
V
TT PU

BLICA
TIO

N
S 477

Q
uality driven m

ultim
ode D

SP softw
are architecture developm

ent
A

nu Purhonen

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000
02044 VTT 02044 VTT FIN–02044 VTT, Finland

Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6005–1 (soft back ed.) ISBN 951–38–6006–X (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

ESPOO 2002ESPOO 2002ESPOO 2002ESPOO 2002ESPOO 2002 VTT PUBLICATIONS 477

Anu Purhonen

Quality driven multimode DSP software
architecture development

VTT PUBLICATIONS

459 Hakkarainen, Tuula. Studies on fire safety assessment of construction products. 2002. 109
p. + app. 172 p.

460 Shamekh, Salem Sassi. Effects of lipids, heating and enzymatic treatment on starches. 2002.
44 p. + app. 33 p.

461 Pyykönen, Jouni. Computational simulation of aerosol behaviour. 2002. 68 p. + app. 154 p.
462 Suutarinen, Marjaana. Effects of prefreezing treatments on the structure of strawberries and

jams. 2002. 97 p. + app. 100 p.
463 Tanayama, Tanja. Empirical analysis of processes underlying various technological

innovations. 2002. 115 p. + app. 8 p.
464 Kolari, Juha, Laakko, Timo, Kaasinen, Eija, Aaltonen, Matti, Hiltunen, Tapio, Kasesniemi,

Eija-Liisa, & Kulju, Minna. Net in Pocket? Personal mobile access to web services. 2002.
135 p. + app. 6 p.

465 Kohti oppivaa ja kehittyvää toimittajaverkostoa. Tapio Koivisto & Markku Mikkola (eds.).
2002. 230 s.

466 Vasara, Tuija. Functional analysis of the RHOIII and 14-3-3 proteins of Trichoderma reesei.
93 p. + app. 54 p.

467 Tala, Tuomas. Transport Barrier and Current Profile Studies on the JET Tokamak. 2002. 71
p. + app. 95 p.

468 Sneck, Timo. Hypoteeseista ja skenaarioista kohti yhteiskäyttäjien ennakoivia
ohjantajärjestelmiä. Ennakointityön toiminnallinen hyödyntäminen. 2002. 259 s. + liitt. 28 s.

469 Sulankivi, Kristiina, Lakka, Antti & Luedke, Mary. Projektin hallinta sähköisen tiedonsiirron
ympäristössä. 2002. 162 s. + liiitt. 1 s.

471 Tuomaala, Pekka. Implementation and evaluation of air flow and heat transfer routines for
building simulation tools. 2002. 45 p. + app. 52 p.

472 Kinnunen, Petri. Electrochemical characterisation and modelling of passive films on Ni- and
Fe-based alloys. 2002. 71 p. + app. 122 p

473 Myllärinen, Päivi. Starches – from granules to novel applications. 2002. 63 p. + app. 60 p.
474 Taskinen, Tapani. Measuring change management in manufacturing process. A measurement

method for simulation-game-based process development. 254 p. + app. 29 p.
475 Koivu, Tapio. Toimintamalli rakennusprosessin parantamiseksi. 2002. 174 s. + liitt. 32 s.
477 Purhonen, Anu. Quality driven multimode DSP software architecture development. 2002. 150

p.

VTT PUBLICATIONS 477

Quality driven multimode DSP
software architecture development

Anu Purhonen
VTT Electronics

ISBN 951–38–6005–1 (soft back ed.)
ISSN 1235–0621 (soft back ed.)

ISBN 951–38– 6006–X (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

Copyright © VTT 2002

JULKAISIJA – UTGIVARE – PUBLISHER

VTT, Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi (09) 456 4374

VTT, Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax (09) 456 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland
phone internat. +358 8 551 2111, fax +358 8 551 2320

Technical editing Marja Kettunen

Otamedia Oy, Espoo 2002

3

Purhonen, Anu. Quality driven multimode DSP software architecture development. Espoo 2002.
VTT Publications 477. 150 p.

Keywords software engineering, quality, design methods, analysis methods, wireless
systems

Abstract
Traditionally, DSP software development has concentrated on optimising the
algorithms. The future wireless communication systems create challenges to the
DSP software. In order to handle the new requirements, more emphasis has been
placed on software architecture. This thesis examines the way quality driven
architecture development can be applied to multimode DSP software. First, the
main quality attributes for DSP software are defined. Performance ensures that
the timing requirements are fulfilled, with simultaneously minimising the
resource usage. Cost attribute ensures that the development of the system is
affordable. Variability is for evaluating how well the architecture can adapt to
changes that are required to the system during its lifetime.

It is proposed that the DSP software architecture should be described with four
architectural views. A logical view shows the required functionality in an
implementation independent way; a physical view depicts the deployment of
logical components to the hardware architecture and the interfaces that are
relevant to the software; a process view is used for understanding the runtime
functionality of the system; a development view describes how the system is
actually implemented with today’s software platforms and technologies.

The process of developing the architectural views is iterative and incremental.
More details are added to the diagrams when the development continues. View
development is a series of iterations between refinement of architectural
structures and evaluation of the decisions made. An evaluation strategy is
presented for comparing architectural decisions against quality requirements.

The results are validated with a case study of a future multimedia terminal that
supports three systems: GSM, WLAN, and WCDMA. It is shown that the
quality-driven development clarifies the design decisions so that it is easier to
compare and refine architecture candidates.

4

Preface
This research has been carried out at the Technical Research Centre of Finland
(VTT Electronics). The major part of the research is based on work done in the
MULTICS project (”The Architecture Study of Next Generation Multistandard
Mobile Terminal and Basestation”) at VTT during the years 1998-2001. The
MULTICS project was an initiative that aimed to develop methods for system
architecture design of multistandard products. The MULTICS project was
jointly funded by Tekes (Technology Development Centre of Finland), VTT and
industrial partners that included Nokia Research Center and Elektrobit Ltd. The
work has been originally published as a licentiate thesis at the university of
Oulu.

I wish to thank Prof. Juha Röning, who has been the supervisor of this thesis at
the University of Oulu, for his comments and guidance. Prof. Eila Niemelä
deserves my deepest gratitude for encouragement and feedback on the
manuscript.

I would also like to thank my colleagues at VTT Electronics. I would like to
thank Dr. Tapio Frantti for commenting the manuscript. I am grateful of co-
operation of Mr. Tapio Rautio, Mr. Juha-Pekka Soininen and other members of
the MULTICS project team. I also wish to thank Mr. Jarmo Kalaoja for many
discussions on various topics of software architecture design. Thanks are also
due to Ms. Marjo Jussila for proofreading this thesis.

Finally, Kari, my companion in life, thank you!

Oulu, June 2002

Anu Purhonen

5

Contents

Abstract ... 3

Preface .. 4

List of abbreviations ... 8

1. Introduction... 10
1.1 Definitions ... 12
1.2 Scope of the research... 13

1.2.1 Application domain... 13
1.2.2 Research domain ... 14

1.3 Problem statement ... 15
1.3.1 Research problem.. 15
1.3.2 Research methods and results ... 16

2. Related research.. 18
2.1 Software quality... 18
2.2 Architectural views.. 21
2.3 Refinement .. 24
2.4 Reconfiguration ... 27
2.5 Architecture evaluation ... 29
2.6 Architecture design.. 35
2.7 Summary ... 38

3. Problem analysis ... 41
3.1 Multimode products... 41
3.2 DSP system components ... 43
3.3 DSP software characteristics ... 45
3.4 Development characteristics.. 46

3.4.1 Development process .. 46
3.4.2 Development in practice ... 48
3.4.3 Reuse of artefacts .. 50

3.5 Summary ... 51

4. Quality attributes .. 53
4.1 Introduction ... 53

6

4.2 Performance... 57
4.3 Cost.. 62
4.4 Variability.. 65
4.5 Tradeoff ... 69

5. Architecture Development.. 72
5.1 Multimode DSP system design.. 72
5.2 Software architecture design flow ... 74
5.3 Multimode characteristics.. 79

6. Architectural views... 84
6.1 Logical view .. 85
6.2 Physical view... 90
6.3 Process view .. 93
6.4 Development view... 98
6.5 Summary ... 101

7. Architecture evaluation... 103
7.1 Evaluation strategy .. 103
7.2 Creation of evaluation criteria ... 106
7.3 Impact analysis .. 108

