VTTVTT Tietopalvelu Julkaisutoiminta

Resistance of prestressed hollow core slabs against web shear failure

Pajari, Matti

VTT Building and Transport, Kemistintie 3, P.O.Box 1805, FI–02044 VTT, Finland


VTT Research Notes 2292, April 2005, 47 p. + app. 15 p. [in English]
ISBN 951–38–6709–9 (soft back ed.)
ISBN 951–38–6552–5 (PDF edition)

Project: Shear resistance of prestressed hollow core slabs


Commissioned by Confederation of Finnish Construction Industries RT, VTT Technical Research Centre of Finland

Keywords: hollow core slab, prestress, shear, test, resistance,concrete, precast, structure, design, Eurocode

Abstract

Eurocode 2 presents a design method for the shear resistance, which according to harmonized standard EN 1168 is to be used for the web shear failure of prestressed hollow core slabs. To check the validity of the method, 49 shear tests on hollow core slabs with thickness 200–500 mm have been analysed.

The Eurocode 2 method overestimated the mean shear resistance of all tested slab types. For 200 mm slabs and slabs with flat webs the overestimation was tens of percent. When the characteristic values of experimental and theoretical resistance were compared, the fit was better but there was still a considerable overestimation for 200 mm slabs and for the slabs with flat webs. On the other hand, the Eurocode 2 method was (over)conservative for 265 mm and 320 mm slabs with circular voids.

The Eurocode 2 method ignores the shear stresses due to the transfer of the prestressing force. When these stresses were taken into account applying Yang’s method, the accuracy for 265 mm and 320 mm slabs with circular voids was the same as when using the Eurocode 2 method but much better for the other slabs.

Based on the results of the comparison, Yang’s method for design against web shear failure should replace the present method in Eurocode 2. It is not acceptable, however, to adopt a design method which overestimates the characteristic resistance of some product type by 10% as Yang’s method seems to do. Whether this is really the case, is still an open question because the number of tests on the problematic slabs was small. Furthermore, due to the nature of the type approval tests, some test specimens may have been weaker than the slabs typical of normal production.

The Eurocode 2 method should not be used for slabs with flat webs without a reduction factor, and its applicability to other slab types should always be verified either numerically of experimentally before it is used.

Contents

Abstract
Preface
List of symbols
1. Introduction
2. Design against web shear failure
2.1 Failure criterion
2.2 Shear resistance, traditional approach
2.3 Shear resistance, Yang’s method
3. Tests
4. Analysis of test results
4.1 Assumptions
4.1.1 Material behaviour
4.1.2 Geometry
4.2 Comparison of predicted and observed resistance
4.2.1 Predicted resistance calculated using mean tensile strength
4.2.2 Predicted resistance calculated using characteristic tensile strength
4.2.3 Location of critical point
5. Discussion
5.1 Assesment of tests
5.2 Results from other researchers
5.3 Mean or characteristic resistance?
5.4 Comparison of EC2 vs. Yang´s method
6. Summary and conclusions
References
Appendices
Appendix A: Expression for shear stress
Appendix B: Criterion for bond slip
Appendix C: Data about tests

Figures and Tables

Figure. 1. Typical slab cross-sections with non-circular voids used in Finland.

Figure 2. a) Cross-section of one web and the flanges on both sides. b) Approximate cross-section for two dimensional FEM-model. c) Side view on FEM-model. There is a vertical point load at the right end of the model corresponding to 200 kN / 1,2 m.

Figure 3. Assumed transfer of prestressing force (dashed line) and as modelled (continuous stepwise line).

Figure 4. Principal stresses illustrated as vectors. Tensile stresses are indicated by arrows.

Figure 5. Illustration of what happens without shear stresses at the release of the prestressing force.

Figure 6. a) Possible location of critical point next to the zone affected by support reaction. b) Points and sections taken into consideration in calculations.

Figure 7. Illustration of geometric parameters of considered cross-section.

Table 1. Number of acceptable and excluded tests.

Thickness
mm

Accepted tests

Rejected tests

Note

200

4

5

265

20

7

320

10

4

5 with circular, 5 with non-circular voids

370

2

3

400

7

2

500

6

2

Total

49

23 (32%)

Figure 8. Cross-sectional characteristics measured for each slab unit.

Table 2. Types, parameters, depths and core codes for tested slab cross-sections of type 1–3.

Type

Parameters

Depth

mm

Core code

1

200

601

602

1

265

501

502

503

1

320

401

2

320
370

400

410

411

412

413

414

415

3

400

416


Table 3. Types, parameters, depths and core codes for tested slab cross-sections of type 4 and 5.

Type

Parameters

Depth

mm

Core code

4

320

421

5


500


422

Table 4. Nominal values in millimetres for parameters shown in Table 3.

