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Abstract

The process of numerical analysis in structural fire design comprises three main
components: determination of the fire exposure, the thermal analysis and the
structural analysis. The thermal analysis requires well-defined input information
on thermal material properties for determining the transient temperature state of
the fire-exposed structure.

This work presents a systematic methodology to treat identification of
temperature dependent thermal properties from test results. This method is
known as the Regularized Output Least Squares Method (ROLS). Applications
of the method to identification of thermal properties in different cases are
presented. For each problem, the direct problem is formulated as a system of one
or several ordinary differential equations which are semi-discretized via the
variational form of the general heat conduction problem. The solution of the direct
problem is obtained by time-integrating the semi-discrete equations by means of
numerical quadrature. The problem of identification of the parameters appearing
in the formulation of the direct problem is know as an inverse problem.

A common feature of inverse problems is instability, that is, small changes in the
data which may give rise to large changes in the solution. Small finite dimensional
problems are typically stable, however, as the discretization is refined, the number
of variables increases and the instability of the original problem increases.
Therefore regularization is needed. Both mesh coarsing and Tikhonov-
regularization have been adapted in order to achieve a stabilized solution. The
available a priori known physical constraints on the parameters are taken into
account in the minimization.
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The distributed parameters are discretized. The thermal properties are
approximated as piece-wise linear functions of temperature. The unknowns are
found by minimizing a constrained and regularized functional which is the sum
of the residual norm of the errors (data - model) plus the norm of the second
derivatives of the properties with respect to the temperature. An appropriate
balance between the need to describe the measurements well and the need to
achieve a stable solution is reached by finding an optimal regularization
parameter. Both Newton and conjugate gradient methods have been used in the
minimization. The Morozov discrepancy principle is used to find a reasonable
value for the regularization parameter.
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Preface

The only fire resistance tests where thermal properties obtained from the test
results are utilized is the NORDTEST NT FIRE 021 method in the Nordic
Countries and the corresponding CEN method EN YYY5-4. However, the
properties obtained are only valid to the one variable differential equation used
in the design of protected steel sections. For a more complete knowledge of the
temperature field, use of numerical methods based on the finite element method
is necessary.

At the Technical Research Centre of Finland (VTT) and the Helsinki University
of Technology the authors have conducted some preliminary studies and used
the regularized output least squares method (ROLS) on the inverse solution of
one differential equation of one variable in the case of fire protected metal
structures.

In this report the method has been extended to the inverse solution of the system
of ordinary differential equations obtained by variational formulation of the
Finite Element Method (FEM). Regularization either by mesh coarsing or
Tikhonov-regularization was used in order to acquire a more stabilized inverse
solution. The finer the discretization in the FEM formulation, the closer the
exact solution is to the direct problem is to as well as the inverse solution to the
“real” material properties. The above-mentioned tools give us a general and
systematic method for the identification of thermal properties (thermal
conductivity, specific heat, convection heat transfer coefficient, emissivity)
using the results of different kinds of tests.

As numerical examples the method presented is applied to different kinds of
tests including furnace tests. The test results are from public projects conducted
by the authors and their colleagues at VTT Building Technology and the
Helsinki University of Technology. In this report the example problems have
been treated as one dimensional and the number of elements have been limited
to three. All the examples have been calculated using Excel-routines. Treatment
of 2-D or 3-D problems of several variables would have required development
of the FEM-program with an inverse solution capability and would have been
too expensive for the available funding.
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List of symbols

Ap, As area of fire protect ion and metal structure, m2

C capacitance matrix

c specific heat, J/(kg K)

c, cp ,cs specific heat, of fire protection, of steel structure J/(kg K)

d, dp ,ds thickness, thickness of fire protection, thickness of metal
structure, m

e superscript for the element number e

f force vectors

h convection coefficient, W/m2

K conductance matrix

L latent heat per unit mass, J/kg

Ni shape functions

Qij
p elements of the capacity matrix of fire protection, J/ K

Q A c ds s s s s= ρ thermal capacity of the metal structure, J/ K

q heat flux, W/m2

T degrees of freedom, temperature vector, K

T, Tp temperature, temperature of protection, K

Ts, Tg temperature of steel structure and surrounding gas, K

t time, s

v test function

x space dimension, m

α regularization parameter

α(Τ) coefficient of thermal expansion

ε emissivity

ε
T

thermal strain

λ thermal conductivity, W/(m K)

ρ density, kg/m3
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Abbreviations

FEM Finite Element Method

ODE Ordinary Differential Equation

1-D one dimensional (space)

3-D three dimensional (space)

BC Boundary Conditions

IC Initial Conditions
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1. INTRODUCTION

Easy access to reliable data on thermal properties such as thermal diffusivity,
thermal conductivity and specific heat is of great importance to the advancement
of numerical calculation methods for the assessment of the fire resistance of
building components. To be consistent with the current fire resistance
classification philosophy, material properties must be valid under conditions in
the tests used for the determination of fire resistance. Increased use of more
general engineering methods demands that the data be applicable under other
kinds of non-standard exposure conditions.

Experimental methods for the determination of thermal properties of solids are
numerous (Maglic et al. 1984). The methods suggested for use in connection
with fire testing have been reviewed (Lundqvist et al. 1991). The methods used
in fire technology can be divided into two categories: small scale tests (Grauers
& Persson 1994) and large scale furnace methods (Kokkala & Baroudi 1993,
Olafsson 1987).

Within the field of fire resistance testing it is implicitly assumed that the
properties of materials and components found in a standard ISO 834 test are
representative of the materials and components. Therefore, methods based on
one simplified ordinary differential equation have been developed for the fire
protection of steel structures (Wickström 1985, Andersen 1988, NT FIRE 021).
The determination of thermal conductivity from ISO 834 tests suitable for these
simple equations gives us an effective thermal conductivity that is not consistent
with the assumptions in numerical methods, like the Finite Element Method
(FEM), that uses a more detailed description of the temperature field. Another
disadvantage with these methods is the inverse solution technique that uses the
data measured directly or with some smoothing. Because inverse problems are
generally very unstable, small errors in measurement may lead to large errors in
calculated thermal conductivity.

Recently Dhima (1994) has used the Output Least Squares Method (OLS) with
finite difference discretization (Dhima 1986, Raynaud & Bransier 1986) for the
determination of thermal properties of fire protection using furnace tests
according to ISO 834.
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At VTT and the Helsinki University of Technology the authors (Myllymäki &
Baroudi 1996) have conducted some preliminary studies and used the
regularized output least squares method (ROLS), which is an improvement on
the OLS-method. In this report the method has been extended to the inverse
solution of a system of ordinary differential equations obtained by the
variational formulation of the Finite Element Method FEM. Regularization by
mesh coarsing and Tikhonov-regularization (1997) was used in order to get
more stabilized inverse solutions.

