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Introduction

Goals
Preparing the cabin geometry (dead-line 23.6.2011)
Acoustic eigenfrequency analysis (dead-line 31.8.2011)
Acoustic sound field analysis (dead-line 30.9.2011)
Model with inner roof element included (dead-line 31.10.2011)

o Sound field analysis with different roofs
o Model with additional absorbents / resonators included (dead-line 30.11.2011)

o Sound field analysis with different absorbents / resonators
(2012)

o Vibroacoustic model with cabin walls and windows included
o Vibroacoustic model for airborne sound from exterior to cabin
o Sound field analysis: parametric study for the inner roof
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Acoustic model of the cabin interior (1)

Cabin interior has been divided in
4 parts:

Lower airspace + HATS
Inner roof
Inner roof wool
Upper airspace

The inner roof and the wool can
be flexibly removed from the
model

Inner roof and wool modeled as
solid or with Biot’s model
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Acoustic model of the cabin interior (2)

Three different geometries has been
provided by Valtra

Only one of them was valid for
modeling purposes

Geometry of the airspace of the
cabin (up to inner roof) is simplified
in Ansys
This geometry is then exported into
Abaqus, where various steps were
made to get final geometry:

Creating geometry of airspace between
inner roof and top roof
Creating geometry of HATS
Creating final geometry (lower airspace +
upper airspace – HATS)
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Cabin geometry (1)

Created geometry of the inner roof
8 mm thick instead of real 10 mm, this is
because of defective cabin geometry

Original geometry of the cabin body is not
included, as it was too defective to be usable

Tried to repair geometry with Ansys Design
Modeler and Space Claim (with support
from Medeso staff) with no success

Zone tempered glasses in lower air space
Various other improvements

Simplified upper side of the lower air space
Simplified upper air space

Example of defective cabin body geometry
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Cabin geometry (2)
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Mesh of empty cabin

Mesh was done in Ansys
Nodes: 180 k
Elements: 1 M
Max element size: 30 mm
Acoustic, quadratic
elements

Mesh valid up to ~ 3000
Hz
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Mesh of total cabin

Improving the mesh of the cabin
Improved mesh around head of HATS
Inner-roof meshed with multizone method
to achieve more precision along thickness

Mesh of the inner-roof is not
conformal with other meshes

113 k nodes
Quadratic elements

Mesh valid up to 400 Hz
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f [Hz] T30 [s] c
63 0.363 0.0481 16.354
80 0.362 0.0380 12.914

100 0.601 0.0183 6.223
120 0.590 0.0155 5.282
160 0.551 0.0125 4.242
200 0.933 0.0059 2.004
250 0.921 0.0048 1.624
315 0.822 0.0042 1.444
400 0.734 0.0037 1.274
500 0.739 0.0030 1.012
630 0.793 0.0022 0.749
800 0.960 0.0014 0.487

1000 0.843 0.0013 0.444
1200 0.819 0.0011 0.381
1600 0.865 0.0008 0.270
2000 0.813 0.0007 0.230
2500 0.730 0.0006 0.205
3150 0.763 0.0005 0.156
4000 0.734 0.0004 0.127
5000 0.695 0.0003 0.108

Modeling parameters

Global damping: imaginary part of
complex sound speed

Inner roof: solid
Young’s modulus 75 MPa
Poisson’s ratio 0.2
Solid density 316.5 kg/m3

Wool: solid or default Biot rockwool
Flow resistivity 75 kPas/m2

Windows: thin shell, 5 mm thick default
glass
Body: thin shell, 3 mm thick default steel

)1(2.2
2

j1
fT

cc
c : sound speed
f : frequency
T : reverberation time

: damping ratio
: loss factor

(1):
Actran 12.1 User’s Guide – Volume 2a, p. 101.
Beranek, L. L., Noise and Vibration Control, pp. 434-439.
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Calculated modes of empty cabin (1)

Calculated in Abaqus and
Actran
Methods used: AMS
(Automatic multi-level
substructuring) and Lanczos
algorithm
All modes in 0 – 2000 Hz
frequency range
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Calculated modes of empty cabin (2)

mode n. Abaqus Actran
1 98.3Hz 98.4Hz
2 121.4Hz 121.5Hz
3 131.0Hz 131.1Hz
4 161.5Hz 161.7Hz
5 163.8Hz 163.9Hz
6 192.6Hz 192.8Hz
7 207.5Hz 207.8Hz
8 219.7Hz 219.9Hz
9 220.4Hz 220.6Hz

10 240.3Hz 240.6Hz
11 251.2Hz 251.5Hz
12 253.5Hz 253.9Hz
13 261.3Hz 261.6Hz
14 267.4Hz 267.7Hz
15 273.6Hz 273.9Hz
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Measurement setup, camera positioning
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Response to internal loudspeaker (1)

Method: steady-state
dynamic, modal

Sound field distributions
Sound field in ears of HATS

Empty cabin
Effects of inner roof, windows
and chassis

Comparison with
measurements
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Response to internal loudspeaker (2)
Empty cabin, cross section at the level of ears, 1/3 oct.

Model Measurements100 Hz
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Response to internal loudspeaker (3)
Empty cabin, cross section at the level of ears, 1/3 oct.

