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ABSTRACT 

 

If an initially homogeneous system at high temperature is rapidly cooled, a temporary 

paraequilibrium state may result in which rapidly diffusing elements have reached equilibrium 

but more slowly diffusing elements have remained essentially immobile.  The best known 

example occurs when homogeneous austenite is quenched.  A paraequilibrium phase assemblage 

may be calculated thermodynamically by Gibbs energy minimization under the constraint that 

the ratios of the slowly diffusing elements are the same in all phases. Several examples of 

calculated paraequilibrium phase diagram sections are presented and the application of the Phase 

Rule is discussed.  Although the rules governing the geometry of these diagrams may appear at 

first to be somewhat different from those for full equilibrium phase diagrams, it is shown that in 

fact they obey exactly the same rules with the following provision.  Since the molar ratios of 

non-diffusing elements are the same in all phases at paraequilibrium, these ratios act, as far as the 

geometry of the diagram is concerned, like “potential” variables (such as T, pressure or chemical 

potentials) rather than like “normal” composition variables which need not be the same in all 

phases.  A general algorithm to calculate paraequilibrium phase diagrams is presented. In the 

limit, if a paraequilibrium calculation is performed under the constraint that no elements diffuse, 

then the resultant phase diagram shows the single phase with the minimum Gibbs energy at any 

point on the diagram; such calculations are of interest in physical vapour deposition when 

deposition is so rapid that phase separation does not occur. 

 

Keywords:  Paraequilibrium, phase diagrams, thermodynamics, Phase Rule, physical vapour 

deposition  

 

1. Introduction 

 

  In certain solid systems, some elements diffuse much faster than others.  Hence, if an initially 

homogeneous single-phase system at high temperature is rapidly cooled and then held at a lower 

temperature, a temporary paraequilibrium state may result in which the rapidly diffusing 

elements have reached equilibrium but the more slowly diffusing elements have remained 

essentially immobile [1-3]. The best known and most industrially important example occurs 

when homogeneous austenite is quenched and annealed; interstitial elements such as C and N are 

much more mobile than the metallic elements. Of course, in reality some diffusion of the 

metallic elements will always occur [2], so that paraequilibrium is a limiting state which is never 
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fully realized but may, nevertheless, be reasonably closely approached in many cases. 

 

  The present article discusses the thermodynamic calculation of paraequilibrium and 

paraequilibrium phase diagrams and the geometrical rules governing the latter (that is, the 

application of the Phase Rule to paraequilibrium phase diagrams.) 

 

  The FactSage 6.4 thermodynamic software [4] calculates the conditions for full thermodynamic 

equilibrium (sometimes called orthoequilibrium) by Gibbs energy minimization, taking data 

from databases which contain optimized thermodynamic model parameters giving the Gibbs 

energy of all phases as functions of temperature and composition.  These model parameters have 

been obtained by critical evaluation of literature data.  The FactSage thermodynamic software 

can calculate and plot equilibrium phase diagrams through the repeated systematic application of 

the Gibbs energy minimization algorithm. 

 

  At paraequilibrium, the ratios of the slowly diffusing elements are the same in all phases and 

are equal to their ratios in the initial single-phase high-temperature alloy.  Hence, the calculation 

of paraequilibrium simply involves modifying the Gibbs energy minimization algorithm by the 

addition of this constraint.  This will be discussed in detail in Section 5.  Paraequilibrium phase 

diagram sections can subsequently be calculated by exactly the same procedure as is used to 

calculate full equilibrium phase diagrams as will be discussed in Section 4. 

 

  In the limit, if a paraequilibrium calculation is performed under the constraint that no elements 

diffuse, then the ratios of all elements remain the same as in the initial homogeneous high-

temperature state.  Hence, such a calculation will simply yield the single homogeneous phase 

with the minimum Gibbs energy at the temperature and overall composition of the calculation.  

Such calculations are of practical interest in physical vapour deposition (PVD) when deposition 

from the vapour phase is so rapid that phase separation does not occur, resulting in a single-

phase solid deposit.  The calculation of minimum Gibbs energy phase diagrams will be discussed 

in Section 3. 

 

   In the following section, the application of the Phase rule to paraequilibrium phase diagrams is 

discussed. 

