
V T T P U B L I C A T I O N S

TECHNICAL RESEARCH CENTRE OF FINLAND ESPOO 2000

Minna Mäkäräinen

Software change management
processes in the development of
embedded software

4 1 6

V
T

T

PU
B

L
IC

A
T

IO
N

S
416

Softw
are

change
m

anagem
ent

processes
in

the
developm

ent
of

em
bedded...

M
inna

M
äkäräinen

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000

02044 VTT 02044 VTT FIN–02044 VTT, Finland
Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. + 358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax + 358 9 456 4374

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

V T T P u b l i c a t i o n s

P

ISBN 951–38–5573–2 (soft back ed.) ISBN 951–38–5574–0 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

VTT PUBLICATIONS

395 Ämmälahti, Erja. Application of NMR spectroscopy to structural studies of lignin. 1999.
58 p. + app. 33 p.

396 Tervonen, Juha. Accident costing using value transfers. New unit costs for personal
injuries in Finland. 1999. 99 p. + app. 14 p.

397 Sirola, Miki. Computerized decision support systems in failure and maintenance man-
agement of safety critical processes. 1999. 123 p. + 24 p.

398 Kuikka, Seppo. A batch process management framework. Domain-specific, design
pattern and software component based approach. 1999. 215 p.

399 Laitinen, Tarja. Thiosulfate pitting corrosion of stainless steels in the paper machine
environment. 1999. 33 p. + app. 68 p.

400 Joutsensaari, Jorma. Aerosol synthesis of nanostructured, ultrafine fullerene particles.
1999. 64 p. + app. 101 p.

401 Roine, Matti. Accident risks of car drivers in wintertime traffic. 1999. 137 p. + app. 20 p.

402 Niemelä, Eila. A component framework of a distributed control systems family. 1999.
188 p. + app. 68 p.

403 Laitinen, Antero. Supercritical fluid extraction of organic compounds from solids and
aqueous solutions. 1999. 58 p. + app. 84 p.

404 Helynen, Satu. Production and consumption potentials for bioenergy in Finland to the
year 2010. 1999. 97 p. + app. 31 p.

405 Saarinen, Ari. EMFI-actuator: vibro-acoustical consideration. 1999. 109 p. + app. 30 p.

406 Korhonen, Jukka, Salmela, Mika & Kalaoja, Jarmo. The reuse of tests for configured
software products. 2000. 67 p.

407 Rusanen, Outi. Adhesives in micromechanical sensor packaging. 2000. 74 p. + app.
54 p.

408 Koskela, Lauri. An exploration towards a production theory and its application to
construction. 2000. 296 p.

409 Rahikkala, Tua. Towards virtual software configuration management. A case study.
2000. 110 p. + app. 57 p.

410 Storgårds, Erna. Process hygiene control in beer production and dispensing. 2000.
105 p. + app. 66 p.

411 Kivistö-Rahnasto, Jouni. Machine safety design. An approach fulfilling European
safety requirements. 2000. 99 p. + app. 9 p.

412 Tuulari, Esa. Context aware hand-held devices. 2000. 81 p.

414 Valmari, Tuomas. Potassium behaviour during combustion of wood incirculating
fluidised bedpower plants. 2000. 88 p. + app. 75 p.

415 Mäkelä, Kari. Development of techniques for electrochemical studies in power plant
environments. 2000. 46 p. + app. 128 p.

416 Mäkäräinen, Minna. Software change management processes in the development of
embedded software. 2000. 185 p. + app. 56 p.

VTT PUBLICATIONS 416

TECHNICAL RESEARCH CENTRE OF FINLAND
ESPOO 2000

Software change
management processes
in the development of
embedded software

Minna Mäkäräinen
VTT Electronics

Academic Dissertation to be presented with the assent of the Faculty of
Science, University of Oulu, for public discussion in the Auditorium L10,

Linnanmaa, on August 26th, 2000, at 12 noon.

ISBN 951–38–5573–2 (soft back ed.)
ISSN 1235–0621 (soft back ed.)

ISBN 951–38–5574–0 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

Copyright © Valtion teknillinen tutkimuskeskus (VTT) 2000

JULKAISIJA – UTGIVARE – PUBLISHER

Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

Statens tekniska forskningscentral (VTT), Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

Technical Research Centre of Finland (VTT), Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Sulautetut ohjelmistot, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Inbyggd programvara, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Embedded Software, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Otamedia Oy, Espoo 2000

3

Mäkäräinen, Minna. Software change management processes in the development of embedded soft-
ware. Espoo 2000, Technical Research Centre of Finland, VTT Publications 416. 185 p.+ app. 56 p.

Keywords software change management, software configuration, software maintenance,
process improvement, process modelling, process analysis

Abstract
The goal of the research presented in this thesis is to examine software change
management processes in order to identify essential change management prob-
lems and improvement requirements, to define processes which would aid in
solving these problems, and give an example of how these processes can be
implemented in practice.

The subjects of the empirical research part of the study have been four Finnish
companies which develop embedded software. Therefore, the focus of the study
is on the processes which are used in developing embedded software. However,
the literature study explores the problems of software change management from
a more generic viewpoint, and can also be used as a reference for software de-
velopment done for other purposes.

Three of the four case studies are used in deriving the generic change manage-
ment problem classes and process descriptions. These three case studies include
only analysis of the change processes and problems related to them. The fourth
case study is used for illustrating how the proposed problem classification can
be used in change process analysis, and how the proposed process models can
be instantiated in practice. The change processes were not only analysed, but the
study also included the definition of new processes, the planning of their im-
plementation, and the implementation and enactment of the new processes in the
organisation.

4

Preface
This thesis summarises the results of the research I was involved in while
working at VTT Electronics. It explores the problems of software change man-
agement on the basis of a literature study and practical case examples. I started
to contemplate the process of software change management when I was working
in the ESPRIT project called AMES. Later, I had the opportunity to apply the
solutions and ideas developed in the AMES project in projects for Finnish com-
panies. The literature study part of the thesis was mainly done while I was
working as a visiting researcher at Fraunhofer IESE, Germany. I finalised the
writing of the thesis while working at Nokia Mobile Phones. I want to thank Dr.
Veikko Seppänen and Dr. Jorma Taramaa for encouraging me to continue my
studies at VTT Electronics, Dr. Dieter Rombach for the opportunity to work at
Fraunhofer IESE, and Dr. Pekka Isomursu and Dr. Pertti Huuskonen for helping
me through the last phases of the writing process at Nokia Mobile Phones. Un-
fortunately, I am not allowed to name the helpful persons from the companies I
studied during the research process. Anonymous thanks to all of you!

This work has been financially supported by my employers. I also received fi-
nancial support, which is gratefully acknowledged, from the following founda-
tions: Seppo Säynäjäkankaan rahasto, Tauno Tönningin säätiö, and the Finnish
Cultural Foundation.

Dr. Ilkka Tervonen has been the advisor of my post-graduate studies for seven
years. I cannot thank him enough for all the work he has done for my studies.
The reviewers of the thesis, Dr. Cornelia Boldyreff and Dr. Karlheinz Kautz,
gave me valuable and profound comments, which dramatically improved the
quality of the thesis. I am very grateful for the time and effort they used for re-
viewing my work.

Finally, I want to thank my family and friends for their love and support. My
parents have given me an enormous amount of support and understanding, still
giving me the space to live my own life. And Pekka, my soulmate, thank you for
all you are!

Oulu, June 2000 Minna Mäkäräinen

5

Contents

Abstract ...3
Preface...4
List of symbols..8
1 Introduction..9

1.1 Research questions and overview of research methods.......................10
1.2 Scope of the research...11
1.3 Structure of the thesis ..12

2 Research method..16
2.1 Overview..16
2.2 Research approach...16
2.3 Research methods used in the case studies in the problem analysis

stage ...16
2.4 Research methods used in the construction stage................................23
2.5 Research methods used in the demonstration stage.............................24

2.5.1 First phase: Analysis of current practices...................................26
2.5.2 Second phase: Definition of goals for new practices29

2.6 Evaluation of the results ..30
2.7 Research process..31
2.8 Summary..33

3 Analysis of related work ..34
3.1 Overview..34
3.2 Scope of software change management...34
3.3 Why is software change management difficult?..................................41
3.4 Software change management – Product dimension44
3.5 Software change management – Process dimension46

3.5.1 Olsen's change management model ..48
3.5.2 V-like change management model..50
3.5.3 Ince's change process model ..52
3.5.4 The AMES model ..55
3.5.5 Spiral-like change management process....................................56

3.6 Software change management – Technological dimension.................58
3.7 Summary..62

4 Analysis of the state of the practice ...63
4.1 Overview..63
4.2 Summary of case studies ...63

4.2.1 Case one..64
4.2.2 Case two..70
4.2.3 Case three ...74

4.3 Summary..78

6

5 Software change management problems..81
5.1 Overview..81
5.2 Classification of problems and improvement requirements in change

management processes...81
5.2.1 Effectiveness problems...82
5.2.2 Communication problems...84
5.2.3 Analysis and location problems..87
5.2.4 Traceability problems ...89
5.2.5 Decision-making problems ...90
5.2.6 Tool-related problems...91

5.3 Summary..96
6 Generic change management process model ...97

6.1 Overview..97
6.2 Background..97
6.3 Layered change processes..98

6.3.1 Product-level changes...102
6.3.2 Project-level changes ..103

6.4 Generic change management process ..104
6.4.1 Trivial defect correction ...106
6.4.2 Defect correction ..109
6.4.3 Requirement-level modification ...111
6.4.4 Improvement proposal ..111

6.5 Relation of process levels and process types.....................................112
6.6 Comparison to other models..112
6.7 Summary..114

7 Implementation ..116
7.1 Overview..116
7.2 Operational organisation..116
7.3 Process management..116

7.3.1 Reviews of change requests..117
7.3.2 Monitoring the change requests..117

7.4 Quality responsibilities related to change requests118
7.4.1 Technical review...118
7.4.2 Testing ..118
7.4.3 Other change types ...119

7.5 Sources of change requests..119
7.6 Description of the change management process................................122
7.7 Existing change management support ...125
7.8 Problems and improvement proposals related to change

management ...127
7.8.1 Effectiveness problems...127
7.8.2 Communication problems...127
7.8.3 Analysis and location problems..128
7.8.4 Traceability problems ...130
7.8.5 Decision-making problems ...131

7

7.8.6 Tool-related problems...131
7.9 Description of the implementation solution132

7.9.1 Vocabulary..132
7.9.2 Instantiation of the generic processes in the case study133
7.9.3 Selection of tool environment..153

7.10 Implementation and deployment of the defined solution..................155
7.11 Summary ...159

8 Evaluation of results ..160
8.1 Introduction..160
8.2 Evaluation of the change management problem classification............160
8.3 Evaluation of the change management process model162
8.4 Experiences from the implementation and deployment167
8.5 Summary ..171

9 Conclusions..172
9.1 Answers to research questions...172
9.2 Generalisation of the results ..173
9.3 Future research...174

10 Epilogue ...176
References...177

Appendix A: Case one – aerospace organisation

Appendix B: Case two – consumer electronics organisation

Appendix C: Case three – telecommunication organisation

8

List of symbols
AMES An ESPRIT project on tools and methods for application management

CM Change Management

CMM Capability Maturity Model developed by the SEI

CMS Code Management System, version control tool by Digital

CS Cellular System

ESPRIT European Strategic Program for Research and Development in Infor-
mation Technology

GQM Goal-Question-Metric method

HOOD Hierarchical Object Oriented Design, an object oriented design lan-
guage

HW Hardware

OS Operating System

Pr2imer Practical Process Improvement for Embedded Real-Time Software, a
process improvement service package by VTT Electronics

SADT Structured analysis and design technique

SCM Software Configuration Management

SEI Software Engineering Institute at the Carnegie Mellon University,
Pittsburgh, USA

SW Software

UI User interface

VTT Technical Research Centre of Finland (Valtion teknillinen tut-
kimuskeskus, in Finnish)

9

1 Introduction
The problem of managing software changes has gained a lot of attention in re-
cent years. The European Space Agency’s Ariane 5 Flight 501 rocket disaster
was caused by poor change management in reused software parts. The year 2000
problem has required a great deal of effort on updating and verifying the opera-
tionality of software systems all over the world. The combination of year 2000
modifications and the inception of the European Monetary Union between 1998
and 2002 will result in fundamental modifications to most legacy systems used
today; to name but a few of the recent change management crises.

At the same time, the importance of software development in electronics has
increased rapidly during the past ten to fifteen years. One of the basic reasons
for this is that new types of software-intensive products have emerged, espe-
cially in communications and consumer electronics. This growth has put pres-
sure on companies and led to the adoption of effective software engineering
processes.

During the early days of embedded systems development it was normal to de-
velop the different technological parts of the system, such as hardware, system
software and application software, separately. At present, the development of
different product technologies must be done concurrently. Time-to-market con-
straints require better integration of the different product technologies. During
the development of the hardware and software components, the system require-
ments often change and evolve. The changes relate to all parts of the product,
creating problems and special requirements for change management.

Customer-specific features of electronics products are often implemented by
means of application software rather than hardware. The existence of several
customer-specific versions of the same application software creates problems in
managing the modifications. The applications may share most parts of the
source code, or they may be totally separate with redundant source code parts.
Both situations are problematic. If the applications share parts of the source
code, changes made in one of the applications are reflected in the other applica-
tions through the common parts and may create erroneous situations or unex-
pected behaviour. When the applications are totally separate, a modification

10

implemented in one application has to be repeated several times if it is relevant
to some other applications.

The use of reusable software components has increased in the development of
embedded software. The software is not programmed from scratch, but rather
assembled using reusable software components. This kind of a development
process sets special requirements for change management, such as the mainte-
nance of a component library, predicting the impacts of changes in reused com-
ponents, analysing the behaviour of the combination of reused components and
new software, managing versions of reused components, etc.

In the case of embedded software, needs for changes are not only created by the
application software, but also by the hardware, the system software and other
parts of the product (Taramaa 1998). If the hardware components of the product
have to be modified for example because of a design error, a corresponding
modification may also be necessary in the application software. The hardware
and software components are usually designed concurrently. Since the hardware
environment is not stable when the software requirements are defined, redefini-
tion of both application and system software is often unavoidable. Therefore,
continuous interaction between application software, hardware and system
software developers and maintainers is required.

1.1 Research questions and overview of research
methods

The goal of the thesis is to find answers to the following research questions:

• What are the essential change management problems and improvement re-
quirements found in developing embedded software?

• What kind of a management processes would help in responding to these
requirements?

• How can the proposed processes be implemented and enacted in practice?

11

The first research question is studied using a literature study and by analysing
the change management processes in three organisations. The case study organi-
sations are analysed using semi-structured focused interviews complemented
with tool and document analysis and analysis of process and product related
measurement data, when available. Using these sources, essential problems in
change management are identified and analysed, and improvement requirements
for change management practices are proposed. As a result of the analysis of
change management problems a characterisation of the problem domain is de-
rived, and a classification of the typical problems in software change manage-
ment is developed. The problems are related to the special features of compa-
nies developing embedded software.

The second research question examines what kind of generic change manage-
ment process types would provide support for responding to the software change
management problems identified. As a result, a generic model of software
change management processes is derived.

The proposed generic process model is applied in one case study in order to
implement new change management processes. The implementation process is
described in order to answer to research question three. The implementation
solution will be described, including (1) a description of the initial change man-
agement status and the requirements for improving software change manage-
ment practices in the organisation, (2) an analysis of change management prob-
lems using the problem classification proposed, (3) the process models instanti-
ated from the generic change management processes presented, and (4) a de-
scription of the technical implementation. Finally, the experiences of using the
new change management solutions based on the proposed model are evaluated.

The used research methods are described in detail in chapter 2.

1.2 Scope of the research

The scope of software change management is restricted in this thesis to changes
in the software itself, i.e. source code, design documentation, test cases, user
manuals, etc. It is not defined to cover issues related to changes in the develop-
ment environment, human resources, project schedules, etc.

12

The industrial case studies presented in the thesis are all from the domain of
embedded software. Therefore, the thesis proposes a change management prob-
lem classification and process model for organisations developing embedded
software. Since other application domains have been studied only from the
viewpoint of the research presented in the literature, a thorough analysis of dif-
ferences between the domain of embedded software and other domains was not
possible. The specific requirements for the development of embedded software
are analysed by mapping the identified problem areas and improvement re-
quirements onto the special features of the embedded software.

The thesis focuses on the change management process. The tools and techno-
logical solutions for specific process activities, such as program comprehension,
impact analysis or regression testing, are not covered in detail.

1.3 Structure of the thesis

The structure of the thesis is illustrated in Figure 1. Typical problems and im-
provement requirements for software change management are derived from the
literature study and the three background case studies. The goal of combining
the literature study and case studies is to provide both state-of-the-art and state-
of-the-practice viewpoints for analysing the problems and defining a change
management process model. The presented process model is then applied in
implementing new change management solutions in one case organisation. The
implementation includes evaluation of the initial status of change management
in the organisation by utilising the problem classification defined, tailoring of
the generic change management processes for the needs and requirements of the
case organisation, and implementation of the new change management solution.

13

Background
CasesLiterature

Experiences from
process model and
problem analysis

Implemen-
tation

in a case
company

Company
specific

requirements

Practical experiences of
improving change
management process

Evaluation

Figure 1. Structure of the thesis.

Chapter 1 of the thesis presents the research problems and the scope of the the-
sis. It also presents an overview of the structure of the thesis and gives a brief
summary of the main chapters.

Chapter 2 explains the research methods used in different phases of the con-
struction of the thesis.

14

Chapter 3 summarises published research work related to the subject of the the-
sis.

Chapter 4 examines the change management processes and problems in three
companies developing embedded software. The chapter summarises the case
studies. More detailed case material is included in appendices A to C. The
chapter aims at providing a practical viewpoint to defining the typical change
management problems presented in chapter 5 and the change management proc-
esses presented in the chapter 6. Chapters four and five describe how this thesis
defines software change management.

Chapter 5 presents a classification of change management problems and im-
provement requirements derived from the literature study and the background
case studies summarised in the previous chapter. The problems and improve-
ment requirements are presented in the form of a problem classification frame-
work. Where possible, the specific problems related to the special features of
embedded software development are presented separately for each problem
class.

Based on the problems and requirements defined, chapter 6 proposes a generic
change management process model, which aims at providing a general frame-
work for building a process environment which would respond to the problems
and improvement requirements of the organisation. This chapter describes how
change management processes are defined in this thesis.

Chapter 7 applies the proposed problem classification by analysing the change
management requirements in one case organisation. The initial status of change
management is briefly described, and the identified problems and improvement
requirements are presented using the classification framework presented in
chapter 5. To tackle the problems encountered, a new change management proc-
ess environment is designed by applying the process model proposed in chapter
6. The instantiation of the generic process model to the special needs of the case
organisation is presented. Finally, the implementation of the instantiated model
is presented.

Chapter 8 evaluates the experiences gained and results obtained from using the
proposed problem classification and process model for implementing a new

15

change management solution in the case organisation. Also, guidelines for the
successful deployment of the new solution are given. The defined solution had
been in active use in the organisation for some years at the time of writing this
thesis.

The last chapter concludes the research work presented in the thesis, gives a
summary and analysis of the answers obtained to the original research questions
and speculates on future research on the topic.

16

2 Research method

2.1 Overview

This chapter describes the research approach adopted in constructing this thesis,
and the research methods used in different research stages.

2.2 Research approach

The research approach selected for this work is mainly constructive. Three main
research stages can be identified: (1) Problem analysis, (2) Construction and (3)
Demonstration. The problem analysis examines the domain of software change
management using a literature study and three case studies. Based on the prob-
lems and improvement requirements identified in the problem analysis stage, a
classification framework for typical problems in change management, related
especially to the specific features of embedded software, is derived. Further-
more, the results of the problem analysis are used in the construction stage to
derive a generic change management process model. The last stage instantiates
and demonstrates the proposed solutions in one industrial case study. The prob-
lem classification is used in defining the case requirements for an improved
change management solution, and the generic process model is used for deriving
the process instantiations for one organisation.

2.3 Research methods used in the case studies in the
problem analysis stage

The problem of software change management was analysed using a literature
study and three case studies. The first two case studies (narratives are presented
in Appendices A and B) were conducted using qualitative, focused interviews.
The conceptual schema of the interviews is presented in Figure 2. The concep-
tual schema was used in deriving an interview framework, which included the
focus areas that should be addressed and discussed during the interview ses-
sions. The interview framework used in the first two case studies is described in
detail in (Mäkäräinen 1996). The framework used in the third case study is dif-

17

ferent in structure and wording, but the conceptual schema used in deriving it is
the same. The interview framework was also used in writing notes on individual
interview sessions. The conceptual schema for the interviews was the same in
all three case studies. However, the interview framework was constructed sepa-
rately for each case study. The experiences from previous case studies were
used in constructing a new interview framework. Also, the individual needs and
special features of the studied case organisation affected the interview frame-
work. The same framework was then further refined into a framework of the in-
case summary narrative. Since the interview frameworks for each case study
were slightly different, the resulting case narratives also differ in format, as can
be seen from Table 1.

Table 1. Structure of case narratives.

Case one Case two Case three

Operational organisa-
tion

Operational organisa-
tion

Introduction,
Context of the analysis

Description of applica-
tion domain
a) Technical description
b) Documents

Description of applica-
tion domain
a) Technical description
b) Documentation

Description of the prod-
uct

Application develop-
ment
a) General information
b) Development proc-
esses
c) Development meth-
ods/techniques
d) Development envi-
ronment
e) Development docu-
mentation

Application develop-
ment
a) Development proc-
esses
b) Development meth-
ods/techniques
c) Development envi-
ronment
d) Development docu-
mentation

Organisation of change
management
a) Two layers of change
processes
b) Documentation
c) Quality management
of change management
processes
d) Human resources
management

18

Table 1. Continues.

Case one Case two Case three

Change requests
a) Defects found in
testing
b) Defects found in
reviews
c) Added and modified
features
d) Improvement propos-
als
e) Sources of change
requests

Current application
management practices
a) General information
b) Application man-
agement organisation
c) Application manage-
ment process
d) Application man-
agement environment

Current application
management practices
a) Application manage-
ment organisation
b) Application man-
agement process
c) Application manage-
ment meth-
ods/techniques
d) Application man-
agement environment
e) Maintenance history

Current change proc-
esses
a) Defects found in
testing
b) New/modified fea-
tures
c) Improvement propos-
als
d) Errors found in re-
views

Change management
methods and techniques

19

Table 1. Continues.

Case one Case two Case three

Main problems in appli-
cation management

Main problem in appli-
cation management

Problems in change
management

Application manage-
ment requirements

Requirements for im-
proving application
management
a) Process support
b) Configuration and
version management
c) Reverse engineering
d) Modification request
management
e) Regression testing
f) Impact analysis

Focused interviews were also used as a main information source in the third
case study, but the information extracted by means of interviews was comple-
mented with quantitative data, i.e. data acquired from the GQM-based meas-
urement programme (van Solingen & Berghout 1999), and change management
related document and tool analysis. The third case company had a running
measurement programme which provided data related to changes. Triangulation
between results of multiple data collection methods was used to achieve
stronger substantiation of results and to increase the confidence in the findings.
The methods also supported each other; the document and tool analysis per-
formed before the interviews familiarised the interviewees with the concepts
used in the company and decreased the need to explain standard procedures and
tools in detail during the interview sessions.

20

Change control tools

Development tools

Process descriptions
and guidelines

Change document
* Life cycles
* Traceability
* Characteristics

SW documentation
* Life cycles
* Traceability
* Consistency

Development and
maintenance
* Definitions
* Characteristics

Change processes
* Types
* Steps
* Roles

Roles in making and
managing change

Project organisation

SW Artefacts Processes

People
Environment

create & manage

act

create & manage

modify

support

use

Change mgmnt training

Process quality
m

anagem
ent

Product quality
m

anagem
ent

Figure 2. Conceptual schema.

The first two case studies were done in an ESPRIT project called AMES
(AMES 1993). The project aimed at improving the application management
process as one business process of a company by providing a methodological
framework for application management, a set of tools for supporting the most
critical activities of application management, and an integrative infrastructure to
ensure the interoperability of the tools provided by the project and commercial
off-the-shelf tools. The project defined application management as:

Contractual responsibility for the management and execution of all activities
related to the maintenance and evolution of existing applications.

The first two case studies aimed not only at learning about the change processes
and related problems in the case study organisations, but also at creating re-
quirements for the change management methods and tools to be developed in
the AMES project. Therefore, a list of requirements was generated by the repre-
sentatives of the case study organisations. This list was not generated in the
third case study, since it was not part of the AMES project, and did not aim at

21

implementing tools or methods for change management. Instead, this study fo-
cused on identifying change management problems.

Since one of the main goals of the case studies was to reveal problems and bot-
tlenecks in the change management, the interviewing technique was considered
a suitable method for performing the case studies. The strength of the interview
method is its privileged access to the common understanding of the subjects, the
understanding that provides their worldview and the basis for their actions
(Kvale 1996). The personal perspectives of the subjects and the interviewer
provided a distinctive and sensitive understanding of the problems faced in the
complex phenomena of change management. Interviews have been evaluated to
be effective in exploring what problems the subjects see as most important, how
the subjects place themselves in various classification schemes, etc. (Goguen &
Linde 1997).

The interviewees were selected using theoretical sampling, i.e. they were chosen
for theoretical, not statistical, reasons. The goal of theoretical sampling is to
allow replication and extension of the emergent results by examining extreme
situations and polar types (Eisenhardt 1989). Since only a limited number of
interviews could be done, choosing subjects who represent different roles and
belong to different organisational units was considered to provide the most ex-
tensive and comprehensive material for the analysis.

The data collection instruments, i.e. the interview protocol and the interview
framework constructed on the basis of the conceptual schema, were not altered
during individual case studies. Some adjustments were done between the case
studies in order to include learnings from previous case studies and to adapt the
data collection instrument to the specific features of the case.

However, the experiences from the first two case studies showed that the inter-
viewing technique had some weaknesses in studying the work flows and proc-
esses related to change management. The interviewees found it difficult to de-
scribe their actual work flows in words. They very easily drifted into describing
the official processes (see Figure 6) stated in the process documentation, or if
they were involved in process improvement tasks, it was natural for them to
describe the processes as they thought the processes should be performed.
Therefore, there was a danger of getting a description of the official process or

22

the prescriptive process, not a descriptive process model of the current situation
(see Figure 6). For this reason, triangulation was used in the third case study.
The interviews were complemented with other methods, which gave additional
information and indications of the actual processes and work-flows performed
by the software designers and other software personnel. The complementary
methods were process measurement, analysis of tools related to change man-
agement, and document analysis.

Appendices A, B and C give explanatory narratives of the case studies, and only
a brief summary of the cases is presented in the body of the thesis to give the
reader a quick overview of the empirical data used in the construction phase of
the thesis. As Barton Cunningham (Barton Cunningham 1997) states, the prob-
lem with narratives is that since they are used to summarise an assortment of
evidence, they may not seem to be presented in a standardised structure, and
they may appear unfocused. This can also be seen from the narratives presented
here. However, the descriptive information is assumed to provide evidence of
the practices in the field in an orderly manner.

The interviews were documented as follows:

• Interview notes from individual interview sessions were written by the in-
terviewer.

• An interview narrative was composed from the individual interview reports.

• A change process analysis document was derived by adding to the interview
narratives the results of the brainstorming sessions and other discussions
which were arranged to discuss the findings of the interviews.

The notes from the individual interview sessions are confidential documents,
which were used only by the interviewers. The interview narratives and process
analysis documents were distributed to the organisation under study. These are
project documentation and cannot be publicly reviewed. Shortened versions of
the change process analysis documents of the case studies presented in the ap-
pendices A and B have been published (Mäkäräinen 1996). The third case study
(presented in appendix C) has not been published before.

23

2.4 Research methods used in the construction stage

The constructs proposed by this thesis are derived from both the case studies
and the literature study. The presented change management models are based on
the change management models presented in the literature, which were adapted
to the needs and requirements identified in the case studies.

