lines not containing the
value from the decision table. However, because we want the variable to obtain the value only at the given
time instance, a different strategy is needed.

Boundary values tell two things. First, that a variable has a certain value at a certain time instance. And
second, that it cannot have any other values at that moment. From the logic programming point of view, this
means that attempts to try any other value for the variable at the given moment should fail.

Thus, boundary value is represented in three parts. In the first part, the corresponding row of the decision
table is given.

literal(y,val,t,Tmax,L1,Ln) :- T > Tmax,
T1 is T-lag1, literal(x1, val1,T1,L1,L2),
T2 is T-lag2, literal(x2, val2,T1,L2,L3),
…,
Tn is T-lagn, literal(xn, valn,Tn,Lm,Ln),
!.

Note that the time instance is represented by a small t; here t is not a variable but the constant specific time
instance of the boundary value.

In the second part, the initial value of y is represented as above (if t Tmax).

In the third part, we ensure that an attempt to try any other values for y at the time instance t leads to failure.
This is done by using the common idiom of negation in Prolog: if the condition that some other value for the
variable y at the time instance t is tried, no other alternatives are tried and the present try is a failure:

literal(y,Val,t,_,_,_) :- Val val1,!,fail.

It is easy to extend this representation to cases where the variable at a certain time instance must obtain a
value from a predefined set of values (e.g. the value of valve1position should be closed or semi-closed at
time -1). The idea is that the predicate literal(valve1position,-1,X) should fail if X isn’t one of
closed, semi-closed.

4.3. Representation of independent variables

Independent variables don’t have decision tables, and therefore don’t need multiple clauses for
representation. If there is no boundary condition for the independent variable at a time instance, the facts
represent the conditions that the variable obtains any value from its value range at a given time instance.
Thus they are of the form presented earlier for initial values, with the exception that here there is no need to
check whether the number of time steps has been exceeded. Thus, independent variables are represented as
follows:

literal(y,val,T,Tmax,L1,[i(y,val,T)|L1]) :- consistent(i(y,val,T),L1).

4.4. Representation of a top event and finding all its prime implicants

Representation of top events in DFM is straightforward in Prolog: in DFM, top events are conjunctions of
DFM literals, so they can be represented in Prolog with a conjunctive query (which is a conjunction of
clauses). The query is of the form

literal(y1,val1,t1,tmax,[],L1), literal(y2,val2,t2,L1,L2),…,
literal(yn,valn,tn,tmax,Ln,Result).

Note that the lists representing the prime implicant constructed so far are chained also in the query: the result
of the first literal, L2, is handed over to the second literal and so forth. We start with no literals in the prime
implicant; this is expressed in Prolog as the empty list ([]).

Querying Prolog with the top event itself is logically correct, but results in getting the prime implicants one
at a time (the user has to return a semicolon after each prime implicant to get more). If the intent is to find all
the prime implicants with a single query, one can do as follows. The query is first expressed as a rule

top_event(tmax,Result) :- literal(y1,val1,t1,tmax,[],L1),
literal(y2,val2,t2,L1,L2),
…,
literal(yn,valn,tn,tmax,Ln,Result).

Different names for the head of the rule can of course be used for different top events.

Using the rule above, all the prime implicants of the top event can be found using the Prolog standard
predicate findall to query as follows:

findall(I,top_event(tmax,I),L).

Now the Prolog system returns all the prime implicants as lists in the list L.

5. Calculating top event probability

We consider the calculation of the top event probability, given the probabilities of literals occurring in the
top event’s prime implicants. The top event occurs if and only if at least one of its prime implicants occurs.
Thus, if the set of the top event’s n prime implicants is PI={ PI1, PI2, …, PIn }, we want to find the

probability 1 2() ()nP Top P PI PI PI .

It seems that this problem has not received much attention in the DFM context. [6], [10], [11] and [12] refer
to a method based on converting PI into a set of mutually exclusive implicants (MEI). Due to the exclusivity,
the probability of the top event is the sum of the probabilities of the individual MEI’s (the method of
conversion is not described in these papers). A different approach – based on the inclusion-exclusion
development – is adapted here.

There are several methods for finding the probability of the top event, given the set of minimal cutsets [13].
The approach based on inclusion-exclusion development is the simplest of these, and it allows a
computationally efficient implementation.