 

 

2. The geometry of paraequilibrium phase diagram sections 

 

  All figures shown in this article were calculated with the FactSage 6.4 software [4], with 

thermodynamic data taken from the FactSage FSstel steel database. In all calculations the 

formation of graphite has been suppressed. 

 

  In the Fe-Cr-C system at elevated temperatures the range of homogeneous austenite (FCC) 

extends from pure Fe to approximately 8 mol % C and 15 mol % Cr as can be seen in the (full 

orthoequilibrium) isothermal phase diagram section at 1140
o
C in figure 1. Alloys with 

compositions in this range, when cooled rapidly and then held at a lower temperature, may 

exhibit a temporary paraequilibrium state.  A vertical section of the same (full orthoequilibrium) 

Fe-Cr-C phase diagram section is shown in figure 2 where the molar ratio C/(Fe+Cr) is plotted 
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versus temperature, T, at a constant molar metal ratio Cr/(Fe+Cr) = 0.04. (On figures 1 and 2  

and other figures, M23C6, M7C3 and Cementite are solutions of Fe and Cr carbides.) 

 

  Before discussing the geometry of paraequilibrium phase diagrams, we should recall the Law of 

Adjoining Phase Regions (LAPR) [5-7] which applies to all single-valued phase diagram 

sections: “As a phase boundary line is crossed, one and only one phase either appears or 

disappears.”  (In phase diagrams involving axes other than temperature and composition, such as 

pressure, volume and chemical potential, it is possible to define the axes in such a way that the 

diagram is not single-valued in every region.  In this case the LAPR does not apply in these 

regions [6,7].  However, diagrams with temperature and composition as axes are always single-

valued and the LAPR always applies.)  An examination of figures 1 and 2 will show that the 

LAPR applies to every phase boundary.  Although the isothermal lines abc and def in figure 2 

might, at first, appear to be exceptions to the rule, these lines are not simple phase boundaries but 

are, rather, infinitely narrow four-phase fields with coincident upper and lower phase boundaries. 

For example, the line abc is an infinitely narrow (FCC + BCC + M7C3 + Cementite) field where 

the four phases co-exist. Hence, the LAPR applies. The Phase Rule, at constant total pressure, 

may be written: 

 

    F = C – P + 1       (1) 

 

where C = number of components, P = number of phases and F = number of degrees of freedom 

(variance.)  In the three-component Fe-Cr-C system when four phases are at equilibrium, F = 0. 

Hence, the line abc represents an invariant equilibrium which occurs at only one temperature.  

 

  Since a paraequilibrium calculation simply involves an additional constraint, the LAPR also 

applies to paraequilibrium phase diagram sections. 

 

  In figure 3 is shown the paraequilibrium phase diagram for exactly the same section as in figure 

2, calculated for the case where C is the only diffusing element.  Since the molar ratio 

Cr/(Fe+Cr) = 0.04 is now constant and the same in every phase, the diagram in this particular 

example resembles a full (ortho) equilibrium T-composition phase diagram of a two-component 

system, the “components”  being Fe0.96Cr0.04 and C.    The three-phase (FCC + BCC + 

Cementite) region bcd now appears as an isothermal invariant, similar to a binary eutectoid. 

 

  The x-axis in figure 3 is the molar ratio C/(Fe+Cr), not the carbon mole fraction  

XC = C/(Fe+Cr +C).  Similarly, the diagram is calculated at constant ratio Cr/(Fe+Cr), not at 

constant Cr mole fraction XCr = Cr/(Fe+Cr+C).  If the diagram is recalculated at constant XCr = 

0.04 with the x-axis as XC, it will be nearly identical to figure 3 since the C content is very small.  

However, the three-phase region will no longer be isothermal because now the ratio of the non-

diffusing elements Cr/(Fe+Cr) varies with XC and so the diagram can no longer be considered to 

be that of a pseudo-binary system.  This T-XC  paraequilibrium diagram at constant XCr is plotted 

in figure 4 where the temperature axis has been greatly expanded to show clearly that the three-

phase field is not isothermal.  Note, however, that the three-phase field is still infinitely narrow. 

At any value of XC the molar ratio Cr/(Fe+Cr) has a fixed value which must be the same in every 

phase.  This additional constraint removes a degree of freedom so that, for the three-phase 

paraequilibrium, F = 0. In other words, at any given XC there is only one temperature where the 
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three phases can co-exist, but this temperature varies with XC.  