7.3.1 Performance .. 110
7.3.2 Cost ... 110
7.3.3 Variability ... 111

7.4 Result analysis ... 113
7.5 Architecture refinement... 113

8. Validation ... 115
8.1 Case study.. 115
8.2 Requirement analysis... 115
8.3 Architecture selection .. 118

8.3.1 Logical view.. 119
8.3.2 Physical view .. 121
8.3.3 Process view.. 122
8.3.4 Development view .. 126

8.4 Architecture evaluation ... 128
8.5 Discussion.. 132
8.6 Future research .. 136

7

9. Conclusions... 137

References... 139

8

List of abbreviations
3GPP Third Generation Partnership Project

ABAS Attribute-Based Architectural Style

ABD Architecture Based Design Method

ADL Architecture Description Language

ATAM Architecture Tradeoff Analysis Method

COM Component Object Model

CORBA Common Request Broker Architecture

COTS Commercial Off-The-Shelf

CPN Coloured Petri Nets

CPU Central Processing Unit

DMA Direct Memory Access

DSP Digital Signal Processing

FPGA Field Programmable Gate Array

GSM Global System for Mobile communications

HW HardWare

I/O Input/Output

LQN Layered Queuing Network

MSC Message Sequence Chart

NFR Non-Functional Requirement

OSI Open Systems Interconnection Model

QARCC Quality Attribute Risk and Conflict Consultant

QFD Quality Function Deployment

SAAM Software Architecture Analysis Method

SA/SD Structured Analysis/Structured Design

9

SoC System-on-Chip

SDR Software Defined Radio

SPE Software Performance Engineering

RAM Random Access Memory

RMA Rate Monotonic Analysis

RTOS Real-Time Operating System

UML Unified Modelling Language

WAP Wireless Application Protocol

WCDMA Wideband Code Division Multiple Access

WLAN Wireless Local Area Network

10

1. Introduction
Digital signal processing (DSP) is an essential part of the mobile wireless
systems. DSP is defined as the application of mathematical operations that are
performed to represent signals digitally (Vihavainen & Marttila 1998). It ensures
that the wireless signal can be transferred as faultlessly as possible through the
air. The DSP system creates a platform on which various applications are built.
Nowadays, a large part of the DSP systems is implemented in software.

Since the beginning of digital mobile communications, mobile wireless
terminals have developed from simple phones for speech to nearly personal
computers. In the future wireless systems, it is the Internet that will be the core
application (Lu 2000). New applications, such as videoconferencing, are being
planned. However, the channel capacity does not yet allow high-bandwidth
services due to the limited spectrum available, power restrictions, and noise
levels (Varshney & Vetter 2000).

The restricted capacity of the current networks has motivated the standardisation
and development of next generation systems. Originally, the goal was to define
one common air interface for all parts of the world (Ojanperä & Prasad 1998).
However, today the general attitude is that the future wireless network should be
an open platform supporting multicarrier, multibandwidth, and multistandard air
interfaces (Lu 2000). In addition to several cellular network standards, also
wireless local area network standards have been developed. Handsets supporting
two networks are already available, but in the future, the users should get
accustomed to use whichever air interface is available or select the most
favourable one from several possibilities (Varshney & Vetter 2000). The task of
the user would be made easier with a terminal that makes the various networks
transparent to the user.

Increasing competition in the mobile phone business has resulted in a situation
in which, in order to keep up with the development, new versions with more
interesting features should be released regularly. Furthermore, different types of
feature sets should be available to different types of users. In the future,
terminals may be fully reconfigurable and new applications are loaded from the
Internet. All this creates demands to the product development.

11

When the requirements to the product features are changing, also the technology
that implements the features changes. More powerful processors and better
compilers have entailed that the development of DSP software in C language is
now possible (Oshana 1998). The software development tools and methods from
other embedded software development can now be taken into use. However,
DSP software still has some specific features so that the same tools and methods
may not be fully applicable or some additional tools are needed.

In industry, since the beginning of the ‘90s, many companies have moved away
from developing software from scratch for each product and instead focused on
the commonalties between the different products and capturing those in a
common architecture and an associated set of reusable assets (Bosch 1998).
Traditionally, systematic reuse has been difficult in DSP software because each
product has required a careful optimisation of resources so that the
implementation language has been mainly assembly. Software architecture
creates a common ground between software development and systematic
software reuse. It can be used to form a common understanding of what is being
developed between different stakeholders such as software designers, architects,
managers, and marketing people.

Traditionally, features of a system that are not covered by its functional
description have been called non-functional requirements (Buschmann et al.
1996; Bosch & Molin 1999). However, nowadays they are often referred to as
quality attributes. The term non-functional requirements (NFR) may imply that
there are requirements that exist independently of the system’s behaviour (Bass
et al. 1998). There is a danger that viewing qualities in this way leads to their
being omitted until the end of the specification task.

Quality attributes are of explicit interest when designing software architecture
(Buschmann et al. 1996; Bass et al. 1998; Bosch & Molin 1999). When a good
architecture cannot guarantee an attainment of quality goals, a poor architecture
can prevent these goals from being achieved. The larger the system, the bigger is
the effect of architecture on the quality attributes. All realistic, practical
computing systems have to fulfil multiple quality attributes.

12

1.1 Definitions

The following are the main concepts used in this thesis:

Architectural style An architectural style defines a family of software
systems in terms of a pattern of structural
organisation (Perry & Wolf 1992; Buschmann et
al. 1996). More specifically, an architectural style
defines components and connector types and rules
how they can be combined.

Architectural view An architectural view represents a partial aspect of
a software architecture that shows specific
properties of a software system (Buschmann et al.
1996).

Multimode A multimode product means a product that can
operate in several networks, sometimes even
simultaneously (Soininen et al. 2001).

Product family A product family is “a group of systems built from
a common set of assets” (Bass et al. 2000).

Product line A product line is “a group of products sharing a
common, managed set of features that satisfy
specific needs of a selected market or mission
area” (Bass et al. 2000).

Runtime reconfiguration Runtime reconfiguration means that the
functionality of the system is changed during
runtime without interfering the normal operation of
the system. There are other names for it: dynamic,
on-the-fly, or on-line reconfiguration.

Scenario “A scenario is a brief description of a single
interaction of a stakeholder with a system” (Bass et
al. 1998). Scenarios are useful in validating both

13

functionality and quality. The type of the scenario
depends on the quality that is assessed.

Software architecture Software architecture “is the structure or structures
of a program or computing system, which comprise
software components, the externally visible
properties of those components, and the
relationships among them” (Bass et al. 1998).

1.2 Scope of the research

1.2.1 Application domain

This research is focusing on the digital signal processing parts of the wireless
mobile multimode systems. In the telecommunication domain, the functional
grouping is often made using layers more or less according to the OSI-model.
For example, a GSM radio interface is modelled in five planes (Mouly & Pautet
1992) and WCDMA in three planes (Ojanperä & Prasad 1998). Usually these
basic planes are further divided into sublayers.

Figure 1-1 depicts a general division of wireless systems’ radio interface
functionality into layers. The scope of this research is situated in the upper-part
of the lowest plane, L1, which is the same as the physical layer in the OSI-
model. The responsibility of the lowest layer is typically the same regardless of
the system or standard. It is devoted to the physical transmission of information
between distant entities. The upper-part includes functionalities such as
encoding, decoding and multiplexing. The focus of the thesis is the functionality
that has been traditionally implemented by software using digital signal
processors.

14

L3

L2

HIGHER LAYERS

Network layer

Encoding, decoding, multiplexing, ...

RF, D/A conversion,..L1

Data link layer

Physical layer

Figure 1-1. Radio interface layers.

The development of DSP radio software needs special skills. On the one hand, it
is embedded software; on the other hand, it is data processing software.
Extending the support for several standards causes new problems: the control of
modes and even more efficient use of scarce resources.

1.2.2 Research domain

Software architecture is defined as a structure or structures of the computing
system, which comprise software components, the externally visible properties
of those components, and the relationships among them (Bass et al. 1998). The
general software design flow includes tasks such as requirements specification,
architecture design, detailed design, implementation, and testing. This thesis
focuses on defining the software architecture design flow for DSP software. It is
assumed that before the architecture specification begins, the requirements
specification is already done. The utilisation of the software architecture during
the detailed design and later phases of software development is only briefly
discussed.

Taking an architecture-centric approach to software development has many
advantages (Oreizy et al. 1998). Software architecture supports component reuse
and helps to understand the system's overall behaviour. Application behaviour

15

can be separated from configurability issues when the decisions regarding
change application policy and scope are encapsulated within connectors.
Furthermore, control over the configurability issues is placed in the hands of the
architecture designer who has the best overall knowledge of application
requirements and semantics. In case of embedded systems, software
requirements to the hardware can be studied before any detailed design has
started.