The case data was analysed using within-case analysis. Within-case analyses
typically involve detailed case study write-ups for each case study (Eisenhardt
1989). The write-ups were compiled from notes and observations made during
the data collection, and took a the form of narrative descriptions of the cases.
Brief summaries of the narratives are presented in the appendices of this thesis.

The process models are described primarily in text form, but some graphical
process models are provided to illustrate the processes. The graphical process
models are presented as data flow diagrams (DFD). The syntax of DFD models
is the following (Pressman 1992): (1) the squares represents the external enti-
ties, which act as sources of system inputs, or sink of system outputs, (2) the
arrows represent the data flows between the activities, and the arrow head indi-
cates direction of data transfer, (3) the bubbles represent the actions which
transform the input data into output data, and (4) the double lines with arrows
illustrate a repository of data. The DFD notation is illustrated in Figure 3.

24

Figure 3. Symbols of the data flow diagram.

2.5 Research methods used in the demonstration stage

The constructed change management model is demonstrated in one additional
case study. The model is used in defining the change management processes in
the organisation studied and in implementing a new change management solu-
tion in the organisation.

The starting point for the case study was a need for implementing new solutions
for change management through better understanding of the initial status of the
change management processes. The trigger for the project came from the de-
ployment of a new SCM tool, which has features for supporting change man-
agement. The aim was to examine the possibilities of using these features for
better change management support in the organisation.

The case study follows the Pr2imer cycle. The Pr2imer service package has been
developed by VTT Electronics (Technical Research Centre of Finland) for sup-
porting actions that aim at improving software processes (Karjalainen et al.
1996). The Pr2imer method divides a process improvement project into the four
phases illustrated in Figure 4.

Activity

Data flow

Data store

External
entity

25

Analysis of
current
practices

1.

Definition of
goals for
new
practices

2.

Plan for
process im-
provement

steps

3.

Use in
product

develop-
ment

Piloting

4.

PRODUCT
DEVELOPMENT

Figure 4. Pr2imer process improvement cycle.

The goal is to first analyse the current practices in order to achieve a better un-
derstanding of the current processes, problems and strengths in change man-
agement in the case organisation. Based on the results of the first phase, a deci-
sion whether the organisation wishes to change its current way of managing
changes is made. The second phase defines the goals for the new practices to be
adopted to change the current situation. The third phase aims at planning the
transition from the current situation to the target state. The final phase includes
the piloting and deployment of the planned improvement actions. Chapter 7
presents:

• a description of the initial change management status analysed in phase one,

• a description of the target state of change processes defined in phase two,

• a description of the implementation solution defined in phase three, and

• a summary of experiences from the piloting and deployment of the new
change management solution in the organisation which was performed in
phase four.

26

2.5.1 First phase: Analysis of current practices

The goal of the first phase was to describe the initial status and problems in the
change management practices in the case organisation. The goal was to gain
familiarity with the change management environment in the case organisation,
apply the problem classification framework presented by this thesis, and define
what kinds of improvement needs can be identified in the change management
processes. The methods chosen were:

• semi-structured focused interviews,

• analysis of tools used in change management or in interfacing change man-
agement tools, and

• document analysis.

Semi-structured focused interviews were selected as the main research method
for defining the initial status of change management in the organisation. The
focus area was software change management, and the goal of the interviews was
to identify and characterise the change management processes and find the
problems related to change management. The conceptual schema used in deriv-
ing the interviewing framework is the same as in the background case studies
(see Figure 2). The schema defines the rough focus areas of the interview ses-
sions, and the framework adapts the common schema to the special features of
the organisation in question. The interview framework was used as an inter-
viewing instrument in formulating specific questions and guiding the discussion.
The interviews were conducted by interviewing each interviewee in a separate
session, i.e. only one interviewee was present at each interview session.

Since the purpose of the study is to learn about change management processes,
not to test hypotheses, no coding of the interview material was done (Glaser &
Straus 1967). The interview results were analysed throughout the process. The
understanding of the processes and problems related to them started to take form
immediately after the first interview sessions. Triangulation (Barton Cunning-
ham 1997), i.e. combining the perspectives of the interviewees together with the
results of the change management tool and document analysis, was used in cre-
ating a narrative of the case study.

27

A similar division for maintenance-related questions has been presented by
Layzell and Macaulay (Layzell & Macaulay 1994). They used the following five
sections: (1) Background and overall structure of an organisation, (2) Structure
and composition of the maintenance function, (3) The maintenance activity, (4)
Assessment of the maintenance function, and (5) Future maintenance require-
ments.

The original purpose of the framework was to support requirements elicitation
for the development of an application management environment (Mäkäräinen
1996). The idea of using focused interviews in defining the strengths and bottle-
necks in processes was later used in defining the Pr2imer process improvement
service package. An expanded interview framework and focused interviews
have been used in several successful process improvement programmes in co-
operation with VTT Electronics and Finnish industry (Mäkäräinen & Komi-
Sirviö 1996, Karjalainen et al. 1996).

The subjects within the case organisation were selected using theoretical sam-
pling from different types of projects (user interface projects, hardware interface
projects, etc.) and different software development tasks (project managers, in-
experienced designers, senior designers, persons responsible for configuration
management, etc.). The subjects were not given any information about the inter-
view focus area in advance. There were two interviewers, the author of this
thesis and a member of the software process team of the organisation. The
author of this thesis performed a document study to get familiar with the organ-
isational structure and organisation-specific practices and guidelines. This en-
sured that the interviewer spoke the same language as the interviewees, and also
saved time in the interviewing sessions, as the interviewees did not have to
elaborate on basic issues concerning the tools used organisation-wide, responsi-
bilities within the organisation structure, etc. The objective of the interviews
was clearly stated to the interviewees before the interviewing sessions; i.e. they
were told that the goal is to define the current status of the change management
practices in the organisation in order to identify their strengths and weaknesses,
and to examine if the new software configuration management system could be
used more efficiently in supporting the change management processes.

The individual interview sessions lasted from one hour to three hours. As inter-
view sessions usually took place in a meeting room, the interviewees had no

28

possibility for checking actual software documents during the interview ses-
sions. In between the interview sessions, some of the interviewees showed ex-
amples of relevant change documentation to the interviewers.

Since the first two organisations studied were rather small, practically all soft-
ware designers were interviewed during the studies. The third company was
considerably larger, and only a part of the software personnel could be inter-
viewed (six persons).

The interpretation of the interview results was done by the author of this thesis.
The interpretation was done in three phases. First, the results of individual in-
terviewing sessions were written down as individual memos. The memos were
sent to the interviewees, who could read and check them for any misunder-
standings or add comments or information they had forgotten to mention in the
interviewing sessions. The individual interviewing memos are confidential, and
were not submitted to anyone else but the interviewees. As the interviews con-
tinued, a summary of all the interviews was constructed. The summary report
was sent to the interviewees, the case company representative in the interviews,
and the manager of the SCM tool deployment project for comments. A review
was arranged, where the author of the thesis presented a summary document and
the reviewers could give their comments. The comments were discussed in a
meeting, and the changes agreed to be relevant were made.

Goguen and Linde (1997) give a guideline for researchers performing interview
studies:

Do not ask people to describe activities that they do not normally describe, or if
you do, then do not believe the answers.

The focused interviews on change management could not avoid asking people to
describe activities which they normally do not have to express in words in nor-
mal conversation. This problem was tackled by examining the recorded data
related to change activities, and comparing them with the interview results. For
example, the error recordings were browsed to study the error handling proc-
esses, and software item version histories were examined to find information
about traceability issues.

29

The interviews are complemented with tool and document analysis. Both were
done prior to the interviews to familiarise the interviewers with the change man-
agement environment used by the interviewees. Also, some additional docu-
mentation could be identified during the interview sessions, so the document
and tool analysis were extended to continue throughout the whole first phase of
the Pr2imer cycle. The purpose of the tool analysis is to identify the tools cur-
rently used in change management, find their strengths and weaknesses and
study the change histories recorded using them. The purpose of the document
analysis is to study the documentation related to change management, which
mostly consisted of official process descriptions and user manuals.

2.5.2 Second phase: Definition of goals for new practices

The second phase of the Pr2imer improvement cycle generates the definition of
new change management practices based on the problems and improvement
ideas identified during the first phase of the cycle.

The new processes are defined using the generic change management processes
described in chapter 6. The process descriptions are defined by a small group of
software personnel from the organisation and the author of this thesis. The proc-
ess for managing requirement-level modifications is further studied in a separate
project, since it requires a more thorough analysis across organisational entities
outside the software department. The group involved in the process description
includes members from the software method and process improvement group.
The resulting processes are reviewed by software engineers from product devel-
opment projects.

The change processes are described using the Information Mapping method
(Horn 1992). The method provides guidelines for structuring and presenting
infromation. The Information Mapping method has been in use since 1972
mostly in documenting training and procedural and reference manuals. It sup-
ports both paper and online modes. The process descriptions are aimed to be
included in the company’s online process documentation, so support for the
online mode is required. The method supports separating information into small
units based on its purpose or function for the reader. The method aims at sup-
porting the readers in quickly finding the relevant information in the document.

30

2.6 Evaluation of the results

The main part of the result evaluation is concerned with the evaluation of the
success of the demonstration phase, i.e. how the change management model is
instantiated in the organisation used in the case study. The following methods
are used:

• Discussions with the development team.

• Observations in the case organisation.

• Interviews of users who had been involved both with the old change man-
agement system and the new one.

The discussions with the team that is responsible for the instantiation of the new
change management solutions in the organisation provide an evaluation of how
the development team considered the new solution to address the change man-
agement problems and needs stated. The team has a deep understanding of the
initial goals and problems, since it is involved in defining them together with the
software practitioners. On the other hand, since the development team defines
the new solutions by themselves and they are not dealing with the change man-
agement problems in their everyday work, their evaluation may be biased and
not provide actual improvements in software development. Therefore, the
qualitative evaluation by the development team is complemented with observa-
tions and interviews of actual end users.

The observations were made by studying the actual change management system
and databases, and how they were used in the projects. Since the observations
were made by the author of this thesis, who was a member of the development
team, the observations are subject to the same bias as the discussions with the
development team.

Some end users, who have been involved with software development tasks long
enough to use both the old change management system and the new solution,
were interviewed to get a more objective evaluation. The interviews are struc-
tured into two parts, evaluation of the performance of the new system with re-

31

spect to the problem areas, and evaluation of how the implementation solved the
specific problems stated at the beginning of the case project.

The main success criterion for evaluating the results is to prove that the con-
structs built in this thesis were usable and helpful in defining the new change
management solution in a company developing embedded software, and to
evaluate if the new solution was successful in solving the change management
problems found in the organisation studied and if it fulfilled its function in the
everyday software development work in the company.

The constructed change management model is assessed through studying its
instantiation in one case study. The construction is assessed against the criteria
of value. March and Smith (March & Smith 1995) advise the assessment of the
product of design science to answer the questions "Does it work?" and "Is it an
improvement?". The work presented here is a representative of design science,
where the attempt is to create things that serve human purposes, as opposed to
natural sciences, where the focus is on explaining how and why things are.
(March & Smith 1995)

The first question, "Does it work?", is examined by observing the instantiation
of the model in the case study, and the evolution and usage of the instantiated
model in the organisation. The observation methods include discussions with
and interviews of people who participated in the instantiation, use the instanti-
ated system and have been responsible for the support of the system when it has
been used, and studies of the maintenance histories, as well as development and
maintenance documentation. Also, the actual change data collected in the com-
pany was observed to evaluate the system.

2.7 Research process

The author started exploring the subject of software maintenance in the AMES
project in 1993. The initial goal was to focus on the software maintenance
phase, i.e. the activities taking place after the delivery of the complete software
system. The author was responsible for analysing the maintenance activities in
the two companies in order to derive the requirements for the maintenance sup-
port environment, including process, method and tool support. The analysis

32

work was done in co-operation with the software designers and process im-
provement personnel in the organisations. In the first case organisation, the
analysis team consisted of the author, one senior researcher from VTT (the em-
ployer of the author at that time), who had an extensive background in software
maintenance and configuration management issues, and a representative from
the case organisation, who had process improvement responsibilities in addition
to working as a software designer in the project analysed in the case study. The
second case study was done by a team of two persons, the author of the thesis
and a representative of the company studied, who was responsible for software
process improvement and worked as a software designer in the company. The
third case study was done later outside the scope of the AMES project. The
study was performed by the author of this thesis with the aid of two members of
the software process team at the company, both responsible for software con-
figuration management processes and tools.

As the work progressed, the focus of the study shifted from the software main-
tenance phase, i.e. the post delivery activities, to software change management,
i.e. change activities at any point of the software life cycle. These three case
studies together with a literature study formed our understanding of software
change management as it is defined in this thesis. After the first two case studies
performed in the context of the AMES project, the author reported the results at
that point in a licentiate thesis (Mäkäräinen 1996).

These three case studies (described in appendices A, B and C) are presented in
this thesis as background information for the change management models pre-
sented. This means that these case studies are part of the problem analysis phase
of the research. The narratives of the case studies are presented in the appendi-
ces, and a brief explanatory summary of the cases is given in chapter 4. The
literature study constitutes another part of the problem analysis phase. The lit-
erature study was primarily done simultaneously with the two first case studies,
but has been extended to continue throughout the whole research period.

The fourth case study presented in this thesis demonstrates the constructed
change management model in one organisation. This organisation is not one of
the three used for constructing the change management model. The fourth case
study was started in the same manner as the first three case studies were per-
formed; i.e. by analysing the change management practices in the case organisa-

33

tion. The analysis was done by a group of two persons, the author of the thesis
and a representative of the company, who was a member of the software process
team. The results of the analysis phase were used as requirements for instanti-
ating the model. The new change management processes were instantiated from
the generic model by the author of this thesis, with the exception of one process
instance, which was instantiated in a separate project by the process improve-
ment team of the company. The supporting environment, piloting, training and
deployment of the new system were done by the process improvement team of
the company with the help of subcontractors in implementation matters. How-
ever, the author of this thesis followed the work closely, and acted as a consult-
ant throughout the implementation and piloting periods.

2.8 Summary

The research approach adopted in this thesis is constructive. The constructs
proposed are derived using a literature study and three case studies, and evalu-
ated in one case study. The main instrument used in the case studies is focused
interviews of the software personnel in the organisations studied.

34

3 Analysis of related work

3.1 Overview

This chapter presents an overview of the research related to software change
management. It discusses the relationship of software change management to
related concepts. The chapter continues with a discussion of the software
change management problems presented in the literature. The findings from
related work are later used in chapters 5 and 6 for defining how software change
management processes and related problems are defined in this thesis.

3.2 Scope of software change management

The processes and problems related to changing software items have tradition-
ally been related to the maintenance of the software (e.g. IEEE 1993, Schneide-
wind 1987, Bjerknes et. al. 1991). Controlling changes during the software de-
velopment time has been defined as a task for software configuration manage-
ment (SCM) (Pressman 1992). This thesis combines these two viewpoints to
software change management: it examines the processes for managing changes
to existing software items and configurations in any phase of the software life
cycle .

Taramaa (1998) has discussed the relationship of software configuration man-
agement and change management. His software configuration management
framework examines software configuration management from the viewpoint of
version control, release-oriented and change-oriented SCM. The framework
presents a 12-level improvement framework for software configuration man-
agement. The first levels include version control oriented activities. At these
levels change management is limited mainly to the creation and storage of
change documents. The levels from four to five have characteristics from soft-
ware manufacturing and also include some aspects of change control, such as a
link between the change documentation and the changed software items. The
sixth level is called the "Change-oriented level", and it emphasises request-
driven change control, including support for software evolution and mainte-

35

nance. The last six levels include product management components, highlight-
ing efficient usage of reusable components and advanced assembly systems.

Weiderman et al. (1997) distinguish software maintenance from system evolu-
tion using the following criteria:

• Software maintenance deals with fine-grained, localised changes, while
system evolution deals with coarser-grained, structural changes. System
evolution changes the structure and architecture of the system, while main-
tenance changes leave the structure of the system relatively constant.

• Software maintenance is a short term activity, which produces few eco-
nomic and strategic benefits. System evolution on the other hand increases
the strategic and economic value of the software.

• Software maintenance typically responds to one software requirement at a
time, while system evolution allows the system to comply with broad range
of new requirements.

In this thesis, software maintenance refers to the software life cycle phase be-
ginning when the first delivery of the software is made, and ending when the
software is taken out of use. Evolution, on the other hand, refers to the step-
wise, incremental development of the software during its lifetime. Evolution of
the software system takes place both in the development and maintenance
phases through successive and concurrent changes. The activity of managing
these changes is called change management. Evolutionary software development
is a process in which the software is delivered incrementally. The feedback and
analysis of the latest incremental delivery generates the requirements for subse-
quent deliveries. (Lam et al. 1999)

The definition of change management is derived from the discussion of software
maintenance, evolution and iteration presented by Schneidewind (Schneidewind
1987). Schneidewind asks the following questions:

• Do we have the wrong model for maintenance? He states that change activ-
ity and change management should be an integral part of development and

36

all other phases of the software life cycle. The change should be associated
equally with post-delivery activities and with development.

• Do requirements end in the requirements phase? Schneidewind concludes
that requirements change continually, and it is not possible to develop a
complete, consistent and unambiguous specification prior to software de-
sign. The major problem in requirement management is the evolution of the
requirements in response to changes in the environment.

• Is the life cycle model appropriate for maintenance? Schneideman criticises
the association of software maintenance only to the post-delivery phase of
the software life cycle.

As Lehman suggests, change is intrinsic in software and must be accepted as a
fact of life (Lehman 1980). The relationships between the concepts of software
development, maintenance and software change management, as they are de-
fined in this thesis, are illustrated in Figure 5. Software change management
refers to the management of the evolution of the software. Evolutionary soft-
ware development consist of stages which incrementally expand the software
under development (Boehm 1988). The software evolution starts right from the
beginning of the creation of a software item. There are two main reasons for
changes during the development time: the requirements of the system change
during the development time, and the development of a complicated system is
very error-prone (Ince 1994). The more complete the software becomes, the
more time and effort is required for change management. In the testing and
maintenance phases, practically all the development work is change manage-
ment. The development of new software mainly takes place at the beginning of
the software life cycle and decreases towards the implementation, while evolu-
tionary changes increase. The situation will be even more dramatic when the
development project bases the development work on reuse of software compo-
nents or adaptation of an old system to new requirements. In these cases, the
development project may focus entirely on managing the changes to reused
items instead of creating new software from scratch. The evolutionary develop-
ment style also shifts the nature of the development work from waterfall type of
development to managing the evolution of the software. For example, the devel-
opment model defined for developing fuzzy logic control systems (Isomursu
1995) proposes controlled evolution as the main vehicle for deriving fuzzy sys-

37

tems. The vagueness or uncertainty of the processes typically controlled by
fuzzy control systems makes exact specification of the fuzzy design parameters
difficult, if not impossible, without exploration. Therefore, iterative prototype-
based development has proved to be successful in deriving fuzzy design pa-
rameters.

The target of this thesis is to achieve a better understanding of change manage-
ment problems and processes, during both the software development and main-
tenance phases.

Change Management
Development of
new code

Life cycle independent activities (project management, SCM, etc.)

development maintenance
Product release Life cycle

Figure 5. Software change management in software development and mainte-
nance phases.

Figure 5 illustrates the relationships between some key concepts of this thesis.
The software life cycle is divided into two main phases: development and
maintenance. The maintenance phase starts when the product is first released,
and the development phase includes all activities before that. In some cases, the
maintenance phase may not exist at all. This is the case described in the first
case study presented in this thesis (Appendix A). The actual software work is
characterised as development of new code and managing changes to existing
code. The amount of new development usually decreases towards the end of the
development phase, and in the maintenance phase all work consists exclusively
of managing changes to the existing system. The proportional share of new de-
velopment and change management vary between cases. Sometimes the life
cycle starts from a situation where everything has to be built from scratch. In
these cases, the proportion of new development is 100% at the beginning and
decreases towards the end of the development phase. In some cases, the devel-

38

opment phase starts with reusable items from previous development tasks, and
the proportion of change management is high right from the beginning of the
development phase.

In this thesis, the term "software maintenance phase" is used to describe the
post-delivery phase of the software life cycle, and the term "software change
management" to describe the management of modifications to existing software
items, regardless of in what phase of the software life cycle the modifications
are made. Several definitions for software maintenance have been presented in
the literature. The definitions can be categorised as follows:

• Life cycle approach. Software maintenance is the phase beginning after the
delivery of the software and ending at the retirement of the application.

• Life cycle approach combined with functional description. Software mainte-
nance is the modification of a software product after delivery to correct
faults, to improve performance or other attributes, or to adapt the product to
a modified environment. (IEEE 1993)

• Plain functional approach without restrictions concerning the life cycle. The
job of software maintenance is to correct errors and to change program op-
eration as requirements change. (Berns 1984)

The major difference between software and hardware maintenance is that soft-
ware, unlike hardware, does not wear out in use. The maintenance of the hard-
ware parts of a system includes replacement or repairing of worn or broken
parts, while software does not need this kind of sustained repair.

In addition, the word ‘maintenance’ is generally used by the software engineer-
ing community to point to all activities taking place after the first delivery of the
system (Turski 1981). As Sommerville stated, the addition of a new wing to a
building would never be called ‘maintenance’ by construction engineers, yet
adding a totally new feature to a software system is considered a maintenance
activity (Sommerville 1982).

However, software starts to evolve and require changes even before its mainte-
nance. Software change management is an integral part of the software devel-

39

opment process from the very beginning. The environment where the software is
supposed to operate evolves thoroughout the system development time, creating
change pressure on the original requirements (Lienz & Swanson 1980). Fur-
thermore, the software items in different abstraction levels require modifications
because of the defects introduced by the software engineers and the increasing
knowledge about the problem domain. This thesis defines ‘software change
management’ as a discipline for managing the changes to the software system
thoroughout its lifetime, in both the development and maintenance phases
(Schneidewind 1987) (Lehman 1980). It claims that there is no fundamental
difference in, for example, correcting an error in the software a week before the
release date during the development phase, or a day after the release during the
maintenance phase. Differences may be found from contractual and organisa-
tional viewpoints, but not in the procedures carried out to change the software.

Swanson also defined the most commonly referred to classification of software
maintenance tasks (Swanson 1976). The classification covers four dimensions
of software maintenance tasks: corrective, adaptive, preventive and perfective
changes. The diagnosis and correction of errors found in operational software
are characterised as corrective changes. Adaptive changes aim at adapting the
software to environmental changes, such as hardware changes or a new operat-
ing system. Preventive modifications are made to anticipate and prevent future
problems, e.g. through re-structuring existing systems. Perfective modifications
alter the functionality of the software, usually by adding new features. Although
Swanson discusses software maintenance tasks, the experiences from the case
studies presented in this thesis show that the division is applicable for changes
taking place both before and after software delivery.

In addition to the close connection to software maintenance research, software
change management is very tightly related to software configuration manage-
ment. Software configuration management is defined by the IEEE 828 standard
(IEEE 828 1990) to include the following basic elements:

• Configuration identification. Identifying and defining the configuration
items for the product.

• Change control, including configuration control. Controlling all changes to
these items throughout the life cycle of the product.

40

• Configuration status accounting. Recording and reporting the status of con-
figuration items and change requests.

• Configuration audit. Verifying and auditing the completeness and correct-
ness of these items.

As Taramaa (Taramaa 1998) summarises, the traditional definition presented
above has later been extended to cover issues related to manufacturing, process
management and teamwork (Tichy 1988, Dart 1991). Software change manage-
ment, as defined in this thesis, covers the issues related to managing changes
and change requests, and does not examine the problems of version control,
building baselines, manufacturing products, etc.

Software changes can be divided into active change management, reactive
change management, and pro-active change management (Ackoff 1967). Active
change management deals with planned changes. The desired change in the
environment is planned, and the software modification is done to support the
anticipated change. Reactive changes are initiated by the changes in the envi-
ronment the system operates in. The environment has changed somehow, and
the system has to be modified to react to external changes. Pro-active changes
anticipate future changes, and aim at making the system fit for easy reactive
changes (Michelis et al. 1997).

Change is a natural aspect thoroughout the software life cycle and it has to be
accepted as a fact of life. (Lehman 1980, Bersoff & Davis 1991). Software re-
quirements change and evolve (Lam et al. 1999), and software developers intro-
duce defects. Producing a new design is always open-ended, changes to initial
designs occur inevitably because of changes in the environment (Brown 1993)
and as more is learned about the problem domain. This is not a special feature of
the software engineering discipline, it also happens in other engineering disci-
plines. Examples of the unpredictability of the design work in other engineering
disciplines are for example the design of the Concorde or the Channel Tunnel
(Bennet 1996). Hence, software undergoes changes throughout its lifetime
(Lehman 1998).

The majority of software personnel today work in maintenance and evolution of
old software as opposed to the development of new software. (Lientz & Swan-

41

son 1980), (Nosek & Palvia 1990) This stems in part from the following consid-
erations:

• The lifetimes of the applications are long. The maintenance phase is often
much longer than the development phase. The systems require constant sup-
port and expert knowledge to keep them running. When the application life-
time is long, the original requirements are prone to change over time, creat-
ing pressures for modifications to keep the system valid. The life expectancy
of software has been proposed to be proportional to size, i.e. large applica-
tions tend to be in use for relatively long periods of time, while small soft-
ware systems often disappear from use in a shorter time. (Jones 1989)

• New systems are often derived from existing ones. The borderline between
software development and software maintenance has become blurred, since
the development projects may be based on an old software baseline, which is
adapted to meet the new requirements. Therefore, software developers actu-
ally implement changes instead of designing new software.

3.3 Why is software change management difficult?

A number of reasons for the difficulty of software change management can be
found in the literature. These include: age of software, loss of design knowl-
edge, loss of original requirements, accumulation of problems and change
needs, lack of design for change, time pressure, diversity of tools and informa-
tion, poor image of change function, poor maintainability of just released soft-
ware, code decay, few tools and methods, verification across several product
versions, and focusing on developing new software instead of managing existing
systems. The problems are examined in detail in the following subsections. The
problems found during the literature study will be complemented in chapter 4 by
an analysis of the problems identified by studying the change processes in com-
panies developing embedded software.

Many software systems are old (Osborne & Chikofsky 1990). They have been
designed and implemented using outdated methods and tools (Schneidewind
1987). The original developers of the system have seldom even known how long
the system will be used. Examples can be found in systems which were not de-

42

signed to be able to operate beyond the year 2000 because the original develop-
ers could not anticipate such a long lifetime for the system.

The design knowledge and the rationale behind the design decisions have disap-
peared (Rugaber et al. 1990). No-one knows precisely what the software actu-
ally does and why. The person changing the software often has to deal with
incomplete or outdated documentation. In the best case the design decisions
used are documented, but the design rationale behind the design decisions is
very seldom recorded (Abbattista et al. 1994).

The original requirements have been lost. Software requirements are forgotten,
and therefore often violated when the changes are implemented (Parnas 1996).
The original requirement specification documents may have been incomplete to
start with, often leaving out requirements which seem trivial at the time of de-
fining the software requirements. Moreover, the requirement specification
document may have become inconsistent with the actual system implementation
during the evolution of the system, when new requirements have arisen or re-
quirement changes have been made, and the related requirement specifications
have not been updated.

The problems and change needs tend to accumulate. An implemented change
prepares the way for the introduction of another (Pressman 1995). The error
fixes create new errors. The error fix may be done in a hurry and with inade-
quate resources, causing deficiencies in impact analysis and regression testing.
Also, the quality of the system may deteriorate because of changes over time,
resulting in more problems in understanding and modifying the system in the
future (Brown 1993).

The software is not designed to be easily maintained or modified (Capretz &
Munro 1994) (Brown et al. 1995). The quality requirements set for a system
rarely have specific requirements concerning maintainability issues. As the pri-
mary goal of the development phase is to release the system fulfilling the user
requirements, the maintainability requirements are often considered to be of
secondary importance.