 

  The LAPR clearly applies to both figures 3 and 4 as, indeed, it does to all paraequilibrium 

phase diagram sections. 

 

  Another isothermal paraequilibrium phase diagram section of the Fe-Cr-C system is shown in 

figure 5 where the molar ratio Cr/(Fe+Cr) is plotted versus the molar ratio C/(Fe+Cr) at constant 

T = 775
o
C.  Tie-lines are horizontal in this diagram since all phases at paraequilibrium have the 

same Cr/(Fe+Cr) ratio.  Since this ratio is the same in all phases, it acts, as far as the geometry of 

the diagrams is concerned, like a “potential variable” (such as T, pressure or chemical potential) 

which is the same in all phases at equilibrium, rather than like a normal composition variable 

which, in general, is not the same in phases at equilibrium.  Indeed, figure 5 clearly has the same 

topology as a binary T-composition full equilibrium phase diagram.  When the ratios C/(Fe+Cr) 

and Cr/(Fe+Cr) are replaced by XC = C/(Fe+Cr+C) and XCr = Cr/(Fe+Cr+C) respectively, the 

diagram of figure 6 results.  The tie-lines and the invariant lines are no longer horizontal, but lie 

along loci of constant Cr/(Fe+Cr) ratio.  However, the three-phase fields are still infinitely 

narrow and, of course, the LAPR applies.  

 

  Yet another section of the paraequilibrium phase diagram of the Fe-Cr-C system is shown in 

figure 7.  At a constant molar ratio C/(Fe+Cr) = 0.05, temperature is plotted versus the molar 

ratio Cr/(Fe+Cr).  Both axis variables, T and Cr/(Fe+Cr), are the same in all phases at 

paraequilibrium.  That is, as just stated, the ratio Cr/(Fe+Cr) acts like a “potential variable.”  

From the Phase Rule, Eq. (1), when three phases are at equilibrium at constant pressure F = 3–

3+1 = 1.  Hence, the three-phase fields which separate the two-phase fields in figure 7   are 

infinitely narrow univariant lines.  The molar ratio C/(Fe+Cr) is a “normal” composition variable 

which need not be the same in all phases at equilibrium.  Hence, keeping this ratio constant does 

not decrease the number of degrees of freedom. Note that the lines on figure 7 separating the 

FCC field from the (FCC + Cementite) and (FCC + M23C6) fields are not infinitely narrow three-

phase univariant lines but, rather, are simple phase boundaries.  The point in figure 7 where the 

four univariant lines converge is an infinitely small four-phase invariant field.  The LAPR 

applies.  

 

  Figure 8 is a paraequilibrium phase diagram section for the four-component Fe-Cr-C-N system 

for the case when both C and N, but not Fe or Cr, diffuse.  Temperature is plotted versus the 

molar ratio Cr/(Fe+Cr) with the two composition variable C/(Fe+Cr) and N/(Fe+Cr) constant.  

From the Phase Rule, Eq. (1), when four phases are at equilibrium, F = 4-4+1 = 0.  Hence, four-

phase fields appear as infinitely narrow univariant lines.  On figure 8 the four-phase univariant 

regions are the (FCC + BCC + Cementite + M23C6) and (FCC + BCC + Cementite + M2(C,N))        

lines. The other lines on figure 8 are simple phase boundaries. 

 

  Figure 9 is a paraequilibrium diagram for the six-component Fe-Cr-Ni-Mn-Mo-C system where 

C is the only diffusing element.  Temperature is plotted versus the “normal” composition 

variable C/Z, where Z = (Fe+Cr+Ni+Mn+Mo), with the four molar ratios of non-diffusing 

elements, Cr/Z, Ni/Z, Mn/Z and Mo/Z held constant.  Since these ratios are the same in all 

phases at paraequilibrium, they act like potential variables.  Hence, keeping each of these ratios 

constant removes one degree of freedom.  Therefore, for a three-phase equilibrium in this six-
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component system,  F = 6-3+1-(4) = 0.  The three-phase (FCC + BCC + Cementite) region thus 

appears as an invariant horizontal line in figure 9. The topology of figure 9 is clearly the same as 

that of figure 3. 