The starting point for software architecture design in this thesis is the study of
quality requirements. Software architecture development requires a knowledge
of the product requirements, the development organisation, and the architecture
selection and evaluation methods. In order to be able to select and evaluate
architectural structures, the quality goals for the system have to be defined.
Many software projects have failed because of a poor set of quality-attribute
requirements although they have had well specified functional and interface
requirements (Boehm & In 1996).

The focus of the thesis is on the generation of the architecture and reuse of
existing methods in the evaluation of the architecture candidates. The goal is to
find methods to provide help for the work of the DSP software architect.

1.3 Problem statement

1.3.1 Research problem

Software architecture methods have been studied in many research groups but
none of the methods covers the specific problems with digital signal processing
systems. In fact, it is impossible to define a general-purpose architecture
development method because all of them are based on certain quality attributes
(Bass et al. 1998).

Based on the previous discussion, the research problem is defined as follows:

How can architecture development take into account the special requirements of
the multimode DSP software?

16

The research problem can be divided into subproblems in a following manner:

Q1. What are the quality attributes of the multimode DSP software?

Q2. What are the architectural descriptions that should be used to specify
multimode DSP software architecture?

Q3. How do quality attributes affect the selection of the architectural structures?

Q4. How are quality attributes used in the evaluation of architecture candidates?

1.3.2 Research methods and results

The research strategy is divided into the following three phases: problem
analysis, construction, and demonstration.

Problem analysis is performed in order to obtain product and domain
knowledge. DSP software is constrained by the requirements from three sources:
product specifications, standards, and hardware platform. Information was
gathered using literature and interviews. In the DSP domain, standards serve as
an important source in clarifying the requirements of the systems. Interviews
were used for understanding the product requirements and the design decisions
in the current software implementations. Problem analysis is presented in
Chapter 3.

Construction is divided into three subphases: identification of quality attributes,
architecture specification, and architecture evaluation. Identification of quality
attributes is based on the problem analysis. Architectures are defined using
architectural views (Kruchten 1995; Hofmeister et al. 1999a) and architectural
styles and patterns (Buschmann et al. 1996; Shaw & Garlan 1996; Klein &
Kazman 1999). Analysis methods are applied for evaluating individual quality
attributes (Kazman et al. 1996) and for finding out conflicts between the
attributes (Boehm & In 1996; Kazman et al. 1998). Quality attributes are
specified in Chapter 4. Architecture development is covered in Chapters 5 and 6.
Chapter 7 concentrates on architecture evaluation.

17

Demonstration validates the methods defined in the construction phase, with a
case study of a future mobile terminal in Chapter 8. Quality requirements are
analysed using the quality taxonomies developed in the construction phase.
Equally, software architecture is developed and evaluated using the proposed
methods. And finally, the applicability of the architecture-based design for
multimode DSP software is evaluated.

18

2. Related research
The purpose of this chapter is to study the related research concerning
architecture selection and evaluation. So far, there have been no published
examples of architecture-based DSP software development. Vihavainen and
Marttila have studied the high-level design of embedded DSP systems by using a
hardware/software codesign approach (Vihavainen & Marttila 1998). It is
similar to this work in that they emphasise that there should be a clear
understanding of the required functionality before it is possible to consider
implementation. In addition, they point out that there are various design metrics
that have an effect on the composition of the final architecture. However, they
concentrate mainly on the optimisation of hardware/software partition based on
performance and resource usage. On the other hand, software radio research has
addressed some points in the future DSP systems (Mitola 1995; Srikanteswara et
al. 2000) but they are more concerned with the feasibility of the software radio
concept than with how software should be actually developed by a manufacturer.

2.1 Software quality

Software quality attributes can be divided into three groups (Bass et al. 1998):
system qualities, business qualities, and qualities about the architecture itself.
System qualities are further divided into qualities observable via execution (e.g.
performance, availability) and qualities not observable via execution (e.g.
modifiability, integrability). They can also be called as development and
operational qualities (Bosch & Molin 1999). Business qualities include cost and
schedule considerations and marketing considerations. Conceptual integrity and
buildability are examples of the qualities of the architecture itself.

Quality attributes are derived from system requirements, standards, and
documents from old products and from interviews with the stakeholders. Quality
attributes themselves are not definitive enough but they must be made more
concrete. The approach applied in this work for concretising quality attributes
are quality taxonomies (Barbacci et al. 2000). In these taxonomies, quality
attributes have the following characteristics:

19

• Stimuli are operational or developmental activities that exercise the system.
Stimuli are the events that require the system or the developers to respond.

• Response is the observable effects of operational or developmental
activities.

• Architectural parameters link stimuli and response. They are the capabilities
of the system, which affect the way the system or developers can respond to
stimuli.

In another definition of the quality taxonomy, the properties of the attributes are
classified into concerns, attribute specific factors, and methods (Barbacci et al.
1995). In contrast to the first definition, the concerns are defined in the response
section. The attribute-specific factors can include both internal (i.e. architectural
parameters) and external properties affecting the concerns. Stimulus is mainly
described in attribute-specific factors. In this approach, methods and tools for
addressing the concerns are also included.

The third approach to concretise quality attributes is to divide them into external
and internal quality attributes (Briand et al. 1998). External quality attributes are
the ones usually referred to as quality attributes: reliability, usability,
maintainability, etc. Internal quality attributes such as coupling and cohesion are
refinements of the external quality attributes. The refinement is necessary
because usually, external quality attributes are not directly measurable.

Instead of quality attributes, Hofmeister and her colleagues discuss factors that
influence the architecture design (Hofmeister et al. 1999a). These factors are
categorised into three main groups and several subcategories. Organisational
factors include aspects such as the schedule and budget, and the skills and
interests of the people involved. They do not describe the product but they
capture aspects of the organisation that could affect the architecture.
Technological factors arise from the external technology solutions that are
embodied in the product. They primarily include hardware and software
technologies and standards. The third factor category is product factors that
describe the product’s requirements for functionality, the features seen by the
user, and qualities such as performance.

20

Quality attribute taxonomies are used as a starting point when pursuing to find
out the quality requirements of a system. A quality attribute analysis includes the
following tasks: identification of quality attributes, characterisation of quality
attributes, prioritisation, and identification of interdependencies.

Quality attribute identification and characterisation can be performed using
questioning (Barbacci et al. 2000). Screening questions are used to uncover
factors that are important to stakeholders and narrow the focus of evaluation.
Elicitation questions deal with the way a quality attribute or a service that was
identified as important is achieved by the system. The emphasis is on extracting
concrete values to the parameters in the response and stimulus sections of the
taxonomies. Analysis questions refine the information gathered by elicitation
questions.

Domain analysis is useful for capturing the commonality and variability of
related software systems. It is based on a study of existing systems and their
development histories, knowledge captured from domain experts, underlying
theory, and emerging technology requirements within the domain. Although
commercial tools are rare, there are several approaches for domain analysis
(Prieto-Diaz & Freeman 1987; Kang et al. 1990; Tracz et al. 1993; Coplien et al.
1998; Kang et al. 1999).

Quality attributes may contradict as well as complement each other. You need to
consider the interdependencies and tradeoffs that exist between them and to
define a preference of one requirement against another in case of conflict.
Quality Function Deployment (QFD) is a widely used technique that helps
translate customer needs into the technical requirements needed at each stage of
product development (Akao 1990). QFD is supported by a specific graphical
notation and by a well-defined process for translating requirements to realisation
mechanism. In quality attribute analysis, it can be used to establish the relative
importance between attributes and their values (Bot et al. 1996; Dueñas et al.
1998).

The Quality Attribute Risk and Conflict Consultant (QARCC) is a knowledge-
based tool that can be used early in the life cycle to identify potential conflicts in
quality goals (Boehm & In 1996). QARCC works by examining quality-attribute
tradeoffs involved in software architecture and process strategies. It can alert

21

stakeholders to conflicts among their software-quality requirements and can help
them identify additional, potentially important quality requirements.

In this work, the quality attributes are concretised with taxonomies that define
stimuli, response and architectural parameters for each quality attribute. In
addition, external factors are defined with an additional taxonomy because not
only the product factors are important in the architecture development
(Hofmeister et al. 1999a).