Often the modification has to be done as quickly as possible. There is no time to
think about the quality or the impacts of the change (Brown et al. 1995). The

43

modification activities interrupt the development work, and if they are not
planned, they also cause delays in project schedules (Genuchten et al. 1992).

During the software life cycle many different tools are used, and usually each
tool manages only a subset of software-related information (Cutillo et al. 1996).
This results in problems for software engineers in finding relevant information
when managing changes to the system, and keeping the system consistent when
developing and changing the system (Ketabchi & Sadeghi 1996).

The image of software change activity is not highly valued (Lano & Haughton
1993) (Kellner 1993). Often new programmers are assigned to maintenance
tasks to ‘learn’ about the application domain and how to program. The changes
are regarded as unplanned and unwanted tasks.

The maintainability of just released software is poor (Brown et al. 1995), and it
gets worse during the maintenance history of the system (Jones 1989). It is too
late to think about maintainability only after the software has been designed and
delivered (Schneidewind 1987, Capretz & Munro 1994). Maintainability must
be built into the system when the initial design and implementation decisions
are made. Maintainability and modifiability should be planned and designed
right from the beginning of the development work. The early design decisions
are found to have more impact on software maintainability than the implemen-
tation algorithms (Rombach 1987). Also, often the changes made to the system
over time gradually degrade the system, decreasing its maintainability (Jones
1989) (Schneidewind 1987). Without proper management and attention to the
quality of the software modification activities, the quality of the software dete-
riorates over time. For example, the complexity of the source code may increase
(Bennet 1993) and the documentation may become inconsistent with the source
code (Briand et al. 1994, Brown et al.1995).

Few methods or tools for supporting software modification and change man-
agement are in active use in companies (Layzell & Macaulay 1994). Several
critical and laborious tasks, such as impact analysis and consistency checking,
lack advanced tool support and usually have to be performed manually. During
the last decade a lot of tool support from the research community has emerged
(Kellner 1993), but it has not yet been effectively adopted by the industry
(Chapin 1993, Brown et al. 1995).

44

The verification of a change is complicated, when the changed software part is
shared by several products or product versions. The change has to work in all
products in which the new software will be used. (Bergey et al. 1998) This
problem is typical in companies who use the product line approach, where core
components are used by several product projects. Propagation of changes made
to core parts to multiple deployed products in the product line is challenging.
(Bergey et al. 1998)

The main focus of software engineering research has been in software develop-
ment (Ward 1993). Most of the research done in the field of software engineer-
ing deals with methods, processes and tools for the development of new soft-
ware, and largely ignores the software evolution and maintenance viewpoint
(Schneidewind 1987). Advanced techniques exist for designing new software
systems and forward engineering activities, but these techniques often neglect
important aspects affecting the maintainability of the system, for example
maintaining consistency between work products, defining and updating links
between semantically related items, etc.

3.4 Software change management – Product dimension

This thesis studies change management in the context of embedded software.
This subchapter discusses the special features of embedded software which
create special needs and requirements for software change management. The
following special features are examined:

• Concurrent system engineering

• Sharing of software parts in several products or product families

• Primitive software engineering environments

• High reliability demands

These features will be further discussed in the following sections.

45

During the development of the hardware and software components, the require-
ments change and evolve. The changes relate to all parts of the product, creating
problems and special requirements for the management of change. Concurrent
hardware and software development adds one more variable from the software
viewpoint. Not only does the environment where the product will operate evolve
during the software development time but the hardware environment it is going
to operate evolves, as well. In addition, the complete hardware environment is
not available until the late integration testing phases (Mittag 1996, Taramaa
1998) creating problems in testing, location of problems and verifying interface
requirements.

Customer-specific product features are often implemented by the means of
software rather than hardware. Using a common hardware environment and
specialising it with software is usually more cost-effective than designing and
producing several hardware versions. Managing several customised product
versions and propagation of modifications among the versions results in change
management problems (Bersoff & Davis 1991). In addition, the new products
are often based on the software components or product baselines developed in
the previous projects, as for example in the case presented in appendix C. The
nature of software development is to change the existing software to meet new
requirements, adapt it to a new hardware environment and add new features by
making changes to old system baselines instead of writing software from
scratch. (Vierimaa et al. 1998)

The development environments and methods available for designing software
systems embedded in electronic products are often rather primitive (Vierimaa et
al. 1998). The developers have to design time, memory or power consumption
critical parts using assembly language, because the processor vendor does not
provide compilers for the high level languages, or the code generated by the
compilers provided is not efficient enough to meet the time, memory or power
consumption requirements set for the software. Even if the hardware vendors do
provide compilers for higher level languages, support for other software devel-
opment activities, such as testing, code measurement, etc. is seldom available. A
recent survey (Seppänen et al. 1997) states that as many as 45 % of companies
developing embedded software use a combination of the C language and proces-
sor-specific assembly languages. This has two major effects on change man-
agement; the source code is hard to understand, and automated support for

46

quality monitoring, consistency checking etc. is difficult to provide (Vierimaa et
al. 1998). The tight software–hardware relationship also results in a difficulty of
analysing the software as a separate entity. For example, there may be problems
in the system which are not solely hardware problems or software problems, but
are a result of the hardware and software not working together (Ojennes 1998).
The analysis of the change requests in one case project in the domain of embed-
ded software made by Stark et al. (Stark et al. 1994) revealed that only 280
problem reports out of 982 resulted in a software or hardware modification. The
rest of the problems could not be repeated (317 problem reports), were dupli-
cates (185 problem reports), or were caused by a human error, configuration
limitations or other, misclassified reasons.

The reliability demands for embedded software are often high (Seppänen et al.
1997). Changing software after its delivery is generally very difficult, and
sometimes even impossible, for embedded software (Taramaa 1998). The prod-
uct in which the software is embedded may operate in an inaccessible environ-
ment. The volume of products released may be huge, making after-release cor-
rections to products that have already been delivered very difficult and costly.
Therefore, it is important to assure that the software does not need to be modi-
fied after the delivery, and if such a need arises, the modification does not cause
new problems.

3.5 Software change management – Process dimension

One solution for achieving better control over software processes is defining
processes for supporting the actual work-flows and activities taking place when
people work (Zahran 1997). Two main factors of successful change manage-
ment are communication and control (Bersoff & Davis 1991). Formal and sup-
ported change management processes can be used as a tool to achieve better
control over the process (Pressman 1995) and to support communication.

The types of processes and process models are illustrated in Figure 6 taken from
Bandinelli (Bandinelli et al. 1995). The figure also illustrates the problems
faced in understanding software processes and creating process descriptions.
The two sources for examining software processes are observation of actual
processes and analysis of official process descriptions. The official process de-

47

scriptions are prescriptive process models, i.e. they describe how the processes
should be executed. The deficiencies of the process description methods and
languages and trade-offs caused by practical limitations, such as lack of re-
sources, change resistance, etc. result in variations between the desired process
and the official process. In order to understand the actual processes in an or-
ganisation the process agent aims at composing a descriptive process model, i.e.
a model which describes the software processes as they are executed. The proc-
ess agent faces the problems of poor visibility and traceability of the software
processes. Software processes are very abstract by nature, and it is difficult to
study them without introducing bias.

Desired
process

Imperfect description
trade-offs

Process
owner

Official
process

 Poor
comprehension

Perceived
process

Observed
process

Process
agent

Actual process

Poor visibility and
 traceability

Stimuli, Opinions,
Mistakes

Actual Behaviour

Results in

Figure 6. Types of processes (Bandinelli et al. 1995).

48

As Boehm (1988) points out, the very first software process models (Benington
1956) did not address change during the development time. The models stipu-
lated that software can be developed in successive stages, and each stage could
be completed before moving to the next stage. The waterfall process model
(Royce 1970) introduced feedback loops between states, and recognised a
maintenance phase after the delivery of the software (Taramaa 1998, Edelstein
& Mamone 1992). Still, iteration between successive development phases was
undesirable, and was considered to be caused by design errors or incomplete
work made in the earlier phases. Later, when development models such as the
spiral type (Boehm 1988) and the prototyping process model (Pressman 1992)
emerged, the changes during the development time were considered as positive,
natural phenomena by the software process models. It was recognised that effort
should be directed not only to activities aiming at reducing or preventing
changes from happening, but more importantly to activities supporting change
management and implementation.

3.5.1 Olsen's change management model

Olsen (1993) presented a change management model which views the whole
software development process, including both development and maintenance
phases, as a dynamically overloaded queue of changes. His model views all
work done by software designers as changes. A change is defined as anything
that might require work to be done: development of new features, filling out
project management related forms, correcting errors in software, etc. Olsen's
change management model is illustrated in Figure 7.

49

Potential changes

Approved
changes

Documents
Inspect paper

Test code
Executables

Engineers

ProductsSuggestions

Users

SchedulesFunding

Sponsors

Change managers

Engineering

Production

Support

Quality
Manage
change

Training

Marketing

Sponsors

Users

Engineers

Engineers
Implement
software

Figure 7. Olsen's change management model.

The model is an abstraction of the software process, where all activities are
treated as changes. Therefore, it is not life cycle dependent, and can be applied
in both software development and maintenance. The model does not make a
distinction between different types of changes, or how different types of
changes are managed. It defines the change activities on a very high level; in-
cluding change creation ("Manage change" in Figure 7), change implementation
("Implement software" in Figure 7) and verification activities ("Test code" and
"Inspect paper" in Figure 7). The change sources defined by the model are sug-
gestions from the users, change proposals from verification activities, and
change proposals generated by the change managers. The sponsors are treated as
a source of funding and as the body monitoring the schedules.

Olsen's model points out the fact that change is a key element in software devel-
opment. However, by treating all activities as changes, it loses the ability to
examine and describe the specific problems and features of changing software
items instead of developing new ones.

50

3.5.2 V-like change management model

The V-like change model describes the technical activities for implementing a
change. The process (see Figure 8) is the same for all change types. The fol-
lowing types of change activities are considered (Harjani & Queille 1992):

• User support, which includes activities for providing answers to users’
information requests and correcting misunderstandings.

• Corrective changes, which aim at fixing an error in software without mak-
ing any changes to the requirements.

• Evolutive changes, which include activities for adding new functionalities in
response to new or changed functional requirements.

• Adaptive changes, which adapt the software to changes in the operational
environment.

• Perfective changes, which aim at improving non-functional requirements,
such as execution time.

• Preventive changes, which improve the maintainability of the software and
prevent problems in future change activities.

• Anticipative changes, which anticipate future problems and aim at changing
the software to be robust or easy to modify if the changes are realised in the
future.

The V-like change model is designed only for the maintenance phase. It assumes
that the change process takes place in an environment where the user already
uses the software or the product, and the modified software has to be re-inserted
to the operational environment after the change has been made. The model is
generic in the organisational sense, i.e. it needs to be instantiated to the needs
and requirements of the organisation using it. The same model is planned to be
used for all change types. However, the example given by Harjani & Queille
(1992) defines two variants of the model for different types of changes. The
exceptional change types are emergency fixes and routine cases. The process

51

variant for emergency fixes is followed in urgent situations. The process is op-
timised so that the change can be done within very tight time constraints. A
simpler and lighter version of the process was proposed for routine corrective
changes, where the solutions are obvious, low cost and do not have large im-
pacts on other product parts or product operation.

Decision on
implementation

Closure of
intervention

Trigger Re-insertion

Problem understanding

Localisation

Solution analysis

Solution specification &
Impact analysis

Submit solution

Implementation

Regression testing

Acceptance testing

Submit modification
report

Figure 8. The V-like change process.

The process is started by the receipt of a statement of a problem in the use of the
software, or indicating a need for change. The statement can come from external
sources or from the maintenance organisation itself. The problem statement or
change need is analysed in the problem understanding phase. The purpose is to
filter problems and determine the cause of the problem and how it should be
processed. The localization activity takes care of determining precisely what is
the action requested by the trigger, and which parts of the product will be af-
fected by the change. The solution analysis step generates possible alternatives
for solving the problem, and analyses their impacts. After this step, the imple-
mentation decision is made. The following alternatives for the implementation
decision are given:

• Selection of one implementation alternative.

52

• Iteration on earlier phases is needed to find more satisfactory solution pro-
posals.

• Abandonment of the request.

If a satisfactory implementation alternative is found, the process continues into
the implementation step. The implementation phase is a "mini-development"
cycle. The software and associated documents, such as test data and user manu-
als, are changed using the normal development life cycle used in the company.
The modified product is tested using regression testing techniques in order to
determine if the new or modified components interact correctly with the un-
modified parts, and the behaviour of the product has not changed unintention-
ally. The acceptance procedures aim at checking that the implemented solution
has solved the problem or need stated by the original change trigger. The ac-
cepted change is then closed, and the software is re-inserted into its operational
environment.

3.5.3 Ince's change process model

Ince (Ince 1994) discusses how software configuration management relates to
software change management. According to Ince change management covers
change activities during both the software maintenance and development phases.
Two main sources for changes are identified: customer requests for new features
or error corrections, and the development team for problems identified in the
validation phases. Other external sources, such as changes in the hardware envi-
ronment and the work of product standardization or legislation bodies, or other
types of internal sources, such as improvement ideas of software developers, are
not discussed by Ince. He proposes that both customer and development team
originated changes are managed using the change model presented in Figure 9.

53

Change request Change request
note filled in

Change
considered by the
change control
board

Change authorization
note filled in

Change
implemented

System
documentation
modified

Change
validated

Validation and
test records
produced

Current
configuration
records updated

Current batched
changes

Rejected
Batched

Sanctioned

Figure 9. Ince's change process model (Ince 1994).

The model starts with the change request, which is received by the software
project. All change requests should be recorded in a change request note. Ince
proposes a single change request note template for all change request, even if
the two types of changes his model covers (customer-originated new require-
ments and errors or problems identified either by the customer or the develop-
ment team) are very different in nature and require different type of data to be
recorded and analysed. All recorded changes are then submitted to the change
control board. Since the process is the same for all changes, the change control
board is also the same for all changes, regardless of whether the change request
deals with a request for a new functionality or with a data type error identified

54

in an inspection of the detailed design document. The change control board may
decide to:

• Reject the change, in which case the change will not take place. ("Rejected"
arrow in the figure)

• Batch the change, in which case the change will take place sometime in the
future. ("Batched" arrow in the figure)

• Allow the change, in which case the change is implemented as soon as pos-
sible. ("Sanctioned" arrow in the figure)

When the change is sanctioned, the next step is to document the change in the
configuration management documentation, and communicate it to the people
responsible for its implementation. The implementation includes changing all
documentation associated with the change, and producing new versions of the
documents. Once the implementation has been done, the change is validated.
Here Ince proposes variation according to the type of change, and suggests the
size of the change to be the criterion for defining the validation strategy.

Ince's process relates the configuration management activities, which are con-
figuration identification, configuration control, status accounting and configura-
tion auditing, to the change process presented in Figure 9.

Configuration identification is a process of specification of the components
which are placed under configuration control. These components are called
configuration items A software change implies changes in component configu-
ration items. Configuration items are identified by a version number. Configu-
ration identification activity takes care of managing the versions and variants of
the configuration items.

Configuration control activities take care of communicating the changes to the
project, and inform the staff about changes to the configuration items they are
dealing with. Status accounting takes care of the recording and storage of con-
figuration data; i.e. details of configuration items and their versions and vari-
ants, list of changes made to configuration items, and recording and storage of
proposed and processed changes. Configuration auditing checks that the change

55

activities are performed as defined in the configuration management standards
and procedures.

3.5.4 The AMES model

The AMES model for software maintenance (see Figure 10) was used and re-
fined during the first two case studies presented in this thesis. It is primarily
intended for the software maintenance phase (Boldyreff et al. 1994), but it was
applied to changes during the development phase in the first case study pre-
sented here.

Although the AMES model is mainly intended for use in the maintenance phase
of the software life cycle, it is very relevant for the study presented in this the-
sis, since it was used as a starting point for the study of the change management.
At the beginning of the AMES project, the goal was to focus solely on the
maintenance process, but as the work progressed, the focus shifted more to
managing change in all phases of the software life cycle.

The model has three main levels: strategic, operational and service level (Hather
et al. 1995).

56

Layer 1:
Strategic

Strategy
definition

Layer 3:
Technical

Strategic
planning

Layer 2:
Maintenance
management

Problem
management

Preparation of
intervention

Closure of
intervention

Help
desk

Problem
qualification

Maintenance
intervention

Configuration
management

Problem report
from users

Solutions
to users

Figure 10. The AMES process model.

The AMES model supports the maintenance processes of a company. The model
defines three layers: strategic, management and technical layer. The strategic
layer takes care of decisions on planning the future of the product and how the
customer or user relationship will be taken care of. The activities of the strategic
layer include marketing, budget allocation, training and process improvement.
The management layer plans, organises and controls the actions and people who
provide the change service. The management layer includes activities related to
progress tracking and planning, implementation decisions, problem management
and initiating and closing the change. The technical layer carries out the
changes. The activities of the technical level are similar to those presented by
the V-like software change model, i.e. problem understanding, localisation,
testing, change implementation and documentation.

3.5.5 Spiral-like change management process

When two of the three case studies presented in this thesis were completed, our
view of the change management process was as presented in Figure 11
(Mäkäräinen 1996).

57

1st round: Problem owning
2nd round: Problem solving
3rd round: System engineering
4th round: Technology-specific

Evaluate alternative solutions,
identify and resolve risks

Develop Plan for next phases

Problem understanding

Identify
problem

Localise
problem

Report
problem

Choose way to
solve problem

Define
impacts of
problem and solution

Define
 interest
 groups

 Generate
solutions Suggest

solutions

Localisation
Solution
analysis

Impact
analysis

 Requirements
 for software
modifications

Create
 implementation
 plan

Technical
localisation

Technical
 solution
 analysis

Technical
 impact
 analysis

Implementation

Regression
testing

Acceptance
testing

Re-insertion
Create maintenance
history document

Figure 11. The spiral-like change management process.

The spiral-like process divides the change management process into four cycles,
in which the same main tasks are performed by each cycle, but the viewpoint is
different in each cycle. The execution of the process starts from the innermost
cycle. The first cycle is performed by the founder, or "owner", of the problem.
The problem at this point can be either:

• A request for something new, e.g. a new feature or service

• A problem in an existing product, e.g. an error situation in a product

As a result of the first cycle, the owner of the problem decides if the problem
needs to be taken care of, and how it should be taken care of. The second round

58

of the spiral is optional. It is executed if the problem needs to be examined from
a non-technical viewpoint. If the technical solution is known and clear after the
first cycle, the second round can be skipped and the execution can be continued
in the third round.

The third round of the process examines the modification from the system point
of view, and makes an implementation plan for the last round. At this point, the
affected parts of the system and the requirements for the modification task are
forwarded to the fourth and final round of the process. The final round gener-
ates, implements and verifies the technical solution planned during the third
cycle. It also closes the modification action by delivering the result and docu-
menting the actions and observations made.

The process is generic from the organisational point of view, i.e. it has to be
instantiated for the organisation using it. It is not life cycle dependent, but mod-
els the changes in both the development and maintenance phases. Different
types of changes are not considered by the model.

The spiral model was derived in the AMES project, when the case studies
showed that change management was relevant not only in the maintenance
phase, but also in the development phase of the software life cycle. The spiral
model does not treat software change as a post-delivery activity. Ince's change
management model describes only the outer cycle of the spiral model and the
last quarter of the system engineering cycle, i.e. the actual technical implemen-
tation of the change. The V-model was used in defining the outermost cycle of
the spiral model. Olsen's change model treats all software development activities
as changes. The spiral model only addresses the actions performed for changing
existing pieces of work, not creating new artifacts.

3.6 Software change management – Technological
dimension

Change management support has to involve all of the following facets: the
groups involved with the change and change activity have to be co-ordinated
and managed, the change must be supported by organisational change manage-
ment process models, and technical support for change activities has to be pro-

59

vided (Michelis et al. 1997). Software change management tools and systems do
not aim at reducing the rate of change, but they aim to reduce the overall costs
of change management by facilitating the speed with which changes can be
processed (Jones 1996).

The techniques used for supporting change management can be categorised into
generic software engineering techniques and change management specific tech-
niques (Mäkäräinen 1996). Generic software engineering techniques have been
designed or are used in general for software development, but are vital in soft-
ware change management, as well. These techniques include, for example, soft-
ware configuration management environments (Ince 1994) and basic develop-
ment tools, such as compilers, debuggers and editors.

However, special techniques for supporting software change management exist.
These include, for example:

• Impact analysis techniques for analysing and modelling the impacts of the
modification in the system. These techniques are useful, for example, in
project schedule estimation, consistency checking and risk analysis (Arnold
1993, Arnold & Shawn 1996, Queille et al. 1994).

• Change request tracking to support management of change requests. The
change requests are triggers for change. Their purpose is to (1) express a
need for a change, and (2) to document change activities by providing
change histories for individual changes and the software entities. The bene-
fits of change request tracking systems usually are in documenting and
communicating the changes.

• Reverse engineering techniques for deriving higher level descriptions from
lower level presentations to help in understanding the software and im-
proving its quality by the terms of understandability and consistency by up-
dating outdated documentation (Chikofsky & Cross 1990, Sneed 1995,
McClure 1989). Examples of such techniques are tools generating graphical
design descriptions from source code, for example the ReverseNICE tool by
Intecs Sistemi for generating HOOD descriptions from Ada source code.

60

• Regression testing for assuring that the modification has not created unde-
sirable side effects in the system. Regression testing tools usually repeat old
test cases and compare the new test results with the old ones in order to find
out deviations.

One of the greatest challenges of change management is to keep the system parts
and several abstraction levels of the system consistent with each others. This
can be supported by an integrated software development and maintenance envi-
ronment, where the tools used for creating and managing the software systems
are able to communicate with each other and can share common parts (Cutillo et
al. 1996).

Figure 12 presents an example of an integrated software change management
environment, where the tools used for software modifications and development
are able to communicate with each other and share knowledge. The environment
was developed in the AMES project (AMES 1993). The tool environment pre-
sented here was constructed to support change activities defined by the V model
for software change. The technical dimension of change management is there-
fore defined by the selected process model. The change process (adapted from
Harjani & Queille 1992) is presented in the upper part of the diagram and the
individual tools used in change management are linked with the process via a
process support tool. In this example, change request tracking is performed by
the process support tool. The interoperability service provides a link between
the tools. All software related items are stored in one archive, which is used by
all the tools through software configuration management. Links between se-
mantically related software parts, different abstraction levels, composition
structures, etc. are stored in a traceability database.

61

Problem understanding

Location

Solution analysis

Impact analysis &
choice of solution

Implementation

Regression testing

Acceptance testing

Re-insertion
Trigger

Process support tool

O
ther change m

anagem
ent tools

A
pplication understanding tool

R
everse engineering tool

N
avigation &

 display tool

Im
pact analysis tool

Testing tools

SCM

D
evelopm

ent tools Software
archive

Traceability
infromation

Interoperability service

Maintenance platform

Change management environment

PROCESS

PLATFORM

Figure 12. An example of an integrated change management environment
(Mäkäräinen 1996).

An integrated change management environment was developed in the AMES
project using the requirements elicited from the case studies (the case studies

62

presented in appendices A and B were done within the context of the AMES
project). The project delivered a set of methods and tools for managing software
changes.

3.7 Summary

This chapter presented the results of the literature study focusing on the research
related to software change management and its relationships to other related
concepts. The typical change management problems presented in the literature
were discussed. The special features of the domain of embedded software which
create special needs and requirements for software change management were
presented. The process and technology dimensions for improving software
change management were discussed.

63

4 Analysis of the state of the practice

4.1 Overview

In order to get an understanding of the state of the practice viewpoint to soft-
ware change management, three case studies were conducted to study the
change management processes in companies developing embedded software.
The goal was to characterise, describe and analyse the change management pro-
cesses identified in the companies, and learn what the problems in change man-
agement in software development and maintenance work in practice are. As a
result, descriptions of the current status of change management in companies,
and a list of problems identified and initial requirements for improvement were
derived. The problem list was derived directly from the interview notes, or from
the discussions and brainstorming sessions arranged to analyse the interview
findings. The problems and requirements were directly stated by the interview-
ees or attendees of the brainstorming sessions.

The analysis of problems in the organisations studied aims at complementing
the general change management problems presented in the literature and dis-
cussed in chapter 3.3. The problems identified in the case studies are related to
the generic problems discussed in chapter 3.3. This shows what kind of practical
problems can be caused by the generic change management problems discussed
in the literature.

4.2 Summary of case studies

The summaries of the data collected from the case studies are presented as case
narratives in appendices A (case one), B (case two) and C (case three). This
chapter provides a short summary of the commonalities and differences in the
characteristics related to change management in the three organisations studied.
All the organisations produce products with embedded software. The two first
organisations are small companies, and the third one is a large, geographically
distributed corporation.

64

The context of software change management is very different in each organisa-
tion. In the first case study, the change management is relevant only during the
initial development of the product, since the maintenance of the software is not
possible after delivery. The second case study represents the ‘traditional’ view
to software change management, where the main change effort is done after the
delivery of the product. The third organisation studied uses an iterative, evolu-
tive approach to software development. The iteration cycles deliver a new ver-
sion of the product by modifying the version developed in the previous iteration
cycle.

At the beginning of the research work, the initial assumption was that the focus
would be on supporting the maintenance phase of the software life cycle. As the
case studies progressed, it became clear that the change activities were not only
related to the post-delivery related maintenance phase, but that the changes
processed during the initial development also required support.

The enumeration of the requirements and problems was made only for the pur-
pose of referencing them later. The numbering logic in each case is slightly
different. In the first case study, the numbers are used to structure requirements.
For example, requirement RQ-100 has sub-requirements, which are numbered
RQ-110, RQ-120, etc. If the sub-requirement RQ-110 also has sub-requirements,
they are numbered RQ-111, RQ-112, etc. In the second case study, the numbers
do not express the structure of the requirements. The numbering of the require-
ments is ascending, and the structure of the requirements is expressed with
chapter headings.

4.2.1 Case one

The first organisation studied develops unique space instruments. The develop-
ment time is rather long, and the maintenance phase does not exist at all, since
the instrument software cannot be changed after the take-off. Since the instru-
ments are unique, they are specified and built from scratch in each development
project. Therefore, during the initial phases of the project the changes are
mostly requirement-level changes, since the hardware and software environment
evolves all the time and the specifications get more detailed as knowledge cu-
mulates and the optimal implementation solutions are found. As the environ-
ment gets more stable and the project proceeds to the testing phases, the nature

65

of the changes shifts to corrective work. The test coverage and the reliability of
the corrections have to be high, since corrections are impossible after the launch
of the instrument.

Two change process layers can be identified:

• Contractor level changes.

• Subcontractor level changes.

The procedures for managing changes at the contractor level have been agreed
between the subcontractors and the main contractor. These changes are recorded
on problem report forms, and the forms with the accompanying change infor-
mation are filed. The decisions are managed by the board, which includes par-
ticipants from the contractor and subcontractors. This procedure has been
adapted from the ESA process guidelines (ESA 1991).

The procedures for managing changes at the subcontractor level are informal.
These changes include all changes which are managed internally by the subcon-
tractor, including errors found in the testing phases and modifications on the
internal interfaces of the device constructed by the subcontractor. Before the
first delivery of the product, even the interfaces between devices constructed by
separate subcontractors are managed at the subcontractor level. After the first
delivery and the launch, these are managed at the contractor level.

A summary of the change management problems identified in the first case
study is presented in Table 2. The problems are explained in more detail in the
appendix. The last column of Table 2 relates the practical problems identified
in the case study to the generic change management problems discussed in the
literature and discussed in chapter 3.3.

66

Table 2. Problems identified in case one.

Problem Description Problem identified through the
literature study

Problem
1.

Frequent changes to specifi-
cations throughout the de-
velopment time have made
the documentation inconsis-
tent.

Often the modification has to be
done as quickly as possible.