The inclusion-exclusion development utilizes the familiar way of computing the probability of a disjunction
by the following expansion:

1
1 2 1

1 ,

1
n

n
n i i j n

i i j
i j

P PI PI PI P PI P PI PI P PI PI

(2)

The proposed algorithm for computing this probability is based on the observation that, essentially, each
conjunction on the right hand side of (2) is a conjunction of a subset of PI. Altogether, all subsets of PI are
included in the sum in this way. The sought probability is an alternating sum of the probabilities of these
conjunctions. The probability that constitutes a summand of the sum is the probability that all the prime
implicants in the present subset hold. The sign of a summand is determined by the number of prime
implicants in it.

The algorithm consists of systematically constructing the subsets of PI, finding their probabilities, and
summing these probabilities. However, before we proceed, we must consider two issues. The first concerns
the meaning of the event i jPI PI , or indeed the meaning of any conjunction of prime implicants; it is
obvious from (2) that we need to be able to represent these events in terms of literals in order to calculate
P(Top). The second concerns the consequences of having a pair of mutually inconsistent prime implicants in
PI. After these issues have been dealt with, we proceed to present an algorithm for the computation of the top
event probability.

5.1. The meaning of conjunction of prime implicants

Each prime implicant is a set of literals. Therefore, the event i jPI PI happens when all the literals of iPI
and all the literals of jPI hold. This means that the set of literals that must hold for i jPI PI to be true is

the set-theoretical union i jPI PI .

For example, let 1 (, , 2), (, , 1)PI temperature hot cooling low and

2 (, , 2), (, , 2)PI temperature hot alarm off . Then the event 1 2PI PI holds if and only if all the

literals in the set (, , 2), (, , 1), (, , 2)temperature hot cooling low alarm off hold.

Therefore, when we are finding out the probability of any conjunction of prime implicants, it suffices to
consider the probability that all the literals in the corresponding union of the individual prime implicants
hold.

This property can be put into good use when calculating the sum (2). We do not have to keep track of the
prime implicants involved in a conjunction; it suffices that we maintain a set containing the literals in them.

5.2. Handling of mutually inconsistent prime implicants

In some cases, two prime implicants cannot hold simultaneously. We consider how to take this into account
in the calculation of the top event probability.

There are several ways that two or more prime implicants cannot hold simultaneously: this might be the case
for logical, physical or other reasons. For example, in some contexts, it might be the case that a component
stays in failed state once it fails; then, a prime implicant PI1 containing a literal that states failure of the
component at a time instance (component,failed,t1), and another prime implicant PI2 containing a literal
(component,working,t2) cannot hold simultaneously if t1< t2. In this paper, we consider only cases where two
prime implicants are inconsistent - that is, cannot hold simultaneously for logical reasons. However, other
kinds of cases (two prime implicants cannot hold simultaneously for physical reasons etc.) can be handled
similarly.

If the prime implicants PIi and PIj are mutually inconsistent, the conjunction i jPI PI (or indeed any
conjunction containing both PIi and PIj) is impossible in the sense that it cannot ever hold. Therefore its
probability 0i jP PI PI .

This fact can be put to good use when calculating the top event probability. Namely, when we are
constructing subsets of PI for the calculation of (2), we can omit all subsets that contain any pair of mutually
inconsistent prime implicants. This can dramatically reduce the number of subsets of PI that have to be
considered. For example, in a space-based reactor control system presented in [14], the number of prime
implicants is 8, and therefore the number of non-empty subsets of PI to be considered in (2) is 28-1=255.
However, some of the prime implicants are mutually inconsistent (due to, e.g., one prime implicant having
the literal (TS,low,-1), and another implicant having (TS,null,-1)), and the number of nonempty subsets of PI
that actually have to be considered is 18.

5.3. An algorithm for computing the probability of top event by inclusion-exclusion development

The algorithm is based on a simple way of listing all the subsets of a given set: for the current element, find
all the subsets containing it, and all the subsets not containing it. This basic scheme has been modified to
take into account that subsets containing any pair of mutually inconsistent prime implicants need not be
listed. The algorithm also maintains a list of literals rather than a list of prime implicants, and the probability
of a conjunction (corresponding to a subset of prime implicants) is calculated for this list of literals. The
algorithm is presented in Figure 2.

Figure 2. An algorithm for computing the probability of a top event from its prime implicants by the
inclusion-exclusion development

Let us first consider the function probability_of_top_event (lines 21-23). It receives a list of prime
implicants as its inputs and returns the probability of the corresponding top event. However, it is just an
interface to the recursive function probability_by_inclusion_exclusion.