Model Measurements125 Hz
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Response to internal loudspeaker (4)
Empty cabin, cross section at the level of ears, 1/3 oct.

Model Measurements160 Hz
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Response to internal loudspeaker (5)
Empty cabin, cross section at the level of ears, 1/3 oct.

Model Measurements200 Hz
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Response to internal loudspeaker (6)
Response in ears of HATS

Measurement vs. calculated globally damped empty cabin
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100 Hz
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Response to internal loudspeaker (7)
Cabin with inner roof

Measurement vs. calculated globally damped cabin with inner roof modeled as solid,
wool as porous (Biot’s model)
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100 Hz

Response to internal loudspeaker (8)
Effect of window vibrations in cabin with inner roof, calculated

Globally damped cabin with inner roof as solid, wool as porous (Biot’s model),
windows as 5 mm thick default glass, edges of windows fixed
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100 Hz

Response to internal loudspeaker (9)
Empty cabin, windows and steel chassis included, calculated

Globally damped empty cabin vs. globally damped empty cabin with windows as 5 mm thick default
glass, body as 3 mm thick of default steel, edges of windows fixed
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100 Hz

Response to internal loudspeaker (10)
Inner roof, windows and steel chassis included

Measurement vs. calculated globally damped empty cabin with inner roof as solid, wool as porous
(Biot’s model), windows as 5 mm thick default glass, body as 3 mm thick of default steel
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Response to internal loudspeaker (11)
100 Hz 1/3 octave band, ear level, calculated

without inner roof with inner roof
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Response to internal loudspeaker (12)
100 Hz 1/3 octave band, ear cross section, calculated

without inner roof with inner roof
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Response to internal loudspeaker (13)
125 Hz 1/3 octave band, ear level, calculated

without inner roof with inner roof
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Response to internal loudspeaker (14)
125 Hz 1/3 octave band, ear cross section, calculated

without inner roof with inner roof
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Response to internal loudspeaker (15)
160 Hz 1/3 octave band, ear level, calculated

without inner roof with inner roof
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Response to internal loudspeaker (16)
160 Hz 1/3 octave band, ear cross section, calculated

without inner roof with inner roof
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Response to internal loudspeaker (17)
200 Hz 1/3 octave band, ear level, calculated

without inner roof with inner roof
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Response to internal loudspeaker (18)
200 Hz 1/3 octave band, ear cross section, calculated

without inner roof with inner roof
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Response to internal loudspeaker (19)
Inner roof, windows and steel chassis included, calculated

Inner roof as solid, wool as porous & developed inner-roof material and MEL as wool

400



3619.12.2013

Response to internal loudspeaker (20)

Calculated field distributions rather similar to measured ones
Amplitudes do not agree very well

Inner roof affects the calculated response most towards the
measured one

Glasses and chassis do not affect that much
Inner roof

Reduces sound pressure levels
Affects sound field distributions
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Calculated response to structure-borne sound (1)
Excitation at front vibration isolator
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Calculated response to structure-borne sound (2)
Excitation at back vibration isolator
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Calculated response to structure-borne sound (3)
Excitation at all vibration isolators, different phases
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Calculated response to structure-borne sound (4)

With the same excitation, more sound originates from front
vibration isolators
Mutual phases of excitations only have a minor effect
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Calculated response to external diffuse sound field excitation (1)
Structure displacement magnitude (logarithmic) at 100 Hz

Diffuse sound field at exterior of walls, windows and floor
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Calculated response to external diffuse sound field excitation (2)
Sound pressure level in cabin at 100 Hz

Diffuse sound field
at all windows,
walls and floor

Diffuse sound field
at upper front
window
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Calculated response to external diffuse sound field excitation (3)
Response in ears of HATS

External diffuse sound field excitation

400
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Parametric study for inner roof properties (1)
Porosity

Internal loudspeaker excitation

Increasing
porosity leads
to better
absorption in
the vicinity of
100 Hz peak

400
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Parametric study for inner roof properties (2)
Flow resistivity

Internal loudspeaker excitation

Reducing flow
resistivity
leads to
slightly better
absorption in
the vicinity of
100 Hz peak

400
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Parametric study for inner roof properties (3)
Tuning inner roof as panel resonator to 100 Hz

Internal loudspeaker excitation
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Inner roof and wool as panel resonator, solid density = 215.25 kg/m3, Young's
modulus = 0.2 GPa (as rubber)

Tuning is very
sensitive to small
changes
Absorption band is
very narrow
Not very useful to
be applied
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We have now

Cabinet interior and steel + glass + chassis structure model valid
up to 400 Hz with and without the inner roof

Damping calibrated with the reverberation times
Some disagreement remains with respect to
measurements

Wool modeled with Biot’s model (Actran database material)
Inner roof modeled as solid and as porous Biot material

Calculated example results with internal loudspeaker excitation
and external diffuse sound field excitation
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Future work

Enhancing material models and models for glass (layers,
viscoelasticity, mounting)
Including acoustic radiation to exterior air
Increasing frequency range from sub – 400 Hz
Experimental validation of airborne sound model
Sound field analysis with different inner roofs
Vibration damping materials
Virtual testing of different materials
Model auralization
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