Few methods for supporting soft-
ware modification.

Many different tools are used and
each tool manages only a subset
of related information.

Problem
2.

Inadequate version control
procedures.

Few methods or tools for sup-
porting software modification.

Problem
3.

Inadequate testing proce-
dures for verifying changes.

Few methods or tools for sup-
porting software modification

Verification of a change is com-
plicated.

Problem
4.

Source code is very hard to
understand.

Many software systems are old.

The software is not designed for
easy maintenance or modification.

Maintainability is poor.

Problem
5.

Deficiencies in communi-
cating requirement changes
between development
groups.

Few methods and tools for sup-
porting software modification.

Verification of a change is com-
plicated.

The problems in keeping the documentation consistent with the constant flow of
changes are related to the lack of the methods and tools for keeping the system
documentation consistent throughout the long change history. When there is
pressure for making the change as soon as possible and the consistency checking
has to be done manually, the risk of forgetting to update part of the documenta-

67

tion is considerable. The automatization of consistency checking is difficult
partly because the tools for software development and modification are sepa-
rated and cannot share information with each other.

The version control and testing procedures and tool support were inadequate in
the case organisation. Testing problems also relate to the generic problem of
verifying a change in a complicated environment. This also caused difficulties
in communicating changes between development groups, since it was difficult
to verify which parts of the software were affected by the change.

Since the software is old, and it has not been designed or implemented to sup-
port modifications, the source code of the software system is often difficult to
understand.

The requirements for improving the change management processes are listed in
Table 3. The detailed list of requirements can also be found in the appendix.

Table 3. Requirements for an improved change management environment in
case study one.

Requirement Description

Automated configuration management tool for:

RQ-110 Managing all product materials

RQ-120 Ensuring file integrity after transfers and com-
pressions

RQ-130 Compiling a configuration status list.

RQ-140 Compiling a configuration item data list.

RQ-100

RQ-150 Compiling a change request list.

RQ-200 Automated links between the source code and the documen-
tation for keeping the documentation consistent with the
source code.

68

Table 3. Continues.

Requirement Description

Regression testing support for:

RQ-310 Managing test data versions

RQ-320 Replaying testing sessions

RQ-330 Interfacing with emulators and simulators

RQ-340 Integration and unit testing

RQ-350 Test case description

RQ-360 Setting checking values for test results

RQ-371 Static analysis

RQ-372 Dynamic analysis

RQ-373 Test coverage measurement

RQ-300

RQ-374 Test result reporting

Impact analysis support for identifying how:

RQ-410 Changes made at a higher abstraction level af-
fect components at a lower abstraction level

RQ-420 Changes made at a lower abstraction level affect
components at a higher abstraction level

RQ-430 Changes made at any level affect components at
the same abstraction level

RQ-440 Changes made at any level affect test data

RQ-441 The old test data should be updated

RQ-442 To define which regression test cases to run
after the change

RQ-400

RQ-450 Changes made at any level affect the user
documentation

69

Table 3. Continues.

Requirement Description

Process management support for:

RQ-510 Activity description

RQ-520 Process tracking and control

RQ-521 Problem report management

RQ-522 Transmission of tasks and documents between
people

RQ-523 Reporting on the state of the tasks and the
documents

RQ-500

RQ-530 Instantiating company level methods and proce-
dures for projects

Program understanding support for:

RQ-610 Managing multitasking architectures

RQ-620 Managing multilingual programs

RQ-630 Generating data flow and control diagrams

RQ-640 Generating cross-reference information

RQ-600

RQ-650 Extracting information about module intercon-
nections

Requirements for the technical platform:

RQ-710 Sun SPARC with Solaris 1 or Solaris 2

RQ-720 Motif or OpenLook interfaces

RQ-730 Support for the C language

RQ-700

RQ-740 Ada support is an advantage, but not a compul-
sory requirement

70

4.2.2 Case two

The second case study organisation develops consumer electronics. Critical
factors from the change management viewpoint are the large amount of products
distributed geographically, and the long maintenance phase of these products.
The main change management effort is done after the release of the product,
when the product software has to be updated and modified. Another typical
change management situation is developing a new generation of products based
on the experiences and improvement ideas derived from the old products. Reuse
occurs mostly on the product concept level, since the hardware is usually unique
for the product family, resulting in difficulties in implementation level reuse.

Commonly agreed change management procedures during the initial develop-
ment do not exist. Official procedures exist for reporting error situations in op-
erating devices located in the field, but these procedures are not always fol-
lowed. Since the service personnel and external customers, who report the error
situations in operating devices, know the person responsible for the software by
name, they usually contact him to report the problem situations. The problem
report is then filed by the person responsible for the software, instead of the
original initiator of the error situation, as stated by the official procedure. All
error situations are not reported. The person responsible for the software decides
how the reported error situations are processed further.

Commonly agreed procedures for managing other types of changes or change
requests do not exist. Their processing is left to individuals and is ad hoc. Dur-
ing the initial development, the changes are processed and managed by the
software designers. After the device is delivered to the field, the person respon-
sible for the software manages the changes as he sees fit.

A summary of the change management problems identified in the second case
study is presented in Table 4. The problems are explained in more detail in the
appendix. The problems identified through the literature study (listed in chapter
3.3) relating to the specific problems identified in the case study are presented
in the last column of the table.

71

Table 4. Problems identified in case two.

Problem Description Problem identified through the
literature study

Problem
1.

Testing is time-consuming
and test coverage is un-
known.

Few methods or tools for sup-
porting software modification.

Verification of a change is com-
plicated.

Problem
2.

Impact analysis is difficult. The software is not designed for
easy maintenance.

Problem
3.

Error location is difficult. The software is not designed for
easy maintenance.

The maintainability of the soft-
ware is poor.

Problem
4.

Service personnel have diffi-
culties in analysing product
problems.

Few methods or tools for sup-
porting change management.

Problem
5.

Inconsistent documentation. The original requirements have
been lost.

Problem
6.

Unstructured and unclear
change process.

Few methods or tools for sup-
porting modification.

Problem
7.

Version management of de-
velopment tools.

Few methods or tools for sup-
porting modification.

72

Several of the problems identified in the second case study were related to the
lack of method or tool support for software maintenance. The overall change
processes were unstructured and unclear, and the specific change tasks, namely
version management, locating the problem by service personnel and testing,
were not supported. The software documentation was inconsistent, which re-
sulted in losing the original requirements for the system. The maintainability
was neither designed nor built for the system, resulting in difficulties in locating
errors in the system and estimating the impacts of the change.

The requirements for improving the change management processes are listed in
Table 5. The detailed requirement list can also be found in the appendix.

Table 5. Requirements for an improved change management environment in
case study two.

Requirement Description

RQ-1 Change processes should be modelled

RQ-2 Change processes should be quantitatively monitored.

RQ-3 Change processes should be better guided and instructed.

RQ-4 Parallel projects should be able to share information.

RQ-5 Support for distributed project management.

Configuration and version management

RQ-6 Any version of any module can be used

RQ-7 Support for configuration item list

RQ-8 Management of binary and map files

RQ-9 Developer control over the configuration item list.

RQ-10 Parallel product versions should be avoided.

RQ-11 Separation of modification tasks during implementation.

RQ-12 Support for change logs.

Reverse engineering

73

RQ-13 Extraction of state transition diagrams.

Requirement Description

RQ-14 Links between documents to support automated consistency
checking and updates.

RQ-15 Graphical navigation between the state transition diagrams
and the source code.

Modification request management

RQ-16 Support for collecting error codes.

RQ-17 Support for managing and documenting error situations.

RQ-18 Modification requests should be managed by the SCM tool.

RQ-19 Support for monitoring modification requests.

Regression testing

RQ-20 Support for static testing of the C code

RQ-21 Support for dynamic testing of the C code

RQ-22 Determining test coverage

Impact analysis

RQ-23 Support for analysing how source code modifications affect
documentation.

RQ-24 Support for analysing how source code modification affects
other parts of the code.

RQ-25 Support for analysing how source code modification affects
test data.

RQ-26 Support for defining which regression test cases are neces-
sary after the modification.

Table 5. Continues.

74

4.2.3 Case three

The third case study organisation was studied separately in order to transfer the
results and learning from the AMES project to the organisation. The focus was
set right from the beginning on the change processes taking place during itera-
tive development cycles. As the case study summary has shown, separating ‘de-
velopment’ and ‘maintenance’ phases from iterative product development cycles
is not practical in this organisation.

The third organisation has a set of product families, which are developed in an
evolutive manner. Each development project gets an old baseline and a set of
new requirements and changes as an input for the project, and develops a new
version of the product accordingly. The software development work is actually
change management, not building software from scratch. The post-delivery
projects only perform emergency corrections and user support, the larger en-
hancements are made in evolutive development cycles. Therefore, separating
changes made ‘before’ and ‘after’ delivery is not practical.

Commonly agreed, official procedures exist and are followed for managing
errors initiated by testing activities and in review sessions. The processes have
been defined, and tool and method support for handling these types of changes
exist.

Requirement additions and modifications as well as improvement proposals are
managed by individuals on an ad hoc basis. In particular, managing requirement
level changes between different technology groups developing the same product
causes lots of problems because the processes for managing requirement level
changes have not been defined.

A summary of the change management problems identified in the first case
study is presented in Table 6. The improvement requirements were not derived
in this case study, since the purpose was only to analyse the change processes,
not to build a new change management environment, and because the two first
case studies showed that separating problems from requirements did not provide
added value, since the problems and requirements were tightly related. Since the
requirements are not listed in this case study, the problems include more prob-
lems related to current change management methods and environments. There-

75

fore, the text 'Problem in method used in the company' was used in the column
containing the references to the generic change management problems discussed
in chapter 3.3, to state that the problem is not caused by any of the problems
identified in the literature study, but is a deficiency in a specific method or tool
used in the company.

Table 6. Problems identified in case three.

Problem Description Problem identified through
literature study

Problem
1.

Reviews reveal trivial, cos-
metic defects, which will not
cause errors or extra work in
later phases.

Problem in method used in the
company

Problem
2.

Release tests reveal defects
which are not real defects.

The design knowledge and the
rationale behind the design deci-
sions have disappeared.

The original requirements have
been lost.

Problem
3.

How to minimise requirement
level changes?

Many software systems are old.

Problems and change needs tend
to accumulate.

The software is not designed for
easy maintenance or modifica-
tion.

Problem
4.

How to identify code or sys-
tem decay?

Many software systems are old.

Few methods or tools for sup-
porting software modification.

Problem
5.

How to get relevant change
information from other
groups?

Often the modification has to be
done as quickly as possible.

Few methods or tools for sup-
porting software modification.

76

Table 6. Continues.

Problem Description Related generic problem

Problem
6.

How to inform other technol-
ogy groups about software
changes which affect their
work?

Few methods or tools for sup-
porting software modification.

The verification of a change is
complicated.

Problem
7.

There are no defined channels
or managed procedures for
managing internal improve-
ment proposals.

Few methods or tools for sup-
porting software modification.

Problem
8.

Traceability information be-
tween a change request docu-
ment and the modified docu-
ment is often missing.

Few methods or tools for sup-
porting software modification.

Problem
9.

The original reason for the
modification is usually not
recorded.

The design knowledge and the
rationale behind the design deci-
sions have disappeared.

Problem
10.

Effort spent for each modifi-
cation is not recorded.

Problem in the method used in
the company

Problem
11.

Locating the parts to be modi-
fied is time consuming and
error-prone.

The software is not designed for
easy maintenance.

Verification of a change is com-
plicated.

Problem
12.

Regression testing planning
could be more efficient.

Few methods or tools for sup-
porting software modification.

Problem
13.

Review tool supports docu-
ment-based review, when fea-
ture-based reviews would be
more practical.

Problem in the method used in
the company

Problem
14.

All links between error re-
ports, files, etc. are manual.

Few tools for supporting soft-
ware modification.

77

Problem Description Related generic problem

Problem
15.

It is difficult to find informa-
tion and compile summaries
from text document based
error logs.

Few tools for supporting soft-
ware modification.

Problem
16.

The current SCM procedures
prevent unit testing before the
module has already been pre-
tested.

Problem in the method used in
the company

Problem
17.

No systematic analysis of
change data for learning pur-
poses is done.

Few methods for supporting
software modification

Method and tool support were required for several change management tasks,
namely for identifying code and system decay, communicating change informa-
tion between development and project groups, managing internal improvement
proposals, supporting traceability, planning regression testing and analysing
change data for learning purposes.

The loss of original requirements and the design rationale behind the design
decisions made caused false error reports. Since the release test designers did
not know the requirements and the rationale behind them, they interpreted the
behaviour of the system wrongly, and reported an error even if the system be-
haved as it was designed to behave.

The requirement-level changes were frequent in the projects, since the products
under work were rather old. The implementation of requirement level changes
was difficult, since the software was not designed for easy modication. There-
fore, a change in one requirement easily led to modifications in others. The long
lifetime of the system and the frequent changes also resulted in code and system
decay.

Table 6. Continues.

78

4.3 Summary

The three case studies summarised in this chapter and presented in appendices A
to C provide a practical viewpoint to the state of the practice software change
management. The cases all have very different needs and constraints for change
management. Some of the characteristics of the cases are listed in Table 7.

Table 7. Characterisation of background cases.

Case 1 Case 2 Case 3
Degree of re-
use

Software built
from scratch

Some design level
reuse, but mostly
from scratch

High reuse level.
Iterative, evolu-
tionary develop-
ment

Separation of
development
and mainte-
nance

Maintenance not
possible, only
development
phase exists

Short and clear
development,
long maintenance
extending through
product lifetime

New software re-
leases as results of
new development
projects

Main focus of
change man-
agement activ-
ity

Development Maintenance Development cy-
cles

Number of
products to be
managed after
delivery

Only one end
product and prod-
uct version, which
cannot be modi-
fied after delivery

Large amount of
products, several
product versions

Large amount of
products and prod-
uct versions

Late integra-
tion

Critical, different
devices cannot be
integrated until in
late phases

Low priority for
change manage-
ment, since dur-
ing maintenance
the hardware
environment stays
stable

High priority dur-
ing first develop-
ment cycle, when
the hardware is
concurrently de-
signed with soft-
ware. In later cy-
cles, low priority

79

The level of software reuse varied a lot between the cases. The first organisation
studied could not reuse anything, but had to start building the system from
scratch. The second case organisation reused concept level designs, but did not
reuse implementation solutions. The reuse level was highest in the third case
study, where the development cycles were based on an existing software and
product platform.

The products developed by each company also had very different product life
cycles. The first case organisation designed products which could not be main-
tained after the release. The second company had a relatively short waterfall
type development phase, after which the product underwent a long maintenance
phase during its operation. The third company released new versions of the
same product as results of successive development cycles. These development
cycles took place throughout the operational life of the product. These facts lead
to differences in how the companies emphasised software change management
in different life cycle phases. The first company needed change management
support only in the development phase, the second one mainly in the mainte-
nance phase, and the third one concentrated on supporting evolutive software
development cycles.

One complicating factor for change management proved to be the amount of
products which share common software parts. The amount of products also
varied considerably between cases. The first company studied delivered only
one end product, while the second and third companies released a large amount
of products with common software. In the second and third company, this was
further complicated by the fact that the products in operation included different
component versions, both hardware and software, because of component
changes made over time.

Some differences could also be recognised in the importance of late integration
of software components with other hardware and software components. In the
first company, this was a very critical phase, since all devices were available at
a very late stage of the development, and the success of the integration was
mandatory because the faults could not be corrected after the release. The inte-
gration was also of high importance in the third case in the first development
cycle, but its importance decreased in the later development cycles. The inte-

80

gration was not critical in the second case, since the hardware environment stays
rather stable during the operation of the product.

At the beginning, the focus of the research was on post-delivery changes, but as
the case studies progressed, they directed the research focus towards treating
software change management as a life cycle independent activity. From the pro-
cess and technology viewpoint, the case studies did not reveal any differences in
change management before and after the first software delivery.

81

5 Software change management problems

5.1 Overview

This chapter presents a classification of the change management problems de-
rived from the literature study and the case studies presented in the previous
chapter. In addition, a summary of the problems and improvement requirements
identified in the case studies related to each problem class is given. The sum-
mary also addresses the specific problems in the change management of embed-
ded software development.

5.2 Classification of problems and improvement
requirements in change management processes

The literature study and the case studies revealed problem areas and improve-
ment requirements in the change management practices. The following six main
problem groups can be derived from the problems identified in the three case
studies:

• Effectiveness problems

• Communication problems

• Analysis and location problems

• Traceability problems

• Decision-making problems

• Tool-related problems

The following paragraphs explain each problem category in detail and give ex-
amples of the problems related to each problem class. The problems related to

82

the special features of developing embedded software listed in chapter 3.4. are
examined separately for each class.

The purpose of the problem classification is to provide a framework for analys-
ing the problems related to change management. The framework supports the
change management process analysis task by providing a structure which can be
used for identifying the change management problems in the process under
analysis. The classification will be used in chapter 7 for analysing and structur-
ing the problems found in change management, and later in chapter 8 to evaluate
how the new change management procedures introduced improved the change
management processes.

5.2.1 Effectiveness problems

This category includes the problems related to the effectiveness of identifying
needs for change and the effectiveness of the change activities. Effectiveness is
defined here as an ability to achieve the desired results, i.e. to perform change
management activities so that all relevant changes and change needs will be
processed within constraints which are practical and reasonable from the project
point of view.

Identifying changes effectively means that all relevant changes and change
needs are found and managed as early as possible. The problem covers not only
the problem of managing all relevant change requests, but also the problem of
avoiding unnecessary change requests, which do not require software changes,
to decrease the analysis work needed to process the identified change requests.
These change requests include misunderstandings, duplicate change requests,
requests requiring user guidance instead of software changes, etc. (see Stark et
al. 1994).

The most typical problems and improvement requirements related to the effec-
tiveness of identifying the change needs in time were related to the effectiveness
of reviews, inspections and testing. For example, the interviewees in case three
felt that reviews were not effective because not enough time was used by the
participants to prepare for the review, the work load of the people who pos-
sessed the best knowledge about the subject reviewed was already excessive,
and poor review or inspection methods were used (see problems 1 and 2 in case

83

three). The problems in testing effectiveness usually arose from inadequate
planning and failure to achieve a sufficient enough test coverage, lack of support
for dynamic testing (i.e. repeating test cases, managing test cases and test re-
sults, etc.) and difficulty of integration testing before the hardware environment
was ready (see problem 3, RQ-300 and its sub-requirements in case one, prob-
lem 1, RQ-20, RQ-21 and RQ-22 in case two, and problem 12 in case three).

The special features of the embedded software system presented in chapter 3.4.
are reflected in the effectiveness area as presented in Table 8.

Table 8. Effectiveness problems related to special features of embedded sys-
tems.

Special feature of
embedded systems

Manifestation of effective-
ness problems

Link to case mate-
rial

Concurrent system
engineering

• Early integration testing is
difficult, because hardware
environment is not ready in
early phases.

• Hardware requirements are
incomplete at the beginning
of the project, which leads to
requirement changes on
software created by hardware

• See RQ-100, RQ-
400 and RQ-500 in
case one

• See RQ-4, RQ-10
and RQ-11 in case
two

• See Problem 3,
Problem 6, Problem
11 and Problem 16
in case three

Hardware-oriented
programming and
code optimisation

• Source code is hard to un-
derstand, which leads to dif-
ficulties in reviewing source
code.

• Not much tool support avail-
able for testing.

• See RQ-300 and
RQ-600 in case one

• See RQ-13, RQ-15,
RQ-20, RQ-21 and
RQ-22 in case two

High reliability de-
mands

• High costs and practical
limitations of after-release
corrections require high ef-
fectiveness of pre-release
change identification.

• See RQ-24, RQ-26
in case two

84

Concurrent system engineering has two major effects on the effectiveness of
change management. Firstly, when the software and hardware parts are devel-
oped concurrently, the integration of software and hardware cannot be done in
the early phases of the development project (see problem 5 in case one). This
causes delays in finding errors and incompatibilities. Early testing phases have
to be performed without the complete hardware environment. This creates de-
lays in detecting inconsistencies or incompatibilities between the hardware and
software, and delays the testing of the requirements which are affected by both
hardware and software components, such as power consumption and execution
times. Late error detection leads to a far greater amount of correction work than
what would be needed if the error is identified and managed at an earlier stage
(Humphrey 1989, Ince 1994). Secondly, changes in one component may lead to
changes in the requirements for another component. This can create one addi-
tional source for software requirement changes (see problem 3 in case three).

Since embedded software is very hardware-oriented, the source code is rela-
tively hard to understand (see RQ-600 in case one). Reviewing optimised hard-
ware-oriented source code is very laborious and requires special knowledge
from the reviewers. Also, the development environments for the processors used
in final products seldom provide advanced support for testing (see problem 1 in
case two).

Since the reliability demands for the delivered embedded products are usually
high, the need for changing the software after release has to be minimised. The
effectiveness of pre-release change identification has to be high in order to
avoid after-release change pressure. (see problem 3 in case one)

5.2.2 Communication problems

This category includes the problems of informing all necessary parties about the
change requests, changes and related items.

Communication problems are typical in situations where the software modules
are shared by several development projects, and the products or product ver-
sions share parts of software or other software-related items, such as test cases

85

or user manual parts (see RQ-4 in case two). Communication problems also
arise between technology groups when the change affects several technological
parts of the product (see, for example, problems 5 and 6 in case three).

Communication problems usually have three components: “Who?”, “How?” and
“What?”. The “Who?” problems dealt with the problem of identifying who
should be informed about the change (see RQ-522 in case one, and RQ-16 in
case two). Since the amounts of change requests handled in the time critical
phases of the development cycles, such as late testing phases, are huge, re-
stricting the distribution list only to the relevant persons is necessary to avoid
overloading people. The “How?” problems concerned the processes related to
how to distribute information about changes and change needs (see problems 5
and 6 in case three). The processes were very informal in the organisations
studied, i.e. the change requests were received in personal conversations by
phone or E-mail, and other involved people or projects were informed in regular
meetings or in person-to-person communication. The “What?” problem was
usually faced when common solutions for the “How?” problem had been de-
fined, for example when common form templates for reporting errors were de-
fined, and the relevant fields had to be identified (for example RQ-17 in case
two).

The special features of embedded software system affect the communication
requirements as presented in Table 9.

86

Table 9. Communication problems related to special features of embedded sys-
tems.

Special feature of
embedded sys-
tems

Effect on communication Link to case material

Concurrent system
engineering

• Close interaction needed
between technology groups
throughout the development
time.

• Communication mecha-
nisms have to be usable and
comprehensible by all tech-
nology groups, not only SW
people.

• See RQ-540, RQ-520,
RQ-522 and RQ-700 in
Case 1

• See RQ-4, RQ-5 and
RQ-16 in Case 2

• See Problem 5,
Problem 6 and Prob-
lem 9 in Case 3

Sharing software
parts

• Distributing change infor-
mation to all parties using
modified components.

• Distributed decision-
making when modifications
affect modules used by sev-
eral parties.

• See RQ-522
• See RQ-10 in Case 2
• See Problem 6 in Case

3

Concurrent system engineering results in changes, which have effects on several
product technology parts. Therefore, close interaction and communication of
changes is required between the technology groups throughout the development
time (for example, problems 5 and 6 in case three). The development groups
usually operate as separate development groups or projects, who work in their
own environments. In case one, the development groups were different subcon-
tractors working with separate devices, which would be integrated together in
the final product. In case three, the development groups were different techno-
logical groups within the company, some working with a specific software com-

87

ponent, and others with hardware units. The working practices, tools, and vo-
cabularies between the groups are different.

When several products share common software components, communicating
changes to all affected parties becomes crucial (see RQ-4 in case two). The im-
pacts of the changes on all possible product environments have to be evaluated
and considered in order to generate implementation alternatives and to provide
adequate and precise information for implementation decisions. The changes
have to be distributed and validated in different environments.

5.2.3 Analysis and location problems

One of the most time-consuming and error prone phases of the change process is
problem understanding in the context of understanding the system and analysing
which parts of the system will be affected by the change (Barros et al. 1995).
This was also clearly stated by the software engineers in the organisations ana-
lysed in the case studies (see problem 3 in case two and problem 11 in case
three). Repeating the problem in an indeterministic environment (as in case
two), locating the problem in a complex multi-technology environment (as in
case three), analysing the ripple effects of the various solution proposals and
achieving an understanding of the complex system were among the most prob-
lematic change tasks identified. This category includes problems related to the
analysis of the change and change request, and relating the change to the system
to be modified.

The special features of embedded software systems are related to the analysis
and location problems as presented in the Table 10.

88

Table 10. Analysis and location problems related to special features of embed-
ded systems.

Special feature of
embedded systems

Manifestation of analysis and
location problems

Link to case material

Concurrent system
engineering

• When incomplete, not
properly tested HW and SW
components are integrated,
it is extremely difficult to
find out the actual root
causes for errors.

• See RQ-600 in case one
• See Problem 3 and

Problem 4 in case two

Hardware-oriented
programming and
code optimisation

• Hardware-oriented and
optimised source code is
difficult to understand.

• Special technical features,
such as multitasking archi-
tectures and non-
deterministic behaviour,
have to be dealt with.

• See RQ-400, RQ-600 in
case one

• See Problem 3, Problem
4, RQ-8 in case two

• See Problem 4, Problem
11 in case three

Sharing software
components

• The module can be used in
several different HW and
SW environments, and the
effects of the modification
has to be analysed in all of
them.

• See RQ-640, RQ-650 in
case one

• See Problem 2, RQ-7 in
case two

• See Problem 11 and
Problem 12 in case three

High reliability
demands

• Unwanted impacts of the
modification have to be
predicted before release,
because corrective actions
may be impossible or very
expensive.

• See Problem 3 in case
one

• See Problem 1 in case
two

89

Locating the problems encountered in late testing phases is extremely difficult,
because the complete testing environment with all hardware and software com-
ponents is not available until rather late. The integrated system is very complex.
Locating problems and analysing change impacts on highly optimised and
hardware-oriented source code is challenging (see RQ-600 in case one and
problem 2 in case three).

Embedded systems often have special technical characteristics, which cause
problems in analysis and location of changes. Examples of such characteristics
are indeterministic behaviour (see problem 3 in case two), which complicates
the task of repeating the error situation and hinders the use of automated test
result analysers, and multitasking architectures, which make analysis of the
impacts of changes more complex.

Sharing software parts in several product environments complicates analysing
the impacts of the change (see problem 2 in case two, and problem 12 in case
three). The impact analysis of embedded software products must also be effi-
cient, since unwanted impacts may create problems which could result in expen-
sive or irremediable error situations afterwards.

5.2.4 Traceability problems

Traceability problems are related to establishing and maintaining traceability
links between software artefacts and related items. The traceability links are
used for maintaining the consistency of the different abstraction levels of the
system, and supporting program understanding by providing information about
the related items. Support for establishing and maintaining traceability links
between abstraction levels and within abstraction levels, and aid for keeping the
system consistent by using traceability information was sought by all case or-
ganisations (see Problem 1, RQ-200, RQ-410, RQ-420, RQ-430, RQ-440, RQ-
450 in Case 1, RQ-14, RQ-23, RQ-24, RQ-25 in Case 2, and Problem 8 and
Problem 9 in case three). Manual creation and especially manual maintenance of
the traceability links was found to be difficult and error-prone (see Problem 14
in case three). Also, traceability from software items to design decisions and
reasons behind design decisions and other process related information, such as
modification records, was regarded as valuable (see RQ-12 in case two and
Problem 8, Problem 9 and Problem 17 in case three).

90

The traceability issues are general in nature; they are not directly related to any
specific feature of embedded software systems. Development environments for
embedded software seldom provide any support for managing traceability is-
sues, but neither do the general purpose software development environments.
The only special feature of embedded systems that has to be dealt with is the
traceability between the different technology components of a product.