The function probability_by_inclusion_exclusion is the heart of the algorithm. Its inputs are
RemainingImplicants, a set of prime implicants that have not been processed yet,
SubsetSoFar, the subset of prime implicants constructed so far (expressed as a set of literals),
Sign, the sign of the current summand (+1 or -1).

It returns a partial sum of (2) that consists of the sum of those conjunctions (or subsets of PI) that include the
prime implicants in SubsetSoFar.

In lines 4-7, we consider the case that we have actually processed all the prime implicants, either by taking
them into the current subset or not. In this case, the set of remaining implicants is empty (in other words,
null), and we can calculate the probability that all the prime implicants in the current subset hold. After
calculating this probability, control is returned to the calling function.

Let the current subset be 1 2, , ,i i ikPI PI PI (and thus the size of the current subset be k). The function
probability_of_intersection calculates the probability that all these prime implicants hold. This
probability is, of course, the probability that all the literals in the set

1 2, , , such thati j i i ik jL L PI PI PI PI L PI hold. How this probability is calculated depends

on the system considered. In the simplest case (implemented in section 6) the probabilities of each literal
holding are independent, and the sought probability is the product of the individual probabilities of literals.
If, e.g., common cause faults need to be taken into account, the calculation of the probability will reflect this.

Consider the example in section 5.1. Let the probabilities of the literals be
(, , 2) 0.2P temperature hot (that is, the probability that the temperature is hot at time instance -2

equals 0.2), (, , 1) 0.3P cooling low , and (, , 2) 0.7P alarm off . The probability

1 2 (, , 2) (, , 1) (, , 2)P PI PI P temperature hot cooling low alarm off . Assuming
independence, this probability is

1 2 (, , 2) (, , 1) (, , 2) 0.042P PI PI P temperature hot P cooling low P alarm off .

In lines 8-9 we choose one of the remaining prime implicants (called CurrentImplicant). The set of
prime implicants still to be considered will then be RemainingImplicants with CurrentImplicant
removed from it; call this new set RestImplicants.

In lines 10-16 we take into account the special features of DFM explained in sections 5.1 and 5.2. If
CurrentImplicant is consistent with SubsetSoFar, we find the probability of the subsets containing
both SubsetSoFar and CurrentImplicant. The sign is reverted on line 12, because the sign of the
summands in the sum (2) alternates with the number of prime implicants included. If CurrentImplicant
is not consistent with SubsetSoFar, (that is, at least one of the literals of CurrentImplicant is
inconsistent with some literal in SubsetSoFar), the probability of a subset constructed from
SubsetSoFar and CurrentImplicant equals 0, and no subsets containing both
CurrentImplicant and SubsetSoFar need to be generated.

In line 17 we simply find the probability of SubsetSoFar appended with, in turn, all the subsets of
RestImplicants. The crucial point is that CurrentImplicant is not included (because it was
included in lines 10-16).

Finally, in line 18, we sum the two mutually exclusive probabilities (they are mutually exclusive because one
is for sets containing CurrentImplicant and the other for sets not containing it). This sum is the
probability that the current call to probability_by_inclusion_exclusion returns.

A Prolog implementation of the algorithm is presented in section 6.

6. An application example

To illustrate the model representation formalism introduced above, let us consider the simple pump-and-
vessel system introduced in section 2.1. The model was implemented in SWI-Prolog. First, we need two
auxiliary Prolog predicates: one to guarantee the consistency of the prime implicants generated, and another
to make the generated prime implicant non-redundant by detecting whether a literal has already been inserted
to it. These auxiliary predicates are as follows.

Figure 3. Auxiliary predicates for computing the prime implicants of a DFM model. consistent checks
the consistency of a literal with a list of literals; find checks whether an element is in the given list.

Now we are in a position to express the DFM model itself.

Figure 4. The simple vessel-and-pump system represented in Prolog

Only the code contained in figures 3 and 4 is needed for the prime implicant computation.