The use of the above mentioned tools gives us a general and systematic method
for the identification of thermal properties (thermal conductivity, specific heat,
convection heat transfer coefficient, emissivity) from the results of different
kinds of tests.
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2. FORMULATION OF THE DIRECT
PROBLEM

2.1 Heat conduction problem

The basic task is to solve the temperature field  Ti x t( , ) in a given material region. The
field equation

( )ρ λc T x t T x t r x T�( , ) ( , ) ( , )= ∇ +∇ ⋅
& & & * (1)

is the diffusion equation with r x T( , )
&

as an arbitrary source term. The 1-D form of it is

ρ ∂
∂

∂
∂

λ ∂
∂

( ) ( )
( , )

( )
( , )

( , )T c T
T x t

x x
T

T x t

x
r x T= 



 +

(2)

The Fourier heat conduction constitutive relation is assumed. This equation is
complemented with the appropriate initial and boundary conditions to reach a well-
posed problem. The boundary conditions may either be a Dirichlet type (prescribed
temperature) or a Neumann type, such as the normal heat flux

q h T T T T T
n

= − + −
∞ ∞

( )( ) ( )σ ε 4 4  with convection and radiation parts.

The boundary terms, like the source terms if present, will be included into the force
vector of discretized heat conduction equations. This will be a clear and systematic way
to treat boundary and source terms.

2.2 Semi-discretization of the field equations

Using the standard FEM-approach (Eriksson et al. 1996) one obtains the variational
form of the problem (1) as

ρ λ
∂

cT v d T v d r v d q n v d

qΩ Ω
Ω

Ω

Ω Ω Ω Γ∫ ∫ ∫ ∫+ ∇ ⋅ ∇ = − ⋅�
& & & &

(3)

that reads in 1-D as follows
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ρ
∂
∂

λ
∂
∂

∂
∂

c
T

t
vdx

T

x

v

x
dx rvdx q v

L L
L

n

L

0 0
0 0

∫ ∫ ∫+ = − 



∞

(4)

The temperature field is approximated by T x t x te e e( , ) ( ) ( )= N T , where the
test and the basis functions are in a linear 1-D element

N
1

1
2

( )ξ ξ= −
; N2

1
2

( )ξ ξ= + (5)

The semi-discretization of the heat conduction equation (3) produces the non-
linear initial value problem

C T T f T K T T( , ) � ( ) ( , ) ( , ) ( )t t t t t= − ,   t > 0 (6)

T T( ) ,0 0
0

= =t (7)

where T( ) ( ) ( ) ... ( ) ( ) ... ( )t T t T t T t T t T t
m m n

T

=








+1 2 1
is

the global vector for the unknown temperatures.

Equation (6) is a set of n x 1-non-linear ordinary differential equations. Notice
that the right hand in equation (3) corresponds to the force vector f T( , )t ,
which contains the boundary terms as well as all possible source terms.
Equation (6) is complemented with appropriate initial conditions (7). Natural
boundary conditions are already included in the variational forms (3) and (4).
The essential boundary conditions will be taken into account during the solution
process of the initial value problem. The global matrices and vectors are
assembled using standard FE-assembling techniques. The elementary
conductivity matrix

( )K Tij

e d
e

= ∇ ⋅ ∇∫ λ ( ) ( ) ( )x x x
& &

N Ni j Ω
Ω

(8)

the elementary capacity matrix
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( ) ( )C T c Tij

e d
e

= ∫ ρ ( ) ( ) ( ) ( )x x x xN Ni j Ω
Ω

(9)

and the force vector

( )f r T
i

e d q n d
e

q

= −∫ ∫ ⋅( ) ( ) ( )x x xN Ni iΩ Γ
Ω Ω∂

& &

(10)

are obtained. For instance, in 1-D cases using basis functions (5) these matrices
look like:

K l T N N dij

e e

i j=
−∫2
1

1

/ ( ( )) ( ) ( ), ,λ ξ ξ ξ ξξ ξ ,

C
l

T c T N N dij

e
e

i j=
−∫2 1

1

ρ ξ ξ ξ ξ ξ( ( )) ( ( )) ( ) ( )  and

[ ]f
l

r T N d q Ni

e

e

i n i= −
−

+

−

+

∫2 1

1

1

1

( ( )) ( ) ( )ξ ξ ξ ξ , respectively.

The elementary matrices and vectors are integrated numerically using the
Gauss-Legendre integration scheme with as many integration points as needed
to accurately integrate their expressions. For example, the contribution of the
source term to the force vector source term is space-integrated as

f
l

r T N w
r i

e

e
K

NG

K i K K, ( ( )) ( ) ( )≈
=

∑2
1

ξ ξ ξ . The elementary matrices and

vectors may depend on the unknown temperature.

The above mentioned integration scheme leads to a consistent capacity matrix,

where the non-diagonal terms C i ji j

e ( )≠  are non-zero. In some cases it is

useful to use a diagonal capacity matrix (C i ji j

e ( )≠ =0), especially when we

use a Dirichlet type boundary condition. Using the Newton-Cote integration
scheme where the nodal points are used as integration points and the weights of

the integration are calculated from the equation w N N dxi i

l

i= ∫
0

 we always

get a diagonal capacity matrix.
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2.3 Time-integration of the ODE-system

Let us consider an initial value problem in type (11). The problem here is
treated more generally because, in the numerical examples, y  may be
temperature T  in a heat conduction problem or thermal strain ε T in a problem
of thermal elongation.