Code

H

b1

b2

b3

b4

r1

r2

h1

h2

h3

h4

h5

h6

h7

h8

601

200

150

0

0

0

0

0

25

0

0

0

0

0

0

0

602

200

155

0

0

0

0

0

25

0

0

0

0

0

0

0

501

265

185

0

0

0

0

0

40

0

0

0

0

0

0

0

502

265

191

0

0

0

0

0

39,5

0

0

0

0

0

0

0

503

320

185

0

0

0

0

0

67,5

0

0

0

0

0

0

0

401

320

229

0

0

0

0

0

40,5

0

0

0

0

0

0

0

410

320

220

0

0

0

122

122

38

69,24

105,52

69,24

0

0

0

0

411

320

222

0

0

0

123

123

36

70

106

70

0

0

0

0

412

370

220

0

0

0

122

122

63

69,24

105,52

69,24

0

0

0

0

413

400

225

0

0

0

112,5

112,5

40

112,5

95

112,5

0

0

0

0

414

400

223

0

0

0

111,5

111,5

35

111,5

102

111,5

0

0

0

0

415

400

222

0

0

0

123

123

36

70

186

70

0

0

0

0

416

400

221

97

0

0

125

0

40

62

191,44

66,56

0

0

0

0

421

320

229

0

41

0

126

126

35

73,41

103,2

73,41

84

71

21,57

0

422

500

215

70

40

86

120

0

48

72,5

248

66,67

50,5

250,36

80

6,86

Table 5. Load types.

Type

Loading

1

2

3

4

5

6

Figure 9. Side view on loading arrangements. For Det B see Figure 10.

Figure 10. Arrangement at support.

Figure 11. The wedges are loose when placing the slab into position to allow for initial longitudinal spirality. They are tightened before the test.

Figure 12. Separate rollers at passive end.

Figure 13. Geometrical model of slab cross-section in analysis. The measures printed in bold font are measured values, the other measures nominal ones.

Figure 14. 200 mm slabs. Reelationship of observed (Vobs) and predicted resistance (Vpre) calculated using mean tensile strength and the approach of EC2 and Yang.

Figure 15. 200 mm slabs. Ratio of observed (Vobs) to predicted resistance (Vpre) calculated using mean tensile strength and the approach of EC2 and Yang.

Figure 16. 265 mm slabs. Ratio of observed (Vobs) to predicted resistance (Vpre) calculated using mean tensile strength and the approach of EC2 or Yang.

Figure 17. 320 mm slabs. Ratio of observed (Vobs) to predicted resistance (Vpre) calculated using mean tensile strength and the approach of EC2 or Yang.

Figure 18. 370 mm slabs. Ratio of observed (Vobs) to predicted resistance (Vpre) calculated using mean tensile strength and the approach of EC2 and Yang.

Figure 19. 400 mm slabs. Ratio of observed (Vobs) to predicted resistance (Vpre) calculated using mean tensile strength and the approach of EC2 and Yang.

Figure 20. 500 mm slabs. Ratio of observed (Vobs) to predicted resistance (Vpre) calculated using mean tensile strength and the approach of EC2 and Yang.

Figure 21. 200 mm slabs. Ratio of observed (Vobs) to predicted resistance (Vpre) calculated using characteristic tensile strength and the approach of EC2 and Yang.

Figure 22. 265 mm slabs. Ratio of observed (Vobs) to predicted resistance (Vpre) calculated using characteristic tensile strength and the approach of EC2 and Yang.

Figure 23. 320 mm slabs. Ratio of observed (Vobs) to predicted resistance (Vpre) calculated using characteristic tensile strength and the approach of EC2 and Yang.

Figure 24. 370 mm slabs. Ratio of observed (Vobs) to predicted resistance (Vpre) calculated using characteristic tensile strength and the approach of EC2 and Yang.

Figure 25. 400 mm slabs. Ratio of observed (Vobs) to predicted resistance (Vpre) calculated using characteristic tensile strength and the approach of EC2 and Yang.

Figure 26. 500 mm slabs. Ratio of observed (Vobs) to predicted resistance (Vpre) calculated using characteristic tensile strength and the approach of EC2 and Yang.


Table 6. Calibration factors for different slab groups when using EC2 (c5%,EC2) and Yang’s method (c5%,Yang).

Slab thickness mm

Number of tests

c5%,EC2

c5%,Yang

200

4

0,571)

0,642)

265

20

1,13

1,14

320 (All)

10

0,75

0,94

320 (Circular)

5

1,14

1,12

320 (Non-circular)

5

0,723)

0,824)

370

2

-

-

400

7

0,84

0,92

500

6

0,68

0,91

400 + 500

13

0,73

0,93

320–500 with non-circular voids

18

0,75

0,88

All

49

0,79

0,96

Table 7. 200 mm slabs. Observed shear resistance Vobs, observed failure mode FMobs, predicted failure mode FMpre, initial prestress sp0, characteristic core strength fck,C50 and measured web width bw in the present and in some old tests [8].

Slab

Vobs

kN

FMobs1)

FMpre1)

sp0

MPa

fck,C50

MPa

bw

MPa

31.200

90

ST

ST

1100

48,5

239

Present

33.200

116

ST

ST

1100

47,5

238

tests

40.200

106

ST

ST

1100

70,2

293

63.200

137

S

ST

1000

52,5

262

44.2

>193

Interr.

ST

1100

48,8

242

51.2

135

S

SA

100

50,8

236

Old

56.2

140

S

F

900

51,7

266

tests

59.2

>148

SII

ST

1000

51,6

248

67.2

121

S

ST

1100

70,9

242

Figure 27. Comparison of mean tensile strength calculated according to EC2 and CEB Bulletin 228.

Figure 28. Calibration factor (c5%) needed to make the predicted resistance equal to the observed resistance when using EC2 method, Yang´s method and modified EC2 method applying reduced tensile strength (EC2, CEB228).

Figure 29. Slab 512.265, Yang’s method. Characteristic value of shear resistance corresponding to failure criterion at different depths h.

Figure 30. Slab 178.400, Yang’s method. Characteristic value of shear resistance corresponding to failure criterion at different depths h.

Figure 31. Slab 178.400, Yang’s method. Location of critical point.