5.2.5 Decision-making problems

The decision-making problems arise from the difficulty of defining how the
decision-making responsibilities should be assigned to keep the change proc-
esses simple enough but still under control. They also include the problem of
how to present all relevant information to decision-makers and how to pass the
decision and the reasons behind the decision to the implementation and later
phases of the development cycle The problems are closely related to the com-
munication problems.

The most typical decision-making problems were encountered in situations
where the responsibilities had not been clearly defined. For example, the cus-
tomers directly called the software designer to request new features to be im-
plemented, and the feature was implemented by the decision of the designer.
This may lead to inconsistencies in project plans, software components, etc. (see
RQ-510, RQ-520, RQ-521, RQ-522 in Case 1 and Problem 6, RQ-3 and RQ-5 in
Case 2) Decision-making problems were also encountered when the responsi-
bilities for implementation decisions depended on the criticality of the change
request, i.e. the implementation of a minor request could be decided by the de-
signer, but the major ones had to be handled by the project manager (see case
three). In these cases the difficulty was in defining the criticality of the change
request.

The decision making problems are very general in nature. The only special fea-
ture related to embedded systems is the added complexity of decision-making
introduced by the involvement of the hardware development. When the change
affects several technology components of the product, the decision-making pro-
cess has to take into account the hardware development groups, as well. Also,
sometimes the change request can be implemented by means of software or

91

hardware, and the decision making process has to evaluate which one is the
most beneficial solution option from the product viewpoint.

5.2.6 Tool-related problems

Tool-related problems are problems related to the tools used in change man-
agement activities in the organisation. These problems can be formulated into
requirements for improved tool support, either for new tools to be implemented
or for new, improved revisions of the old tools. This has been done in the first
two cases presented in Appendices A and B.

Tool-related problems are very company-specific, depending on the specific
tools used in the company (for example, problems 13 and 15 in case three).
Therefore, it is not reasonable to list the typical problems related to companies
developing embedded software. Instead, the tool-related problems and require-
ments can be classified according to the tool functions, as is done in Table 11.

Table 11. Summary of change management tool requirements.

Tool function Case one Case two Case three

Process support RQ-510, RQ-520,
RQ-521, RQ-522,
RQ-523, RQ-530

RQ-1, RQ-2, RQ-
3, RQ-4, RQ-5

Problem 7

Application un-
derstanding

RQ-610, RQ-620,
RQ-630, RQ-640,
RQ-650

RQ-15

Reverse engi-
neering

RQ-200 RQ-13, RQ-14

Modification
request man-
agement

RQ-16, RQ-17,
RQ-18, RQ-19

Problem 15

92

Tool function Case one Case two Case three

Impact analysis Problem 2, RQ-
410, RQ-420,
RQ-430, RQ-440,
RQ-442, RQ-450

RQ-23, RQ-24,
RQ-25, RQ-26

Regression test-
ing

RQ-300, RQ-310,
RQ-320, RQ-330,
RQ-340, RQ-350,
RQ-360, RQ-371,
RQ-372, RQ-373,
RQ-374

RQ-20, RQ-21,
RQ-22

Problem 12

Software con-
figuration man-
agement

RQ-100, RQ-110,
RQ-120, RQ-130,
RQ-140, RQ-150

Problem 7, RQ-6,
RQ-7, RQ-8, RQ-
9, RQ-10, RQ-11,
RQ-12

Problem 16

In general, embedded software development projects seem to require support
from process-related tools especially for the communication and information
distribution activities between technology groups. The requirements for tools
supporting individual tasks, such as configuration management or testing, are
usually very simple requests for basic support, since the development environ-
ments available for embedded software systems are usually rather primitive.

The requirements for each functionality are briefly discussed in the following
subsections.

Process support

Deficiencies in formalising and modelling the change processes were identified
in all three case studies (see RQ-500 and its sub-requirements in case one,
problem 6 in case two and problem 7 in case three). Since the change processes
were not formalised, no tool support was available at the time of the studies.

Table 11. Continues.

93

Therefore, the requirements for tool support focused on the basic process sup-
port functions, such as process monitoring (e.g. RQ-523 in case one and RQ-2 in
case two), tracking (e.g RQ-520 in case one) and process flow control (e.g. RQ-
522 in case one).

Application understanding

All case studies revealed problems in understanding the target system (see, for
example, RQ-600 in case one). Several reasons contributing to the difficulty of
understanding the systems built in the case organisations were identified:

• Indeterministic nature of the system (see problem 3 in case two). The be-
haviour of the system cannot be predicted from the input values. This causes
problems in analysing root causes and repeating cases.

• Hardware-oriented, optimised programming style (see problem 4 in case
one). Understandability of the software is not always one of the most im-
portant quality criteria, and it has to be sacrificed because of optimisation
issues.

• Modification may have ripple effects on several products through common
software components (see problem 2 in case two). This complicates the
analysis, since the software engineer should be able to track several product
combinations and analyse the effect of the change in all of those.

• Locating the problem in a complex device with several hardware and soft-
ware components is often troublesome (see problem 4 in case two, and
problem 11 in case three).

The requirements for supporting application understanding dealt with providing
visualisations of the source code (see RQ-630 in case one, and RQ-13 in case
two) and providing information about relationships within the system (see RQ-
640 and RQ-650 in case one). The requirements for application understanding
tools deal with providing support for understanding source code, since it often is
the only reliable material available to help the understanding of an application.
The documentation may be out-of-date, or there may be no documentation
available (see Problem 4 in case one and problem 5 in case two). Also, tool sup-

94

port for updating the documentation when the source code is modified was re-
quested (for example, RQ-420 in case one and RQ-14 in case two)

Reverse engineering

The requirements for reverse engineering tools, i.e. tools which would extract
higher level descriptions from lower level artefacts, were very much directed
towards the purpose of supporting application understanding tasks and keeping
the documentation synchronous with the source code (see the requirements in
the previous chapter). In addition, the third case study identified the problem of
code and system decay, which could be addressed by means of reverse engi-
neering techniques (see problem 4 in case three).

Modification request management

Modification requests were collected in all the organisations studied. Three
types of requirements for improved modification request management arose:

1. Not all types of modification requests were managed equally well (see
problem 7 in case three).

2. The procedures for managing modification requests were not followed for
some reason (see RQ-16 in case two, where the service personnel did not
report all error codes to the software department, and problem 16 in case
three, where all unit test errors were not reported by the software engineers).

3. Modification request management should be supported by adequate tools
and databases (see RQ-521 in case one, RQ-17, RQ-18 and RQ-19 in case
two, and problem 15 in case three).

Impact analysis

Impact analysis support was requested in the context of analysing the ripple
effects of the modification in order to ensure the consistency of the system after
the modification (see RQ-500 and its subrequirements in case one and RQ-23 to
RQ-25 in case two). The ripple effect analysis can be automated only if the links
between the system items are somehow known. For that reason, the traceability

95

links between the system components have to be managed somehow. Manual
creation and maintenance of traceability links was regarded as unreliable (see
problem 14 in case three).

Regression testing

Change management related requirements for testing support arose from two
directions:

1. Testing activities should identify errors (i.e. inputs to the change manage-
ment process) effectively and efficiently (for example, problem 2 in case
three).

2. Regression testing of a change should be supported (see RQ-320 in case
one, RQ-21 in case two and problem 12 in case three).

The special problem in testing support within the context of embedded software
is that the development environments seldom provide advanced tool support for
testing activities (Vierimaa et al. 1998), and the testing environments with
simulators and emulators are complicated to build and maintain (see RQ-330 in
case one).

Software configuration management

Cases one and two had simple software configuration and version management
systems in use, but no defined or established practices for using them. Both
organisations were in the process of establishing consistent practices, and the
change management related configuration management requirements were very
much related to this improvement initiative (see RQ-100 and its subrequire-
ments in case one and RQ-6 to RQ-12 in case two).

The third case organisation had configuration management procedures in place,
and its requirements for software configuration management tools related to
change management were focused on the issue of integration of configuration
management and change management tools (such as problem 8 in case three,
where a link between a file managed by the configuration management tool and

96

a change request document stored in the change management system was re-
quested).

Case two also had a problem of managing the versions of the development tools,
such as compilers and debuggers (see problem 7 in case two). As the develop-
ment tools evolve, the software parts developed using the older versions of the
tools may become inconsistent with the new versions of the development tools.
This creates problems when modifications to these software parts have to be
made.

5.3 Summary

This chapter presented the classification and summary of change management
related problems and requirements derived from the literature study and case
studies presented in the previous chapters. The problem classes were character-
ised, and the special problems identified in the change management of embed-
ded software that were identified through the case studies were summarised.

97

6 Generic change management process
model

6.1 Overview

This chapter presents a generic change management process model, which il-
lustrates our view of change management activities after performing the three
case studies presented in the appendices. The chapter determines the scope of
software change management processes as they are defined in this thesis. The
process model has been derived from the analysis of related work and comple-
mented with the analysis of the three case studies summarised in chapter 4.

6.2 Background

In order to respond to the change management problems and improvement re-
quirements presented in the previous chapters, the change processes needing
support have to be defined. Without knowing the processes and activities to be
studied and analysed, it is impossible to plan and evaluate relevant improvement
actions. The generic change management process model defines the exact focus
of the analysis and improvement actions. The generic change management proc-
ess model proposed here has been derived from the literature study and the case
studies presented in the appendices. The process model is used to describe how
change management processes are defined in this thesis.

The generic process model aims at modelling the types of change management
processes which were recognised in the case studies. The process model has
been derived from two sources. First, the change process models presented in
the literature, such as (Ince 1994) and (Harjani & Queille 1992), were studied.
Then, the common features and special characteristics of the change processes
recognised in the organisations explored in the case studies were synthesised
with the models presented in the literature. The goal was to get both practical
and theoretical background for defining the change management processes and
process types.

98

6.3 Layered change processes

The case studies showed that changes are processed in several process layers.
The process models formulated during the first case study have two process
layers: contractor level change process and subcontractor level process. These
two layers were very clear, since the process standards and requirement used by
the contractor were very different from the processes used internally by the sub-
contractor. Therefore, the changes visible to the contractor were processed using
very different processes compared with the changes which could be managed
internally at the subcontractor level. The spiral-like change management process
generated after the second case study includes four process cycles, each includ-
ing the same main phases, but executed by different roles. The factor defining
the process level was the role of the person who executed the change activities
at that level. Two change process layers, product and project layer, were identi-
fied in the third case study, although one of these was part of the requirements
management process. These two layers were the clearest ones identified in the
third case study, although there were indications of additional process layers.

The following two process layers can be identified in all case organisations:

1. Product level changes. This change process generates new requirements for
the new products or new product releases. It also generates feature modifi-
cation, addition and deletion requests for development projects. Examples
of product level changes from the three case studies are presented in Table
12. These examples were identified in the case studies.

Table 12. Examples of product level changes.

Example of product level change
Case one Adding or modifying the instruments in the station during the

development time by the contractor of the whole project.

Case two Replacing components in operating product families with
modern hardware components. The new hardware components
require software to be changed accordingly.

Case
three

Requirements for new features for new iterative development
cycles.

99

2. Project-level changes. Project-level changes are initiated and managed in-
ternally by the project. Some project-level changes are generated because of
product-level changes, for example when the product-level change process
requests a feature modification initiated by an external customer during the
development project. Project-level change requests may also generate prod-
uct level changes, for example when a project generates requirements for
other, either ongoing or future projects. Examples of project-level changes
identified in the three background case studies are listed in Table 13.

Table 13. Examples of project-level changes.

Example of project-level change

Case one A timing error in flight software caused by a pro-
gramming error and identified in the unit testing
phase.

Case two Re-writing part of the software reusing the behav-
iour and concept of the software embedded in the
old product. This is done because the old software
has deteriorated during the long maintenance phase,
and its structure and understandability has suffered
from patch changes.

Case three A typographical error in a design document identi-
fied in a design document review.

The main difference between the two change process layers is that the decisions
related to product-level changes are done outside an individual software project,
and the project-level changes are managed internally by the project within the
constraints stated for the project. When the product-level changes are forwarded
to the software project for implementation, they introduce changes to the initial

100

requirements set for the project. On the other hand, the project should be pre-
pared to manage the project-level changes within the project constraints.

In addition to these two change process layers, the case studies indicated the
existence of additional change process layers. For example, the third case study
revealed that only a subset of unit testing errors are processed according to the
project-level error management process (See Problem 16 in Case 3). This indi-
cates the existence of a "personal change process", which is followed for
changes in which the person managing the change does not forward the change
to the project-level change process. The change processes can also scale up-
wards from the product-level changes. For example, in the organisation studied
in the third case study, the products were grouped into product families. One of
the goals of the product family thinking was to share concepts and even compo-
nents, both hardware and software, between products. Therefore, change man-
agement on a product family level is necessary. The product family thinking
was, however, a novel idea in the organisation, and therefore the product family
change management level was not yet clearly recognised.

The process levels can be identified in both the development and maintenance
phase of the software life cycle. The levels are also independent of the change
type (see Figure 18). Different types of changes can be identified on all process
levels.

The relationships between the product and project-level change management
process layers are described in Figure 13.

101

Customers Partners

Standards Other sources

Feature
wishes

Errors

External sources for changes

Improvement
proposals

Change requests

Internal sources for changes

Marketing Research

Product development project

Change
triggers

Change triggers

Change triggers

Other technology
projects

Software project

Errors

Feature
wishes

Imprvm.
props.

Project level
changes

Product
level

changes

Software
items

= data storage

= organisational entity

= grouping symbol

= data flow

= document

Figure 13. Relationships between the product change process and project
change process.

The product and project level change processes were the most distinct and clear
process levels identified in the case studies. These two change process layers are
described in further detail in the following two subsections.

102

6.3.1 Product-level changes

When the nature of software development is evolutive, i.e. new products are
based on the idea, components or a baseline of an old product, the product-level
change process can be clearly distinguished from the project-level changes.

In the beginning of a new evolutive development cycle, the product-level
changes are change needs or ideas related to the old product version, which are
refined into requirements for the new development cycle. After the product-
level change process has forwarded the change requests to the development
project as the requirements for the new development cycle, the project will
manage them using a requirement management process, since they constitute the
requirement specification of the project. If the product-level change process
feeds the ongoing project with new change requests, those changes are managed
as change requests to the requirement specification baseline. These changes
cause additions, modifications or deletions to the requirement specification
baseline of the ongoing development cycle.

From the project point of view, the changes initiated by the product-level
change process always have an impact on the assumptions on which the project
bases its project plans. Therefore, the impacts to project schedules, resources
and other plans must be analysed and updated.

The project may also feed change proposals to the product-level change process.
The ongoing development cycle may generate change needs or ideas which it
cannot carry out within the constraints of the ongoing development cycle. The
project will then feed the change proposal to the product-level change process,
which will evaluate if the change proposal will be forwarded to another ongoing
development cycle, or to a new development cycle to be started.

The new evolutive development cycle does not have to be organised as a proj-
ect, although that was the case in the two case studies (case studies B and C)
where the product-level change process could be clearly separated from the
project-level change process.

103

When software development is based on an evolutive software development
cycles, the starting point of the project is:

• a stable baseline of an old product, and

• a list of changes to be implemented during this development cycle. The
changes can be any one of the following:

• new or modified features,

• corrections,

• adaptations to new environment, or

• improvement proposals.

This means that the nature of the system development is actually adapting an old
system version to a new release. The nature of the software development work is
carrying out changes in order to deliver a new release of the product.

6.3.2 Project-level changes

Project-level changes are iterations within the development process. They are
managed internally by the development unit, which usually is a development or
maintenance project. Project-level changes are included in the project plans and
they are managed within the constraints of the project. The project should be
prepared to manage the project-level changes within the constraints set for the
project.

In some cases, project-level changes may have effects on the assumptions used
as the basis for the project plans. However, this is not caused by external pres-
sure, but the change need is initiated internally by the project, i.e. because the
knowledge of the subject area increases as the design work progresses, and the
initial assumptions prove to be inaccurate or incorrect.

104

6.4 Generic change management process

The generic steps of the change process presented in Figure 14 can be identified
in all change process instances.

Figure 14. Generic change management process.

Four types of instances of the generic change processes were identified: trivial
defect corrections, defect corrections, requirement level modifications and im-
provement proposals. The first two process types deal with corrective changes,

1.
Identification

Change
trigger

2.
Analysis

3.
Implemen-

tation
decision

4.
Implemen-

tation

5.
Validation

4.a
Postpone
change
request

4.b
Reject
change
request

Problem
description

Analysis
results

Decision to
implement

Decision
to reject

Modified
items

Decision to
postpone

105

and the last two with enhancements. The change processes are briefly charac-
terised as follows:

1. Trivial defect correction. This process is followed in the small, simple,
straightforward corrections, which do not have to be separately analysed for
the implementation decision, and can be corrected and verified directly after
identification. The analysis and implementation decision steps are done si-
multaneously with identification. This group includes small errors found in
unit testing, which do not affect other modules or product parts, and most de-
fects found in reviews, since the implementation decision is done in the re-
view meeting, and a separate step for the implementation decision is not
needed.

2. Defect correction. This process is followed in managing most defects found
in the integration and release testing phases, and after the product release.
The unit testing errors which trigger change needs on other modules or tech-
nology parts follow this process as well. This process is also followed for
managing the defects identified in reviews, where the implementation deci-
sion cannot be made in the review meeting because further clarification work
is needed to support decision-making.

3. Requirement level modification. This process is followed when the project
receives a request for a new feature, an existing requirement has to be modi-
fied or deleted, or other requirement level changes are needed. The require-
ment-level changes usually have effects on the estimates which have been
used when the original project plans have been made. Therefore, risk analy-
sis and revision of project plans are especially crucial when requirement-
level modifications are analysed.

4. Improvement proposals. These modifications include improvement propos-
als and requests for actions which would prevent problems in the future. Ex-
amples of such actions are: restructuring the code, renaming, removing dead
or duplicate code, etc. Triggers for preventive modifications usually come
internally from the software project. Automated quality measures, such as
complexity or defect density measures, can also be used in identifying soft-
ware modules which may need preventive modification actions.

106

The process types can be roughly compared with the maintenance types defined
by Swanson (Swanson 1976) as follows:

• Trivial defect correction and defect correction processes manage changes of
the corrective type.

• Requirement level modification process manages :

• corrective changes, when the correction is needed at the requirement
specification level,

• adaptive modifications, since changes in the environment have an effect
on system requirements,

• perfective changes, if perfective actions have effects on the requirement
level.

• Preventive modification process corresponds to the preventive maintenance
type added to Swanson's maintenance type classification later.

The change process types are characterised in following subchapters.

6.4.1 Trivial defect correction

Trivial defect corrections have typically only three main steps (Figure 15) :

1. Defect identification

2. Implementation

3. Validation

107

Figure 15. Trivial defect correction.

Since the defect is very straightforward in nature, it does not have to be sepa-
rately analyzed, and a separate implementation decision step is not required for
proceeding to the implementation phase. The defect analysis and implementa-
tion decision are made simultaneously with the identification phase. For exam-
ple, in a review meeting the change requests are presented and discussed, and if
the request is found to be irrelevant it is rejected already in the review meeting
and the “defect” is never recorded at all (Figure 16). Respectively, if the defect
identified in testing is small and trivial, the tester identifies, analyses, and makes
the implementation decision in the testing session.

In the case of defects found in reviews, there is an additional life cycle for the
review session. The combined review session, defect analysis and implementa-
tion decision process is presented in Figure 16. The process illustrated in the
figure is a detailed description of step 1 of the process illustrated in Figure 15.
After a review meeting the three-step trivial defect correction process illustrated
in Figure 15 is followed for all defect recordings done in the review session.

1.
Identification

Defect

2.
Implemen-

tation

3.
Validation

Problem
description

Modified
items

108

Figure 16. Defect identification in a review.

Examples of trivial defects are:

• Most defects found in reviews. The identification, analysis and implementa-
tion decision steps are already performed in the review meeting. The defects
which are not simple and straightforward to manage (i.e. the implementation
decision cannot be done in the review meeting) are handled using the defect
correction process.

• Unit testing errors which affect only the modules tested and have no influ-
ence on other modules or product parts.

1.
Call for a

review
session

Need for a
review

2.
Review
material

3.
Accept

reviewed
material

Review
call & agenda

Review
minutes

Reviewed material
in an accepted

status

Defect
proposals

Analysis

Implemen-
tation

decision

Analysis
information

Defect
recordings

Approved
defects

Identification

Reviewed
material

109

6.4.2 Defect correction

The defect correction process includes all defects whose correction method is
not self-evident. The process follows the generic change process. Figure 17
explains the analysis phase of the defect correction process in more detail, since
it is essential especially in the defect correction process. There are two impor-
tant steps that have to be performed in the analysis phase:

1. Find out the location and impacts of the defect. This is crucial for defining if
other groups have to be informed about the defect, and for finding out what
the proper way to organise the correction is.

2. Analyse the causes of the defect. Some reported defects are not real defects,
but rather misunderstandings of original requirements. Also, the root causes
of several defects can be the same, allowing the defects to be grouped to-
gether and fixed simultaneously.

110

Figure 17. Analysis step of defect correction process.

Following defect features were used in the companies studied to define if the
defect is complex:

• The defect has effects on other software components.

• The defect has effects on other product components.

• The defect has effects on the schedule or other plans in the project.

Locate the
problem

Problem
description

Defect to be
analysed

Inform other
groups

Create
solution

proposals

Definition of the
cause of the defect

Analyse
impacts and

risks of
proposals

Evaluate
severity of

defect

Problem desc. &
cause analysis

Severity
estimation

Cause analysis
results

Solution
proposals

Decision
makers

Analysed
solution

proposals

111

• There are several alternative solution proposals, which have to be evaluated
and compared with each other in the implementation decision phase.

6.4.3 Requirement-level modification

Requirement-level modifications are modifications, deletions or additions to the
requirement set of the project. The change process follows the generic change
process (Figure 14), which has special features related to project re-planning
especially in steps two, three and four of the process. The effects of require-
ment-level changes on project schedules, resources and other plans must always
be analysed prior to the implementation decision, since the requirement-level
changes usually change the estimates on which the plans are based.

Most requirement-level modifications intertwine with the product level change
process, since the triggers for requirement modifications are usually received
from outside the project, and the first identification, analysis and implementa-
tion decision steps may have already been done. They are repeated again in the
project level with special emphasis on the analysis of the impacts of the modifi-
cation to the software system and the subproject in question.

6.4.4 Improvement proposal

The improvement proposals usually initiate preventive modifications. Preven-
tive modification actions follow the generic change process. As in requirement
level modifications, the effect to project plans plays a very crucial role in the
implementation decision. In effort estimation (made in the analysis phase), it is
important also to estimate the risks and threats of not implementing the preven-
tive modification. Sometimes preventive changes may actually save time and
effort by eliminating problems in the future.

Some examples of improvement proposals are:

• Restructuring code to improve system structure and architecture.

• Re-documenting code, if the documentation is inconsistent with the code or
does not exist.

112

• Reformatting or renaming code to improve its understandability and read-
ability.

6.5 Relation of process levels and process types

The model adapts the change process with respect to two factors: change layers
and change types. These two factors form a matrix of processes. An example of
such a matrix is presented in Figure 18.

Trivial de-
fect correc-
tion

Defect
correction

Requirement
level modifica-
tion

Improve-
ment pro-
posal

Project level Instance 1 Instance 2 Instance 3 Instance 4

Product level Instance 5 Instance 6 Instance 7 Instance 8

Figure 18. Process instantiations for two process levels.

In the example, the two most distinct change levels are presented. All change
process types can be found in all change levels, e.g. improvement proposals are
made in both project and product levels, and their management processes most
probably differ between the levels.

6.6 Comparison to other models

The main similarities and differences of the proposed model and the models of
change presented in the literature are shortly characterised in Table 14. The
reference models are the models described in chapter 3.5.

113

Table 14. Comparison of the presented model against change models presented
in the literature.

Life cycle phase Adaptation to differ-
ent change types

Change activities
covered

The model pro-
posed by this thesis

Life cycle inde-
pendent

Four distinct models
for different types

Management of
change activity

Olsen's change
model (Olsen
1995)

Software develop-
ment and mainte-
nance

All changes follow the
same process

All development
activities are treated
as changes

V-model (Harjani
& Queille 1992)

Maintenance One main process,
variants for excep-
tional situations

Technical modifica-
tion

Ince's model (Ince
1994)

Software configu-
ration management

All changes follow the
same process

Management of
change activity

The AMES model
(Hather et al 1995)

Maintenance All changes follow the
same model, different
models can be used
within the levels

Strategic, manage-
ment and technical
levels

Spiral model for
change manage-
ment (Mäkäräinen
1996)

Life cycle inde-
pendent

All changes follow the
same process

4 levels of technical
modification

114

The change models are characterised in the table using the following dimen-
sions:

• does the model view change management from a specific life cycle phase
point of view,

• how does the model adapt to different change types, and

• what level of change activities does the model cover.

The model presented in this thesis treats change management as a life cycle
independent activity, as does the spiral model, while the AMES model and the
V-model concentrate on the post-delivery life cycle phase, i.e. maintenance.
Ince's change model approaches change management from the configuration
management point of view. Olsen's model treats all activities done in any soft-
ware life cycle phase as changes.

All the models, except the one presented in this thesis, propose one change
model for all types of changes, although some variation can be allowed in ex-
ceptional situations (Harjani & Queille 1992).

Our model covers the aspect of managing change activity and does not cover
strategic or technical issues of change. The V-model covers only the technical
activities for changing software, as does the spiral model for change manage-
ment. The spiral model, however, recognises four separate levels in technical
software modification. The AMES model covers also the strategic decisions and
justifications for organising and planning change activities.

6.7 Summary

This chapter proposes a model for software change management processes. The
model is derived from two sources: change models presented in the literature
and three case studies, in which the change processes of three organisations
were studied. The model is compared with the change models presented in
chapter 3.5.

115

The model proposed here is intended to be used together with the problem clas-
sification framework presented in the previous chapter (Chapter 5) for defining
a new change management solution for the organisation. First, the problems of
the organisation in question should be analysed using the problem classification
framework, and then the generic process model should be instantiated to re-
spond to the specific problems identified. The next chapter (Chapter 7) demon-
strates how this was done in one case implementation.

116

7 Implementation

7.1 Overview

This chapter uses the proposed problem classification and process model in
analysing the change management problems and requirements, and defining new
change management processes in one case study. The organisation studied in the
case study presented in this chapter is not one of the organisations described in
the appendices. The analysis of the initial status of change management prac-
tices and needs is described, and an implementation solution is presented. The
new practices had been in use in the organisation for approximately three years
at the time of writing this thesis. A summary of the evolution of the change
management environment during the time of its operation from the first release
to writing of this thesis is given at the end of the chapter.

7.2 Operational organisation

The case organisation develops electronic multi-processor products, in which
software is a very crucial product element. The software development projects
are geographically distributed. The sizes of the software development teams
vary between different geographical sites, ranging from tens to hundreds of
people.

7.3 Process management

The change management processes in the organisation were sub-processes
within the software development and maintenance processes. There were two
main methods for managing the change management processes in the projects:

• Reviews of the change requests, and

• Monitoring the change requests.

117

7.3.1 Reviews of change requests

The practices for change request reviewing varied considerably between proj-
ects and project types. Three ways of reviewing the change requests were identi-
fied:

• Subproject manager meetings. The project managers of the different tech-
nology subprojects of the same product development project reviewed the
changes currently processed by the software project once or twice a month.
The purpose of the review was to distribute change information between the
subprojects, discuss open issues, and make decisions about changes that
have major impacts on the product developed in the subprojects.

• Test group reviews. The test groups reviewed the error lists for sharing in-
formation, planning test cases and testing sessions and analysing the effec-
tiveness and success of the test sessions.

• Project meetings. Most projects reviewed the change requests in project
meetings, which took place weekly or monthly. The purpose of the reviews
was to support project planning and monitoring and to discuss the change
requests.

7.3.2 Monitoring the change requests

The change requests were monitored by:

• Software designer, who was responsible for the software component. The
responsible person received error information by E-mail, and defect infor-
mation in reviews, where the person who was responsible of the software
component reviewed was usually present. Both errors and defects were re-
corded using the error report tool, and the software designers could monitor
defects and errors using the tool.