� ( ) ( ), ( )y a y y f y y yo= + =0    ,     y = y(t) (11)

We may interpret this in terms of a coefficient-to-solution operator

F(a) y= (12)

where the operator F is defined by

F a y t y ay f y d y t with a a y
t

( , ; ) ( ) { ( )} ( ), ( )= + + = =∫0
0

τ
(13)

Depending on the integration scheme used in equation (13) we get explicit or
implicit methods (Eriksson et al. 1996). In order to avoid iterations during
optimization, the explicit Euler scheme has been used. Now, instead of the exact
equation (3), we solve discretized equations

~ ~ { ( ) ( )}

~ ~

F(a) Y

a a(Y)

= = + +

= ≈ = − −

− − − −n n n n n

nY a Y Y f Y t

where and Y y and tn tn tn

1 1 1 1

1

∆

∆

(14)

In a case of a heat conduction problem ( )y ≡ T  the time-integration of equation
(6) provides us with the nonlinear system of equations

A T T g T 0( , ) ( ) ( , )t t tn n n n n− − − −− =1 1 1 1 (15)

The solution T(t) is solved from equation (15) at each time step. The matrix in
equation (15) is calculated as
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A T C T( , ) ( , )t t
n n n n− − − −

=
1 1 1 1

(16)

and the vector

g T C T T f T( , ) ( , ) ( ) ( , ) ( , )t t t t t t K t T
n n n n n n n n

n n n
− − − − − − −

= + + − −
1 1 1 1 1 1 1

1 7∆ ∆ (17)
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3. GENERAL FORMULATION OF THE
INVERSE PROBLEM

Consider a coefficient determination problem, i.e. the problem of determining a
non-constant coefficient a y( ) in an initial value problem (11) based on the
existing data of solution y . The non-linear inverse problem has been solved
using the regularized output least squares method (ROLS). We have to
discretize the distributed unknown parameter a y( ) into a certain number of sub-
intervals [ , ]y yi i +1  of arbitrary length y yi i+ −1  using suitable almost orthogonal
basis functions. The goal is to find the regularized least squares solution for the
vector of the nodal values 

&
ai

* of (11).

Since the inverse problem is ill-posed it has to be regularized. Here, in the
regularized output least squares method (ROLS) the regularization of the
problem is achieved by mesh coarsing and by use of the available a priori
known physical constraints on the parameters. Another alternative is to perform
the regularization using the penalized least squares method (Groetsch 1993)
regarded as a Tikhonov regularization of non-linear problems (Groetsch 1993,
Hansen 1990). One seeks unknowns 

&
ai

* such that

~
( )* *F a y La
& & &− +δ α

2 2 (18)

is minimized with respect to 
&
ai

* . The constraints set D  is the set of physically
admissible parameters. Unfortunately the data vector 

&
y  is known only within a

certain tolerance δ . This approximation 
&
yδ  satisfying the condition

& &
y y− ≤δ δ  is known (for example due to the scatter/data errors in the

experimental measurements) and one therefore seeks an 
&
a* minimizing (18)

using data infected with noise. Here 
&
yk

δ  is the vector of measured data. The
minimization problem (18) is non-linear. Here either Newton or Conjugate
Gradient methods are used.

The coefficient α ( )> 0 is a regularization parameter depending on the noise
level of the data and L I= or some other suitable differential operator ( D1 or
D = Laplace) depending on the needed regularity of the solution. The first term
in equation (18) enforces the consistency of the solution while the second term
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enforces its stability. An appropriate balance between the need to describe the
measurements well and the need to achieve a stable solution is reached by
finding an optimal regularization parameter.

In a heat conduction problem ( )y ≡ T  the overall procedure of determination

of the thermal properties (and other relevant parameters) may be condensed
schematically as follows:

Discretize the unknown vector a with respect to the temperature (if necessary)
using piece-wise linear basis functions. Estimate a ‘realistic’ initial value for a
and choose a value for α. Then Solve a from the minimization problem

• min ( ; ; ) ( , )&

& & & &
a D FE dataT a x t T x t a∈ − +

2

α L 2     with respect to a,

where  the model isT tFE a x t x( ; ; ) ( ) ( )
& & &

= N T

and the data is Tdata x t( ; )
&

 with T(t) the solution of the initial
value problem:

( )( ) ( )( ) ( )( )C T T f T K T T& & &
a a at t� ( ) ( )= −  & BC and IC

• The unknown parameter vector is: ( ) ( ) ( )( )& &
a T c T bpT = λ  with

the vector

   ( )
&
b h T Q etcloss= ε ( ) ...  containing the remaining relevant

additional parameters we want to estimate. The norms (Euclidean) are taken
with respect to the collocation points x at collocation time t as

f fx t x t i ji j
ji

collocation index set( ; ) ( ; ) ( , )
& &2

2

= ∈∑∑ 







. L  is a

regularization operator (depending on the degree of regularization we want),
usually the identity I  matrix or a discrete version of the Laplacian with
respect to the temperature.

3.1 The use of Morozov discrepancy principle and the
L-curve

In equation (18) parameter α  controls how much weight is given to the

minimization of La
& *

2

 relative to the minimization of the residual norm

~
( )*F a y
& &− δ

2

. The problem considered here is the appropriate choice of
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parameter α  so that we can distinguish the real signal from measurements with
noise.

Perhaps the simplest rule to define the regularization parameter is to set the

residual norm equal to some upper bound for the norm 
~

( )*F a y
& &− δ

2

of the

errors, i.e. find α such that (Groetsch 1993)

~
( )*F a y R
& &− ≤δ δ (19)

where δ  is the measure of the error during the time considered

δ ∂2 2

0

= ∫
t

dt and ∂  is the error at a certain time. An appropriate value

for the coefficient is R ≈ −16 17. . . In connection with discrete ill-posed
problems, this is called Morozov discrepancy principle (Hansen 1990).

Another, more recent alternative is to base the regularization parameter on a so-
called L-curve (Hansen 1990), (Hansen and O´Leary 1991). The L-curve is a
parametric plot of measure of the size of the regularized solution and the
corresponding residual. The underlying idea is that a good method for choosing
the regularization parameter for discrete ill-posed problems must incorporate
information about the solution size in addition to using information about the
residual size. The L-curve has a distinct L-shaped corner located where the
solution changes in nature from being dominated by regularization errors to
being dominated by the errors on the right side of equation (18). According to
Hansen (1990) the corner of the L-curve corresponds to a good balance between
the minimization of the sizes; the corresponding regularization parameter α  is
optimal. In their experiments Hansen and O´Leary have found that in many
cases it is advantageous to consider the L-curve at a log-log scale.

When the norms of unknown parameters differ considerably, the vector of
unknowns may be divided into more than one vector:

( ) ( )( ) ( ) ( )& & &
a T a c T bp1 2T T= =λ , ( ) and different α  parameters

may be used
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~
( )* * *F a y La La
& & & &− + +δ α α

2

1 1

2

2 2

2 (20)

In this case the L-curve is actually a surface and use of it is not practical. In
cases where the same α  parameter was used the optimum of the L-curve corner
was seldom seen, so Morozov discrepancy principle was preferred.