Table 8. Mean value of ratios of observed shear resistance to predicted shear resistance.

Slab thickness [mm]

All

265

370–400

500

Yang (FIP [7])

0,92

1,13

0,86

-

Fellinger (EC2)

0,92

0,87*)

-

Present study (EC2)

0,83

0,95

0,77

0,67

Figure A-1. Free body diagram for slabs without upper tendons.

Figure A-2. Free body diagram for a slab with upper tendons.

Table 1. Test type, slab type, nominal depth of slab (H), number of upper strands (Nup), diameter of an upper strand (Dup), cross-sectional area of an upper strand (Aup), initial prestress in upper strands (sp0,up) and the corresponding characteristics for the lower strands (Nlow, Dlow , Alow , sp0,low).

Test

Test

Slab

H

Nup

Dup

Aup

sp0,up

Nlow

Dlow

Alow

sp0,low

type

type

mm

mm

mm2

MPa

mm

mm2

MPa

31.200

1

602

200

7

12,5

93

1100

33.200

1

602

200

7

12,5

93

1100

40.200

1

601

200

7

12,5

93

1100

63.200

1

601

200

7

12,5

93

1000

74.265

1

501

265

5

12,5

93

1100

98.265

1

501

265

10

12,5

93

1100

104.265

1

501

265

4

12,5

93

1000

107.265

1

501

265

4

12,5

93

1000

109.265

1

501

265

10

12,5

93

1000

110.265

1

502

265

8

12,5

93

1000

113.265

1

502

265

2

9,3

52

900

4

12,5

93

1000

114.265

1

502

265

2

9,3

52

900

8

12,5

93

900

115.265

1

502

265

6

12,5

93

1000

116.265

4

501

265

6

12,5

93

1100

501.265

5

501

265

0

10

12,5

93

1100

502.265

5

501

265

0

10

12,5

93

1100

503.265

5

501

265

0

10

12,5

93

950

504.265

5

501

265

0

10

12,5

93

950

505.265

5

501

265

0

10

12,5

93

950

506.265

5

501

265

0

10

12,5

93

950

507.265

5

501

265

0

10

12,5

93

950

508.265

5

501

265

0

10

12,5

93

950

509.265

5

501

265

0

10

12,5

93

950

510.265

5

501

265

0

10

12,5

93

950

511.265

5

501

265

0

10

12,5

93

950

512.265

5

501

265

0

10

12,5

93

950

132.320

3

503

320

10

12,5

93

1100

133.320

3

503

320

12

12,5

93

1100

134.320

3

503

320

12

12,5

93

1100

136.320

4

410

320

4

12,5

93

1000

138.320

4

410

320

13

12,5

93

1000

139.320

4

410

320

7

12,5

93

1000

146.320

1

401

320

6

12,5

93

1000

148.320

1

401

320

2

9,3

52

900

11

12,5

93

1000

151.320

1

401

320

9

12,5

93

950

513.320

5

421

320

2

12,5

93

900

13

12,5

93

1100

514.320

5

411

320

0

13

12,5

93

1100

515.320

5

411

320

0

13

12,5

93

1100

516.320

5

421

320

0

11

12,5

93

1000

517.320

5

421

320

0

11

12,5

93

1000


Table 1. Continued.

Test

Test

Slab

H

Nup

Dup

Aup

sp0,up

Nlow

Dlow

Alow

sp0,low

type

type

mm

mm

mm2

MPa

mm

mm2

MPa

159.370

3

412

370

10

12,5

93

1000

160.370

3

412

370

12

12,5

93

1000

161.370

3

412

370

12

12,5

93

1000

162.400

1

415

400

12

12,5

93

1100

178.400

1

414

400

13

12,5

93

1100

179.400

4

414

400

5

12,5

93

1000

180.400

4

414

400

13

12,5

93

1000

188.400

1

413

400

9

12,5

93

1000

518.400

5

416

400

0

13

12,5

93

1000

519.400

5

416

400

0

13

12,5

93

1000

520.400

5

416

400

0

11

12,5

93

1100

521.400

6

416

400

0

11

12,5

93

1100

191.500

2

422

500

16

12,5

93

1000

193.500

3

422

500

16

12,5

93

1000

194.500

3

422

500

18

12,5

93

1000

195.500

3

422

500

18

12,5

93

1000

198.500

3

422

500

16

12,5

93

1000

199.500

3

422

500

21

12,5

93

1000

200.500

3

422

500

21

12,5

93

1000

201.500

3

422

500

21

12,5

93

1000


Table 2. Length, span and mass of slab, length of bearing (tb), shear span (a) and distance between two line loads (a1), average depth of section (Have), average web width (bw = sum of individual web widths bw,i), average depth of hollow core (Ho), average thickness of concrete below hollow core (tlow),average distance from lower strands to the soffit (dp,low) and from upper strand to the top fibre (dp,up).