 

  For the five-component paraequilibrium phase diagram in figure 10, where C is the only 

diffusing element, T is plotted versus the “potential” variable Cr/Z, where Z = (Fe + Cr + Ni + 

Mn), with the “normal” composition variable C/Z and the two “potential” variables Ni/Z and 

Mn/Z held constant.  Hence, three-phase equilibria appear as univariant lines (where F = 5-3+1-

(2) = 1) and four-phase equilibria appear as invariant points.  The topology of figure 10 is clearly 

the same as that of figure 7. 

 

 

2.1 Summary 

 

  The rules governing the geometry of full orthoequilibrium phase diagram sections are described 

in detail in references [6,7].  From the preceding examples it can be seen that paraequilibrium 

phase diagram sections obey exactly the same rules with the following provision.  Since the 

molar ratios of non-diffusing elements are the same in all phases at paraequilibrium, these ratios 

act, as far as the geometry of the diagram is concerned, like “potential” variables (such as T, 

pressure or chemical potentials) rather than like “normal” composition variables which need not 

be the same in all phases.  Furthermore, and for the same reason, holding a ratio of non-diffusing 

elements constant decreases the number of degrees of freedom of the system by 1.0 (whereas 

holding a “normal” composition variable does not.) 

 

  In the present article, all compositions are expressed as molar ratios.  However, replacing molar 

ratios by mass ratios will, of course, have no effect on the topology of the diagrams. 

 

 

3. Minimum Gibbs energy phase diagrams 

 

  As discussed in Section 1, if a paraequilibrium calculation is performed under the constraint 

that no elements diffuse, then the ratios of all elements remain the same as in the initial 

homogeneous high-temperature state.  Hence, such a calculation will simply yield the single 

homogeneous phase with the minimum Gibbs energy at the temperature and overall composition 

of the calculation.  Such calculations are of practical interest in physical vapour deposition 

(PVD) when deposition from the vapour phase is so rapid that phase separation does not occur, 

resulting in a single-phase solid deposit.  

 

  The full (ortho) equilibrium phase diagram of the Ni-Cr system is shown in figure 11. The 

corresponding minimum Gibbs energy diagram is shown in figure 12. Clearly, two-phase fields 

appear as univariant lines.  These lines are the loci of the intersections of the curves of Gibbs 

energy versus composition and are sometimes called T
o
 lines. Each T

o
 line in figure 12 lies 

within the corresponding two-phase region in figure 11. 

 

  As can be seen in figure 12, at lower temperatures the sigma phase is the phase with the lowest 

Gibbs energy in alloys containing approximately 63 to 73 % Cr, even though this phase does not 
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appear in the equilibrium phase diagram.  This was pointed out previously by Saunders and 

Miodownik [8] and Spencer [9] who noted that sigma deposits have been observed in vapour-

deposited Ni-Cr samples over this approximate composition range at 25
o
C. 

 

  Another example of a calculated minimum Gibbs energy phase diagram is shown in figure 13. 

 

  Clearly, minimum Gibbs energy phase diagrams obey the geometrical rules enumerated in 

Section 2.1. 

 

 

4. Procedure for calculating paraequilibrium phase diagram sections 

 

  Since, as has been demonstrated, paraequilibrium phase diagram sections obey exactly the same 

geometrical rules as full (ortho) equilibrium diagrams, they can be calculated using exactly the 

same algorithm as is already used in the FactSage software to calculate full equilibrium 

diagrams.  This procedure has been described in detail elsewhere [6,7] and will only be briefly 

outlined here.  

  

  As a direct consequence of the LAPR, all phase boundaries on any single-valued full 

equilibrium or paraequilibrium phase diagram section are Zero Phase Fraction (ZPF) lines 

[6,7,10]. There is a ZPF line associated with each phase.  On one side of its ZPF line the phase 

appears, while on the other side it does not.  For example, the line abc in figure 1 is the ZPF line 

for the BCC phase and the line abcd in figure 3 is the ZPF line for the FCC phase. 