Since the functional to be minimized is generally non-linear it may have several
solutions that fulfil the Morozov discrepancy principle. In order to find the
physically admissible solution we must have preliminary test information on the
values of the material properties at a constant temperature (for example thermal
conductivity at 20 oC).
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4. DETERMINATION OF THE COEFFICIENT
OF THERMAL EXPANSION

4.1 General

In the following Chapter the problem of determination of the coefficient of
thermal expansion is considered. Results are from tests conducted in the project
“Aluminium properties at elevated temperatures” at the Helsinki University of
Technology (Myllymäki 1998) where the specimen of aluminium alloy
AA6063-T6 was heated at a constant rate and thermal strain εT T l l( ) /= ∆  was
measured as a function of time. The problem is not actually a heat conduction
problem but can be considered in a broader sense the determination of a thermal
property. The reason for the presentation of the case is that it shows the
generality of the ROLS-method and its applicability to other systems of ODE as
well as those obtained from the semi-discretized partial differential equation of
heat conduction. The second reason for the presentation is the simplicity of the
differential equation which allows us to show the application of different
stopping criteria such as Morozov discrepancy principle and the L-curve method
in a rather trivial but hopefully illustrative way.

The ROLS method is also compared to the traditional polynomial approximation
method applied in such cases in Eurocodes.

4.2 Polynomial approximation

There are two alternative ways to present the thermal strain. It can be given as a
state function of temperature as  in the polynomial approximation

ε βT i

iT
l

l
T( ) = = ∑∆ (21)

In the Eurocodes, the following parabolic function has been given for the
thermal strain
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ε β β βT

l

l
T T= = + +∆

2
2

1 0

(22)

In the transient heating tests we have measured the strain ε T  in a test where the
stress has been 3 N/mm2. One can solve the coefficients of the polynomial by
minimizing function (23) with respect to polynomial coefficients β i .

F i T T
i

( )β ε ε
β

δ= −
2 (23)

where εδ
T  is the measured strain and εT  is the calculated strain. This technique

is the so-called Output Least Squares Method.

Traditionally and also more generally thermal strain has been presented in rate
form, where no assumption of the recovery of the thermal strain need not have
to be made;

� ( ) �ε α
T T T=

(24)

In equation (24), α( )T  is the coefficient of thermal expansion. Equation (21)
can be presented in rate form as

� � � ( ) �ε β β β β
T T T T T T= + = +2 22 1 2 1

(25)

where the coefficient of thermal expansion is

α β β( )T T= +2 2 1

(26)

If we use a series of polynomials, (as in equation (22)), the rate form is

� ( ) �ε β
T i

i

i

n

T i T T= −

=
∑ 1

0

(27)

where the coefficient of the thermal expansion is
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α β( )T i Ti

i

i

n

= −

=
∑ 1

0

(28)

4.3 Piece-wise linear approximation

A more sophisticated way is to use a piece-wise linear approximation for the

coefficient of thermal expansion α ξ α ξα( ) ( )T
i i

= − + +1 1  for each

temperature interval [ ]T T T T T Ti i i i∈ = −+ +, , /( )1 1ξ , separately. Using

the explicit Euler scheme

ε α ε
T

j j

j T

jT T+ = +1 ( )∆
(29)

we can calculate the thermal strain. In equation (29), ∆Tj  is the temperature
step for each time step ∆ t j . The unknown parameters can be sought to
minimize the functional, (30) with the Tikhonov regularization method

& & &ε ε β ∂ ∂δT T a T− +
2

2 2
2

/ (30)

where 
&
ε T  is the vector of the calculated strain and 

&
εδ T

 is the vector of the
measured stress dependent strain and β  > 0 is a regularization parameter,
depending on the noise level of the data. Vector 

&
a  consists of the coefficients

of thermal expansion α i  at each nodal point Ti .

4.4 Numerical examples of the calculation of the
coefficient of thermal expansion

In this chapter we show how the solutions of the coefficients of thermal
expansion methods differ from each other. Some comparisons to the values in
literature are given. Figure 1 shows the calculated coefficients of thermal
expansion from transient tests of temperature rate 10 K/min.
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Figure  1. The coefficient of thermal expansion calculated from transient tests,
where the oven temperature rate was 10 K/min. Results of alloys 7075-T6 and
2024-T3 (markers) are from Heimerl and Inge (1955).

Figure 1 shows both the parabolic fit (22) of Eurocodes for thermal strain that
gives a line function (26) for the thermal expansion coefficient. Two solutions,
each with a different regularization parameter β  are given. The Eurocode type
of parabolic fit for thermal strain tends to overestimate the thermal expansion
coefficient at high temperatures and underestimate the thermal exponent at
lower temperatures. It can be seen that the solutions with regularization have
solutions that are nearer the values given in literature.
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regularization parameter β =1.e14 corresponds to ln (Residual)=-5.04 while

regularization parameter β =1.e16 corresponds to ln (Residual)=-4.56, which

is the same as a 0.004 % error in the strain measurements.

Figure 2 shows the L-curve of the problem, i.e. the parametric plot of the
measure of the size of the regularized solution (in this case Laplacian) and the
corresponding residual. Here each point of the curve corresponds to a certain
value of the regularization parameter β . The L-curve has a distinct L-shaped
corner located where the solution changes in nature from being dominated by
regularization errors to the errors in the size of the solution. According to
Hansen (1990) the corner of the L-curve corresponds to a good balance between
the minimization of the sizes, and the corresponding regularization parameter β
is an optimal one. In this case, however, the Morozov discrepancy principle with
its estimated measurement error of 0.004 % provides a more reasonable result
that matches test results in literature.

ln /∂ ∂2 2&
a T

ln
& &
ε εδT T−
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5. DETERMINATION OF SPECIFIC HEAT

5.1 Determination using the heat flux boundary condition

Consider a board specimen of volume V , with surface A1
 under the effect of

heat flux 
&
q . The temperature of the specimen 

~
( )T tδ  is measured. The specific

heat is discretized using piece-wise linear basis functions with respect to the

temperature c T N a Tj j( ) ( )= ∑ . The conservation of energy in the board

specimen can be written as

ρ
∂

ρcTdV
V

q nd
V

rdV
V

� = −∫ ⋅ +∫ ∫
& & Γ (31)

The source term in the equation is incorporated into the effective specific heat.
Equation (31) after semi-discretization reads as

~�( )
(

~
)

( ( ; ), )T t q
A

c T V
f T x t t= + ≡1

ρ
(32)

where function 
~
f  is defined byf t d f x t dx

d
( ) / ( ; )= ∫1 . ODE (32) is integrated

numerically using an explicit Euler scheme:

~
( )

~
( ) (

~
( ), )

~
( ) (

~
( ), )T t T t f T d T t f T t t tk k k k k k

t

t

k

k

+ = + ≈ +
+

∫1

1

τ τ τ ∆
(33)

The specific heat capacity c(T) is the regularized solution of the constrained
minimization problem

min
~

( )
~

.
( ; ) , ( )T t T

calc
a t a with a

j
D a− +









 ∈& & &2 2α L

(34)
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The solution is found from the domain of physically admissible functions which
take into account the possible range of the unknown parameters aj . Equation
(34) is non-linear for which a solution is found using Newton method.