Test

Length

Span

Mass

tb

a(/a1)

Have

bave

bw

Ho

tlow

dp,low

dp,up

mm

mm

kg

mm

mm

mm

mm

mm

mm

mm

mm

mm

31.200

6643

6603

2000

40

917

200

1162

239

153

19

39

33.200

4998

4958

1490

40

689

202

1163

238

157

19

40

40.200

6257

6217

2290

40

863

202

1158

293

138

34

39

63.200

4006

3966

1250

40

551

202

1158

262

144

20

38

74.265

5199

5159

2230

40

717

257

1156

219

184

43

40

98.265

5253

5213

2240

40

724

260

1157

228

175

42

36

104.265

5004

4964

2280

40

689

268

1158

244

172

41

45

107.265

5007

4967

2210

40

690

255

1158

239

171

41

39

109.265

4997

4957

2160

40

688

262

1157

242

174

34

39

110.265

5015

4975

2160

40

691

261

1158

220

177

43

32

113.265

4997

4957

2220

40

688

267

1155

226

176

41

34

114.265

5285

5245

2280

40

728

265

1159

232

171

36

34

40

115.265

4963

4923

2000

40

684

258

1156

215

183

31

40

116.265

4507

4457

1920

50

663

270

1160

222

45

501.265

5501

4000

2310

75

968

259

1153

224

186

38

41

502.265

5501

4000

2310

75

968

259

1153

224

186

38

41

503.265

6000

5940

2560

60

970

260

1161

221

180

38

34

504.265

6000

4940

2560

60

970

260

1161

221

180

38

34

505.265

5998

5938

2500

60

970

260

1157

216

183

39

35

506.265

5998

5000

2500

60

970

260

1157

216

183

39

35

507.265

5995

5935

2520

60

970

263

1156

218

182

36

37

508.265

5995

5000

2520

60

970

263

1156

218

182

36

37

509.265

5996

5936

2450

60

970

184

1155

217

184

34

36

510.265

5996

5000

2450

60

970

184

1155

217

184

34

36

511.265

5999

5940

2610

60

1170

263

1150

221

176

40

40

512.265

6001

5940

2680

60

1170

262

1150

223

174

40

39

132.320

7002

6942

4200

60

810/300

311

1165

254

161

64

42

133.320

6995

6935

4310

60

810/300

322

1160

261

164

70

48

134.320

6990

6930

4330

60

970/300

327

1161

243

174

68

47

136.320

5009

4959

2410

50

800

321

313

42

138.320

6990

6940

3410

50

800

321

299

41

139.320

7001

6951

3470

50

800

320

304

40

146.320

5890

5850

3060

40

813

303

1154

256

211

44

33

148.320

5985

5945

3100

40

826

310

1149

263

213

40

51

49

151.320

6003

5963

3060

40

828

311

1163

270

211

46

48

513.320

9594

9527

4360

70

1265

319

1162

258

243

36

51

22

514.320

7198

7118

3810

80

1160

315

1165

309

222

38

43

515.320

7200

7120

3800

80

1160

314

1165

311

222

38

42

516.320

7995

5800

3880

80

760

321

1153

289

216

36

38

517.320

7991

5800

3830

80

760

321

1153

287

216

37

39

Table 2. Continued.

Test

Length

Span

Mass

tb

a(/a1)

Have

bave

bw

Ho

tlow

dp,low

dp,up

mm

mm

kg

mm

mm

mm

mm

mm

mm

mm

mm

mm

159.370

6994

6934

4060

60

960/300

358

1144

270

236

56

39

160.370

7002

6942

4060

60

960/300

359

1145

272

237

54

40

161.370

6993

6933

4070

60

1145/300

357

1145

276

234

57

39

162.400

10017

9937

5480

80

1380

397

1172

284

306

41

53

178.400

7626

7546

4510

80

1048

402

1158

286

299

49

38

179.400

6496

6406

3670

90

1000

402

262

35

180.400

6988

6898

4100

90

1000

405

278

46

188.400

8000

7920

4430

80

1100

407

1161

285

312

48

39

518.400

8390

8290

4580

100

1150

390

1152

293

310

38

41

519.400

8390

7150

4580

100

1150

390

1152

293

310

38

41

520.400

5504

4000

3010

75

968

396

1152

291

307

41

36

521.400

5504

4000

3010

75

968

396

1152

291

307

41

36

191.500

10995

10915

7640

80

1364

498

1169

325

400

40

53

193.500

8470

8390

5960

80

1350/300

500

1163

335

399

43

56

194.500

8499

8419

5820

80

1350/300

501

1169

312

405

36

58

195.500

8495

8415

5920

80

1350/300

496

1163

331

396

39

49

198.500

8492

8412

6000

80

1475/300

503

1167

324

398

40

47

199.500

8516

8436

6080

80

1350/300

497

1177

326

392

42

52

200.500

8510

8430

6120

80

1475/300

494

1171

327

396

43

53

201.500

8512

8432

6040

80

1600/300

495

1174

322

398

42

51


Table 3. Two largest slippages in upper strands (S1,up, S2,up), four largest slippages in lower strands (S1, S2, S3, S4), measured mean core strength (fC50,mean) and standard deviation of the measured core strength (dC50).

Slab

S1,up

S2,up

S1

S2

S3

S4

fC50,mean

dC50

mm

mm

mm

mm

mm

mm

MPa

MPa

31.200

0,4

0,4

0,3

0,3

54,8

3,8

33.200

0,4

0,3

0,2

0,2

52,8

3,2

40.200

1,0

0,8

0,5

0,4

76,5

3,8

63.200

0,6

0,4

0,4

0,4

56,6

2,5

74.265

1,0

0,6

0,6

0,6

77,9

3,2

98.265

1,1

1,0

1,0

0,9

71,3

4,2

104.265

1,0

0,5

0,5

0,4

47,6

4,0

107.265

1,0

1,0

0,6

0,3

47,9

3,1

109.265

2,2

1,3

1,1

1,0

56,7

3,0

110.265

0,7

0,7

0,6

0,6

56,5

2,6

113.265

0,8

0,5

0,5

0,4

61,9

2,5

114.265

0,2

0,1

0,6

0,5

0,4

0,4

60,2

2,7

115.265

0,9

0,8

0,6

0,5

63,2

4,9

116.265

0,7

0,6

0,5

0,5

58,31)