2.2 Architectural views

Several authors have stated that in order to fully specify a software architecture,
multiple views should be used (Kruchten 1995; Soni et al. 1995; Bellay et al.
1997; Lung et al. 1997). An architectural view represents a partial aspect of a
software architecture that shows specific properties of a software system
(Buschmann et al. 1996). Such views can be used in different stages of
development process and they can be developed iteratively.

Each view is composed of at least one structure. Structures can include module
structure, conceptual structure, process structure, physical structure, uses
structure, calls structure, data flow, control flow, and class structure (Bass et al.
1998). Each structure uses its own notation and architectural styles, and defines
its own component and connector types as well as constraints.

Kruchten defines four views and proposes a use of scenarios to validate the other
views (Kruchten 1995). Views are independent of notations and tools used as
well as of design methods. Kruchten uses the following views:

• The logical view describes the object model of the design when an object-
oriented design method is used. It is useful for functional analysis and
identifying mechanisms and design elements that are common across the
system.

• The process view describes the concurrency and synchronisation aspects of
the design. It is useful for estimating the message flow and process loads.

22

• The physical view describes the mapping of the software onto the hardware
and reflects its distributed aspect. The various elements identified in the
logical, process, and development views are mapped onto the nodes in the
physical view. Several different physical configurations can be used, e.g. for
system deployment at various sites or for different customers.

• The development view describes the static organisation of the software in its
development environment. Software is seen as program libraries and
subsystems that can be developed by one or more developers. The
development view is intended for the allocation of requirements and work to
teams. In addition, it supports cost evaluation, planning, and reasoning out
software reuse, portability, and security.

Kruchten uses a small subset of important scenarios – instances of use cases – to
show that the elements of the four views work together seamlessly. This view is
redundant with the other ones but it helps designers discover architectural
elements during the architecture design, and it validates and illustrates the
architecture design. A slightly modified version of this approach, using three
plus one views, is suggested by Jaaksi et al (Jaaksi et al. 1999). They have
combined process and physical views to a view called 'runtime view'.

Bass and Kazman point out that each view exposes some information and hides
other information (Bass & Kazman 1999). Therefore, a view can be used for
reasoning out, for example, performance, thereupon leaving out the other
qualities for other views. Bass and Kazman use five views derived from those
presented by Kruchten: functional structure, code structure, concurrency
structure, physical structure, and developmental structure. Kruchten’s
development view more or less combines the responsibilities of their code and
developmental structures. Properties such as maintainability, security,
availability and capacity are attached to separate structures.

Hofmeister, Nord and Soni studied several organisations and architectures and
observed that different structures were used at different stages of the
development process (Soni et al. 1995; Hofmeister et al. 1999a). The structures
they found fell into the following four categories:

23

• Conceptual architecture of a system describes its major design elements
specific to the domain and the relationships among them. Conceptual
architecture is independent of implementation decisions.

• Module architecture comprises two orthogonal structures: functional
decomposition, and layers. Functional decomposition of a system captures
the way the system is logically decomposed into subsystems, modules and
abstract program units. Layers reduce and isolate external and internal
dependencies. Unlike conceptual architecture, module architecture reflects
implementation decisions; however, it is independent of any programming
language.

• Execution architecture describes the dynamic structure of a system. It
depicts runtime elements, communication mechanisms, assignment of
functionality to runtime elements, and resource allocation. The structuring
decisions are based on performance and distribution requirements, and the
runtime environment.

• Code architecture presents how the source code, binaries, and libraries are
organised in the development environment. The choice of the programming
language, the development tools and environment, and the structure of the
project and the organisation influence this architecture. It has generally not
been described as part of the software architecture.

The Architecture Based Design Method (ABD) combines two of the above
approaches (Bachmann et al. 2000). They create the conceptual architecture
defined by Hofmeister, Nord and Soni using Kruchten’s four views. Another
way of combining is to add several structures to one view. Lung et al. have
defined four views but included several diagrams in describing each view (Lung
et al. 1997). Compared to the above approaches, they differ in that they have a
map view for identifying the style, design violations and the mapping between
components and functions or features. For example, tables can be used for
creating a map view.

The number of views that are needed depends on the application. For example,
Bellay and his colleagues came up with seven categories of architectural
properties after studying large commercial embedded systems written in the

24

programming language C (Bellay et al. 1997). They include information
exchange, system control, communication type, dynamic behaviour, structure,
special quality requirements, and other non-functional requirements. However,
they note that the categorisation is not complete and might be extended.
Consequently, they propose some methods for representing the categories but in
their opinion, any appropriate and already available technique can be used.

It is the division into problem architecture and solution architectures that is
common to all these approaches. Every approach defines the major functional
components and their relationships independently of the implementation with
one view, the problem architecture. Another view that is used in every approach
is the dynamic view describing the runtime behaviour of the system. In addition,
an iterative approach and well-known methods such as object diagrams and
message sequence charts are usually utilised in view development.

The approach in this thesis is a combination of previous approaches. It is based
on Kruchten’s four views (Kruchten 1995). The logical view differs from
Kruchten’s logical view in that it defines both hardware and software functions.
The required functionality, the problem domain, is thereupon first covered
before going into implementation platforms. Therefore, also the physical view
covers all the hardware components, not just processors. The physical view is
also the second view to be developed instead of being the last one because the
hardware/software partition and the software distribution are decided upon in
this context. The development view rather resembles the module architecture in
(Hofmeister et al. 1999a). It is independent of the programming languages and
the modules are defined at abstract level. In addition, in this work several
models, of which some are optional, are included in each view. Scenarios are
used for validating the functionality in each view.

2.3 Refinement

Stepwise refinement is an old concept in developing software (Wirth 1971). The
development of architectural views is also a series of iterations from abstract
architecture to a more concrete form. Concrete architecture should not lose
properties of the abstract architecture and no new properties about the abstract
architecture should be inferred from the concrete architecture (Moriconi et al.

25

1995). To ensure this, transformations should be made iteratively. Five
categories for architecture transformations have been identified (Bosch & Molin
1999): imposing architectural styles, architectural patterns or design patterns,
converting non-functional requirements to functionality, and distributing
requirements.

An architectural style defines a family of software systems in terms of their
structural organisation (Perry & Wolf 1992; Buschmann et al. 1996).
Architectural styles can be divided into several categories such as dataflow
systems (e.g. pipes and filters style) and data-centred systems (e.g. blackboard
style) (Shaw & Garlan 1996). The purpose of architectural styles is to move
architecture design closer to being an engineering discipline. Attribute-based
architectural styles, ABASes, construct another development in this field
(Kazman et al. 1998; Klein & Kazman 1999). ABASes associate architectural
styles with quality attributes and give a reasoning framework for selecting
architectural styles.

Architectural patterns and architectural styles are very similar; they can even
have same names. However, architectural patterns are more problem-oriented
than architectural styles. An architectural style only describes the overall
structural frameworks for applications whereas a pattern expresses a very
specific reoccurring design problem and presents a solution for it (Buschmann et
al. 1996). Several authors (Buschmann et al. 1996; Douglass 1998) have studied
architectural patterns.

Design patterns provide schemes for refining the subsystems or components of a
software system, or the relationships between them (Gamma et al. 1995).
Compared to architectural patterns, they generally affect only a limited number
of classes in the architecture.

In some cases, non-functional requirements can be converted into functionality.
Exception handling is a well-known example that adds functionality to a
component thereby increasing the fault-tolerance of the component. Another
way to overcome problems in fulfilling the non-functional requirements is to
distribute them. For example, to achieve some performance requirement, a
function is divided so that it can be performed in parallel in two processors.

26

One approach to refining architectures is strategies (Hofmeister et al. 1999a).
Strategies are a way to reuse successful design approaches. They are usually
more general than patterns. The view development starts with selecting key
issues that should be solved in the architecture development. After this,
strategies are developed for solving these key issues.

In the ABD method, the refinement is handled using so-called software
templates (Bachmann et al. 2000). Software templates are types of design
elements. They include patterns that describe how all elements of this type must
interact with shared services and the infrastructure. Software templates are a way
to inherit responsibilities. New responsibilities are added to them when they are
refined, starting from the conceptual level and moving to the concrete level.

A taxonomy of Orthogonal Properties of Software Architecture (TOPSA)
defines three dimensions for the software architecture (Bratthall & Runeson
1999). Abstraction level can be either conceptual or realisational. A conceptual
architecture is not usually directly visible in the code. Aggregation level is high
if a structure is hierarchically composed of lower-level structures, which in turn
contain structures. In addition to the abstraction level and aggregation levels,
which are mainly handled with the above methods, there is a third direction for
transformations, namely, dynamism. Software architecture is not always static,
i.e. it can change in time and sometimes even at runtime. The dynamic
reconfiguration techniques may be useful especially in multimode systems.