• Project and subproject managers, who monitored change requests in order
to follow the status of the project in making project estimates and planning
new tasks and milestones.

118

• Chairman of the review session, who used the error report tool to monitor
whether or not the author of the document had corrected the defects found
in the review session.

• Test group, who monitored the errors recorded in the error report tool. The
test group used the error information in planning test cases and testing ses-
sions, identifying valid regression testing cases and analysing test sessions.

7.4 Quality responsibilities related to change requests

The quality responsibilities for the changes depended on the software develop-
ment phase or event when the request for change was generated, and the type
and impacts of the change. Quality responsibilities can roughly be described for
the following classes:

• Change request created in a technical review.

• Change request detected in testing.

• Other change requests, such as requests received from marketing, produc-
tion, standard development groups, internal improvement proposals, etc.

7.4.1 Technical review

There were two kinds of quality responsibilities related to the change requests
detected in the technical reviews: the author of the document was responsible
for implementing and testing the modification and the chairman of the review
session was responsible for re-inspecting the module or the document.

7.4.2 Testing

There were four main test phases: unit, integration, laboratory and acceptance
testing. Errors found in the unit testing phase were not recorded. The quality
responsibilities related to the errors found in the testing phases were rather
complicated, since the severity, scope and type of the change affected them.
Generally speaking, the person who found the error was responsible for record-

119

ing the error and distributing it to all interested parties. The person responsible
for the document in question, i.e. the software component under testing, usually
performed the analysis, implementation and testing of the modification. How-
ever, sometimes the scope of the error was not that obvious, or the modification
required changes in several parts of the product, and the analysis and imple-
mentation responsibilities had to be discussed and shared. If the person respon-
sible for the document evaluated the error to be critical, he passed the analysis
information to the software project manager for implementation decision and
planning. The change was usually validated in the next testing session, where it
was not supposed to occur again, and it should not have generated new errors
related to the correction. The testers were responsible for testing the corrections.
Some projects provided the error lists from the error report tool to the test group
for regression test planning. The software project manager was responsible for
monitoring that the errors found were corrected and for organising the resources
and schedules of the correction activities.

7.4.3 Other change types

Since the practices and responsibilities for managing other types of change re-
quests had not been defined, the product project and software project managers
were responsible for monitoring, initiating and planning them.

7.5 Sources of change requests

The sources of change requests are illustrated in Figure 19.

120

1. Testing sessions

2. Reviews

3. Marketing

 5. Other
projects

6. Standardization
groups

4. Pre-production
and production

Errors

Defects and
Open Items

Errors,
Requirement
Changes and
Open ItemsOpen Items

Errors and
Open Items

Requirement
changes

Change
Request
Processing

Figure 19. Sources of change requests.

The following list includes a description of the media or format of the change
requests received from the different sources:

1. Testing sessions

• Module testing. Changes or change requests were not recorded. The author
of the module tested his own work and corrected the errors found immedi-
ately.

• Integration and laboratory testing. Change requests were recorded using the
error list of the error report tool. The change request was updated and
monitored using the error report tool.

• Acceptance testing. Practices varied. Some errors found were recorded us-
ing the error report tool as the errors were found in the integration testing
phase. Some of them were received by the person who was responsible for
the module or by the subproject manager by E-mail, paper or phone. The
person responsible for the module should have stored the change informa-

121

tion received in informal format using the error report tool, but this did not
always happen.

2. Reviews

• Source code reviews. Change requests were recorded using the defect list of
the error report tool. The requests were updated during the modification
process and monitored using the error report tool.

• Specification and design reviews. Practices varied. Some projects used the
defect list of the error report tool, some of the projects added the defects
that were found to the review minutes (a textual document written using a
word processor).

• Management and planning reviews. The defects detected in management
documents were recorded in the review minutes.

3. Marketing and other instances triggering change at the requirement level.
These were handled informally. No formal channels for receiving change
requests existed. Change requests were usually received in informal format
by E-mail, in meeting discussions, or coincidental discussions. One of the
projects had drawn up a change request form but it had not received any re-
quests in that format.

4. Pre-production and production. The person who was responsible for the pre-
production testing wrote a ‘Pre-production Analysis’ report, in which the re-
sults of the tests were reported. The subproject manager received this report
by E-mail.

5. Other projects. The change requests between projects and subprojects were
usually transmitted and negotiated in meetings, or by discussions between
project or subproject managers. The error lists of the projects were accessi-
ble by all projects, but the distribution of error information between projects
or subprojects was not supported by the tool. Error lists could be used as a
reference in meetings and discussions.

122

6. Standardisation groups. The new standards have to be followed continu-
ously by the product experts in order to identify standardisation issues that
affect the product. If such an issue is found, the product expert creates an
open item about the issue.

7.6 Description of the change management process

Since process support existed only for errors found in testing and defects found
in reviews, they were the only change types which had defined processes. The
processes were documented and used by the error report tool. The processes are
illustrated here by using state transition diagrams. The two graphical elements
of the diagrams are:

1. Rectangles, which represent the state.

2. Arrows to indicate transitions between states.

The input event (above the line) and a set of output events (below the line) ap-
pear next to the arrows. Figure 20 illustrates the error management process. The
state transition diagram presented in the figure was part of the error report tool
documentation [Case material].

123

PENDING

STUDY

CORRECTED

POSTPONED OK IGNORED

New error is found

Author: insert new error

Debugging has started

Resp: change status

Error is corrected
Resp:
- change status
- inform author by email

Re-testing OK

Test person: change status

Author’s misunderstanding

Subproject manager:
-change status
-inform author by email
-make sure that same
phenomena won’t appear in
future projects

Re-testing failed

Test person:
-change status
-inform resp by email

Error not handled
by this project

Subproject manager:
- change status
- inform author by
email

Figure 20. Error life cycle used by the error reporting tool. (Figure taken di-
rectly from tool documentation [Case material]).

The defect life cycle used by the error reporting tool is illustrated in Figure 21.
The same life cycle was followed even when the error reporting tool was not
used for recording defects.

124

PENDING

FIXED

POSTPONED REINSPECTED IGNORED

New defect is found during inspection

Author: insert new defect to defect list

Defect is corrected

Resp. (*): change status

Author’s misunderstanding

Resp (*): change status

Defect not handled by
this project

Resp. (*): change status

Reinspection made

Chairman: change status

Resp. = Responsible ~ Author of the document (99% probability)

Figure 21. Defect life cycle used by the error reporting tool. (Figure taken di-
rectly from tool documentation [Case material]).

The processes described in Figure 20 and Figure 21 are the ones which were
used by the change tools in use at the time of the interviews. However, the in-
terviewees thought that these processes did not fully describe all types of
changes and all activities of the change processes. The following main phases
(illustrated in Figure 22) were identified by the interviewees:

1) Detecting and recording the modification need. This phase included such
activities as location of the change in the product, creation of change re-
quest, distribution of the change request by e-mail, phone, meetings, etc.

2) Decision about the implementation. This phase included activities related to
analysing the impacts of the change in the product, project and other proj-
ects, generation of solution proposals, risk analysis, organisation of the
modification tasks and change request review meetings.

3) Implementation of the change, i.e. changing the documentation and code
and testing the change.

125

4) Verification of the change, including a review or other acceptance procedure
for the change request and regression testing.

Detecting
and

recording the
modification

need

Modification
trigger

Decision
about

implementati
on

Implementati
on

Problem
description

Positive
decision

Verification

Modified
items

Figure 22. Main phases of the change management process identified by the
interviewees.

7.7 Existing change management support

The main tool used for change management was an error recording tool used for
recording testing errors, review findings and improvement proposals. Some
projects had drawn up forms without tool support for recording requirement-
level changes. In addition, other technology groups had their own tools for man-
aging change requests. Examples of these tools were tools used for managing
user requests and problems by user support departments, production fault data-
bases, etc.

126

The best supported change process was the error management process. Errors
were recorded quite rigorously in all projects using common procedures. Errors
were defined as:

Deviations from requirements or required behaviour and the actual behaviour
of the system found in the testing phases or identified after the delivery.1

The deviations found in the review sessions were called defects. Defect man-
agement was also supported, but the practices varied between the projects. Some
projects used the error-recording procedures to manage defects found in re-
views, some used project-specific document templates for creating a combined
meeting minutes and defect report, and used the same document for defect fol-
low-up.

In summary, the company called deviations found in testing phases 'errors', and
deviations identified in the review sessions 'defects'.

Both errors and defects (as defined in the organisation studied) fall into the
definition of 'defect' according to the generic change management model. Our
generic model does not separate defects according to their identification phase,
as was done in this organisation.

Miscellaneous change requests, such as improvement proposals, wishes for new
features, etc. were called open items. Support existed for handling these
changes, but the practices varied a lot between projects. The definition of 'open
item' differed between the projects. Some managed requirement change requests
using open item procedures, other projects included internal improvement pro-
posals or unclear error situations in the 'open item' category.

The most informal change process was the management of changes received
from outside the software project during the development time, e.g. from mar-
keting and other software or hardware projects.

1 Quote from company error-recording guidelines. Internal document, exact reference
cannot be made due to confidentiality reasons.

127

7.8 Problems and improvement proposals related to
change management

This section presents the problems, improvement ideas and requirements put
forward by the interviewees with respect to software change management in the
organisation. The problem classification presented in chapter 5.2 is used for
classifying the identified problems.

7.8.1 Effectiveness problems

Problem 1. Ineffectiveness of the technical reviews

Technical document reviews faced two problems: (1) it was difficult to get the
experts needed for achieving the best review to a review, since they were busy
and had a great deal of work to do, and (2) the participants of the review session
seldom had spent enough time for reading the reviewed documentation.

During the interviews the improvement idea was put forward that the review
tool could support entering defect proposals prior to the review meeting, al-
lowing persons not able to attend the review session to enter their findings, if
the review session would focus on handling the pre-recorded defect proposals.
This would motivate reviewers to be better prepared for the meeting. Defect
proposals would be preliminary findings of the reviewers, which are further
discussed and refined into defects in the review meeting, if they are found to be
real deficiencies.

7.8.2 Communication problems

Problem 2. Lack of training courses and introduction material on change man-
agement practices

There had not been enough training or self-learning material for the change
management methods and tools. This resulted in inconsistencies in the change
management practices between projects.

Problem 3. Informal sources of change requests

128

No formal change request document or form existed for change requests re-
ceived from outside the software project. These change requests were received
in free-text form, e.g. E-mail, personal discussions, during meetings, etc.

Problem 4. Lack of sharing of change requests between projects and subpro-
jects

Each project and subproject had their own lists of change documents, and no
support for sharing and distributing the change documents existed. This caused
problems especially when the modules were shared between projects. The con-
tents of the change documents were very similar across projects. The change
document included the original change request completed with additional in-
formation accumulated during the change process, i.e. information about the
solution, decisions leading to the end result and acceptance details.

7.8.3 Analysis and location problems

Problem 5. Impracticality of using the severity classification for UI (user inter-
face) projects

The error severity had been analysed using the scale of four presented in Table
15.

Table 15. Error severity classification.

**** Major, an error that does not conform to requirements and/or will
cause a product failure

*** Causes malfunctions visible to user
** Causes malfunctions invisible to user
* Minor, an error that is not likely to cause a product failure

The classification had been found to be unpractical in the user interface (UI)
subprojects, since the classification was based on the visibility of the error to the
user and basically all UI errors were visible to the user. The deviations between
errors recorded in each severity class between different types of projects is pre-
sented in Table 16.

129

Table 16. Distribution of errors between severity classes and different project
types.

Severity class UI projects Other SW projects Other projects
**** 40 % 30 % 10 %
*** 50 % 30 % 10 %
** 10 % 30 % 40 %
* 0 % 10 % 40 %

Problem 6. Modification requests in the wrong lists

Some software designers found it annoying when testers recorded errors which
were not actually errors, but rather improvement ideas. In one project 34 % of
the errors recorded in the error list had been ignored because they were not real
errors, i.e. inconsistencies between the requirements and the actual behaviour.
Software designers felt that these recordings made the error statistics look worse
and generated extra work for subproject managers, who had to check all the
recordings and ignore unnecessary error recordings.

Problem 7. Postponed change requests were lost

When the project postponed the change request, i.e. it did not implement the
change, but forwarded it to the later projects, the postponed change requests
were often lost. The change request lists were owned by the project, and the new
projects started with an empty change request database.

Problem 8. No feedback loop

The change data was not used to feed process-related information to the ongoing
or new projects. The change histories of the projects were not systematically
analysed in order to identify root causes for typical defects, providing informa-
tion of the typical amount of rework and changes for project estimation, etc.

130

7.8.4 Traceability problems

Problem 9. Poor traceability between changes and software items

The traceability between the changes and affected software items was poor. The
projects usually recorded change histories into document headers. The contents
of the document headers were similar in different types of documents (e.g. de-
sign documents, source code files, test reports), only the format differed due to
implementation issues (e.g. design tools generated document headers in a differ-
ent format than the headers written manually with text editors or word proces-
sors). The change history had a description why the new version was created,
but not necessarily a link to the change document which initiated the modifica-
tion. The location of the correction had to be entered into the change documents,
but the field was a free-format text field, and therefore it could include anything
from file listings to subsystem identifier. The loss of traceability information
complicated, for example, release building and component sharing between
projects. In release building, the traceability information would have been
needed to ensure that certain modifications had been implemented in the com-
ponents included in the release. When a component was shared by several proj-
ects, the traceability information would have been necessary in distributing error
corrections or other changes between projects.

Problem 10. No link between the change document and the modified items

The link indicating which software items were impacted or created because of
the change was not stored. The link would have been valuable, for example, in
assuring that the software release included certain error corrections or other
modifications. The link would also provide valuable measurement data for
quality management purposes, for example, it could provide information about
the error-prone modules.

Problem 11. Inconsistencies between abstraction levels

No support was provided for defining how the change in one abstraction level
affected the lower or higher abstraction levels of the system. For example, when
changes in the source code were implemented, there was no support for defining
which design parts or test data parts should have been modified to keep the sys-

131

tem consistent. This resulted in inconsistencies within the software system,
since the changes were not propagated to other abstraction levels when one level
was changed.

7.8.5 Decision-making problems

No decision-making problems were found in this case organisation.

7.8.6 Tool-related problems

Problem 12. No support for the generation of a change history list for the prod-
uct review authorities

The product review authorities required a list of changes which had been im-
plemented after the previous product review or acceptance. The tools used for
change management did not support generating this list, although it would have
been a rather straightforward, easily automated task. At the time of the case
study, the list had to be created manually. The manual creation process was very
time-consuming and error-prone.

Problem 13. Wrong input values

The error report tool did not check the validity of the user-entered values and it
did not give any guidance to the user regarding what the entries should contain.
For example, the error list included a field “Location”. The purpose of the field
was to identify the location of the error in the software (i.e. the field should
contain a list of files, documents and modules); however, in the acceptance
testing phase the field name can be easily mixed with the geographical location,
i.e. the field sometimes had input values expressing the geographical location
where the error had been found, such as “Customer premises in Helsinki”. Fur-
thermore, as the field was a free-format text field, the file listings were prone to
spelling mistakes and inconsistencies.

As the tool did not give any guidance to the user and all the input fields were
free-format text fields, the entered values were often inconsistent with each
other, resulting in problems when making statistical analyses or summary re-

132

ports. For example, the fields which required entering time information had
input values ranging from minutes to the phrase ‘not much’.

Problem 14. Input fields which are not used anywhere

The error report tool had several input fields which were not used anywhere. For
example, the time used for fixing the error had to be entered by the user, but it
was not used in summary reports or monitoring activities. This resulted in unre-
liable input values, since the users of the tool knew their input values were not
used anywhere and were not motivated to enter them.

7.9 Description of the implementation solution

The results of the change management analysis were used as an input to define
new change management processes and process support for the case organisa-
tion.

7.9.1 Vocabulary

The vocabulary used in the process descriptions instantiated in the case study is
the following:

• Process. Process is a set of phases followed in order to manage a change in
a software system. An input to the process is a trigger for a change, and out-
puts are either a closed change documents or modified software items, if the
change request is accepted for implementation.

• Phase. The phases form the generic parts of the change management proc-
esses. The phases are the same for all change process types. One phase is
typically performed by one person, and it has defined inputs and outputs.
The phases also define the basic change document life cycle, i.e. the status
of the change document is updated during each phase. As an exception,
when the life cycle of the change document is relatively short, some statuses
may be updated simultaneously, when the phases are performed together
with each other.

133

• Step. Phases are divided into steps. Steps are specific for each change proc-
ess type. Step descriptions define the actual activities performed in that par-
ticular phase. The steps are documented using Step-Action tables, where
the “Step” column gives a name for the step, and the “Action” column de-
scribes the action implemented by each step.

• Session. A session is an event, which takes place in a certain period of time.
A number of phases may be performed in a session. Examples of sessions
are testing sessions, review sessions, project meeting sessions, etc.

• Review. A review is a meeting, where the participants collect, discuss and
analyse the defects they have identified in the documents or document parts
distributed before the meeting.

7.9.2 Instantiation of the generic processes in the case study

The generic types of change processes presented in chapter 6.3.2 were used in
defining the change processes in the organisation. The following processes were
defined:

• Error management process (corresponding process in the generic model:
Defect correction process)

• Defect management process (corresponding process in the generic model:
Trivial defect correction process)

• Open item management process (corresponding process in the generic
model: Improvement proposal)

• Requirement-level modifications (corresponding process in the generic
model: Requirement-level modification)

Roles

The change management roles are described in Table 17. The role names will
be used later on in the process description sections.

134

Table 17. Change management roles.

Role Responsibilities of the role
Initiator Identifies the change and writes the

change request (phase 1 of generic
change management process)

Analyser Analyses and studies the change request
and writes the analysis notes (phase 2 of
generic change management process)

Evaluator Decides whether the change will be
implemented, ignored or postponed
(phase 3 of generic change management
process)

Author Implements the change and links the
affected documents to the change notice
and writes implementation notes (phase
4 of generic change management proc-
ess)

Approver Approves the change and writes the
validation notes (phase 5 of generic
change management process)

Error management process

The error management process follows the generic change management process.
The phases are further divided into smaller steps, which are unique to error
management. The first phase, identification, includes steps described in Table
18. The identification phase is carried out by the initiator of the change.

135

Table 18. Steps of the identification phase of the error management process.

Step Action
1.

Identification
Identify the behavior or feature, which may be an error.

2.
Location

Locate the cause of the behavior as accurately as possi-
ble. Use the following check-list:

• Check the version numbers of hardware and software
components.

• Is the error located in hardware or software?
• Which component or module contains the cause of

the error?
3.

Analysis
Analyse the error. Check the following things:

• Did the error occur because of a misunderstanding or
misuse?

• Are there external factors which may have interfered
with the results?

• Are you able to repeat the error?
• Is this an error or an improvement proposal? If an

improvement proposal, create new open item
4.

Evaluate the se-
verity

Evaluate the severity of the error. Use the following four
classes:

Severity class Description
**** Major, an error that will cause a product

failure.
 *** Causes malfunctions that the user is likely

to notice.
 ** Causes malfunctions that the user notices

only in some exceptional cases.
 * Minor, an error that is not likely to cause a

product failure

The severity class descriptions can be tailored for your
project type, so check the class descriptions from your
system instantiation.

136

Table 18. Continues.

Step Action
5.

Submission
Submit the change request to the people in the following
list:
1. the person responsible for the module,
2. the subproject manager, or
3. the project manager.
In addition, define the persons you want to inform about
the error request.

The steps of the identification phase are illustrated in Figure 23.

137

.

Figure 23. Steps of the identification phase of the error management process.

In the identification phase the change requests are forwarded to the person re-
sponsible for analysing the error. If the initiator does not know the person re-
sponsible, he will send it to the subproject manager. If the initiator is not sure
which subproject is responsible for the part causing the error, for example when
it is not clear if the error is caused by a software or hardware fault, he forwards
the created change request to the project manager. The subproject or project
manager then evaluates the change request and forwards it to the right people. If
the person responsible for the analysis is wrongly defined, the subproject or
project manager will appoint a new person. The responsible person will receive
the change request by E-mail, and the change management tool will provide lists
of all change requests assigned to the individuals. The person responsible begins

1.
Identification

2.
Location

3.
Analysis

4.
Evaluate
severity

5.
Submission

Behaviour
deviation

Location

Change
request

database

New change request in
status IDLE

Analysis
information

Severity class

Names of responsible
and persons to be informed

misunderstanding not
error

Exit
process

Enter Open
Item process

138

analysing the error. The steps of the analysis phase are described in Table 19
and illustrated in Figure 24. The analysis phase is carried out by the analyser
(see roles in Table 17).

Table 19. Steps of the analysis phase of the error management process.

Step Action
1.

Evaluate respon-
sibility

Check if the modification request has to be submitted to
someone else
• repeat until the right person has been found

2.
Inform other

projects

Evaluate if the other projects should be informed about
the error. Send E-mail to those to be informed.

3.
Update status

Set the status of the change request to STUDY.

4.
Re-evaluate the
severity of error

Check if the severity classification defined by the author
of the change request is appropriate.

5.
Analyse the

causes

Analyse the causes of the error.

6.
Generate solution

proposals

Generate several possible proposals for eliminating the
error.

7.
Impact analysis

Analyse the impacts of the solution proposals. Analyse
the impacts on:
• documentation
• hardware components
• software components
• test data
The documents that need changing are called affected
documents.

8.
Estimate re-

sources needed

Make preliminary estimation about the working time
needed for implementing the change.

139

1.
Evaluate

responsible

2.
Inform other

projects

3.
Update
status

4.
Re-evaluate

severity

5.
Analyse
causes

Change
request

Status STUDY

Updated severity class

Assign new
if wrongly defined

6.
Generate
solutions

7.
Impact

analysis

8.
Estimate
resources
needed

Send
email

Cause analysis results

Solution proposals

Results of impact analysis

Resource estimates

Figure 24. Steps of the analysis phase of the error management process.

The goal of the analysis phase is to provide all necessary information for mak-
ing the implementation decision. The steps of the implementation decision
phase of the error management process are described in Table 20 and illustrated
in Figure 25. The person making the implementation decision is called the
evaluator (see Table 17).

140

Table 20. Steps of the implementation decision phase of the error management
process.

Step Action
1.

Decision
Decide, whether to

a. implement the change
b. ignore the change
c. postpone the change for consideration in later projects

If the erroneous software module is used by several proj-
ects, define
a. who will correct the error
b. how the corrected version will be distributed to the
projects
c. how the correction will be validated by the different
projects

2.
Update status

Update the status of the change request as follows:

Decision Set status to... Then...
a. ACCEPTED FOR

IMPLEMENTATION
go to step 3

b. IGNORED Explain why
the error was
ignored.
Exit process.

c. POSTPONED Explain why
the error was
postponed.
Define who
should exam-
ine the error.
Exit process.

3.
Set schedule

Set the deadline and schedule for implementation.

4.
Set resources

Set the resources for implementation.

141

1.
Decision

2a.
Accept
change

3.
Set schedule

4.
Set

resources

2c.
Postpone
change

Change
request

Status ACCPETED
FOR IMPLEMENTATION

Resources

2b.
Ignore
change

Positive
decision

Negative
decision

Postponing
decision

Status IGNORED,
reasons

Status POSTPONED,
why and to whom

Schedule

Figure 25. Steps of the implementation decision phase of the error management
process.

Depending on the implementation decision the change process will either con-
tinue its normal execution path, or be terminated, if the decision is not to im-
plement the change in this project. In the case of a positive implementation de-
cision, the change proceeds to the implementation phase. The resourcing and
scheduling of the implementation are defined in the implementation decision
phase. The steps of the implementation phase are described in Table 21 and
illustrated in Figure 26. The implementation phase is carried out by the author
(see Table 17).

142

Table 21. Steps of the implementation phase of the error management process.

Step Action
1.

Modify software
Correct all affected parts of the software:
documentation, test data, source code, scripts etc. When
you return the modified items to the version control
system, you must link the modified items using the
Change Notice. The principle of the Change Notice is
presented in Figure 31.

2.
Describe imple-
mentation solu-

tion

Write a description of the implementation solution used
for correcting the error.

3.
Record working

time

Record the working time used for the modification.

4.
Update status

Set the status of the change request to IMPLEMENTED.

143

1.
Modify

application

2.
Describe

implementation
solution

3.
Record

working time

4.
Update
status

Change
request

Solution description

Status IMPLEMENTED

Implementation
details

Hours used

Configuration
management

system

Modified items

Figure 26. Steps of the implementation phase of the error management process.

The last step of the error management process includes the activities aiming at
validating the correctness of the implementation and informing about the cor-
rection. The steps of the validation phase of the error management process are
described in Table 22 and illustrated in Figure 27. The validation phase is car-
ried out by the 'approver'.

144

Table 22. Steps of the validation phase of the error management process.

Step Action
1.

Validate modifi-
cation

Check the correctness of the implementation.

a) If the corrections are OK, go to step 2.
b) If problems are found, go back to the implementation
phase, and set the status of the change request to
ACCEPTED FOR IMPLEMENTATION (an input state
for the implementation phase).

2.
Check

impacts

Check that the modification made did not have any nega-
tive impacts on other parts of the application.

In the case of code changes, perform regression testing.
In the case of document changes, check the consistency
within the document and between other documents.

If tests reveal new defects... Then...
…which are impacts of the
modification and should
have been noticed in impact
analysis

…go back to the im-
plementation phase.
Set the status of the
change request to
ACCEPTED FOR
IMPLEMENTATION

…which are not impacts of
the modification

…record a new error

3.
Update the status

Set the status of the change request to OK, after the test-
ing and regression testing phases have been successfully
performed.

4.
Inform other proj-

ects

Determine if there are other projects that should be in-
formed about the correction. Inform them by E-mail.

145

Figure 27. Steps of the validation phase of the error management process.

Defect management process

Defects are received from two primary sources:

• technical reviews, where the document reviewed is a software work product
(specification, design, source code, test plans and results, etc.) and

• milestone reviews, where the document reviewed is a project management
document (project plan, final report etc.)

1.
Validate

modification

2.
Check impacts

3.
Update
status

4.
Inform other

projects

Change
request

Undesired impacts

Positive validation
results

Status OK

Problems in modification

1b.
Go back to

implementation

Status ACCEPTED FOR
IMPLEMENTATION

Completed impact
analysis results

Other
affected
projects

Email about
the change

146

The defect management process follows the process for trivial defect correction
(Figure 15). The first three phases of the generic change management process
(Figure 14) - identification, analysis and implementation decision - are per-
formed in a review session. The change request is created after the review ses-
sion and therefore the life cycle of the change request is shorter than in the case
of errors and open items. Usually all the defects recorded will be implemented,
because the implementation decision is done in a review. If the project wants to,
it can use the status “ignored” of the generic change management process to
ignore defects recorded in a review.

Defects are identified in review sessions. The participants of the review analyse
the change proposals, and decide if the change proposal is a defect and whether
it should be implemented or not. The change proposals can be presented by all
participants and they are based on the document study made before the review
session. The secretary of the review writes the minutes and records the defects
and open items raised in the review.

The initiator of the defect (see roles in Table 17) is the secretary of the review.
He records all defects identified in the review. The reviewers as a group act as
change analyser and evaluator. The steps taken in the review session itself are
presented in Table 23.

147

Table 23. Steps of the review session.

Step Action
1.

Collect the
change proposals

The participants present the change proposals they want to
propose. The proposals are based on the reviewers’ read-
ing of the reviewed documents before the review session.

2.
Analyse the

change proposals

Analyse whether the change proposals are deviations from
requirements, improvement proposals, misunderstandings
etc.

3.
Classify the

change proposals

Classify the change proposals into two classes:
a. Open items, if the proposal is not a defect but should
generate a change proposal anyhow
b. Defects

4.
Implementation

decision

Decide whether to implement the changes or not. A defect
record is created ONLY for defects which are decided to
be implemented.