-

501.265

1

0,8

0,7

0,6

67,1

2,4

502.265

1

0,8

0,7

0,6

67,1

2,4

503.265

1,2

1,1

1,1

1,1

72

4,9

504.265

1,2

1,1

1,1

1,1

72

4,9

505.265

1,7

1,5

1,4

1,2

70,8

4,3

506.265

1,7

1,5

1,4

1,2

70,8

4,3

507.265

2,3

1,7

1,4

1,2

682)

8,1

508.265

2,3

1,7

1,4

1,2

682

8,1)

509.265

1,3

1,3

1

1

65,8

2,1

510.265

1,3

1,3

1

1

65,8

2,1

511.265

1,3

0,9

0,8

0,7

67,8

2,5

512.265

1,2

0,7

0,6

0,6

67,8

2,9

132.320

0,9

0,7

0,6

0,5

133.320

1,5

1,3

1,3

1,3

68,0

1,9

134.320

1,3

1,2

1,1

1,0

68,0

1,9

136.320

0,8

0,5

0,4

0,3

138.320

1,2

1,1

1,0

0,9

139.320

1,1

0,7

0,7

0,6

146.320

0,4

0,4

0,4

0,3

57,0

3,6

148.320

0,2

0,1

0,6

0,4

0,3

0,3

46,8

2,0

151.320

0,6

0,5

0,5

0,4

66,8

5,5

513.320

1,9

1,9

1,8

1,8

62,1

4,6

514.320

2,5

1,7

1,4

1,3

61,8

2,4

515.320

1,7

1,5

1,3

1,2

61,8

2,4

516.320

1

0,9

0,8

0,7

64,3

2,6

517.320

0,8

0,8

0,8

0,7

64,8

1,2

Table 3. Continued.

Slab

S1,up

S2,up

S1

S2

S3

S4

fC50,mean

dC50

mm

mm

mm

mm

mm

mm

MPa

MPa

159.370

1,4

1,1

0,8

0,7

160.370

0,6

0,5

0,5

0,5

72,2

2,1

161.370

0,5

0,5

0,5

0,5

72,2

2,1

162.400

1,4

1,0

0,8

0,8

65,2

5,0

178.400

1,3

1

0,9

0,8

71,5

4,0

179.400

1,5

0,9

0,6

0,6

180.400

2,3

1,7

1,7

1,5

188.400

1,0

0,8

0,5

0,5

55,5

2,9

518.400

1,9

1,1

0,9

0,9

67,3

1,7

519.400

1,9

1,1

0,9

0,9

67,3

1,7

520.400

1,6

1,6

1,5

1,5

64,2

2,5

521.400

1,6

1,6

1,5

1,5

64,2

2,5

191.500

0,9

0,9

0,7

0,7

70,8

1,1

193.500

0,9

0,9

0,8

0,8

70,8

1,1

194.500

1,5

1,2

1,0

0,7

67,31)

-

195.500

2,0

1,2

1,2

1,0

198.500

0,8

0,7

0,7

0,6

76,4

2,6

199.500

2,1

1,5

1,4

0,8

74,7

5,3

200.500

1,7

1,4

1,1

1,0

74,7

5,3

201.500

2,0

1,8

1,2

1,0

74,7

5,3


Table 4. Date of casting and loading, age at loading, load when first crack width (flexural) exceeds 0,2 mm (Pcr), load at failure (Pfail), shear force at loaded support due to self weight (Vg) and distance of crack from support on the top surface (c1) and at the bottom surface (c2). Both c1 and c2 are mean of two values measured on opposite edges of the slab.

Test

Date of

Date of

Age at

Pcr

Pfail

Vg

c1/c2

Note

casting

loading

loading [d]

kN

kN

kN

31.200

31.1.01

21.3.01

49

57,4

80,4

9,8

300/100

33.200

31.1.01

2.4.01

61

80,4

108,3

7,3

450/150

40.200

28.10.92

26.11.92

29

82,8

94,8

11,2

63.200

16.11.01

14.2.02

90

122,4

131,4

6,1

74.265

25.1.95

25.1.95

0

116,4

148,9

10,9

700/440

98.265

3.12.99

19.1.00

47

194,4

208,5

10,9

700/0

104.265

8.7.98

22.9.98

76

85,8

124,9

11,1

107.265

10.12.99

17.1.00

38

89,5

123,4

10,8

109.265

10.12.01

6.2.02

58

-

177,7

10,5

110.265

3.8.94

27.1.95

177

163,4

184,4

10,5

113.265

4.9.97

28.1.98

146

107,2

170,4

10,8

114.265

17.7.98

7.10.98

82

163,1

179,4

11,1

115.265

1.7.99

5.1.00

188

113,4

166,4

9,7

116.265

-

31.7.02

226,5

9,3

501.265

17.10.91

13.11.91

27

272,1

7,1

900/180

Strength measured 29.11.

502.265

17.10.91

13.11.91

27

261,1

7,1

900/120

Strength measured 29.11.

503.265

15.9.93

11.10.93

26

233,7

12,4

850/170

504.265

15.9.93

11.10.93

26

209,0

9,9

450/100

505.265

11.11.93

21.12.93

40

240,4

12,2

810/220

Strength measured 23.12.