5.1.1 Numerical example: Gypsum board at cone calorimeter

The cone calorimeter test in the horizontal configuration at a heat flux level of
qcone = 25 kW/m2 was performed. The test specimen consisted of a 13 mm thick
gypsum board (density 721 kg/m3) laying on a 30 mm thick layer of mineral
wool (Fig. 3). The surface area exposed to the heat flux was A1=100 mm x
100 mm. The temperature of the upper surface of the gypsum board was
measured using an infrared temperature measuring device The temperature
profile inside the specimen as a function of time was measured.

Figure  3. Idealized test arrangements in cone calorimeter.

The results of the calculations are shown in Figure 4. A reasonable degree of
regularization (the value of the regularization parameter α is found using

Morozov discrepancy principle 
~

( )
~

.( ( ) ; )T t Tcalc a n t Rδ
α
δ δ− ≈&

 (R = 1.6 and α

= 0.00001). The accuracy of the temperature measurements in these tests was
estimated to be

~
( )

~
( )T t T t C dt

t
Cso oδ δ− ≤ ≈ ≈∫

∞

2 98 .

An average of the measured temperatures at the top and bottom of the board was

25 kW/m2

Gypsum board

Mineral wool
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used as 
~

( )T tδ . The relative amount of humidity (mass of water / total mass of
gypsum) in the gypsum board was calculated from the peak of the specific heat
and was found to be equal to 21 %. Experimental results show  that the water
content of gypsum boards is about 18 % in the temperature range < 200 oC.
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Figure 4. a) Calculated specific heat of the gypsum board measured in a cone
calorimeter experiment at 25 kW/m2. b) Measured surface temperature in bold,
and the calculated as a thin line.

5.2 Determination using the heat flux boundary condition
with convection and radiation parts

Consider a bare metal structure without fire protection (Fig. 5). We use only one
finite element with one basis function N1 1=  which is the same as assuming
the temperature to be constant in the solution domain. Applying the Galerkin
method (ν = 1) the variational formulation is the following:

0
00

d

s s s s s n n s d

s

s
c T T A dx T q A q d A∫ = −( ) ( ) � ( ) ( )ρ Γ Γ

(35)

where qn( )0 and AΓ 0  are the heat flux and boundary area on the fire
unexposed surface and q dn s( ) and A dsΓ  are the same on the exposed surface.

Assume the radiative and convective boundary conditions at the boundary

x=ds.: qn = 0 q d h T T T Tn s c s g s g( ) ( ) ( ).= − + −ε σΦ 4 4  The structure and gas

are assumed to be two infinitely long parallel plates, for which the following
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relation applies:ε ε ε εΦ1 2
11 1 1−

−= = + −r g( / / ) . Here ε  is the emissivity of

the structure, ε g  is the emissivity of the gas and ε r  is the resultant emissivity.

We also combine the two boundary conditions thus:
~

( , ) ( )( )h T T h T T T Tc c r c c= + + +ε σ 2 2  and finally get the equation:

�

~
( )

( ) ( )

( )

( ) ( )
T

h A T T

c T T A d

q A

c T T A ds

L g s

s s s s s s

n

s s s s s s

=
−

+Γ Γ

ρ ρ
0 0

(36)

We may now assume that the heat flow through the boundary is a function of
the temperature of the metal structure q q Tn n s= ( , )0 . If the heat flow through
the boundary is not taken into account (adiabatic boundary condition qn = 0),
equation (36) will take on the traditional form used in the fire safety design of
unprotected steel structures (Note that A d Vs s s=  )

�

~
( )

( ) ( )
T

h A T T

c T T Vs

d g s

s s s s s

s=
−Γ

ρ

(37)

Figure 5. One dimensional idealization of an unprotected metal structure on
fire.

The inverse solution of equation (37) is achieved by minimizing equation (18),

where ( )y t T ts

δ δ( ) ( )≡  is the measured and ( )y t T ts( ) ( )≡  the solved

temperature of the aluminium structure. In this case the discrete coefficient-
solution operator is:

Tg

Ts

Metal structure

x
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∆
Γ

∆
ρ ρ

(38)

5.2.1 Numerical example: Aluminium specimen in heating oven

Let us consider a case where an uninsulated aluminium specimen, a bar,
(2700 kg/m3

) is placed in an oven in order to be tested at high temperatures. The
specimen is surrounded by the oven, but the ends of the specimen are clamped
into steel rods so part of the heat flow escapes through the ends of the specimen.
The heat conduction problem is treated as one dimensional where it has been
assumed that heat loss through the clamped ends of the specimen

Q q A c A d
loss n Al Al Al Al= Γ0

/ ρ  is constant. Here Ar0 is the tottal area of

the ends of the specimen.

The inverse problem, given the measured temperatures, is to find the effective
heat losses Qloss (from the aluminium specimen to the surrounding), the
effective heat convection coefficient h (between the specimen and the heater),
the resultant emissivity ε of the aluminium alloy and the thermal capacity cp(T)
of the aluminium alloy. This last one is temperature dependent (discretized with
respect to the temperature by linear basis functions). Therefore the unknown
vector of parameters in this problem is a = (cp(T) , h, ε, Qloss ).

Tests have been conducted at the Helsinki University of Technology in a project
dealing with the high temperature properties of aluminium (Myllymäki 1998).
Oven temperature is controlled in order to ensure a constant temperature or of
the specimen or certain rate of specimen temperature, Figures 6b and 7.
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Figure 6 a) Calculated heat capacity of the aluminium alloy. b) Measured and
calculated temperatures of the aluminium specimen in heated oven, transient
test. The upper curve represents the temperature of the oven.
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Figure 7 a) and b) Measured and calculated temperatures of the aluminium
specimen in heating oven in two different tests, # 2 and # 3. The upper curves
are the temperatures of the oven. The lower curves are those of the aluminium
specimen (calculated and measured).