For open items, the implementation decision is not done
in the review meeting, so a change document is created
for all proposed open items.

5.
Set resources

Set implementation resources and possibly deadlines.

The steps performed after the review by the secretary are presented in Table 24.

Table 24. Steps to be taken after the review session.

Step Action
6.

Write minutes
Write the minutes of the review. The status of the min-
utes is OPEN.

7.
Record defects
and open items

Record the defects identified in the review session.
The defects are recorded using the form in the Change
management tool.

The steps related to the review session are illustrated in Figure 28. These steps
cover the first three phases of the generic change management process, i.e. the
identification, analysis and implementation decision steps, since they all are
taken in the review session.

148

1.
Collect
change

proposals

2.
Analyse change

proposals

4.
Implementati
on decision

5.
Set

resources

Analysis information

Change proposals

3.
Classify change

proposals Open items Defects

Defects accepted
for implementation

Enter Open
item process

Figure 28. Identification, analysis and implementation decision steps of the
defect management process.

The implementation is usually done by the person who is responsible for the
document. If that is not the case, the implementation resources must be deter-
mined by the reviewers in the review session. The implementation steps are
described in Table 25 and illustrated in Figure 29.

149

Table 25. Implementation steps of the defect management process.

Step Action
1.

Identify affected
documents

Identify which documents are affected by the modifica-
tion.

2.
Implement

Modify all affected documents. When you enter the modi-
fied items into the version control tool, they have to be
linked with the change notice in the version control tool.
(see Figure 31)

3.
Update status

Set the status of the change request to IMPLEMENTED.

1.
Identify
affected

documents

2.
Implement

Completed implementation

Document list

3.
Update status

Configuration
management

system
 Original documents

Modified documents

Change
request

Status: IMPLEMENTED

Figure 29. Implementation steps of the defect management process.

The approver of the defect implementations is usually the chairman of the re-
view session, if not otherwise decided in the review. The steps of the validation
phase are described in Table 26.

150

Table 26. Steps of the validation phase of the defect management process.

Step Action
1.

Check
Check that the defect has been corrected and the correc-
tion is valid.

2.
Update status

Set the status of change request to OK.

After all defects initiated by the review meeting have been closed, the status of
the meeting minutes is changed to CLOSED. This can be done either automati-
cally by the change management system, or manually by the chairman of the
review session.

Open item management process

The improvement proposals, ideas, open issues, etc. are managed using the ge-
neric change management process. The problem analysis indicated that the pro-
cess for managing open items itself did not play a very crucial role for these
types of change requests. The most important issue was regarded to be that there
was a place where to collect and record open ideas and improvement proposals.
Typical sources for open items are project members, testing groups, standardi-
sation groups and end users. Open items may also be created by changing de-
fects or errors which are not deviations from requirements but improvement
proposals to open items.

Requirement-level modifications

Defining processes for requirement-level modifications was not included in the
project in which the author of this thesis was involved. The requirement-level
change management process was studied and defined using the requirements
engineering process.

Two layers of requirement changes had to be supported: a process for managing
project-level requirement changes and a process for managing product-level
requirement changes. The project-level requirement changes are changes, which

151

arise internally in the software development cycle; for example the inability to
meet the required memory size constraints or performance requirements. The
product-level requirement changes are changes to the software requirements
which are raised by an external requirement change request.

Both processes follow the main phases of the generic change management proc-
ess, with some additions. The main difference is the possibility to create sepa-
rate implementation proposals from the change request in the analysis phase
(phase two of the generic change management process) as illustrated in Figure
30. The implementation proposals describe the possible implementation solu-
tions responding to the change requirements indicated by the change request.

1.
Analyse
change
request

2.
Create

implementation
proposals

Implementation
proposals

Analysis results

3.
Analyse

implementation
proposals

Figure 30. Analysis steps of the requirement level change process.

The steps of the analysis phase are described in Table 27.

152

Table 27. Steps of the analysis phase of the requirement level change process.

Step Action
1.

Analyse Change
Request

Analyse the change request from the following view-
points:
1. Check that the right person has the responsibility.
2. Check if you agree with the severity classification

defined.
3. Analyse what the possible benefits, problems and

risks associated to this change request are.
2.

Create Improve-
ment Proposals

Create one implementation proposal for each influ-
enced technology sector. Forward the implementation
proposals to the persons responsible for the technology
sectors.

3.
Analyse Im-

provement Pro-
posals

The responsible persons should analyse the following
aspects of the improvement proposals:
• How should this change request be implemented?
• What are the influences of the change request to

project schedules?
• What are the influences to interfaces?
• What are the affected documents?
• What is the estimated work amount related to the

change?
• What was the actual work amount used for analys-

ing the improvement proposal?
Make a recommendation whether this particular im-
plementation proposal should be accepted, accepted
with modifications or rejected.

The project-level requirement modifications also follow the generic change
management process, with special features on decision-making and communi-
cation between technology groups. The decision-making process is described in
Table 28.

153

Table 28. Steps of the implementation decision phase of the requirement level
change process, when the need for the requirement change comes from within
the project.

Step Action
1.

Initial internal
decision

Decide if the requirement change is needed.

2.
Inform customer

Inform the customer how the change will affect the
customer interface, if the change has visible effects on
customer interfaces.

3.
Review customer

interface

Review the changes to the customer interface with the
customer. As a result of the review, forward the re-
quirement change to implementation.

7.9.3 Selection of tool environment

The initial goal of the project was to examine the possibilities of using the new
configuration management tool for supporting the change management process.
However, when the process analysis phase progressed, other implementation
solution options arose. The tool selection was carried out by the same group of
people who defined the change process instantiations.

The tool selection group evaluated the major benefits of using the same tool for
software configuration management and change management to provide the
easiest way of generating and managing the traceability links between the
change documents and the software items. The changes could be linked with the
software items when doing normal version control operations, such as fetching a
file version for modification. The tool also supports the definition of inbuilt
rules which force the user to establish traceability links. Use of these rules is
optional.

On the other hand, the configuration management tool was only used by the
software subprojects. Using the configuration management tool for change man-
agement would restrict the use of the tool only to the software subprojects.
Moreover, a large amount of the change requests had to be shared by several
subprojects. This could result in problems in distributing information between

154

subprojects and projects. In addition, the new configuration management tool
had not gained global acceptance in all sites of the company, and therefore there
was a risk that all the software projects would not use the same configuration
management tool. On the other hand, Lotus Notes was used by all technology
groups in the company.

Several possibilities were examined to find a suitable tool environment for im-
plementing new change management process support. The two strongest candi-
dates were the new configuration management tool and Lotus Notes. The final
choice was to implement support using the Lotus Notes system, because com-
munication support was considered to be more valuable than traceability sup-
port.

Figure 31 illustrates the flow of actions between the change management tool,
which was implemented to support the processes modelled, and the configura-
tion management tool. The change request and its life cycle is stored into the
Lotus Notes database by the change management system. The change request is
linked to the software documents managed by the configuration management
system using a Change Notice. When a change request is created, a Change
Notice is automatically generated into the configuration management tool. The
Change Notice includes a reference to the original change request. After the
change has been implemented and the affected documents are returned into the
configuration management tool, they are linked with the Change Notice. The
Change Notice includes the following information:

• A reference to the original change request.

• A list of documents affected by the change.

As soon as the affected documents have been linked with the Change Notice, the
list of affected documents is also visible in the Change Request document.

155

Change
Mgmnt Tool
(Lotus Notes) Initiator

1. Identifying
and recording

Generic part
of change request

Analyser Analysis notes

3. Analysis
and notes

Evaluator

Impl. decision
Impl. notes
Validation notes

4. Implementation
decision and notes

Author

Approver

Configuration
management

system
Change
Notice

Affected
document(s)

5. Imple-
mentation

6. Implemen-
tation notes

7. Validation 8. Validation
notes

2. Change Notice
is generated
automatically

Link

Figure 31. Integration of the change management tool and the version control
tool.

7.10 Implementation and deployment of the defined
solution

The change management tool implemented in the project contained process
support for all the change management processes described in the previous sub-
chapters. The deployment of new work processes was done simultaneously with
the introduction of the new change management tool. The actual tool imple-
mentation was done by a separate implementation project, which was controlled
by the project which defined the change management processes.

The next step after the definition of the processes was to model the data to be
managed by the change management system. The data modelling was done us-
ing a process-oriented approach: the data needed and produced by each process
phase was modelled separately. The data models were then exported into the

156

forms of the change management database. The change management system was
then able to provide the user with the data fields needed in the particular phase
the change document was in at the time. For example, the user was not re-
quested to enter information related to the validation of the modification, if the
change document was in the identification phase of its life cycle.

The communication between the individuals was supported by the change man-
agement system using two main mechanisms: the customised views to the
change documents and connection to the E-mail system. The customised views
to the change documents were defined to allow the users to browse change
documents relevant to them. For example, the user could see only the change
documents he or she was responsible for. The use of E-mail to inform people
about the change documents, their statuses and the responsibilities related to
them was modelled separately. Two basic kinds of strategies of sending E-mail
were defined: automatic and manual sending. The automatic sending sends the
E-mail to the defined persons automatically in predefined process phases. The
manual sending procedure provides the opportunity to send an E-mail in certain
predefined process phases, but waits for the user to trigger it and to define who
the E-mail should be sent to.

The implementation strategy was simple: the goal was to implement the first
version of the system as soon as possible for trial use. For that reason, the re-
quirements of the system were elicited from a rather restricted group, i.e. the
software development projects in two sites of the globally distributed company.
The time used from the change management problem analysis to the release of
the first version of the system was about half an year. The date of the first re-
lease was December 21, 1995. Seven revisions were done to the first release
(last revision was made on April 25, 1996). All the revisions consisted of cor-
rections to the implementation details or additions of input data fields.

The immediate advantages of the new solution were evaluated by the group
involved in the definition of the new solution. These observations are based on
the experiences from the pilot phase. The following advantages were identified:

• Support for measurement and analysis activities. The new solution included
standard analysis and summary reports, and their use was enforced in the
projects. The standard measurement introduced two clear advantages: (1)

157

projects could use the change information for estimation purposes, and
comparison of measures across projects became possible, and (2) the data
entered by the users was taken into use effectively, which increased the reli-
ability of the data since people became motivated into entering it.

• Simple user interface. The user interface of the old error reporting tool was
difficult and clumsy to use even for software engineers, and almost impos-
sible for other people, such as marketing personnel or hardware designers.
The graphical user interface of the new system was a huge improvement,
which resulted in a good coverage of the change requests, since it was very
simple to enter them into the system.

• Support for internal communication in the project and external communica-
tion between projects. Support for communication was provided by the sys-
tem. In addition,the simple user interface improved information sharing,
since the information was easily available and in a format which was easy to
read, comprehend and utilise.

The system was originally designed for one product development site in a geo-
graphically distributed company, but the new change management system was
quickly taken into use by other sites, too. This was of course enforced by the
fact that the product projects were geographically distributed, and using a com-
mon tool for change management within a project is almost a necessity. Addi-
tionally, although the system was clearly aimed for the software development
projects, it was also adopted by other technology groups, such as groups de-
signing mechanic parts, marketing, etc.

The second version of the system was released on August 23, 1996. The main
difference to the first version was the added support for change management
related documentation. For example, the feature for creating and distributing
review agendas was added to the system, as well as support for test reporting.
Some reporting features were improved as well. The defined change manage-
ment processes remained the same, only some related documentation processes
were added to the system. By adding support to the documentation processes the
integration of the change processes to the related documentation processes was
improved. For example, when the test documentation was managed through the
change management tool, the error documents recorded using the change man-

158

agement tool could be linked directly with the testing documentation. The last
revision of the second system release was made on August 15, 1997.

The third version of the system was released in September 1997. The major
difference in the structure of the system was to separate the error management
part with related documentation support (test planning and reporting) into a
separate system with its own user interface and database. This was done mainly
because of the huge amounts of data stored into the error database. Modification
needs also arose, for the following reasons:

• Redesigning the notification mail sending procedures, such as redefining
when and how to send notification mails, and integration with other mail
systems (initially only the internal Lotus Notes E-mail system was sup-
ported),

• Validation of input values was still a problem. For example, more auto-
mated input value checking was needed, and more default values and selec-
tion lists for input fields were requested,

• Compatibility with the Lotus Notes application development guidebook.
Since Lotus Notes was used widely in the company, a guidebook defining a
common look for all Lotus Notes applications was established. Since the
change management system was designed before the guidebook, its design
did not follow the guidelines defined in the Lotus Notes application devel-
opment guidebook.

• New views into the database and new data fields for the change documents
were needed.

The next release of the system is now (first half of year 1999) in the specifica-
tion phase. The fourth release will include some additions to the current proc-
esses, and will also further expand the scope of the system. For example, the
open item management process will be enhanced by expanding the risk man-
agement component. The system will provide better support for evaluating and
managing risks related to open items before, during and after their implementa-
tion. Also, support for the customer feedback process will be included in the

159

system. This process is not exactly a software change process, but it will gener-
ate inputs to software change management processes.

Estimating the amount of users and projects using the defined change manage-
ment system is very difficult, because the deployment has not been controlled
and the projects have adopted the new system voluntarily. According to the
person responsible for the tool in the organisation, several hundreds of projects
have used the defined change management system during the period from 1996
to 1998. Currently (beginning of 1999) more than 150 projects or other similar
entities have an active change management database in the change management
system.2 The person responsible for the change management tool assumes that
all software projects use the defined change management system, and in addi-
tion several other technology groups have also adopted it.

7.11 Summary

This chapter presented the instantiation of the presented change management
process model and the generic change management processes in one case study.
Firstly, the needs and requirements related to the change management were de-
fined by describing the initial processes and their problems and strengths. The
change management problem classification was used in presenting the identified
problems. Secondly, the new target state for the selected change management
processes, which aim at responding to the problems identified in the initial
status, was described. The target state was derived by tailoring the generic
change management process descriptions characterised by the proposed process
model to the special needs and requirements identified in the case study.
Thirdly, the selected implementation solution was described and the history of
the deployment of the system was briefly summarised.

2 Exact number of projects cannot be published due to confidentiality reasons.

160

8 Evaluation of results

8.1 Introduction

This chapter examines the experiences of using the change management prob-
lem classification and process model in implementing a new change manage-
ment system for the organisation described in chapter 7. The experiences are
evaluated from three viewpoints: (1) problem analysis, (2) process definition,
and (3) implementation. Experiences from the problem analysis made in the
case organisation are used to evaluate the change management problem classifi-
cation proposed by the thesis. The proposed process model is evaluated by
summarising the experiences of defining the change management processes in
the case study using the process model. Finally, the experiences from the im-
plementation and deployment of the new change management system are sum-
marised.

8.2 Evaluation of the change management problem
classification

The proposed problem classification was found to be suitable for identifying the
problem areas in change management and the requirements for the improvement
of change management practices in the case study presented in chapter 7.

The effectiveness problems found were related to the effectiveness of the review
practices. Because of the ineffectiveness of the reviews, the change needs were
not identified as early as they could be, and the later they were recognised and
managed, the more expensive and difficult the implementation was. The effec-
tiveness problems required actions mostly in the procedures generating change
requests, not directly in the change management procedures.

Communication problems were found frequently in the case study. Supporting
both internal communication in the subproject, and communication between the
subprojects and between the product projects was clearly a topic which had to
be considered and supported at the level of change management processes and
tools. Also, the informal sources of change requests were considered to cause

161

problems in projects. Improvements in communication problems could often be
achieved directly by improving change management practices, for example by
establishing procedures for managing informal sources of change requests or by
better definition of roles and responsibilities in modification tasks.

The analysis and location problems found in the case study dealt with the diffi-
culty of classifying multifaceted types of changes using the same classification,
and with predicting the type of the change in the early phases of the change
management process.

The problems concerning traceability issues in the case study were mostly re-
lated to the absence of a traceability link between the change and the software
items modified because of the change. Also the lack of traceability support be-
tween the different software abstraction levels, e.g. the specification and design
documents, resulted in problems in keeping them consistent with each other.
The technical hindrance to establishing better traceability support was the in-
compatibility of the software configuration management environment and the
change management system.

Actual decision-making problems were not found in the case organisation. Some
requirements related to decision-making could be identified in the communica-
tion requirements, such as the problem of providing enough analysis informa-
tion in the right format for the decision makers. Since decision-making and
communication problems tend to be very tightly related with each other, these
problem classes could be combined into one problem class.

The tool problems in the case study were mostly related to unpractical features
in the current change management tools, or to the lack of support for tasks
which could be easily automated but currently require lots of manual work. The
tool problems are often related to other problem classes, for example when a
problem with a tool makes communication or decision-making difficult.

Chapter 8.4 evaluates in detail how these problem areas were supported by the
new, improved change management practices.

162

8.3 Evaluation of the change management process
model

The thesis proposes a model for change management processes, which adapts to
different types of changes. The model has been derived from the models pre-
sented in the literature, and it has been complemented with the experiences from
the case studies. The value of the proposed model has been proven in this thesis
by presenting a practical implementation of the model in a real world software
development environment. The experiences of applying the model were good,
and the defined change management solutions are still in active use.

Unlike most other change process models, the model proposed here explicitly
supports different types of changes. This makes change management more
flexible, since the variation of changes with respect to the amount of work
needed, criticality of the modification and schedule varies a lot between
changes.

The proposed model also identifies several change levels. The most distinct
levels identified in the case organisations are product and project change levels.
Supporting both product and project level change processes is particularly im-
portant when the product development is implemented in iterative development
cycles, in which a new project is based on the baseline of an old product and a
set of modification requests to be implemented in a new product. According to
the experience of the writer of this thesis, this form of product development is
nowadays very common in the development of embedded systems.

The change management process model and the related process descriptions
proposed in the thesis are very generic in nature. The specific features of em-
bedded software development mostly affect the requirements for the level of
supporting the technical modification work (for example, regression testing).
The process-related issues proved to be rather generic. For example, although
communication support between subprojects is especially important in the de-
velopment of embedded software, it can also be recognised in developing other
types of software systems, as well.

As can be seen in the version history of the change management system briefly
summarised in chapter 7.10, no change pressures to the original process defini-

163

tions emerged. The change needs were mostly related to the implementation
details and to expanding the support provided by the system to the documenta-
tion processes closely interacting with the change management processes. The
originally defined change management process types proved to fit the needs of
the organisation extremely well.

Interviews of the end users were conducted to identify how the instantiation of
the process model presented in chapter 7 succeeded in solving the specific
change management problems identified in the case study (the problems are
listed in chapter 7.7) Table 29 summarises the interview results. The first col-
umn lists the problems, and the second column evaluates the effect of the in-
stantiation on the change management problems. The effect is evaluated using
the following scale:

• Worsened. This grade was used if the interviewee thought the problem had
become worse because of the new change management solution.

• No effect. This grade was used if the solution had no effect on the stated
problem.

• Improvement. If the interviewee thought that there had been an improve-
ment in the problem in question, this grade was used.

164

Table 29. Effects of the new implementation on the problems of the case organi-
sation.

Problem Effect
1. Ineffectiveness of the technical reviews No effect
2. Lack of training in change management prac-

tices
Improvement

3. Informal sources of change request Improvement
4. Lack of sharing of change requests between

projects and subprojects
Improvement

5. Impracticality of using the severity classifi-
cation for UI projects

Improvement

6. Modification requests in wrong lists Improvement
7. Postponed change requests were lost No effect
8. No feedback loop Improvement
9. Poor traceability between changes and soft-

ware items
Improvement

10. No link between change record and modified
items

No effect

11. Inconsistencies between abstraction levels No effect
12. No support for the generation of a change

history list for the product review authorities
N/A

13. Wrong input values Improvement
14. Input fields which are not used anywhere No effect

The first problem, ineffectiveness of technical reviews, was considered to be
unaffected by the new change management solution. The interviewees thought
that the problem was dependent on the individuals working in the project, and
could not be dealt with using process or tool solutions. The ineffectiveness was
considered to be mostly caused by the lack of time to prepare oneself to a re-
view session because of other work duties.

There was significant improvement in the second problem, lack of training
courses and training material. In the opinion of the interviewees there were
plenty of training courses and training material available on the change man-

165

agement processes and tools. The problem was more how to motivate people to
attend the training, when they are under the pressure of tight project schedules,
and how the people can find the useful manuals and training material from
among the vast amount of material provided.

The interviewees identified a very strong improvement in the third problem,
informal change request sources. They thought that the new processes and tools
were used extensively to report change requests which previously had been
processed through informal channels. This was considered to be the most posi-
tive aspect of the introduction of the new change management solution.

Some improvement was identified in the fourth problem, lack of sharing change
requests between projects, but the subject was still considered to be problem-
atic. However, the interviewees thought that this problem cannot be completely
solved by any means, since analysing the effects of a change is inherently diffi-
cult in real life because of the complexity of the systems.

The way of managing severity classifications in the new system was considered
to be practical and the interviewees could not identify new problems in using it,
so problem 5 has been solved by the new solution. The interviewees thought
that assigning a severity value to a change is always person-dependent and
sometimes not clear, but the current support for managing severity classifica-
tions was considered to be feasible.

Improvements were identified in the management and processing of the changes
which are recorded in the wrong list. However, the interviewees said that the
change requests were still recorded in the wrong lists, and the improvements
have mostly been in the processing of those changes. This was considered to be
sufficient enough, since by the time the change request is created its root causes
cannot yet be well known, and it is natural that it can be on a wrong list until
deeper analysis has been done.

The postponed change requests were still often lost according to the interview-
ees. The new solution tried to tackle the problem by asking the user to define
which project should take care of the postponed change request instead of just
postponing it, as was done in the old solution. However, the interviewees
thought that this procedure was not effective, since at the time the change re-

166

quest is postponed the people doing it do not know which future projects will be
able to deal with it.

The feedback loop from the change data to new projects was slightly improved
according to the interviews. The types of change requests were analysed and this
information was used in planning tasks in other projects.

Traceability between changes and software items was considered to have been
slightly improved. The traceability still relies on manual recordings made by the
software designers and is still prone to human error. However, the recordings
are made more often and with greater care than they were done before.

The automated linking facility (see the concept of change notice on page 155)
between the configuration management and change management tools was not
used by the projects in which the interviewed people were involved.

Inconsistencies between abstraction levels were still frequent in the projects,
and no effect was identified by the interviewees. The higher level documenta-
tion was usually left unchanged after its acceptance, and the changes were done
only to the lower level documentation.

Problem 12 was not relevant to the interviewees, since the change history lists
were not required anymore.

Pproblem 13, wrong input values, was drastically improved according to the
interviewees. The new tool support provided clear guidance and automatic
checking of the input values, both advicing the user in entering the right infor-
mation and preventing the user from entering false values.

The forms used for recording change requests and change related information
were still considered to include fields which were not used anywhere. The inter-
viewees assumed that this was usually caused by the fact that the same forms
were used by different types of projects, and some fields were project-specific.

167

8.4 Experiences from the implementation and
deployment

The deployment of the new system was very successful, when measured by the
great speed that the projects took it in use, and how widely the system was
adopted in the company. The software projects very quickly adopted the new
system with the accompanying process guidelines, templates and tool support.
The new change management practices with the support for the new change
management system were adopted not only by the software projects on the site
where the system was implemented, but also by other development sites of the
company and other technology groups besides the software projects. Also, the
system was taken into use not only by development projects, but also by line
organisations and other similar instances, for supporting meetings, etc.

The following table (Table 30) summarises how the new change management
solution responds to the problems identified in the initial state of the change
management.

168

Table 30. Evaluation of the solution against the problem areas.

Problem Evaluation of the solution
Effectiveness • Better distribution of changes across

projects
• Improved analysis functionalities for

managing duplicates, misunderstand-
ings, etc.

Communication • Improved communication across proj-
ects and technology groups

• Better visibility of change information
Analysis and location • Support for analysis and location

through enhanced communication
• Enhanced support for documentation

Traceability • Automated change history for change
documents

• Support for recording traceability links
between the change document and af-
fected software items

Decision making • Better documentation of changes
• Better communication of change in-

formation
Tool-related problems • Better user interface

• Unified tool environment

The new change management solution has had an impact on the effectiveness of
the change processes with respect to two main issues. Firstly, the channels for
distributing change information across projects have been improved, enabling
the projects to react earlier to the changes initiated by other projects. Secondly,
the improved analysis functionalities have improved change request manage-
ment, i.e. the analysis and removal of duplicate change requests, change re-
quests caused by misunderstandings, etc.

The fact that the new change management solution has been taken in use not
only by the software groups, but also by other technology groups, has resulted in

169

a big improvement in the communication of changes between technology
groups. The communication between software projects has been also improved
by the enhanced change information distribution mechanisms. Although from
the project viewpoint the communication within the software project group did
not change, the improved tool support provided better visibility of the change
information for individual software engineers. The communication from the
project level to the project management level has been improved by the better
reporting support. Common report templates have been defined to report
change-related information to the project management.

The analysis and location problems have mostly been affected through improved
communication, traceability and documentation. The improved communication
has enhanced the change request analysis and location of the product parts to be
modified, especially when several projects or technology groups are involved in
the change activity. Also, the documentation of the results of the analysis phase
has been improved, including better support for recording traceability links be-
tween the change document and the software items affected by the change, and
for the recording of the implementation proposals.

The traceability of individual changes has been improved by the tool environ-
ment, which automatically provided a change history for individual change re-
quests. Also, the tracking activities have been supported by the customised
views for monitoring change requests. The tool environment has also provided
support for recording traceability links between the change document and the
software items affected by the change.

The decision-making problems were not found to play a critical role in the case
organisation in the initial problem analysis phase. Therefore, no special effort
was directed to support the decision-making process. The positive effects of the
new solution to the decision-making have been achieved through the better
documentation of changes and analysis information, and better communication
of change-related information.

The two main tool-related improvements have been the improved user interface
of the change management tool (compared with the former set of change man-
agement tools used) and the unified tool environment. The improved user inter-
face includes several components. The graphical user interface provides support

170

for the user in entering the change information, e.g. selection lists, context sen-
sitive help, etc. It also supports the user in browsing changes and finding rele-
vant information from the change database. The database solution has provided
better means for browsing the change data and making common and customised
reports from the change data, when compared to the old text editor or word
processor based documents the projects previously used for storing change in-
formation. The unified tool environment has provided significant improvements
mainly relating to the communication aspect, when compared to the earlier
situation, where the tools and processes used by different projects and technol-
ogy groups were totally different and separate. The unified tool environment has
also directed the projects and technology groups to use common processes for
managing changes.

The implementation is evaluated here only on a qualitative basis, since a quan-
titative evaluation was not feasible for the following reasons:

• Quantitative comparison of the situation before the new system and after its
deployment proved to be difficult, because reliable and meaningful meas-
urement data was impossible to derive from the old change management
system. The old system was text-based, which resulted in a great variety of
input values. This resulted in difficulties in deriving summaries from the
change data. For example, the effort used for analysing the change request
was expressed in hours for some changes, months for others, and qualita-
tively, e.g. 'only a short time', for others.

• Due toconfidentiality reasons, the company did not allow any product-
related information (exact numbers of projects, change requests or informa-
tion about product components) to be presented in this thesis.

Perhaps the best indication that the new system provides improvements over the
old change management practices is the fact that the system was so rapidly and
widely adopted in the company. The development projects were completely free
to choose any environment for change management, including the possibility to
continue using the old systems. Nevertheless, the software projects unanimously
chose the new system, and it was soon adopted by other projects and organisa-
tional entities, as well.

171

Due to the rapid propagation of the system, the support and maintenance of the
system itself became demanding. The original requirements of the system were
derived from the software projects in two sites of the company, and suddenly
the system was used worldwide by a wide variety of technology groups and
organisational entities. Requirements arose for tailoring the process guidelines,
templates and tool-supported forms to the special needs of the different types of
users. The support and maintenance of the change management system itself
addressed the change management problems.