 

  Since all single-valued full equilibrium or paraequilibrium phase diagram sections obey the 

same geometrical rules, one general algorithm can be used to calculate any phase diagram 

section thermodynamically.  At any point on a diagram the equilibrium, or paraequilibrium, state 

of the system can be calculated by minimizing the Gibbs energy in the case of full equilibrium 

or, in the case of paraequilibrium, by minimizing the Gibbs energy subject to constraints as will 

be described in Section 5.   Along its ZPF line a phase is just present but in zero amount.  To 

calculate any phase diagram section, the program first scans around the edges of the diagram to 

find the compositions of the ends of all ZPF lines.  Then, starting at one end of a ZPF line it  

follows and draws the line by moving incrementally across the diagram, always keeping the 

phase just on the verge of appearing.  Should a ZPF line not intersect any edge of the diagram it 

will be discovered by the program while it is drawing one of the other ZPF lines.  When the ZPF 

lines of all phases have been drawn the diagram is complete.  This procedure can be used to 

calculate any single-valued full equilibrium or paraequilibrium phase diagram regardless of the 

axis variables and constants of the diagram.  No knowledge of the topological rules governing 

the diagrams need be built into the algorithm; the correct topology results automatically.  As was 

discussed in Section 2, certain phase boundaries may be coincident over part or all of their 

lengths.  For example, in figure 3 the line segment bc is the ZPF line for both the FCC and 

cementite phases, while the segment cd is the ZPF line for both the FCC and BCC phases.  These 

lines will thus be calculated and drawn twice by the algorithm. 
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5. A general algorithm for calculating a paraequilibrium phase assemblage 

 

  The Gibbs energy of a multiphase system is:  

 

            (2) 

 

 

where 
ka  refers to the activity of constituent k in phase , being in general a function of 

composition,  temperature and pressure; and where 
kn  denotes molar amount and  0

k   standard 

chemical potential. Minimization of the Gibbs energy, e.g., for calculation of phase diagrams, 

conventionally requires an optimization of the non-linear G-function, Eq. (2), made at constant 

pressure and temperature, with mass balances as linear constraints and usually is performed by 

the Lagrange method of  undetermined  multipliers [11]. The mass balances are defined by using 

a stoichiometry matrix, the elements of which are derived from the composition of the system. 

The independent system components are chemical elements (or their stoichiometric associations) 

and the constituents (also known as "end members") of each phase are species of their linear 

combinations.  The balance equation then reads as follows: 

 

       (j = 1, 2, …, NC);               (3) 

 

 

where NC and NP are the numbers of components and phases respectively. Here bj is the molar 

amount of system component j in the closed system and      are the coefficients of the (NNC) 

stoichiometry matrix as given by the chemical formulae of the constituents which may be present 

in the system. The summation is made over all constituents in all phases (N = N+N + 
...
 + NNP). 

The subscript j refers to the jth element or system component in the molecular formula of 

constituent k.  

 

  By using the method of Lagrange, the objective function to be minimized then becomes:  
 

            (4) 

 

 

where j are the undetermined Lagrange multipliers used to include the constraints into the 

objective function L. The solution of the optimization problem then provides both the Lagrange 

multipliers (as chemical potentials of the components) and the equilibrium amounts of the 

constituents. In conventional min(G) calculations the summation includes all system 

components, but the minimization procedure may also include complementary (immaterial) 

conditions such as conservation of  charge or surface area in cases where surface phases are 

considered. As a general rule, such additional constraints must not violate the original mass or 

energy balances of the Gibbsian system. 

 

  The use of immaterial constraints in Gibbsian calculations has been recently generalized in a 

method called Constrained Gibbs Energy Minimization [12,13]. This method is straightforward 

for partitionless transformations described, for example, by Hillert [2] but has also been applied 

for composition-constrained systems by Kozeschnik  [3,14]. A partitionless transformation is 

   


 
k

kkk aRTTnG ln0

( 0)
k
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1 1

0
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kj k j

k

c n b


 

 

 

kj
c

1 1 1

NNC NP

j kj k j

j k
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

 




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 
   
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 
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defined as one involving transforming from     without change in composition between the 

reactant (parent) phase and the product phase. This leads to a condition where the use of 

composition-based constraints in the Lagrangian problem will give the respective results in 

min(G) calculations for any number of restricted  phases and constituents [3]. The choice of 

reference component is arbitrary; however as the discussion above is focussed on steel 

solidification, it is convenient to select iron as such. Then, the amounts of all metal components 

will remain equal to the molar ratios as referenced to Fe in the original parent phase: 

 

        ( = 1, 2, …, NP)  (5) 

 

where the summations are over all constituents of each paraequilibrium phase in the system  and  