To find the prime implicants of a top event, the top event is represented as a query. Consider the the top
event that the water level is too low for two consecutive time instances. This can be represented as

Figure 5. Representation of a top event in Prolog

The number of time steps has to be chosen. In this case we may simply consider two time steps, and set
Tmax thus to -2. In running the query, a Prolog system proceeds by trying to find bindings for the variables
L and I (see Figure 5) that satisfy the facts and rules in the Prolog program (presented in figures 3-4). The
system first takes the goal literal(waterlevel,low,-1,-2,[],L), and tries to find a binding for
the variable L. It goes through the facts and rules of the program until it finds a fact or a rule that satisfies
this; in this case, it is the third rule in Figure 4 (also the fourth rule satisfies the goal, and this possibly
provides an alternative solution). Using the third rule, the system finds that it has to satisfy the two goals
literal(waterlevel,low,-2,-2,[],L1) and literal(pumpFlow,zero,-1,-2,L1,L).
Proceeding in this way, the Prolog system finds bindings for the variables and returns them as results (for a
more complete explanation of how Prolog systems work, the reader is referred to [16]). The results of
running the query of Figure 5 are shown in figure 6.

Figure 6. Results of querying the top event in SWI-Prolog

As can be seen from the results, the top event is implied by two prime implicants. In both, there is pump
failure on both time instances (that is, time instances 0 and -1). The difference between these prime
implicants is that in the former, the initial value of waterLevel (that is, its value in time instance -2) is low,
whereas in the latter it is normal.

For computing the probability of the top event, we need a Prolog implementation of the algorithm presented
in section 5.3. This implementation is given in Figure 7.

Figure 7. Prolog implementation of the top event probability calculation algorithm presented in section 5.3

An implementation of the calculation of a single conjunction of prime implicants (represented as literals) is
given in Figure 8. The probabilities are assumed to be independent, so the sought probability is the product
of the probabilities of individual literals.

Figure 8. Prolog implementation of the probability of conjunction calculation

Finally, the implementation of the union of two sets of literals, and the consistency check for two prime
implicants (expressed as two sets of literals) are given in Figure 9.

Figure 9. Auxiliary predicates needed by the top event probability calculation

Finally, we can package computation of the prime implicants and calculation of the top event probability into
a compact interface of Figure 10. probability_of_top_event returns the probability of this
particular top event.

Figure 10. Query interface for prime implicant computation and probability calculation.

Let the probabilities be as in Figure 11 (the underscore in the first clause is a don’t-care variable binding – in
practice it means that the probability of pump failure is 0.1 for all time instances).

Figure 11. Probabilities of literals for the pump-and-vessel system example

From Figure 6, we notice that the two prime implicants of the top event are mutually inconsistent because
waterLevel cannot be both low and normal at the same time. Therefore the probability of the top event is, in
this case, simply the sum of the probabilities of the individual prime implicants. It is easy to see that this
probability is 0.005, and this is what the Prolog system gives.

7. Discussion

In section 6, we have seen how the formulation of a DFM model given in section 4 can be used in
implementing the toy example of section 2.1. Larger DFM models can be implemented in the same way. The
auxiliary predicates of Figure 3, the top event probability computation predicates of figures 7-9, and the
query interface predicates of Figure 10 (which are not needed, but make using the program simpler) can be
used as such. It is handy to collect these predicates in a single file, and represent the DFM model in a
separate file; in this way, the model can easily be changed. In a single Prolog session the change proceeds by
first by retracting the literal predicate (if the new model contains same variable as the previous model)
and loading the file containing the new model, and between sessions simply by loading the file containing
the desired DFM model.

On a risk analysis course covering DFM modeling and analysis, computer-based DFM exercises can now be
incorporated with no cost and a small amount of effort on the lecturer’s side. The auxiliary and top event
computation predicates can be handed to the students in a file, and an example can be shown on how to
implement a DFM model. Then the students can be given the task of modeling a system in DFM,
implementing it in Prolog, and analyzing the solution. It is of course helpful if the students have been
exposed to Prolog in, e.g. a course on artificial intelligence or logic programming; however, this is not
necessary, because they need only to provide their own set of literal clauses, and in this they can follow
the pattern and example provided in sections 4 and 6.

Rapid prototyping of DFM models proceeds in a similar manner. All that is needed is a representation of the
DFM model as Prolog facts and rules containing literal predicates (as exemplified in Figure 4). This
provides a simple and cost-free implementation of DFM models, available to anyone with the necessary
modeling skills and a computer.