This work utilises the concept of strategies including the possibility of adding
new strategies to any phase of the architecture development. Strategies are
solutions to the key issues that should be solved within an architectural view. In
this thesis, the key issues are presented in the form of questions and therefore
they are called problems. This is a less extensive way of defining the critical
issues in the system, although in larger systems the approach in (Hofmeister et
al. 1999a) could be useful. We will group all the possible refinements presented
here under the term strategies. Writing down the strategies is one of the ways to
make the system more understandable especially if the original designer is not
available any more. In addition, the used strategies can be stored in one place,
thereby making the actual architecture description shorter and easier to read.

27

2.4 Reconfiguration

In a multimode system, one feature that the architecture may have to support is
runtime reconfiguration. Runtime reconfiguration means that the functionality of
the system is changed during runtime without interfering the normal operation of
the system. This is important in systems that have minimum downtime
requirements. One part of the runtime reconfiguration is the downloading of the
new functionality. Usually, runtime reconfiguration systems are designed for
updating - for example, correcting errors. An obvious reason for runtime
reconfiguration in multimode systems is adaptation - for example, adding new
modes and deleting modes that are not needed to be supported anymore.

Before starting to design a system, one should decide what kind of
configurability is needed. Runtime change is not a critical aspect of many
software systems and additional functions are a risk to reliability; furthermore,
its management may cause a performance overhead. Widely used means for
getting configurable software are (Oreizy et al. 1998; Oreizy & Taylor 1998):
dynamic programming languages (Lisp, Smalltalk), dynamic linking (used in
general purpose operating systems like Unix and Windows), and dynamic object
technologies (CORBA, COM). However, these methods are usually quite slow
and they do not support controlled reconfiguration.

An important goal for a reconfiguration system is that it should preserve the
application program correctness before, during and after the reconfiguration.
This means that configurability should not cause any side effects to the normal
operation of the system and the transfer between two configurations should be
seamless. Furthermore, the system should be designed so that only valid changes
can be done. The thing that separates runtime configuration from other
techniques that provide dynamic modification capabilities such as dynamic
linking and dynamic languages is change management (Segal & Frieder 1993;
Oreizy et al. 1998). Change management takes care of preserving the program
correctness in a runtime reconfiguration system.

The runtime reconfiguration can be divided into language-based and operating
system-based approaches. For example, in the language-based approach Conic
(Magee et al. 1989) there are separate languages for the configuration of logical
nodes and for implementing the individual software components. Another way

28

of classifying the systems is to do it according to what kind of changes are
performed. The changes in software can be divided into two categories
(Wermelinger 1997): component level changes (change implementation, add or
remove functions) and architectural level changes (add or remove components or
connections). Changing the component internals is also called as source level
reconfiguration (Stuurman & van Katwijk 1998). The application is seen as
code: processes, functions, data etc. The goal is to be able to reconfigure any
software, although there are usually certain restrictions to the way the software
should be implemented in order to simplify the reconfiguration system.

When a dynamic reconfiguration system is aimed at architectural level changes,
it is usually based on an architectural style that supports modifiability, such as
C2-style (Oreizy et al. 1998, Oreizey & Taylor 1998) or subscription based style
(Stuurman & van Katwijk 1998). Reconfiguration systems that manage changes
at the architectural level are also usually based on tool suites (Oreizey & Taylor
1998). They can describe the architecture with a particular language and
possibly the changes with a different language.

The most ambitious problem in reconfiguration research is to find methods for
seamless updating. These methods can be also utilised in less difficult
reconfiguration problems. The techniques that could be considered for
embedded systems are usually process-based (Alonso & de la Puente 1993;
Gupta & Jalote 1993; Hauptmann & Wasel 1996). Commercial operating
systems have features that can be used in their implementation. In these systems,
the most difficult problem is to transfer the state of the replaced process to the
replacing one. In hard real-time systems, the focus is also to ensure the
schedulability of the system (Alonso & de la Puente 1993). Gupta and Jalote
have provided a theoretical framework for on-line modification of programs
(Gupta & Jalote 1993).

Sometimes process-based systems are not fine-grained enough. PODUS is a
procedure-oriented updating system where a program is updated by loading the
new version of the program and replacing each old procedure with its
corresponding new procedure during execution (Segal & Frieder 1993).
Updating a procedure involves changing the binding from its current version to
the new version. Implementation of PODUS is based on compiler and linker
modifications.

29

In this work, reconfiguration techniques are not studied in detail. They are only
included in order to take into account the ways the reconfiguration influences the
definition of realisational components. The configuration unit and the basic
guidelines of reconfiguration should be defined during the architecture design. In
embedded systems, software may also have to control the reconfiguration of
hardware.

2.5 Architecture evaluation

In this work, the process of analysing the properties of the architecture and
comparing them to the quality requirements is called architecture evaluation. In
some cases, architecture analysis can be equivalent to architecture evaluation.
However, the results of architecture analysis can be used for several purposes
but architecture evaluation is usually done for a specific purpose, for example
for maintenance prediction or risk assessment. It is important that the goal of the
evaluation is set beforehand because it has an effect on how the evaluation is
actually performed (Lassing 2001). Usually, several architecture analysis
techniques can be utilised in one architecture evaluation.

Architecture analysis techniques can be divided into quantitative measurements
and qualitative questioning. Quantitative measurements are direct methods for
acquiring information of a system, whereas qualitative questioning is an indirect
method. Questioning techniques can be applied to evaluate architecture for any
given quality. When answers to specific questions are needed, measuring
techniques should be used. Following approaches for assessing non-functional
requirements have been identified (Abowd et al. 1997; Bass et al. 1998; Bosch &
Molin 1999):

• Scenarios. Scenarios concretise the actual meaning of a quality attribute. The
type of the scenario used depends on the quality attribute to be assessed. For
example, use-case or operational scenarios can be used for validating
functionality and qualities that are assessed during runtime. Consequently,
maintainability can be analysed with change scenarios. The effectiveness of
the quality scenarios is largely dependent on the representativeness of the
scenarios.

30

• Questionnaires. A questionnaire is a list of general and relatively open
questions that apply to architectures of similar products. They are used in
mature domains in architecture reviews. They exist before project begins.
Questionnaires are tools that are directed more to the reviewers of the final
architecture than to the architect.

• Checklists. Checklists are detailed sets of questions that are more focussed
on particular qualities of the system, compared to questionnaires. Checklists
are also tools for reviewers. Checklists grow out of the scenarios produced
by several reviews.

• Simulation, prototypes, experiments. The main components of the
architecture are implemented and other components are simulated, this
resulting in an executable system. Simulation is particularly useful for
evaluating operational non-functional requirements such as performance or
fault-tolerance.

• Mathematical modelling. Various research communities have developed
mathematical models that can be used to evaluate operational qualities
(Klein et al. 1993; Xu & Kuusela 1998; Petriu et al. 2000). Once qualities
can be discussed in terms of an abstract model, systems can be analysed to
determine their quality attribute values. Performance is an example of such
a quality where mature models exist and early architectural performance
evaluations are possible. Mathematical modelling can be an alternative to
simulation, or the methods can be combined.

• Metrics. Quantitative measures that are used for finding out particular
properties of architecture, such as complexity, are called metrics. Metrics
have often been developed for analysing source code but they can also be
applied in analysing architecture. When using metrics, the evaluation needs
to focus also on the validity of the assumptions under which the technique is
used (Abowd et al. 1997). For example, metrics may have assumptions on
the types of functionalities embodied in the components being examined.

• Objective reasoning. Experienced software engineers often have valuable
insight that may prove extremely helpful in avoiding bad design decisions.

31

The previous techniques are related to each other. The objective reasoning can
be generated into scenarios. Questionnaires are developed from mature
scenarios. Checklists can be developed from mature questionnaires. Different
techniques are used in different types of projects and in different phases of the
projects. Usually combining different techniques is the best approach.

Traditionally, the analysing of real-time behaviour has been a combination of
worst-case scenario experiments, engineering judgement, and empirical testing
(Nord & Cheng 1994). Worst case scenarios are created and manually simulated
to ensure that systems meet their real-time constraints. When there is code
available it can be run in a simulator and the scenarios can be validated.
However, often when architecture is being designed this is not the case.