Fe and Me refer to molar amounts of  iron and an immobile (metal) component, respectively, in 

the parent phase.  Eq. (5) may be written as a mass balance: 

 

            (6) 

 

  Thus the conservation of the Fe/Me ratio requires that each constituent include a new virtual 

system component, m, which provides this particular constraint. From Eqs. (3) and (6), the 

matrix element of the additional virtual component m fulfilling this condition is 

 

                  (7) 

 

and from condition (6), the total amount of the virtual component in each phase is zero; i.e., its 

presence will conserve the desired mass ratio of the metal components in each of the 

paraequilibrium phases but will not affect the overall mass balance of the system. With several 

immobile components and several paraequilibrium  phases, a separate virtual component is 

needed for  each  combination.  When the number of phases (NP) and the number of immobile 

components (M)  is larger than two, the number of required virtual constraint components is 

given by (NP-1)(M-1). Of the phases permitted in the Gibbs energy minimization, the 

paraequilibrium solution phases must contain all diffusing elements and pure stoichiometric 

phases must contain diffusing elements only. 

  

  It may be noted that, while in the Gibbsian calculation  the chemical potential of each phase 

constituent at equilibrium is  given as a linear combination of the product jkjc   summed over all 

system components [11, 12], Eq. (7) together with the respective Lagrange multipliers  leads to 

the condition 

  

      
Me

MeMeFeFe

Me

MeMeFeFe uuuu        (8) 

in the paraequilibrium system, where uMe ≡ Me/Z where Z is the total molar amount of non-

diffusing components. As stated by Hillert [2], the new phase-independent quantity is thus 

defined as the weighted average of the chemical potential of iron and other (substitutional) 

metals, as if they had formed a new element in the system. The diffusing (interstitial) 

components are not constrained and will reach equilibrium by equality of their chemical 

potentials in all phases. 
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  It can further be noted that there is nothing fundamentally unique about component  'Fe' in the 

formulation. The constraints could be calculated equally well with respect to some other 

immobile component; generally M-1 constraints for each constrained phase for M immobile 

components. As described above, the use of this technique also allows for the extension to 

minimum Gibbs energy phase diagram calculations, for which there are no diffusing elements.  
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FIGURE CAPTIONS 

 

FIGURE 1. Full equilibrium phase diagram section of the Fe-Cr-C system showing tie-lines.  

Mole fraction XC versus mole fraction XCr at constant T = 1140
o
C. (Formation of graphite 

suppressed). 

 

FIGURE 2. Full equilibrium phase diagram section of the Fe-Cr-C system. Molar ratio 

C/(Fe+Cr) versus T at constant molar ratio Cr/(Fe+Cr) = 0.04. (Formation of graphite 

suppressed). 

 

FIGURE 3. Paraequilibrium phase diagram section of the Fe-Cr-C system when C is the only 

diffusing element. Molar ratio C/(Fe+Cr) versus T at constant molar ratio Cr/(Fe+Cr) = 0.04. 

(Formation of graphite suppressed). 

 

FIGURE 4. Paraequilibrium phase diagram section of the Fe-Cr-C system when C is the only 
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FIGURE 5. Paraequilibrium phase diagram section of the Fe-Cr-C system when C is the only 

diffusing element. Molar ratio C/(Fe+Cr) versus molar ratio Cr/(Fe+Cr) at constant T = 775
o
C. 
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FIGURE 6. Paraequilibrium phase diagram section of the Fe-Cr-C system when C is the only 

diffusing element. Mole fraction XC versus mole fraction XCr at constant T = 775
o
C. Tie-lines are 

not horizontal.  (Formation of graphite suppressed). 

 

FIGURE 7. Paraequilibrium phase diagram section of the Fe-Cr-C system when C is the only 

diffusing element. Molar ratio Cr/(Fe+Cr) versus T at constant molar ratio C/(Fe+Cr) = 0.05. 

(Formation of graphite suppressed). 

 

FIGURE 8. Paraequilibrium phase diagram section of the Fe-Cr-C-N system when C and N are 

the only diffusing elements. Molar ratio Cr/(Fe+Cr) versus T at constant molar ratios C/(Fe+Cr) 

= N/(Fe+Cr) = 0.02. (Formation of graphite suppressed). 
 