The unknown parameter vector a has been solved using all three tests
simultaneously. It was found that h  = 10.4 W/m2 K, ε = 0.11 and Qloss = -0.74
W. The calculated specific heat capacity of the aluminium alloy is shown in Fig
6a as a function of the specimen temperature. These calculated values seem to
be near the pure Al values of cp = 900 J/kg K at 20 oC are cited in literature. The
measured temperatures of the oven and specimen and also the calculated
temperatures of the aluminium specimens are shown in Figures 6b - 7.
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6. DETERMINATION OF THERMAL
CONDUCTIVITY AND SPECIFIC HEAT

6.1 Determination using one ODE

In the design codes of metal structures the temperature of the structure is
calculated by using only one approximate differential equation usually
presented as a difference equation.

Effective conductivity of fire protection materials of steel structures is studied
in Nordic countries according to the NORDTEST method NT FIRE 021 (1980).
In this method, the protected steel column is placed in the horizontal furnace.
The temperature of the steel and the gas temperature near the protected section
are measured by thermocouples. The thermal conductivity of the protection
material is calculated as a function of time using one simple differential
equation and the derivatives of the measured steel temperature. The calculated
thermal conductivity is then not a real but an effective one that can be used in
the design procedure of steel structures.

In this chapter the variational formulation of the Finite Element Method has
been used in its simplest form using just one or two linear elements in the case
of steel structures. It is shown that this trivial derivation gives us most of the
simple one variable ODEs developed for temperature calculation of protected
steel structures. The thermal properties obtained by the application of the
Regularized Output Least Squares Method to these one variable equations gives
us effective values that are not consistent with the assumptions of FEM
calculations, but can be used when designing steel structures with the same
simple ODEs.

Consider an insulated steel structure. The problem can be treated as a one
dimensional problem using two finite elements (Fig 1). One element is used for
the steel part and one element for the insulation part. For the steel part it is
assumed that the temperature is uniform (one basis function N1 1= , one trial
function v = 1). For the insulation one element with linear interpolation
polynomials is used.
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If only linear interpolation functions N
1
and N

2
 are used the elementary

conductivity matrix will have the form

K (k) =
+ −
− +











−
∫

1 1 2 1 2

1 2 1 21

1

l
T A d

k

λ ξ ξ ξ( ( )) ( )
/ /

/ /

(39)

and the elements of the elementary capacity matrix are

cij

(k) =
−
∫

l
T c T N N A dk

i j

k

2 1

1

ρ ξ ξ ξ ξ ξ ξ( ( )) ( ( )) ( ) ( ) ( )( )
(40)

With the linear basis functions matrix and, assuming that cand ρ  are constants
and assuming area of perimeter of the protection to be constant A Ak k( ) ( )( )ξ = ,
the consistent elementary capacity will have a form

C(k) =
+ +
+ +











l
c Ak k

2

2 3 1 3

1 3 2 30 0ρ ( )
/ /

/ /

(41)

We divide the solution domain into two elements, one for the metal part of the
domain and one for the insulation. We also assume that the temperature of the
metal part is uniform (Figure 8).
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Figure 8a. One dimensional idealization of insulated steel structure in a fire.
8b. Two dimensional real case of insulated stell structure.

We get the following initial value problem:

CT f K T T� ( , )= − t (42)

where the global capacity matrix is

C =
+

+ +










C C C

C C
s

p p

p p

11 12

21 22

(43)

whereC Ac T ds s s s s s=ρ ( )

andCij

p =
−
∫

d
T c T N N A dp

p p i j p2 1

1

ρ ξ ξ ξ ξ ξ ξ( ( )) ( ( )) ( ) ( ) ( )

and the global conductivity matrix is

K =
+ −
− +









−
∫

1 1 2 1 2

1 2 1 21

1

d
T A d

p

p pλ ξ ξ ξ( ( )) ( )
/ /

/ /

(44)

and the unknown temperature vector is

Tg

Ts

Protection
Steel section

Temperature
approximation

ds dp

x
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T =










T

T
s

pb

(45)

were Ts is steel temperature and Tpd is temperature at the boundary of the
insulation.

If we assume that, at the boundary x=0, we have an adiabatic boundary
condition qn = 0  and at the boundary x=L=ds+dp we have a prescribed
Dirichlet boundary condition T Tpb g=  which means that the temperature at the
boundary of the insulation is the temperature of the convective medium (=gas
temperature of the surrounding fire), we get only one equation:

�

~ ~
/

( ) �T
A d

C C
T T

C

C C
T

s

p p p

s

p s g

p

s

p g
+

+
− = −

+
λ

11

12

11

(46)

where the following notation has been used:  
~ ~

( ( )) ( )λ λ ξ ξ ξA T A dp p p=
−
∫

1
2 1

1

,

C A c T d
s s s s s s

= ρ ( )  and Cij

p =
−
∫

d
T c T N N A dp

p p i j p2 1

1

ρ ξ ξ ξ ξ ξ ξ( ( )) ( ( )) ( ) ( ) ( ) .

Let us assume that the thermal conductivity depends on temperature and the
specific heat of the protection is constant. Insulation is assumed to be so thin
that the area of the perimeter of the protection can be considered constant,
A Ap p( )ξ =  (see Fig 8b). Then equation (46) will have the form:

�

~
/

/
( )

/

/
�T

A d

C C
T T

C

C C
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p p p

s p

s g

p

s p
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3
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3

(47)

where 
~

( ( / )) (( )/ )λ λ ξ λ= = = +
p p s g

T T T1 2 2  is calculated at the

midpoint of the element (protection) when one point Gauss integration is used.

Dividing by C c Vs s s s= ρ we finally get the equation:
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�
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(48)

where notations φ = C C
p s
/  and Cp = d c A

p p p pρ  have been used

This equation is the same as the equation derived by Melinek and Thomas
(1987) in a case when material properties are constant. They considered this
equation to be the best one when C C

p s
/ << 1. The equation is nearly the same

as the equation proposed by Wickström (1985):

�
/

( / )
( ) [exp( / ) ] �T

A d

c V
T T T

s

p p p

s s s

g s g
=

+
− − −

λ
ρ φ

φ
1 3

10 1
(49)

The coefficients of �T
g
are also quite near each other, when C C

p s
/ ,< 1 7as

can be seen in Figure 9. The equation by Wickström is the one that is used in
design codes for metal structures: Eurocode 3 for steel structures and Eurocode
9 (1995) for aluminium structures.
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Figure 9. The coefficent of �T
g
as a function of parameterφ, Wickström´s

coefficient (bold line) coefficient of FEM solution (thin line).

If we had used the diagonal capacity matrix instead of the consistent capacity

matrix: C C C C Cp p

p

p p

11 22 12 212 0= = = =/ ; , we would have obtained

the equation:

�

~
/

( / )
( )T

A d

c V
T T

s

p p p

s s s

g s
=

+
−

λ
ρ φ1 2

(50)

which is the equation derived by McGuire et al. (1975).