506.265

11.11.93

21.12.93

40

256,4

9,8

540/70

Strength measured 23.12.

507.265

8.11.03

21.12.93

43

219,4

12,2

360/0

Strength measured 23.12.

508.265

8.11.03

21.12.93

43

219,4

9,9

390/0

Strength measured 23.12.

509.265

21.1.94

11.3.94

49

211,0

11,9

600/30

510.265

21.1.94

11.3.94

49

237,1

9,6

650/100

511.265

10.10.94

17.11.94

38

264,9

12,7

1100/30

512.265

10.10.94

17.11.94

38

266,5

13,0

1100/30

132.320

12.2.02

22.4.02

69

-

255,4

20,4

750/200

133.320

28.1.02

23.4.02

85

-

275,4

21,0

550/150

134.320

28.1.02

23.4.02

85

-

269,4

21,1

550/200

136.320

20.11.00

18.12.00

28

-

189,5

11,7

700/300

138.320

31.7.02

30.8.02

30

-

298,0

16,6

600/160

139.320

8.10.02

8.11.02

31

-

252,0

16,9

630/270

146.320

21.11.94

31.1.95

71

133,4

198,8

14,9

148.320

3.12.96

23.1.97

51

223,4

238,8

15,1

151.320

24.5.99

5.1.00

226

153,4

240,4

14,9

513.320

21.11.01

24.1.02

64

230,7

21,3

450/0

514.320

14.1.98

1.4.98

77

332,8

18,5

650/50

515.320

14.1.98

1.4.98

77

328,8

18,4

800/100

516.320

7.3.03

12.5.03

66

253,9

11,81)

800/200

Strength measured 17.4

517.320

7.3.03

13.5.03

67

219,8

11,71)

800/50

Strength measured 8.5


Table 4. Continued.

Test

Date of

Date of

Age at

Pcr

Pfail

Vg

c1/c2

Note

casting

loading

loading [d]

kN

kN

kN

159.370

21.10.02

18.11.02

28

-

252,7

19,8

500/100

160.370

9.10.02

6.11.02

28

-

286,4

19,8

700/250

161.370

9.10.02

6.11.02

28

-

262,4

19,8

750/300

162.400

28.4.93

17.8.93

111

186,4

287,4

26,7

1

178.400

28.10.99

20.1.00

84

-

269,4

21,9

1000/0

179.400

10.11.00

15.12.00

35

-

262,5

17,8

650/250

180.400

21.10.02

18.10.02

-3

-

305,0

19,9

760/180

188.400

28.11.97

29.1.98

62

187,4

271,4

21,5

518.400

29.10.99

8.12.99

40

432,7

22,2

900/350

519.400

29.10.99

8.12.99

40

507,0

18,6

750/180

Strength measured 10.12.

520.400

17.10.91

14.11.91

28

443,2

9,2

800/100

Strength measured 29.11.

521.400

17.10.91

14.11.91

28

382,0

9,2

800/100

Strength measured 29.11.

191.500

28.3.00

5.5.00

38

208,4

326,0

37,2

900/150

193.500

28.3.00

3.5.00

36

-

386,0

29,0

1000/150

194.500

3.4.00

4.5.00

31

-

452,0

28,3

1000/350

195.500

29.5.00

8.6.00

10

-

332,0

28,8

1350/150

198.500

8.1.01

22.3.01

73

-

442,0

29,2

750/250

199.500

4.6.02

31.7.02

57

-

528,0

29,6

900/250

200.500

4.6.02

2.8.02

59

-

485,0

29,8

1200/300

201.500

4.6.02

5.8.02

62

-

462,0

29,4

1200/400


Table 5. Observed shear resistance Vobs and shear resistance calculated using EC2 method (Vpre). Two different losses of prestress ( 5% and 15%) and two values of tensile strength have been assumed.