The implementation in section 6 demonstrates some advantages Prolog has, in the present context, over
commonly used programming languages such as Java, C, C++ or Visual Basic. First of all, Prolog allows an
easy and compact representation of a DFM model within Prolog itself. Expressing a DFM model in any of
these languages would be cumbersome at best, and a better solution would be to express the model in a
separate description language (which would bring the overhead of implementing a parser for that language).
Second, Prolog offers in itself computation facilities that would have to be implemented if any other
language were used. A case in point is the backtracking needed in deductive analysis of DFM models (see
section 2): in Prolog, we have no need to implement this, but in another language it would have to be
implemented programmatically. Third, Prolog allows for a clear and compact implementation of algorithms
and computation: the implementation of the top event probability computation algorithm of Figure 2 takes 32
lines of code (see figures 7-9), not considerably more than the expression of the algorithm in pseudocode (23
lines of code). It is quite likely that the implementation of the algorithm in an ordinary programming
language would take tens, if not hundreds of lines of code, including the implementation of list handling, set
handling (calculation of the union of two sets), etc.

We haven’t touched on the question of DFM modeling in general. It seems that there are no treatises
concerning how to construct a DFM model, but the reader gain insight by studying the systems and their
respective DFM models presented in, e.g., [1], [6], [7], [8], [10], [11] and [12].

8. Conclusion

We have presented a relatively straightforward method of representing DFM models in the logic
programming framework, and a simple method for calculating the probability of a top event. In the
representation, a DFM literal (consisting of a variable and its value at a given time instance) is denoted by a
Prolog term. Each line of a variable’s decision table is represented by a Prolog clause. Independent variables
– i.e. variables that don’t depend on other variables and thus don’t have a decision table – and initial values
of dependent variables are handled separately. A prime implicant is expressed as a list of DFM literals of
independent variables and initial values of dependent variables. A top event is expressed as a conjunction of
DFM literals.

This representation allows for a straightforward and relatively compact representation of DFM models. The
prime implicants of a top event can easily be generated by expressing the top event as a Prolog query.

The method for the calculation of the probability of a top event, given its prime implicants, is based on the
inclusion-exclusion development. It allows for a compact Prolog implementation.

Together, DFM model presentation, prime implicant computation and top event probability calculation form
a complete framework for presenting and solving DFM models. This framework has at least two appropriate
uses. In the rapid prototyping of small to medium-sized DFM models, it enables quick model construction
and agile experimentation with alternatives in modeling a given system. In the teaching of DFM on risk
analysis courses, it allows the students to rapidly construct simple DFM models of their own, based on
learning from and modifying given example models.

A natural extension of the present framework would be to implement inductive analysis for the models. This
might be based on forward-chaining [19]; however, it is likely that some program transformations [16]
would have to be applied to the DFM model of interest first. Future directions in the representation of DFM
models in logic programming are related to extending the DFM modeling paradigm by e.g. expressing
general time constraints with constraint logic programming [20], or incorporating elements of process
algebra [21] or stochastic activity networks [22]. The framework can be extended in the future to
incorporate such central tasks of probabilistic risk analysis as the calculation of importance measures (see
[23], [24]) and uncertainty analysis for DFM models.

Funding

This research was supported by the Fortum Foundation.

References

[1] Garrett, C., Guarro, S., Apostolakis, G. “The Dynamic Flowgraph Methodology for Assessing the
Dependability of Embedded Software Systems”, IEEE Trans. on Systems, Man and Cybernetics. 25,
824-840, 1995.

[2] Aldemir T., Miller D.W., Stovsky M.P., Kirschenbaum J., Bucci P., Fentiman A.W., Mangan L.A.
Current State of Reliability Modeling Methodologies for Digital Systems and Their Acceptance
Criteria for Nuclear Power Plant Assessments. NUREG report NUREG/CR-6901, February 2006.

[3] Aldemir, T., Guarro, S., Mandelli, T., Kirschenbaum, J., Mangan, L.A., Bucci, P., Yau, M., Ekici, E.,
Miller, D.W., Sun, X., Arndt, S.A. Probabilistic risk assessment modeling of digital instrumentation
and control systems using two dynamic methodologies. Reliability Engineering and System Safety.
95, 1011–1039, 2010.

[4] ASCA Incorporated. DYMONDA. URL http://ascainc.com/dymonda/dymonda.html (link referred
January 11, 2012)

[5] Björkman, K., Karanta, I. A dynamic flowgraph methodology approach based on binary decision
diagrams. Proceedings of 2011 International Topical Meeting on Probabilistic Safety Assessment and
Analysis (PSA 2011), Wilmington, NC, 13 - 17 March 2011. American Nuclear Society 2011, 267-
278.