Actually, equations (48) and (50) above are valid when the specific heat of the
protection is constant and insulation is so thin that the protection area can be
considered constant. Otherwise, equation (47) should be used. If the one point
Gauss integration scheme is used the equation (47) will have the form:
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where ~( , ) /
~

( )

( )
φ

ρ
ρ

T T C C
A d c T

A d c Tp s p s

p p p p p

s s s s s

= = , T T Tp s g= +( )/2 and 
~

( )A Tp p  is

the area of the perimeter of the insulation calculated at the midpoint of the
insulation. This is also one of the alternative equations proposed by Melinek and
Thomas (1987).

The inverse solution of an equation of the type

� ( )( ) ( ) �T A T T T B T Ts g s g= − + (52)

is achieved by minimizing equation (18) , where y t T ts
δ δ( ) ( ( ))≡  is the measured

temperature of the metal structure, and y t T ts( ) ( ( ))≡  is the solved temperature
of the metal structure. The discrete coefficient-solution operator is in this case

~
( , ) ( )F T t T T A T T t B T

s

n

n s

n

s

n n

g

n

s

n

n

n

g

n− − − − − − −= = + − +1 1 1 1 1 1 1∆ ∆

(53)

when the explicit Euler scheme is used.

6.1.1 Numerical example: Steel section protected with intumescent
paint

Fire protection materials for steel structures are studied according to the
NORDTEST method NT FIRE 021 (1980) in the Nordic countries. In this method,
the protected steel column is placed in the horizontal furnace. The temperature of
the steel and the gas temperature near the protected section are measured by
thermocouples. The thermal conductivity of the protection material is calculated
as a function of time using the equation and the derivatives �Ts  of the measured
steel temperature. Small deviations in the measured temperature data may cause
large differences in the calculated thermal conductivity. The measured
temperature is thus smoothed.
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The method is also applied to intumescent paints that expand during testing and
for which the equation is not actually valid. The thermal conductivity is
calculated assuming that the material does not expand and maintains its original
thickness. The calculated thermal conductivity is not real but effective which
can then be used in the design procedure of steel structures.

Figure 10b shows the thermal conductivities calculated using ROLS. The
discrete operator (27) and test results of a commercially available intumescent
paint are used. Figure 10a shows the furnace temperature and the measured and
calculated temperatures in the steel specimen.
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Figure 10 a) Furnace temperature, and measured and calculated temperatures
of the steel specimen, b) thermal conductivities of the intumescent paint as a
result of the inverse solution. B2, B3 and B5 are the identification numbers of
test specimens.

6.1.2 Numerical example: Aluminium plate protected by gypsum
board

The cone calorimeter test in a horizontal configuration at a heat flux level of
qcone = 25 kW/m2 was performed. The test specimen consisted of a 13 mm thick
gypsum board (density 721 kg/m3) laying on a 30 mm thick layer of mineral
wool (Fig. 11). The surface area exposed to the heat flux was A1=100 mm x
100 mm. There was a 10 mm thick aluminium plate under the gypsum board.
The temperature of the upper surface of the gypsum board was measured using
an infrared temperature measuring device.
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Figure 11. Idealized test arrangements in the cone calorimeter test with
aluminium plate.

The temperature distribution inside the gypsum board was approximated to be
linear and the aluminium temperature was assumd as a constant. Equation (51)
with discretization (53) was used in modelling the direct problem. Here both the
specific heat and the thermal conductivity were discretized using piece-wise
linear basis functions with respect to the temperature. Figure 12 shows the
results. The thermal conductivity of gypsum according to Pettersson and Ödeen
(1978) is shown for comparison.
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Figure 12. a) Calculated specific heat and thermal conductivity of the gypsum
board measured in a cone calorimeter experiment at 25 kW/m2. Test data for the
thermal conductivity according to Pettersson and Ödeen (1978) is shown for
comparison. b) Measured surface temperatures and the temperature of the
aluminium plate, in bold and the calculated in a thin dotted line.
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6.2 Determination using two ODEs

Consider once again an insulated steel structure. The problem is now treated as
a one dimensional problem using three elements (Fig 13). One element is used
for the steel part and two elements for the insulation part. For the steel part it is
assumed that the temperature is uniform (one basis function N1 1= , one trial
function v = 1). For the insulation, two elements with linear interpolation
polynomials are used.

We get a following initial value problem:

CT f K T T� ( , )= − t (54)

If integration is conducted using one Gauss integration point at the centre of the
finite elements we get the following formula for the calculation of the terms of
the element capacity matrix;

C
d
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p e
p

e
p i j p
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p p p p
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=

−
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1
4

1

1

ρ ξ ξ ξ ξ ξ

ρ

( ) ( ) ( )

( )

( ( )) ( ( )) ( ) ( )

( ~ ~ ~
)

(55)
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T2 =Te

Protection
Steel section

Temperature
approximation

ds d2p

x

d3p

T3 =Tg

T1 =Ts

Figure  13. One dimensional idealization of an insulated steel structure on fire,
with two linear elements for fire protection.

The terms of the element conductivity matrix are

K
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A
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e p p
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−
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where the thermal properties f
p
 as well as the area have been calculated at the

centre of the element using equations 
~
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e
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e e

≡ +1 2

2
,

~
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x x

p p

e e

= +1 2

2
 where superscript ( )e  refers to the number of element.

When the Dirichlet type of boundary condition T T
g3

=  (surface temperature of
the fire protection is the same as the gas temperature) is used, and the
corresponding variable is eliminated from equation (54), we get the following
matrix equation with two unknowns, steel temperature T T

s
=

1
 and fire

protection temperature T T
e

=
2
;



44

C C

C C

T

T

K K

K K

T

T

K T C T

K T C T
g g

g g

11 12

21 22

1

2

11 12

21 22

1

2

13 13

23 23

















 +

















= −
+
+









�

�

�

�

(56)

where the conductivity matrix is
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the capacity matrix is
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and the “force” vector is

− −
+
+







 = − − +















K T C T

K T C T
A

d
T c d A T

g g

g g

p p

p

g p p p p g

13 13

23 23

3 3

0
1
4

�

� (

~~
) (~~ ~

) �( ) ( )
λ

ρ

(59)

Equation (56) is solved by using the explicit Euler scheme.
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6.2.1 Thermal conductivity of rock wool determined from fire
resistance tests

Fire resistance tests on steel columns were performed at VTT (Ala-Outinen and
Oksanen 1997). The columns were rectangular hollow sections with a cross-
sectional dimension of RHS 40x40x4. The length of each column was 900 mm
with the end plates. The columns were protected with 20 mm thick rock wool
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(density 220 kg/m3). Rock wool sheets were attached to each other with a fixing
system consisting of spirals and screws.