Rate Monotonic Analysis (RMA) is a collection of quantitative methods that
enable real-time system developers to understand, analyse, and predict the
timing behaviour of many real-time systems (Klein et al. 1993). The term 'rate
monotonic' comes from a method of assigning priorities to a set of tasks in
which priorities are assigned as a monotonic function of the rate of a periodic
task: the higher the rate, the higher the priority. RMA gives designers tools to
mathematically guarantee that when the system is deployed and running, critical
deadlines will always be met, even in worst-case situations. Although RMA can
be applied manually, there are commercial schedulability analysers available
that are based on RMA.

Software Performance Engineering (SPE) is actually a definition of a process to
ensure that we are developing a system that will meet its performance goals than
just an evaluation method (Smith 1990; Smith & Williams 1993). Several
techniques can be used together with it but in the original description of the SPE,
the performance assessment is based on two models: the software execution
model and the system execution model. First, the (static) software execution
models are used to confirm the basic system concept. Second, (dynamic) system
execution models are used to examine external influences on performance.
Although tools are not necessary, there are tools that support SPE type of
performance evaluation.

Coloured Petri Nets (CPN) have been used for analysing the execution
architecture of mobile phone software (Xu & Kuusela 1998). CPN is a formal

32

modelling method that can be used as a specification or presentation. It also can
be extended with time, so it can be used for the validation of both functional and
performance properties. CPN supports hierarchical descriptions so that large and
complex systems can be modelled in a manageable way. CPN has computer
tools supporting model building, simulation and formal analysis. The module
architecture is defined with UML notation and the elements of the module
architecture are mapped to the execution architecture defined with CPN. CPN
models are used for simulating the UML use cases derived from the
requirements. The simulation allows the comparison of the performance and
timing properties of different communication mechanisms and control policies.
The formal analysis can help in debugging the system.

Layered Queuing Network (LQN) is an extension of the well-known queuing
network model (Petriu et al. 2000). The main difference is that a server, in which
customer requests are arriving and queuing for service, may become a client to
other servers from which it requires nested services while serving its own
clients. An LQN model is represented as an acyclic graph whose nodes are
software entities and hardware devices and whose arcs denote service requests.
LQN has been developed especially for modelling concurrent and/or distributed
software systems. A systematic approach can be used for building LQN models
from UML descriptions of a system. Furthermore, the architectural patterns,
such as pipes and filters, can be used as a basis for translating software
architecture into performance models. Typical results of an LQN model are
response times, throughput, utilisation of servers on behalf of different types of
requests, and queuing delays.

Scenarios are used in many quality attribute specification techniques to form a
profile. “A profile is a set of scenarios, generally with some relative importance
associated with each scenario” (Bosch 2000). There can be different types of
profiles depending on quality attribute. For example, usage scenarios from
functionality validation or new ones can be utilised in performance analysis,
hazard scenarios are used for specifying safety, and scenarios used to analyse
variability create a change profile. The software architecture analysis method
(SAAM) (Kazman et al. 1996) is the most cited scenario-based analysis method.
However, there are also several other scenario-based methods, which define
several differences or extensions to SAAM (Dobrica & Niemelä 2000). For

33

example, one of the approaches uses scenarios for analysing modifiability
(Lassing et al. 2002).

Often, the analysis methods tend to concentrate on averages (Lassing et al.
1999). This is a problem, because really complex scenarios may be overlooked
or their effect gets smoothened. Lassing and his colleagues defined a two-
dimensional framework to structure the process of finding complicated
scenarios. The dimensions of the framework consist of the source of the scenario
and the types of adaptations that are needed.

Another work for supporting scenario elicitation consists of general scenarios
(Bass et al. 2001). This work defines what kinds of scenarios can be defined for
each quality attribute. A general scenario describes how the architecture should
respond to a certain stimulus. General scenarios are used in the evaluation as a
guideline or checklist to create the concrete scenarios. Using them could make it
less likely that some scenario will be neglected. In addition, malformed
scenarios that create ambiguity problems could be avoided.

Because there seems to be confusion in the research community even on how
exactly the metrics should be defined (Briand & Morasca 1996; Weyuker 1988),
it may not be easy to use them in the architecture evaluation. The other thing is
that they are usually made for evaluating source code. The following metrics are
promising also to the architecture evaluation:

• “Coupling is the measure of the strength of association established by a
connection from one module to another” (Buschmann et al. 1996). Coupling
measures especially for high-level design have been defined both for the
module and the system levels (Briand et al. 1999).

• “Cohesion measures the degree of connectivity between the functions and
elements of a single module” (Buschmann et al. 1996). Several measures
have been used for analysing cohesion (Bieman & Kang 1998; Briand et al.
1999).

• Structural complexity is a system property that depends on the relationships
between elements, and is not a property of an isolated element (Briand &
Morasca 1996). Several complexity measures have been defined, for

34

example, McCabes cyclomatic number (McCabe 1976) and Oviedo’s data
flow complexity (Oviedo 1980).

• Size of the system can be defined as the number of modules, the number of
procedures etc. Size has been used for example for estimating effort
(Bengtsson & Bosch 1999).

Metrics-based and scenario-based approaches can also be combined (Briand &
Wüst 2001). Although mathematical measures for metrics were not used,
analysis of coupling and cohesion can be used together with scenario-based
approach (Kazman et al. 1996). Low coupling means that a single scenario does
not affect large number of components. On the other hand, high cohesion means
that components are not hosts to scenario interactions.

Because the quality attributes are not independent of each other, one part of the
evaluation should be to analyse whether there are conflicting requirements
somewhere. In addition to conflicts between quality requirements, there can be
so called architectural mismatches (Gacek 1998) which are conflicts that may
occur when subsystems and components are integrated to one system.

The Architecture Tradeoff Analysis Method (ATAM) is a structured technique
for understanding the tradeoffs inherent in the architectures of software intensive
systems (Kazman et al. 1998). It was developed to provide a principled way to
evaluate a software architecture’s fitness with respect to multiple competing
quality attributes. ATAM has grown out of the work on architectural analysis of
individual quality attributes, SAAM (Kazman et al. 1996). The phases of the
analysis method are (see Figure 2-1): scenario and requirements gathering,
description of architectural views, attribute specific analysis, and tradeoff
analysis.

This work utilises many of the previous methods. The idea behind selecting the
methods was that it should be possible to use them without any tools and also
that the evaluation can be done purely on the level of architecture. Simulation
and prototypes are a good way to support analysis but in the early phases of the
development it may not be possible to use them. Because our focus is on the
tools for an architect, scenarios therefore constitute the basic approach;
especially the ideas in SAAM and ATAM are utilised. RMA is good for

35

analysing performance because it can be applied manually but there are also
commercial tools for it. There is no need to prepare any additional diagrams only
for RMA. The purpose of the evaluation affects the way the evaluation is
performed. Because the purpose of this work was to find tools for an architect,
the evaluation results are mainly used for comparing architectural decisions.

Collect
Scenarios

Collect
Requirements,

Constraints,
Environment

Describe
Architectural

Views

Realize
Scenarios

Attribute
Specific
Analyses

Identify
Sensitivities

Identify
Tradeoffs

PHASE I
Scenario &
Requirements
Gathering

PHASE II
Architectural
Views &
Scenario
Realization

PHASE III
Model building
& Analyses

PHASE IV
Tradeoffs

Figure 2-1. Steps of the Architecture Tradeoff Analysis Method.

2.6 Architecture design

Architecture design methods are usually applicable in creating new architectures
or in analysing existing architectures. The design methods provide support in
making the architectural decisions and selecting between solution candidates.

Bosch and Molin present an architectural design method that employs iterative
evaluation and transformation of the software architecture in order to satisfy the
non-functional requirements (Bosch & Molin 1999). The outline of the method
is depicted in Figure 2-2. The method includes the following steps:

36

1. Architectural design based on the functionality. The non-functional
requirements (NFR) are not explicitly addressed at this stage. The result is a
first version of the architecture.

2. The design is evaluated with respect to the non-functional requirements.
Each NFR is given an estimate in using a qualitative or quantitative
assessment technique and the estimated NFR values are compared to the
values in the requirements specification.

3. If the estimation results are not acceptable, an architecture transformation
phase is executed. Architecture is improved by selecting appropriate
transformation: imposing an architectural style, applying an architectural
pattern, applying a design pattern, converting NFRs to functionality, or
distributing requirements.

The phases 2 and 3 are repeated until all NFR are fulfilled or until the software
engineer decides that no feasible solution exists.

Requirement
specification

Functionality-based
architectural design

Application
architecture

Architecture
transformation

NFR-optimizing
solutions

Not
OK

OK

Estimate
NFR

Figure 2-2. Outline of an architectural design method.