FIGURE 9. Paraequilibrium phase diagram section of the Fe-Cr-Ni-Mn-Mo-C system when C 

is the only diffusing element. Molar ratio C/Z, where Z = (Fe + Cr + Ni + Mn + Mo), versus T at 
constant molar ratios Cr/Z = Ni/Z = Mn/Z = Mo/Z = 0.01. (Formation of graphite suppressed). 

 

FIGURE 10. Paraequilibrium phase diagram section of the Fe-Cr-Ni-Mn-C system when C is 

the only diffusing element. Molar ratio Cr/Z, where Z = (Fe + Cr + Ni + Mn), versus T at 

constant molar ratios C/Z = 0.04, Ni/Z = Mn/Z = 0.02. (Formation of graphite suppressed). 

 

FIGURE 11. Full equilibrium phase diagram of the Ni-Cr system.  Mole fraction Cr versus T. 
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FIGURE 12. Minimum Gibbs energy phase diagram of the Ni-Cr system.  Mole fraction Cr 

versus T. 

 

FIGURE 13. Minimum Gibbs energy phase diagram section of the Fe-Ni-Cr system at 600
o
C. 
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FIGURE 1. Full equilibrium phase diagram section of the Fe-Cr-C system showing tie-lines.  

Mole fraction XC versus mole fraction XCr at constant T = 1140
o
C. (Formation of graphite 

suppressed). 
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FIGURE 2. Full 

equilibrium phase diagram section of the Fe- Cr-C system. Molar ratio 

C/(Fe+Cr) versus T at constant molar ratio Cr/(Fe+Cr) = 0.04. (Formation of graphite 

suppressed). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3. Paraequilibrium phase diagram section of the Fe-Cr-C system when C is the only 

diffusing element. Molar ratio C/(Fe+Cr) versus T at constant molar ratio Cr/(Fe+Cr) = 0.04. 

(Formation of graphite suppressed). 
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FIGURE 4. 

Paraequilibrium phase diagram 

section of the Fe-Cr-C system when C is the only diffusing element. Mole fraction XC versus T at 

constant mole fraction XCr = 0.04. (Formation of graphite suppressed). 
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FIGURE 5. Paraequilibrium phase diagram section of the Fe-Cr-C system when C is the only 

diffusing element. Molar ratio C/(Fe+Cr) versus molar ratio Cr/(Fe+Cr) at constant T = 775
o
C. 

Tie-lines are shown.  (Formation of graphite suppressed). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6. Paraequilibrium phase diagram section of the Fe-Cr-C system when C is the only 

diffusing element. Mole fraction XC versus mole fraction XCr at constant T = 775
o
C. Tie-lines are 

not horizontal.  (Formation of graphite suppressed). 
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FIGURE 7. Paraequilibrium phase diagram section of the Fe-Cr-C system when C is the only 

diffusing element. Molar ratio Cr/(Fe+Cr) versus T at constant molar ratio C/(Fe+Cr) = 0.05. 

(Formation of graphite suppressed). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 8. Paraequilibrium phase diagram section of the Fe-Cr-C-N system when C and N are 

the only diffusing elements. Molar ratio Cr/(Fe+Cr) versus T at constant molar ratios C/(Fe+Cr) 

= N/(Fe+Cr) = 0.02. (Formation of graphite suppressed). 
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FIGURE 9. Paraequilibrium phase diagram section of the Fe-Cr-Ni-Mn-Mo-C system when C 

is the only diffusing element. Molar ratio C/Z, where Z = (Fe + Cr + Ni + Mn + Mo), versus T at 
constant molar ratios Cr/Z = Ni/Z = Mn/Z = Mo/Z = 0.01. (Formation of graphite suppressed). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 10. Paraequilibrium phase diagram section of the Fe-Cr-Ni-Mn-C system when C is 

the only diffusing element. Molar ratio Cr/Z, where Z = (Fe + Cr + Ni + Mn), versus T at 

constant molar ratios C/Z = 0.04, Ni/Z = Mn/Z = 0.02. (Formation of graphite suppressed). 
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FIGURE 11. Full equilibrium phase diagram of the Ni-Cr system.  Mole fraction Cr versus T. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 12. Minimum Gibbs energy phase diagram of the Ni-Cr system.  Mole fraction Cr 

versus T. 
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FIGURE 13. Minimum Gibbs energy phase diagram section of the Fe-Ni-Cr system at 600
o
C. 
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