[6] Aldemir T., Stovsky M.P., Kirschenbaum J., Mandelli D., Bucci P., Mangan L.A., Miller D.W., Sun
X., Ekici E., Guarro S., Yau M., Johnson B., Elks C., and Arnd S.A. Dynamic reliability modeling of
digital instrumentation and control systems for nuclear reactor probabilistic risk assessments. NUREG
report NUREG/CR-6942, October 2007.

[7] Yau M., Guarro S. and Apostolakis G. Demonstration of the dynamic flowgraph methodology using
the Titan II space launch vehicle digital flight control system. Reliability Engineering and System
Safety. 49, 335-353, 1995.

[8] Houtermans M., Apostolakis G., Brombacher A. and Karydas D. Programmable electronic system
design & verification utilizing DFM. In SAFECOMP 2000 (F. Koornneef and M. van der Meulen,
eds.), Lecture Notes in Computer Science Vol. 1943, Springer 2000, 275-285.

[9] Houtermans M. A method for dynamic process hazard analysis and integrated process safety
management. Doctoral thesis, Technische Universiteit Eindhoven 2001.

[10] Dixon S., Yau M., and Guarro S. Demonstration of the context-based software risk model method for
risk informed assurance and test of software-intensive space systems. Paper 280 in International
Probabilistic Safety Assessment and Management Conference (PSAM) 9, 18-23 May, 2008, Hong
Kong, China.

[11] Yau M., Dixon S., Motamed M., and Guarro S. Application of the Dynamic Flowgraph Methodology
to a digital instrumentation and control system benchmark study. Paper 408 in International
Probabilistic Safety Assessment and Management Conference (PSAM) 9, 18-23 May, 2008, Hong
Kong, China.

[12] Aldemir T., Guarro S., Mandelli D., Kirschenbaum J., Mangan L.A., Bucci P., Yau M., Ekici E.,
Miller D.W., Sun X., and Arndt S.A. Probabilistic risk assessment modeling of digital instrumentation
and control systems using two dynamic methodologies. Reliability Engineering and System Safety,
95, 1011-1039, 2010.

[13] Limnios N. Fault trees. ISTE 2007.
[14] Garrett C., and Apostolakis G. Automated hazard analysis of digital control systems. Reliability

Engineering and System Safety. 77, 1-17, 2002.
[15] Nilsson U. and Maluszynski J. Logic, programming and Prolog, 2nd edition. Wiley 1995.
[16] Sterling L. and Shapiro E. The art of Prolog – advanced programming techniques, 2nd edition. MIT

Press 1994.
[17] Wielemaker J., Schrijvers T., Triska M. and Lager T. SWI-Prolog. Theory and Practice of Logic

Programming. 12, 67-96, 2012.
[18] Hermenegildo M., Bueno F., Carro M., López-García P, Mera E., Morales J. and Puebla G. An

overview of Ciao and its design philosophy. Theory and Practice of Logic Programming. 12, 219-252,
2012.

[19] Covington M., Nute D., and Vellino A. Prolog programming in depth. Prentice-Hall 1997.
[20] Marriott K., Stuckey P.J. and Wallace M. Constraint logic programming. Chapter 12 in F. Rossi, P.

van Beek and T. Walsh (eds.), Handbook of Constraint Programming, Elsevier 2006, 409-452.
[21] Schuster, J., Siegle, M. Path-based calculation of MTTFF, MTTFR, and asymptotic unavailability

with the stochastic process algebra tool CASPA. Journal of Risk and Reliability. 225, 399-406, 2011.
[22] Maza, S. Dynamic modelling and simulation of fault-tolerant systems based on stochastic activity

networks. Journal of Risk and Reliability. 226, 455-463, 2012.
[23] Tyrväinen, T., Björkman, K. Modelling common cause failures and computing risk importance

measures in the Dynamic Flowgraph Methodology. 11th International Probabilistic Safety Assessment
and Management Conference and The Annual European Safety and Reliability Conference
PSAM11/ESREL12, 25-29 June, 2012, Helsinki, Finland.

[24] Karanta, I. Importance measures for the Dynamic Flowgraph Methodology. Research report VTT-R-
00525-11, VTT, Espoo, 2011.