8.5 Summary

This chapter evaluated and summarised the experiences from the case study.
The presented process model provided a solid basis for defining the change
management support in the organisation. It provided a good coverage of the
software change processes, and provided a clear classification of the different
types of change processes. However, even if the process model was based on an
extensive study of actual change processes related to the development of em-
bedded software, and the requirements and problems especially in that domain
were evaluated, the change management process model and the related process
descriptions are very generic in nature. The special features and problems in the
development of embedded software had the biggest impact on the technical
level of the modification, and they also put more emphasis on certain features
on the process support level.

172

9 Conclusions

9.1 Answers to research questions

The thesis aimed at increasing our knowledge about software change manage-
ment. The research questions were the following:

• What are the essential change management problems and improvement re-
quirements found in the development of embedded software?

• What kind of management process would aid in responding to these require-
ments?

• How can the proposed processes be implemented and enacted in practice?

The first part of the thesis presented a summary of the literature and change
management related research. Change management has traditionally been stud-
ied in the context of software maintenance research. Recently, as evolutive
software processes have become more popular, it has been studied as a compo-
nent of iterative development cycles and in connection with software configura-
tion management. This thesis provides a summary of change management re-
lated research.

The literature-based theoretical viewpoint to software change management was
complemented with three background case studies, which aimed at presenting
insights into state-of-the-practice software change management. The thesis pro-
vided a summary of the three case studies from the viewpoint of their special
characteristics in software management.

These two sources, an analysis of software change management related research
and three background case studies, provided the answers to the first research
question. By combining these two research methods, both the theoretical and
practical viewpoints could be covered. As a result, a classification of typical
problems and improvement requirements for change management were defined.
The problems were examined especially from the viewpoint of the development

173

of embedded software by relating the problems to the special features of the
development of embedded software.

The second research question was answered by presenting a model of software
change management processes and related generic process descriptions in
chapter 5.

The process model and the related generic process descriptions were used in
designing and implementing new change management practices in one case
organisation. The implementation was presented in the chapter 7. The case im-
plementation part of the thesis provides answers to research question three.

The results of the design science research can be assessed against the criteria of
value. (March & Smith 1995) The models constructed in this thesis were pri-
marily assessed by examining if they work and are used in the company exam-
ined in the case study. Some qualitative indications of whether the new system
introduced improvements over the old change management practices were also
provided.

9.2 Generalisation of the results

The title of the thesis defines the scope of the present study to be development
of embedded software. The change management related literature was studied in
a wider context, i.e. not limiting it only to change management in the context of
embedded software. The case studies were performed in organisations develop-
ing products with embedded software. The thesis provides a characterisation of
software change management from both theoretical and practical viewpoints,
and the requirement classification part also examines the special problems and
requirements in the change management of embedded software. The process
model and generic process descriptions presented have been derived and imple-
mented in the domain of embedded software, thus no analysis of their suitability
or unsuitability in other domains was provided. This thesis aims at describing
the model and its validation and implementation examples in the degree, which
allows the reader to judge whether the context of the model is sufficiently
analogous to the case it is intended to apply to, and to what extent the results are

174

relevant. Research can be generalised according to the following forms of gen-
eralizability (Kvale 1996):

• Naturalistic generalisation, which rests on personal experience, which devel-
ops as the person gets experienced in the subject area. Naturalistic generali-
sation derives from tacit knowledge of how things are.

• Statistical generalisation, which is formal and explicit, and always bases on
subjects selected at random from a population. Random selection of inter-
viewees and quantified interview results allow statistical generalisation of
the results.

• Analytical generalisation, which involves judgement about the generalisation
based on an analysis of the similarities and differences of the two situations.

The generalisations made in this thesis are based on naturalistic generalisation
based on the theoretical knowledge and empirical experience of the author on
change management, and on the intensive co-operation with the case organisa-
tions in several improvement projects dealing with change management. In the
author’s view the change management process model and the related generic
process descriptions are generic enough to be used in other domains.

9.3 Future research

This thesis has presented an analysis of change management practices in four
organisations, but implemented a new change management solution for only one
of the organisations studied. The organisation in which the new change man-
agement solution has been developed is a large company. Further studies are
needed to examine how a formalised generic change management process can
be tailored to meet the needs of a particular organisation, to avoid unnecessary
bureaucracy in different types of development organisations.

The generic change process and its instantiations generated in this study are an
example of a waterfall-type process, where the main vehicle for managing
changes within the process flow is the iteration between the process phases.
Some of the changes, such as straightforward error situations, can be effectively

175

processed using this type of process model. However, there are change situa-
tions which do not naturally follow the waterfall-type process model. For exam-
ple, a vague improvement proposal may be more effectively managed by using a
change process which makes more use of an iterative approach to searching the
causes for the change and generating solution proposals.

The case studies presented in this thesis used interviews as the main vehicle for
studying the work practices in the organisations studied. The experiences indi-
cate that advanced methods are needed to understand the actual work flows and
practices in software development and maintenance. The interviews proved to
be well suited to finding out the problems and improvement requirements for the
processes, but eliciting process and workflow information using the interview-
ing method proved to be problematic.

The results were evaluated using qualitative research methods. Making a reli-
able quantitative evaluation proved to be difficult, if not impossible. In future
research dealing with similar kinds of process improvement issues, the quantita-
tive evaluation of the improvement results should be planned more carefully
from the very beginning of the research.

One trend in software development is towards building systems using reusable
software components. Therefore, managing software changes in environments
where the software modules are shared by several products will probably gain
importance in the future. More research is needed in exploring the requirements
for change management in reuse-based software development and in construct-
ing change management environments to support this type of software projects.

176

10 Epilogue
The software engineering community aims at providing effective methods and
tools for solving problems and improving software development work in prac-
tice. In order to do that, it is necessary to learn more about the software devel-
opment work and what the actual problems are. The four case studies summa-
rised in this thesis provide an insight into the requirements of change manage-
ment processes and the problems in practical software development.

One of the case studies presented in this thesis was continued to include the
definition, implementation and deployment of the new, improved process sup-
port for the selected process area. The presented case study provides an example
of how to proceed in defining and introducing new solutions for software devel-
opment work. The evaluation of the success of the new process environment
turned out to be problematic, since the effects of the process changes on the
performance of the software development project are difficult to prove. The
comparison of the situation before and after the deployment of the new proc-
esses was troublesome. The data available from the initial situation was not
statistically reliable or valid, partly because of the informality of the change
management processes, and partly because of problems and inconsistencies in
tool support. In addition, the vast amount of different variables affecting the
quality and performance of the software development work makes it extremely
difficult to separate the effects of improvement actions from other affecting
factors. Nevertheless, a qualitative evaluation of the work could be carried out
by discussing with the people involved in the implementation of the new change
management system and with the end users of the system.

The thesis presented a snapshot of the problems and characteristics of software
change processes in four organisations developing embedded software. It de-
rived a descriptive classification of the different types of problems faced in
change management, and a generic model of the change processes identified in
the organisations. The model provided unique flexibility in adapting the proc-
esses with respect to
• different types of changes, and
• different levels of change processes.

The model does not restrict itself to any specific phase of the software life cycle,
but can be used within all software development and maintenance models.

177

References
Abbattista, F., Lanubile, F., Mastelloni, G. & Visaggio, G. 1994. An experiment
on the effect of design recording on impact analysis. Proceedings of Interna-
tional Conference on Software Maintenance. Pp. 253 – 259.

Ackoff, R. 1967. Management misinformation systems. Management Science.
(Vol. 14, No. 4). Pp. 147 – 156.

AMES Consortium. 1993. AMES technical annex, Version 1.0. ESPRIT Project
8156.

Arnold, R. 1993. Software impact analysis. Tutorial Notes, IEEE Conference on
Software Maintenance. Montreal, Canada.

Arnold, R. & Shawn, A. 1996. Software change impact analysis. IEEE Com-
puter Society Press. 392 p. ISBN 0-8186-7384-2.

Bandinelli, S., Fugetta, A. & Ghezzi, C. 1995. Software process model evolution
in the SPADE environment. IEEE Transactions on Software Engineering. Pp.
1128 – 1144. (no 12).

Barros, S., Bodhuin, T, Escudie, A, Queille, J. & Voidrot, J. 1995. Supporting
impact analysis: a semi automated technique and associated tool. IEEE Soft-
ware. IEEE. Pp. 42 – 51.

Barton Cunningham, J. 1997. Case study principles for different types of cases.
Quality & Quantity. Kluwer Academic Publishers. Pp. 401 – 423.

Benington, H. 1956. Production of Large Computer Programs. Proceedings of
the ONR Symposium on Advanced Program Methods for Digital Computers.
Pp. 15 – 27.

Bennet, K. 1993. An overview of maintenance and reverse engineering. Chapter
2. In: Henk van Zuylen (ed.) The REDO Compendium: Reverse Engineering for
Software Maintenance. John Wiley & Sons. Pp. 13 – 34.

178

Bennet, K. 1996. Software evolution: past, present and future. Information and
software technology. Elsevier Science B.V. Pp. 673 – 680.

Bergey, J., Clements, P, Cohen, S., Donohoe, P., Jones, L., Krut, B., Northrop,
L., Tilley, S., Smith, D. & Withey, J. 1998. DoD product line practice workshop
report. SEI. 59 p. (CMU/SEI-98-TR-007)

Berns, G. 1984. Assessing software maintainability. Communications of ACM.
ACM. (Vol. 27, no 1.) Pp. 14 – 23.

Bersoff, E. & Davis, A. 1991. Impacts of life cycle models on software configu-
ration management Communications of the ACM. (Vol. 34. No. 8) Pp. 104 –
118.

Bjerknes, G., Bratteteig, T. & Espeseth, T. 1991. Evolution of finished computer
systems. The dilemma of enhancement. Scandinavian journal of information
systems. (Vol. 3) Pp. 25 – 45.

Boehm, B. 1976. Software engineering. IEEE Transactions on Computers. (Vol.
C-25, No. 12) Pp. 1226 – 1241.

Boehm, B. 1988. A spiral model of software development and enhancement.
Computer. (Vol. 21.) Pp. 61 – 72. ISSN 0018-9162

Boldyreff, C., Burd, E. & Hather, R. 1994. An evaluation of the state of the art
for application management. Proceedings of the International Conference on
Software Maintenance. IEEE Computer Press. Pp. 161 – 169.

Briand, L., Basili, V., Kim, Y. & Squier, D. 1994. A change analysis process to
characterize software maintenance projects. Proceedings of the International
Conference on Software Maintenance. IEEE. Pp. 38 – 49.

Brown, A. 1993. Specifications and reverse-engineering. Journal of Software
Maintenance and Research. John Wiley & Sons. (Vol. 5). Pp. 147 – 153.

179

Brown, A., Christie, A. & Dart, S. 1995. An examination of software mainte-
nance practices in a U.S. government organization. Software maintenance: Re-
search and practice. John Wiley & Sons. (Vol. 7). Pp. 223 – 238.

Canning, R. 1972. The maintenance iceberg. EDP Analyzer. (Vol. 10, no 10.)
Pp. 1 – 4. ISSN 0012-7523

Capretz, M. & Munro, M. 1994. Software configuration management issues in
the maintenance of existing systems. Software maintenance: Research and prac-
tice. John Wiley & Sons. (Vol. 6). Pp. 1 – 14.

Case material. Internal documentation of the organisation examined in the case
study. Exact reference to a document cannot be made due to confidentiality
reasons.

Chapin, N. 1993. Behind and ahead – A decade’s perspective. Proceedings of
the conference on software maintenance. IEEE. Pp. 411 – 412.

Chen, S., Heisler, K., Tsai, W., Chen, X. & Leung, E. 1990. A model for assem-
bly program maintenance. Software maintenance: Research and practice. John
Wiley & Sons. (Vol. 2). Pp. 3 – 32.

Chikofsky, E. & Cross, J. 1990. Reverse engineering and design recovery: A
taxonomy. IEEE Software. (Vol. 7, No 1). Pp. 13 – 17.

Cutillo, F., Lanubile, F. & Visaggio, G. 1996. Managing a software system and
keeping it internally consistent during its evolution. Proceedings of the 8th In-
ternational Conference on Software Engineering and Knowledge Engineering.
KSI Publications. ISBN 0-9641699-3-2

Dart, S. 1991. Concepts in configuration management systems. Proceedings of
the 3rd International Workshop on Software Configuration Management. Balti-
more, Maryland: ACM Press. Pp. 1 – 18.

Edelstein, D. & Mamone, S. 1992. A standard for software maintenance, A
framework for managing and executing software maintenance activities. Com-
puter. Pp. 82 – 83. (June)

180

Eisenhardt, K. 1989. Building theories from case study research. Academy of
Management Review. (Vol 14, No 4). Pp. 532 – 550.

ESA. 1991. PSS-05-0 issue 2. ESA Software Engineering Standards, Issue 2.
European Space Agency. 130 p.

Forte, G. 1993. Software configuration management. CASE outlook. (Vol. 7.)
ISBN 0895-2108

van Genuchten, M., Brethouwer, G., van den Boomen, T. & Heemstra, F. 1992.
Empirical study of software maintenance. Information and Software Technol-
ogy. Butteworth-Heineman Ltd. (Vol. 34, No. 8). Pp. 507 – 512.

Glaser, B. & Straus, A. 1967. The discovery of grounded theory: Strategies for
qualitative research. New York: Aldine Publishing Company.

Goguen, J. & Linde, C. 1997. Techniques for requirements elicitation. In:
Thayer, R. & Dorfman, M. Software requirements engineering. 2nd ed. Los
Alamitos, USA: IEEE Computer Sociaty Press. 483 p. ISBN 0-8186-7738-4

Gresse, C., Hoisl, B. & Würst, J. 1995. A process model for GQM-based meas-
urement. Software-Technologie-Transfer-Initiative Kaiserslautern. 229 p.

Hather, R., Burd, E. & Boldyreff, C. 1995. A quality assessment method for
application management. Proceedings of Software Quality Management `95. Pp.
299 – 310.

Harjani, D.-R. & Queille, J.-P. 1992. A process model for the maintenance of
large space systems software. Proceedings of Conference on Software Mainte-
nance. Los Alamitos: IEEE Computer press. Pp. 127 – 136. ISBN 0-8186-2980-
0

Horn, R. 1992. Participant's manual for developing procedures, policies &
documentation. Massachusetts: Information Mapping, Inc. ISBN 0-912864-05-2

Humphrey, W. 1989. Managing the software process. Addison Wesley Pub-
lishing Company, Inc. 494 p. ISBN 0-201-18095-2

181

IEEE 828. 1990. IEEE standard for software configuration management plans
(ANSI). IEEE. 16 p.

IEEE 1993. IEEE Std 1219. IEEE standard for software maintenance. IEEE
Standards Collection. IEEE. 39 p. ISBN 1-552433-442-X

Ince, D. 1994. Introduction to software quality assurance and its implementa-
tion. McGraw-Hill. 202 p. ISBN 0-07-707924-8

Isomursu, P. 1995. A software engineering approach to the development of
fuzzy control systems. Espoo: VTT. 79 p. + app. 55 p. (VTT Publications 230)
ISBN 951-38-4768-3

Jones, C. 1989. Software enhancement modelling. Software maintenance: Re-
search and Practice. John Wiley & Sons. (Vol. 1). Pp. 91 – 100.

Jones, C. 1996. Strategies for managing requirements creep. Computer. (June
1996) Pp. 92 – 94.

Karjalainen, J., Mäkäräinen. M., Komi-Sirviö, S. & Seppänen, V. 1996. Practi-
cal process improvement for embedded real-time software. Quality Engineering.
(Vol. 8, No. 4.) Pp. 565 – 573.

Kellner, M. 1993. Ten years of software maintenance: progress or promises?
Proceedings of the international conference on software maintenance. IEEE. Pp.
406 – 408.

Ketabchi, M. & Sadeghi, K. 1996. Applying object technology to software
analysis and maintenance system development. Journal of Systems and Soft-
ware. Elsevier Science. (Vol. 32). Pp. 41 – 56.

Kvale, S. 1996. Interviews: An introduction to qualitative research interviewing.
SAGE Publications. 326 p. ISBN 0-8039-5820-X

182

Lam, W., Loomes, M. & Shankararaman, V. 1999. Managing requirements
change using metrics and action planning. Proceedings of the Third European
Conference on Software Maintenance and Reengineering. IEEE. Pp. 122 – 128.
ISBN 0-7695-0090-0

Lano, K. & Haughton, H. 1993. Reverse engineering and software maintenance:
A practical approach. London: McGraw Hill. 251 p. ISBN 0-07-707897-7

Layzell, P. & Macaulay, L. 1994. An investigation into software maintenance -
perception and practices. Journal of Software Maintenance: Research and Prac-
tice. John Wiley & Sons. (Vol. 6.) Pp. 105 – 120.

Lehman, M. 1980. Programs, lifecycles and laws of software evolution. Pro-
ceedings of IEEE. IEEE. (Vol. 68, No. 9.) ISSN 0018-9219

Lehman, M. 1998. Software’s future: Managing evolution. IEEE Software.
IEEE. Pp. 40 – 44. (Jan-Feb)

Lientz, B. & Swanson, B. 1980. Software maintenance management. A study of
the maintenance of computer application software in 487 data processing or-
ganizations. Addison Wesley. 213 p. ISBN 0-201-04205

March, S. & Smith, G. 1995. Design and natural science research on informa-
tion technology. Decision support systems. Elsevier Science. Pp. 251 – 266.

McClure, C. 1989. The three Rs of software automation. Prentice Hall. 304 p.
ISBN 0-13-915240-7

de Michelis, G., Dubois, E., Jarke, M. Matthes, F., Mylopoulos, J., Papazoglou,
M., Pohl, K., Schmidt, J., Woo, C. & Yu, E. 1997. Cooperative information
systems: A manifesto. In: Papazoglou, M. & Schlageter, G. Cooperative infor-
mation system: Trends and directions.

Mittag, L. 1996. Trends in hardware/software dodesign. Embedded Systems
Programming. (Vol. 9, No. 1.) Pp. 36 – 45.

183

Mäkäräinen, M. 1996. Application management requirements for embedded
software. Espoo: VTT. 99 p. (VTT Publications 286). ISBN 951-38-4944-9

Mäkäräinen, M. & Komi-Sirviö, S. 1996. Practical process improvement for
embedded real-time software. Proceeding of Fifth European Conference on
Software Quality. Irish Quality Association. Pp. 408 – 416.

Nosek, J. & Palvia, P. 1990. Software maintenance management: changes in the
last decade. Journal of Software Maintenance: Research and Practice. John
Wiley & Sons. Pp. 157 – 174. (Issue 2)

Ojennes, D. 1998. Debugging embedded system software. Embedded system
engineering. Pp. 36 – 40. (May)

Olsen, N. 1993. The software rush hour. IEEE Software Magazine. IEEE. Pp. 29
– 37. (September)

Osborne, W. & Chikofsky, E. 1990. Fitting pieces to the maintenance puzzle.
IEEE Software Magazine. IEEE. Pp. 11 – 12. (January)

Paulk, M., Weber, C., Garcia, S., Chrissis, M. & Bush, M. 1993. Key practices
of the capability maturity model, Version 1.1. SEI. 30 p. (CMU/SEI-93-TR-25)

Parnas, D. 1996. Mathematical description and specification of software. Lec-
ture notes. Invited lecture at Fraunhofer IESE, Kaiserslautern, Germany. 2nd
September 1996.

Pressman, R. 1992. Software engineering: a practitioner's approach. New York:
McGraw-Hill Inc. 793 p. (3rd ed.) ISBN 0-07-050814-3

Pressman, R. 1995. Software according to Niccolò Machiavelli. IEEE Software.
IEEE. Pp. 101 – 105. (January 1995)

Queille, J-P., Voidrot, J-F., Wilde, N. & Munro, M. 1994. The impact analysis
task in software maintenance: A model and a case study. Proceedings of Inter-
national Conference on Software Maintenance. IEEE. Pp. 234 – 242.

184

Rombach, H. 1987. A controlled experiment on the impact of software structure
on maintainability. IEEE Transactions on Software Engineering. (Vol. SE-13
No. 3.) Pp. 344 – 354.

Royce, W. 1970. Managing the development of large software systems: con-
cepts and techniques. WESCON Western Electronic Show and Convention. Los
Angeles: WESCON. Pp. A/1-1 – A/1-9

Rubager, S., Ornburn, S. & LeBlanc, J. 1990. Recognizing design decisions in
programs. IEEE Software. IEEE. Pp. 46 – 54. (January)

Schneidewind, N. 1987. The state of software maintenance. IEEE Transactions
on software engineering. IEEE. (Vol. SE-13, No. 3.) Pp. 303 – 310.

Seppänen, V., Kähkönen, A.-M., Oivo, M., Perunka, H., Pulli, P. & Isomursu, P.
1997. Strategic needs and future trends of embedded software. Embedded Sys-
tem Engineering. (Vol. 5, No. 2.). Pp. 52 – 66.

van Solingen, R. & Berghout, E. 1999. The goal/question/metric method: a
practical guide for quality improvement of software development. McGraw-Hill.
195 p. ISBN 007-709553-7.

Sommerville, I. 1982. Software Engineering - 2nd edition. Addison-Wesley
publishing company. 334 p. ISBN 0-201-14229-5

Sneed, H. 1995. Planning the reengineering of legacy systems. IEEE Software.
(Vol 12, No 1.)

Stark. G., Kern, L. & Vowell, C. 1994. A software metric set for program
maintenance management. Journal of systems and software. Elsevier Science.
(Vol. 24). Pp. 239 – 249.

Suitiala, R. 1993. Work-oriented development of interactive software tools.
Understanding the work of software maintainer and making an interactive soft-
ware tool for them. Espoo: VTT. 176 p. VTT Publications 139. ISBN 951-38-
4257-6

185

Swanson, E. 1976. The dimensions of software maintenance. Proceedings of
2nd international conference on software engineering. San Francisco, USA. Pp.
492 – 497.

Taramaa, J. 1998. Practical development of software configuration management
for embedded systems. Espoo, Finland: VTT, Technical Research Centre of
Finland. 147 p. (VTT Publications 366). ISBN 951-38-5344

Tichy, W. 1988. Tools for Software Configuration Management. Internal Work-
shop on software Version and Configuration Control. Stuttgart, Germany:
Teubner Verlag. Pp. 1 – 20.

Turski, W. 1981. Software stability. Proceedings of the 6th ACM European
regional conference on systems architecture. Pp. 107 – 116.

Ward, M. 1993. Abstracting a Specification from Code. Journal of software
maintenance: Research and Practice. John Wiley & Sons. (Vol. 5) Pp. 101 –
122.

Weiderman, N., Bergery, J., Smith, D. & Tilley, S. 1997. Approaches to Legacy
System Evolution. SEI. (CMU/SEI-97-TR-014)

Vierimaa, M., Kaikkonen, T., Oivo, M. & Moberg, M. 1998. Experiences of
practical process improvement. Embedded Systems Programming Europe. (Vol.
2, No. 13). Pp. 10 – 20.

Zahran, S. 1997. Software process improvement – practical guidelines for busi-
ness success. Addison Wesley. 447 p. ISBN 0-201-17782

Published by

Vuorimiehentie 5, P.O.Box 2000, FIN-02044 VTT, Finland
Phone internat. +358 9 4561
Fax +358 9 456 4374

Series title, number and
report code of publication

VTT Publications 416
VTT–PUBS–416

Author(s)
Mäkäräinen, Minna

Title

Software change management processes in the
development of embedded software

Abstract
The goal of the research presented in this thesis is to examine software change
management processes in order to identify essential change management problems and
improvement requirements, to define processes which would aid in solving these
problems, and give an example of how these processes can be implemented in practice.
The subjects of the empirical research part of the study have been four Finnish
companies which develop embedded software. Therefore, the focus of the study is on
the processes which are used in developing embedded software. However, the literature
study explores the problems of software change management from a more generic
viewpoint, and can also be used as a reference for software development done for other
purposes.
Three of the four case studies are used in deriving the generic change manage-ment
problem classes and process descriptions. These three case studies include only
analysis of the change processes and problems related to them. The fourth case study is
used for illustrating how the proposed problem classification can be used in change
process analysis, and how the proposed process models can be instantiated in practice.
The change processes were not only analysed, but the study also included the definition
of new processes, the planning of their implementation, and the implementation and
enactment of the new processes in the organisation.

Keywords
software change management, software configuration, software maintenance, process improvement, process
modelling, process analysis

Activity unit
VTT Electronics, Embedded Software, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland

ISBN Project number
951–38–5573–2 (soft back ed.)
951–38–5574–0 (URL: http://www.inf.vtt.fi/pdf/)

Date Language Pages Price
July 2000 English 185 p. + app. 56 p. E

Name of project Commissioned by

Series title and ISSN Sold by
VTT Publications
1235–0621 (soft back ed.)
1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

VTT Information Service
P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

	Abstract
	Preface
	Contents
	List of symbols
	1 Introduction
	1.1 Research questions and overview of research methods
	1.2 Scope of the research
	1.3 Structure of the thesis

	2 Research method
	2.1 Overview
	2.2 Research approach
	2.3 Research methods used in the case studies in the problem analysis stage
	2.4 Research methods used in the construction stage
	2.5 Research methods used in the demonstration stage
	2.5.1 First phase: Analysis of current practices
	2.5.2 Second phase: Definition of goals for new practices

	2.6 Evaluation of the results
	2.7 Research process
	2.8 Summary

	3 Analysis of related work
	3.1 Overview
	3.2 Scope of software change management
	3.3 Why is software change management difficult?
	3.4 Software change management – Product dimension
	3.5 Software change management – Process dimension
	3.5.1 Olsen's change management model
	3.5.2 V-like change management model
	3.5.3 Ince's change process model
	3.5.4 The AMES model
	3.5.5 Spiral-like change management process

	3.6 Software change management – Technological dimension
	3.7 Summary

	4 Analysis of the state of the practice
	4.1 Overview
	4.2 Summary of case studies
	4.2.1 Case one
	4.2.2 Case two
	4.2.3 Case three

	4.3 Summary

	5 Software change management problems
	5.1 Overview
	5.2 Classification of problems and improvement requirements in change management processes
	5.2.1 Effectiveness problems
	5.2.2 Communication problems
	5.2.3 Analysis and location problems
	5.2.4 Traceability problems
	5.2.5 Decision-making problems
	5.2.6 Tool-related problems

	5.3 Summary

	6 Generic change management process model
	6.1 Overview
	6.2 Background
	6.3 Layered change processes
	6.3.1 Product-level changes
	6.3.2 Project-level changes

	6.4 Generic change management process
	6.4.1 Trivial defect correction
	6.4.2 Defect correction
	6.4.3 Requirement-level modification
	6.4.4 Improvement proposal

	6.5 Relation of process levels and process types
	6.6 Comparison to other models
	6.7 Summary

	7 Implementation
	7.1 Overview
	7.2 Operational organisation
	7.3 Process management
	7.3.1 Reviews of change requests
	7.3.2 Monitoring the change requests

	7.4 Quality responsibilities related to change requests
	7.4.1 Technical review
	7.4.2 Testing
	7.4.3 Other change types

	7.5 Sources of change requests
	7.6 Description of the change management process
	7.7 Existing change management support
	7.8 Problems and improvement proposals related to change management
	7.8.1 Effectiveness problems
	7.8.2 Communication problems
	7.8.3 Analysis and location problems
	7.8.4 Traceability problems
	7.8.5 Decision-making problems
	7.8.6 Tool-related problems

	7.9 Description of the implementation solution
	7.9.1 Vocabulary
	7.9.2 Instantiation of the generic processes in the case study
	7.9.3 Selection of tool environment

	7.10 Implementation and deployment of the defined solution
	7.11 Summary

	8 Evaluation of results
	8.1 Introduction
	8.2 Evaluation of the change management problem classification
	8.3 Evaluation of the change management process model
	8.4 Experiences from the implementation and deployment
	8.5 Summary

	9 Conclusions
	9.1 Answers to research questions
	9.2 Generalisation of the results
	9.3 Future research

	10 Epilogue
	References