Water cooled steel
load equipment

1300

F

Support in sideway

Figure  14. Set-up in furnace tests.

A preliminary test was performed before the actual test series in order to find
the right temperature rise in the furnace and to collect data on the behaviour of
rock wool as well as the fixing system. The preliminary specimen tested was a
rectangular hollow section (50x50x5) with rock wool as fire protection. The
specimen was applied to a fire exposure of 15 oC/min for 65 min. On the basis
of the temperatures measured, the temperature field of the steel section
(40x40x4) was calculated as a function of time with a different gas temperature
rate in the furnace. As a result, it was decided to control the temperatur from
20 oC to 300 oC within 3 min and subsequently by 5 oC/min. All columns were
tested in the vertical position. The steel columns were heated in a model furnace
specially built for testing loaded columns and beams.

The temperatures of each column were measured at three cross-sections using a
total of 12 Chromel-Alumel thermocouples of the K-Type, 2 x 0.5 mm. Furnace
gas temperatures 100 mm from the columns were measured with 12 Chromel-
Alumel thermocouples of the K-type, ∅ 3 mm stainless steel sheathed, at the
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same levels as for the steel temperatures. Figure 15. shows the location and
numbering of thermocouples in the steel sections.

Figure  15. Column specimen details and location of thermocouples.

Thermal conductivity as a function of temperature is determined from these
tests. Heat losses are also estimated. Thus, the problem is to estimate the
thermal conductivity and heat loss terms appearing in the energy conservation
equation. The heat losses, in the direction perpendicular to the cross section, are
the terms Q1 (through steel) and Q2 (Wool). These terms are due to the
treatment of the original 3-D heat conduction problem as a 1-D problem.

Therefore, the inverse problem consists of estimating the thermal conductivity
of the thermal insulation (rock wool) as a function of the temperature using data
(measured temperatures) from ‘full scale’ fire tests on an insulated steel
structure, i.e. a = (λ(T)  Q1  Q2).

Consider the insulated steel structure, Figure 16. The direct problem is now
trcated as a one dimensional problem using three elements. One element is used
for the steel part and two linear elements for the insulation part. For the steel
part it is assumed that the temperature is uniform (one basis function N1 1= ).
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In the first case (a 50x50x5 column) only the temperature of the steel section
was measured while in the second case (a 40x40x4 column) the temperature of
the fire protection at the centre was also measured (Fig. 16b). In both cases, the
direct problem was formulated using two linear elements in the fire protection
as in (56).The system (56) of ODEs was integrated using the explicit Euler
scheme.

T2 =Te

Protection
Steel section

Temperature
approximatio
n

ds d2

x

d3

T3 =Tg

T1 =Ts

20

20

20

20

Steel column section 50 x 50 x 5
Steel section 40 x 40 x 4

Figure 16. The cross-section of the test columns and one dimensional
idealization of insulated steel structure in fire, linear elements at the fire
protection.

Integration of the heat conductivity matrix Ke and of the force vector fe are
performed using one Gauss integration point at the centre of the elements. The
element capacity matrix Ce was integrated using two-point Newton-Cotes
integration (at the nodal points of the element, ξ = -1 and ξ = +1 in Eq. (56)) in
order to get a diagonal matrix (Cij = 0, when i differs from j, i.e. C12, C13, C23

and C21 in Eq. (60) are all zero). In this way we avoid unstable numerical
differentiation of Tg in Eq. (60), since the gas temperature is very noisy as seen
in Figure 17b (the upper curve).

The following values of parameters were assumed in the calculation: density of
the fire protection ρ

p
= 220 kg/m3, specific heat of the protection c

p
=1000

J/kgK, the density of steel ρ
s
= 7850 kg/m3 and specific heat of the steel

c
p
=540 J/kgK. The mean of the measured temperatures of the steel section and

of the insulation (at the midpoint) at the centre of the column were used as
collocation points.
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Thus, the effective thermal conductivity λ( )T  was found as the regularized
solution of the constrained minimization problem

min
~

( )
~

( ; ) , ( ).T t T a t with
j

Dtest calc

δ α λ λ λ− +





∈& & &2 2

L
(61)

where the operator L is the central difference discretization of the second

derivatives∂ λ ∂2 2( )/T T  of the thermal conductivity. The accuracy

measurements of the temperature were estimated to be
~

( )
~

( )T t T t oC dt
t

δ δ− ≤ ≈ ∫
∞

10  when applying the Morozov

discrepancy principle.

The solution to the problem is presented in Fig. 17a) and compared with the
values provided by the producer of rock wool (the dashed line). For heat loss,
these valves, (Q1,Q2) = (-2.2, -0.4) W/m are achieved. The calculated
temperature history (for one test) is compared to the experimental one in Fig. 17
b. Legends for Figure 17 a are:

• The balls (column: 40x40x4), calculated using two elements and two
collocation points (the steel and the mineral wool)

• The triangles (column: 40x40x4), the same as the balls but only one
collocation point was used (the steel temperature)

• The squares represent the case where two data tests were used
simultaneously (column 40x40x4 with two collocation points: the steel and
the wool at the midpoint and column 50x50x5 with one collocation point:
the steel). The temperature calculations were made using two elements for
both columns.

• The dashed line shows values provided by the producer.
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Figure 17. a) Calculated thermal conductivity of mineral wool using a different
number of elements and collocation points with test data (columns: 40x40x4
and 50x50x5).  b) The calculated temperatures (thick) and the measured ones
(thin)  for the 40x40x4 column (the temperature of the protection at the
midpoint and of the steel). The upper curve represents the gas temperature.
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7. SUMMARY

Several applications of the regularised output least square method (ROLS) to
the parameter identification of heat transfer in structures were presented.
Although the examples shown consist only of a one or two ODEs, the method is
directly applicable to a system of ODEs obtained by semi-discretization of the
variational formulation of the general heat conduction problem using a finer
FEM-mesh.

The presented method (with only one or two ODEs) can be applied to the
assessment of fire protection of steel structures. Other applications in fire
technology may need a finer mesh.

The new method is a reliable way to identify the non-linear coefficients of a
system of ODEs. It can be applied to other problems of fire technology as well.
The authors have applied the method to the identification of mechanical
properties, such as temperature dependent variables of rate dependent plastic
(i.e. the viscoplastic material model of metals). One application might be the
identification of parameters of fire models (zone model etc.).
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