Mean tensile strength

Characteristic tensile strength

Loss of prestress

5%

15%

5%

15%

Slab

Vobs

kN

Vpre

kN

Vpre

kN

Vpre

kN

Vpre

kN

31.200

90.2

145.7

0.619

143.9

0.626

107.3

0.840

105.5

0.854

33.200

115.6

142.7

0.810

141.0

0.819

105.2

1.099

103.4

1.118

40.200

106.0

218.7

0.484

216.0

0.491

161.1

0.658

158.4

0.669

63.200

137.5

165.7

0.830

163.8

0.839

121.6

1.131

119.7

1.148

98.265

219.4

223.8

0.980

220.5

0.995

166.1

1.321

162.9

1.347

104.265

136.0

163.5

0.832

162.4

0.837

117.9

1.154

116.8

1.165

107.265

134.2

165.2

0.812

164.1

0.818

119.3

1.125

118.1

1.136

109.265

188.2

207.6

0.907

204.6

0.920

153.9

1.223

151.0

1.247

110.265

194.9

186.9

1.043

184.7

1.055

137.7

1.416

135.4

1.439

113.265

181.2

195.8

0.926

194.2

0.933

141.9

1.277

140.3

1.291

114.265

190.5

209.0

0.912

206.1

0.924

154.6

1.232

151.8

1.255

115.265

176.1

183.7

0.959

181.9

0.968

134.0

1.315

132.2

1.332

501.265

213.4

224.9

0.949

221.2

0.965

168.5

1.266

164.8

1.295

502.265

205.0

224.9

0.912

221.2

0.927

168.5

1.217

164.8

1.244

503.265

208.0

221.0

0.941

217.5

0.956

165.0

1.261

161.5

1.288

504.265

177.8

221.0

0.805

217.5

0.818

165.0

1.078

161.5

1.101

505.265

213.3

214.6

0.994

211.2

1.010

160.0

1.333

156.7

1.361

506.265

216.5

214.6

1.009

211.2

1.025

160.0

1.353

156.7

1.381

507.265

195.8

197.3

0.992

194.3

1.008

147.1

1.331

144.1

1.359

508.265

186.7

197.3

0.946

194.3

0.961

147.1

1.269

144.1

1.296

509.265

188.4

213.3

0.883

210.0

0.897

159.0

1.185

155.8

1.210

510.265

200.7

213.3

0.941

210.0

0.956

159.0

1.262

155.8

1.289

511.265

225.4

219.9

1.025

216.4

1.042

164.1

1.374

160.7

1.403

512.265

227.0

221.5

1.025

218.0

1.042

165.3

1.373

161.9

1.403

133.320

296.4

306.3

0.968

301.6

0.983

228.2

1.299

223.6

1.325

134.320

290.5

285.2

1.019

280.9

1.034

212.5

1.367

208.2

1.395

146.320

213.7

247.3

0.864

245.1

0.872

180.0

1.188

177.8

1.202

148.320

253.9

246.6

1.030

242.7

1.046

183.7

1.382

180.0

1.411

151.320

255.3

292.9

0.872

289.3

0.882

215.6

1.185

212.0

1.205

513.320

221.3

309.8

0.714

303.4

0.730

235.0

0.942

229.0

0.967

514.320

297.1

378.7

0.784

371.2

0.800

286.2

1.038

279.2

1.064

515.320

293.7

381.1

0.771

373.6

0.786

288.0

1.020

281.0

1.045

516.320

232.5

359.7

0.646

353.0

0.659

270.8

0.858

264.4

0.879

517.320

202.7

364.9

0.556

358.0

0.566

274.7

0.738

268.3

0.756


Table 5. Continued

Mean tensile strength

Characteristic tensile strength

Loss of prestress

5%

15%

5%

15%

Slab

Vobs

kN

Vpre

kN

Vpre

kN

Vpre

kN

Vpre

kN

160.370

306.2

396.2

0.773

389.4

0.786

296.9

1.031

290.4

1.054

161.370

282.2

402.1

0.702

395.2

0.714

301.3

0.937

294.7

0.958

162.400

314.1

432.1

0.727

423.8

0.741

325.8

0.964

318.0

0.988

178.400

291.3

475.4

0.613

465.7

0.626

360.1

0.809

351.0

0.830

188.400

292.9

381.7

0.768

375.7

0.780

284.5

1.030

278.7

1.051

518.400

394.9

500.9

0.788

490.0

0.806

381.6

1.035

371.2

1.064

519.400

444.0

500.9

0.886

490.0

0.906

381.6

1.164

371.2

1.196

520.400

345.2

458.8

0.753

450.0

0.767

345.5

0.999

337.4

1.023

521.400

391.2

458.8

0.853

450.0

0.869

345.5

1.132

337.4

1.159

191.500

363.2

694.4

0.523

679.4

0.535

528.6

0.687

514.2

0.706

193.500

415.0

718.3

0.578

702.6

0.591

547.1

0.759

532.1

0.780

198.500

471.2

702.5

0.671

687.5

0.685

534.5

0.882

520.1

0.906

199.500

557.6

717.7

0.777

700.1

0.796

551.3

1.011

534.9

1.042

200.500

514.8

721.8

0.713

704.0

0.731

554.7

0.928

538.1

0.957

201.500

491.4

709.5

0.693

692.1

0.710

545.1

0.902

528.8

0.929


Table 6. Observed shear resistance Vobs and shear resistance calculated using Yang’s method (Vpre). Two different losses of prestress (5% and 15%) and two values of tensile strength have been assumed.