37

COMPARE framework, in Figure 2-3, can be used to analyse an existing system
or to choose among competing architectures (Briand et al. 1998). The goal has
been to take advantage of all the relevant and practical existing ideas,
approaches, methods, and representations currently used in the field of software
architectures, and integrate these into an operational framework.

Elicit Goals (Qualities,
Scenarios, Stakeholders)

Represent
Architecture

Assess Qualitative
Impacts

Assess Quantitative
Impacts

Apply Decision
Models

Refine External
Quality Attributes

Apply Measurements
Instruments (Internal)

Measurement

Experience
Base

Development
Stage

Method
Activities

Method
Artifacts

Method Step

Figure 2-3. The COMPARE framework.

The goals in COMPARE are specified as scenarios. The development stage
determines how much information is available in the representation of the
architecture. Qualitative impact assessment is used for finding out the very areas
of the architecture that will be investigated more deeply, by building quantitative
models of the impact. For carrying out quantitative impact analysis, it is
necessary to refine the quality attributes, i.e. decompose them into measurable
attributes, which are deemed good indicators. A measurement instrument is the
means of turning a measurement, as a description of information and its
combination into something that an evaluator can act upon. This translation will
take the form of a set of guidelines for choosing appropriate tools. For example,
the coupling can be measured subjectively by asking the architect to present the
ranking of connector strength among architectural components. A decision

38

model, in this context, is a means of using the output of the impact quantification
models for making decisions about the architecture.

Architecture description languages (ADL) are methods for formal
representations of architectures. A number of ADLs have been proposed for
modelling architectures such as Wright (Allen & Garlan 1997), Darwin (Magee
& Kramer 1996), Rapide (Luckham & Vera 1995), and UniCon (Shaw et al.
1995). ADL development has mostly focused on verification of system
functionality and interface matching and for automatic generation of applications
whereas in industry functionality and quality attributes have equal importance
(Bosch 1998). Only a handful of ADLs support the specification of non-
functional properties and architectural refinement and constraint specification
have also remained largely unexplored (Medvidovic & Taylor 2000). Recently,
there has been considerable interest in using general-purpose object design
notations such as Unified Modeling Language (UML) for architectural modeling
(Hofmeister et al. 1999b; Egyed & Medvidovic 1999).

As Bosch and Molin (Bosch & Molin 1999), we start the architecture
development from the functionality and then use the non-functional
requirements for refinement. We also use the iterative approach of going back to
refinement after comparing the architecture to the requirements as long as the
requirements are met. As in COMPARE (Briand et al. 1998), we analyse both
qualitative and quantitative attributes. In addition, we measure the internal
capabilities of the architecture in order to get values to the (external) quality
attributes. ADLs are not used in this work because their usage seems to require
too much work for the purposes of DSP software development. In addition, there
have been some doubts about the adequacy of their support for quality
requirements. Therefore, mainly UML is applied in describing the architectural
views.

2.7 Summary

The related research has contributed both ideas and practical solutions to this
work. The summary of the related activities in the architecture development of
multimode DSP software is illustrated in Figure 2-4. The main influences on this
work have been as follows:

39

• The architecture description is based on Kruchten’s four views (Kruchten
1995) added with a language-language independent development view
(Hofmeister et al.1999a).

• The quality attributes create a basis for architecture development. They are
concretised by using the taxonomy and quality attribute definition of
Barbacci and his colleagues (Barbacci et al. 2000).

• The ideas of reconfiguration by Segal and Frieder (Segal & Frieder 1993)
are used for answering to some problems derived from the multimode
feature.

• In the architecture refinement, the initial architectural views are modified
according to the quality requirements and reconfiguration needs. The used
concept of defining the main problems for each view and defining strategies
for solving them is similar to that of Hofmeister and her colleagues
(Hofmeister et al. 1999a). Architecture refinement utilises the architectural
styles and patterns (Buschmann et al. 1996; Bass et al. 1998).

• The architecture evaluation is based on the quality requirements. The ideas
of possible evaluation methods and the definition of profiles are inherited
from Bosch (Bosch 2000). Scenario-based analysis is based on SAAM
(Kazman et al. 1996) and ATAM (Kazman et al. 1998) with additions to
how to elicit the scenarios (Lassing et al. 1999). RMA is applied in
performance analysis (Klein et al. 1993).

• The architecture development denotes iteration between refinement and
evaluation. The design approach has gained ideas from Bosch and Molin
(Bosch & Molin 1999), and from the COMPARE approach (Briand et al.
1998).

40

Views

Reconfiguration

Refinement

Quality attributes

Design methods

(Hofmeister et al. 1999)
(Buschmann et al. 1996)

(Bass et al. 1998)

(Kruchten 1995)
(Hofmeister et al. 1999)

(Barbacci et al. 2000)

(Bosch 2000)
(Kazman et al. 1996)
(Kazman et al. 1998)
(Lassing et al. 1999)
(Klein et al. 1993)

Evaluation

(Segal & Frieder 1993)

(Bosch & Molin 1999)
(Briand et al. 1998)

Figure 2-4. Summary of related research.

41

3. Problem analysis
The purpose of this chapter is to analyse the characteristics and constraints in the
development of multimode DSP software. The information has been gathered
using product documents, interviews and literature.

3.1 Multimode products

There has been a growing interest to multimode wireless products in the last few
years. Firstly, there are already several wireless standards in use, and new
standards are being developed. It is not likely that the current systems are
removed from service in the near future. Secondly, one network may not be able
to fulfil all the requirements of the users. For example, WLAN is mainly
directed to be used indoors and in areas where high availability is needed,
whereas WCDMA is designed for use in urban areas. So there will be several
wireless systems available at the same time. If not any of them is chosen to be
the one and only system, as seems to be the case, there will be a need for
multimode phones and base stations. When several modes are included in one
system, additional control is needed for handling the mode changes (Kukkohovi
1996).

In the multimode systems, there are several questions that should be answered
relating to the transparency of the multimode functionality. Should the user
know in which network he is camping? Should he know when a handover from
one network to another occurs? Is it even possible to make the handover
transparent? What are the responsibilities between the network and the handsets?
Many of these questions should be defined by the standards but so far only the
GSM and WCDMA co-operation has been considered.

The future wireless terminals will not be only multimode but also multimedia
terminals. All the media forms will be represented: audio, video, text etc. In
addition to new applications, the end user needs will be catered for with more
customisation. There will be handsets that have all the possible services but also
handsets that have only a minimum capability. The Internet will be the core of
the operations. In fact, new services may be downloaded to the terminal when
needed, similarly to the downloads to PCs nowadays, even over the air interface.

42

There are visions that not only applications are downloadable but also the
underlying platform including the radio interface functionality (Lu 2000;
Srikanteswara et al. 2000; Varshney & Vetter 2000). A fully reconfigurable
mobile device could be able to select the wireless network that best meets user
requirements.

One possibility in the incorporation of mobile communications, Internet,
multimedia, dedicated point-to-point communications, and personal computing
is software defined radio (SDR) (Mehta et al. 2001). “SDR is defined as one that
implements a specified range of capabilities through elements that are software-
reconfigurable” (Mitola 1999). The radio is a software radio when the functions
may be redefined in software (e.g. by downloads). Ideal software for a mobile
phone would be therefore a multiband multimode radio with dynamic capability
defined through software in all layers of the protocol stack, including the
physical layer. The requirements for reconfigurable mobile communications can
be considered from several perspectives (Drew & Dillinger 2001), viz. end-user,
application developer/content provider, service provider, network operator, and
terminal and component manufacturer perspectives. As a rule, end-users value,
for example, ubiquitous mobile access, low cost and relevant services. On the
other hand, terminal and component manufacturers expect that the product
creation is fast and the software updates are easy to make.

Portable unit challenges, which are used in the marketing, are usually size,
weight, power consumption, and cost. Not only the appliance but also the cost of
phone calls is important. Power can be saved by sleep modes, which exploit the
low duty cycle of voice and data communications. A large part of handset power
is consumed in clock generation and distribution. Multimode handsets in
particular must generate several different clock rates for each supported
standard. The cost of handsets in volume production can be seen as a nearly
linear function of parts count (Mitola 1999). Therefore, handset software has to
be extraordinarily efficient in the use of computation resources. In addition to
the product requirements, the development has also other goals. For example,
right timing of the releases and error-free products are emphasised (Kaikkonen
1996).