Mean tensile strength

Characteristic tensile strength

Loss of prestress

5%

15%

5%

15%

Slab

Vobs

kN

Vpre

kN

Vpre

kN

Vpre

kN

Vpre

kN

31.200

90.2

128.040

0.704

126.690

0.712

93.1

0.969

92.0

0.980

33.200

115.6

124.560

0.928

123.340

0.937

90.2

1.281

89.3

1.294

40.200

106.0

193.440

0.548

190.550

0.556

142.9

0.742

140.4

0.755

63.200

137.5

148.070

0.928

146.080

0.941

108.9

1.263

107.2

1.283

98.265

219.4

223.660

0.981

218.810

1.003

169.8

1.292

165.4

1.327

104.265

136.0

149.470

0.910

148.080

0.918

108.7

1.251

107.4

1.266

107.265

134.2

154.460

0.869

152.710

0.879

113.2

1.185

111.6

1.202

109.265

188.2

202.300

0.930

198.280

0.949

152.6

1.234

148.9

1.264

110.265

194.9

185.820

1.049

182.170

1.070

139.9

1.393

136.7

1.426

113.265

181.2

181.470

0.999

179.530

1.009

132.6

1.367

130.8

1.386

114.265

190.5

205.210

0.928

201.120

0.947

154.7

1.231

151.0

1.261

115.265

176.1

172.850

1.019

170.650

1.032

127.1

1.386

125.1

1.408

501.265

213.4

217.170

0.983

212.560

1.004

164.5

1.297

160.4

1.330

502.265

205.0

217.170

0.944

212.560

0.965

164.5

1.247

160.4

1.278

503.265

208.0

224.940

0.925

219.450

0.948

172.5

1.206

167.5

1.242

504.265

177.8

224.940

0.791

219.450

0.810

172.5

1.031

167.5

1.062

505.265

213.3

216.830

0.984

211.740

1.007

165.7

1.287

161.1

1.324

506.265

216.5

216.830

0.998

211.740

1.022

165.7

1.306

161.1

1.344

507.265

195.8

196.010

0.999

191.690

1.021

149.0

1.314

145.1

1.349

508.265

186.7

196.010

0.953

191.690

0.974

149.0

1.253

145.1

1.287

509.265

188.4

213.920

0.881

209.040

0.901

163.1

1.155

158.7

1.188

510.265

200.7

213.920

0.938

209.040

0.960

163.1

1.231

158.7

1.265

511.265

225.4

213.500

1.056

209.110

1.078

161.3

1.397

157.4

1.432

512.265

227.0

216.740

1.047

212.120

1.070

164.3

1.382

160.1

1.418

133.320

296.4

304.610

0.973

298.270

0.994

230.9

1.284

225.0

1.317

134.320

290.5

286.280

1.015

280.190

1.037

217.2

1.337

211.6

1.373

146.320

213.7

245.990

0.869

240.850

0.887

186.9

1.143

182.0

1.174

148.320

253.9

239.700

1.059

234.120

1.085

183.0

1.388

177.9

1.427

151.320

255.3

282.920

0.902

276.940

0.922

214.2

1.192

208.8

1.223

513.320

221.3

243.210

0.910

241.980

0.915

173.6

1.275

172.6

1.282

514.320

297.1

322.890

0.920

318.580

0.932

238.0

1.248

233.8

1.271

515.320

293.7

325.060

0.903

320.700

0.916

239.6

1.226

235.4

1.248

516.320

232.5

317.230

0.733

312.410

0.744

234.9

0.990

230.2

1.010

517.320

202.7

320.080

0.633

315.370

0.643

236.7

0.856

232.1

0.873


Table 6. Continued.

Mean tensile strength

Characteristic tensile strength

Loss of prestress

5%

15%

5%

15%

Slab

Vobs

kN

Vpre

kN

Vpre

kN

Vpre

kN

Vpre

kN

160.370

306.2

373.790

0.819

367.270

0.834

280.9

1.090

274.4

1.116

161.370

282.2

380.950

0.741

374.140

0.754

286.7

0.984

279.9

1.008

162.400

314.1

338.710

0.927

337.670

0.930

241.2

1.302

240.0

1.309

178.400

291.3

443.970

0.656

434.480

0.670

331.5

0.879

324.2

0.899

188.400

292.9

360.550

0.812

354.270

0.827

266.9

1.098

261.2

1.122

518.400

394.9

405.680

0.973

401.820

0.983

292.0

1.352

289.8

1.363

519.400

444.0

405.680

1.095

401.820

1.105

292.0

1.521

289.8

1.532

520.400

345.2

384.550

0.898

381.030

0.906

277.3

1.245

274.9

1.256

521.400

391.2

384.550

1.017

381.030

1.027

277.3

1.411

274.9

1.423

191.500

363.2

541.330

0.671

539.860

0.673

379.0

0.958

379.9

0.956

193.500

415.0

548.300

0.757

547.820

0.758

380.9

1.089

382.9

1.084

198.500

471.2

565.680

0.833

562.330

0.838

401.3

1.174

400.3

1.177

199.500

557.6

538.640

1.035

538.090

1.036

373.3

1.494

375.7

1.484

200.500

514.8

536.110

0.960

536.190

0.960

370.1

1.391

373.1

1.380

201.500

491.4

535.640

0.917

534.780

0.919

372.1

1.321

374.2

1.313

References

1. BBK 79 Bestämmelser för betongkonstruktioner, Band 1, Konstruktion. Stockholm: Statens betongkommitté, 1979. 157 p. ISBN: 91-7332-087-0.

2. CEB Bulletin 228. High Performance Concrete – Recommended Extensions to the Model Code 90 – Research Needs, 1995. Comité Euro-International du Béton. 60 p. ISBN: 2-88394-031-21995.

3. CP100: Part 1: November 1972. Code of practice fo the structural use of concrete. London: British Standards Institution, November 1972. ISBN: 0 580 07488 9.

4. EN 1168. Precast concrete products – Hollow core slabs. 2005.

5. EN 1992-1-1. Eurocode 2: Design of concrete structures – Part 1: General rules and rules for buildings. 2004.

6. Fellinger, J. Shear and anchorage behaviour of fire exposed hollow core slabs. Delft: Delft University Press, 2004. 234 p. + app. 26 p. ISBN: 90-407-2482-2.

7. FIP Recommendations "Precast prestressed hollow core floors". London: Thomas Telford, 1988. 31 p. ISBN: 0 7277 1375 2.

8. Pajari, M. Design of prestressed hollow core slabs. Espoo: Technical Research Centre of Finland, 1989. Research Reports 657. 88 p. + app. 38 p. ISBN 951-38-3539-1.

9. Walraven, J. C. & Mercx, W. P. M. The bearing capacity of prestressed hollow core slabs. Heron 1983. Vol. 28, No. 3. 46 p.

10. Yang, L. Design of Prestressed Hollow core Slabs with Reference to Web Shear Failure. ASCE Journal of Structural Engineering, 1994. Vol. 120, No. 9, pp. 2675–2696.

VTT