Challenges in the base station development are similar to handsets as regards to
performance and cost. However, power consumption and resource utilisation are

43

not as critical. Reliability is important because the network cannot be allowed to
be down very long. A thorough testing should make sure that crashes occur
extremely seldom. In addition, the life cycle in base stations is longer than in
handsets. Therefore, maintenance should be provided at least for ten years.
There is also a smaller selection of products in a product family. The amount of
channels to be supported is the main influence on the cost of base stations.

3.2 DSP system components

A signal processing system can have three types of components (Figure 3-1):
hardware platform, software platform, and application software.

Hardware platform

Software platform

Application software

Figure 3-1. DSP system components.

The functionality that the application software has to implement can be divided
into signal processing components and control components. Signal processing
parts are usually further divided into transmitter and receiver parts. Signal
processing functions include, for example, channel coding and interleaving in
the transmitter side and respective decoding functions in the receiver side. The
receiver is usually much more complex (Mitola 1999). Control includes
functions such as communication with other processors, power level control, and
high level control of signal processing. The application software also controls
the communication with the other parts of the multimode product.

44

A software platform includes hardware drivers, interrupt servers and operating
system if there is one. The evolution of real-time operating systems (RTOS) has
had a significant impact on the performance of DSP solutions (Oshana 1998).
There are now RTOSes defined specifically for DSPs. DSP RTOSes have
features such as several scheduling options from pre-emptive priority-based real-
time multitasking to time-slicing, deterministic critical times, and support for
direct memory access (DMA).

A hardware platform controls the radio interface. It may be composed of one or
more of the following components: digital signal processors, reduced instruction
set computing (RISC) processors, application-specific integrated circuits
(ASICs), core-based ASICs, analog circuits, field programmable gate arrays
(FPGAs), memory, buses, and all sorts of peripherals.

The following features should match the application when selecting a processor:
type of CPU, direct memory access, memory access, on-ship memory, and I/O
port (Oshana 1998). Digital signal processors come in many varieties. They can
be fixed points or floating points. DMA is used in applications demanding high
data rate and I/O. Digital signal processors designed to support high data
throughput have one or more communication ports to allow a fast transfer of
data in and out of the processor. The speed of general-purpose processors has
increased to the point that they can be used for running signal-processing
applications (Oshana 1998). However, some intensive applications have high
enough complexity and speed requirements to justify a development of an
application-specific multiprocessor system.

One or more ASICs can be used for the performance-intensive portions of a
system. Core-based ASICs are especially common in portable applications.
Programmable processor cores are combined with custom datapaths within a
single die. FPGAs are fast and can do certain functions very quickly but they are
difficult to develop compared to programming digital signal processors.

It is possible to use registers, on-chip memory, or external memory. Most digital
signal processors do not have an extensive amount of on-chip memory.
However, the speed, power, and cost penalties for using off-chip memory are
often prohibitively high for DSP software.

45

Compared to multi-chip systems the migration of discrete components into a
single-chip footprint enables designers to take advantage of the cost, power and
speed (Peters 1999). Developers can integrate peripherals, memory, DSP cores,
microprocessor cores, application-specific cores, and proprietary third-party
cores. A system-on-chip (SoC) attempts to integrate different design
technologies into a single chip. Thus, software and hardware development brings
about many challenges, along with the selection of tools, training, and
methodologies. The development of highly integrated systems has resulted in
more emphasis being put on hardware/software co-design.

3.3 DSP software characteristics

The complexity of implementations of software for embedded DSP applications
arises from intense time-to-market pressures and tradeoffs between different
implementations with respect to area, power, cost and performance (Kalavande
& Lee 1993; Bhattacharyya et al. 1999). DSP software is constrained by
standards. However, only the transmitter side is usually defined in the standard
and the receiver has to be made so that it is able to receive the transmitted signal.
In addition, although designers basically have different choices in implementing
some functionality, functionalities are nevertheless often designed in a
traditional way that has been found reasonable for that problem.

DSP algorithms are typically periodic real-time operations. Latent periods of
interrupts should be as short as possible. A response time requirement for each
message or message type should be specified. Time consuming algorithms must
be written in such a way that they are as fast as possible. Because of stringent
timing requirements, some of the algorithms have to be implemented in
hardware. Therefore, DSP software can include complex hardware interfaces.

Especially in base stations, functionality can be distributed into several
processors. There is a need for scalable software architectures that would enable
the increasing of the capacity easily. In handsets, on the other hand, it is
important to save power e.g. with power saving modes. However, the saving of
the memory – for example, the same memory area is used for several purposes in
different modes – is the most important factor when speed is not critical

46

(Kaikkonen 1996). Consequently, unfortunately, the complexity of the code
increases.

The development of DSP software includes many compromises. Which
characteristics are emphasised depends on the product’s requirements and the
needs of the applications that utilise the DSP platform. If speed is optimised, the
system may consume less power - often, at the cost of memory. If memory is
optimised, it may reduce memory accesses and hence power consumption but
generally slows down code. Finally, power-optimised code can be equivalent to
optimising speed but may just as well slow down code. In addition, all these
optimisations affect the development time. At some point, the time used in
optimisations does not pay off. It is also typical of DSP software that the
standards are not completed before the software design begins so that the
designed components should be made adaptive in order to prepare for changes in
requirements.

3.4 Development characteristics

This chapter describes the position of DSP software design in the DSP system
development and the current practices in the DSP software development. It also
discusses the current status of the reuse of artefacts.

3.4.1 Development process

The issues in the design of signal processing systems range from the partitioning
of algorithms between hardware and software to the selection of the type and
number of processors, selection of the interconnection network, synthesis of the
software, and synthesis of custom hardware. DSP system development has
usually the following phases (Figure 3-2): algorithm design, software/hardware
partitioning, hardware and software implementation and test, and integration and
test of the combined functionality (Kalavade & Lee 1993; Vihavainen &
Marttila 1998).

47

Algorithm
Design

Software/
Hardware

partitioning

Software
develpment

Hardware
development

Integration

Figure 3-2. DSP system design phases.

Algorithm developers think about the problem to be solved on an abstract level.
Their concern is to make sure that the algorithm fulfils the specifications but
they are not necessarily interested in the implementation. This is the phase,
which corresponds to the requirements analysis in other software development.
Algorithm development usually includes simulations with special tools and the
performing of complexity estimates. This phase gives an ideal goal to the
performance that the system should have.

In the next phase, different hardware platforms are studied and functionality is
divided between selected platforms in accordance with the complexity estimates.
Usually, an experienced hardware system designer is responsible for this. In this
phase one can also first carry out a feasibility analysis in order to analyse several
options for hardware platform at a high level as well as to analyse the
requirements further. After this, software development and hardware
development continue in parallel. However, the hardware/software interface
specification usually requires participation from both parties. In the integration
phase, the results of the hardware and software development are combined and
tested.

48

DSP software development has traditionally comprised functional specification,
software architecture design, software design, software implementation,
simulation, and emulation. The case is often such that software requirements
specification has not been written; instead, the functional specification has partly
compensated it with clarifying the functionality to be developed. The functional
specification has been based on higher-level system documents and standards.

In the software architecture specification, the system has been decomposed into
processes, and the interfaces between components and to the hardware are
clarified. Usually this denotes some sort of block diagram. Interfaces are defined
with message sequence charts (MSC) or equivalent. In handset development,
this phase has often been left out completely (Kaikkonen 1996). In simpler and
more resource-restricted systems, the architecture has traditionally been based
on the main-loop and subroutines style and no operating system or tasks have
been used.

The process of coding algorithms is usually iterative. If the implementation does
not fulfil the performance requirements, they have to be optimised. The
implemented units are first tested in a simulator environment. Although tools
have become better, most of the errors are still found in integration tests, because
unit tests and other intermediate tests are not kept up-to-date (Kaikkonen 1996).
Cycle accurate simulators are needed in order to obtain execution estimates.
Emulation is needed for timing related problems and parallel processing
applications.

Traditionally, the hardware platform has been fixed first, after which software
has been adapted to it (Vihavainen & Marttila 1998). HW/SW co-simulation is
not yet very common because hardware simulation, in particular, is quite slow.
Therefore, usually the developed hardware and software units are first integrated
and tested in an environment that may include emulator and FPGAs. Often the
software developers also carry out the integration testing (Kaikkonen 1996).

3.4.2 Development in practice

Time-to-market is very important especially in the handset development.
Because of the limited human resources, the importance of an overall

49

development effort has grown. There is an increasing shortage of capable new
employees. However, usually the cost of the development has not been a
problem.

DSP algorithms have until recently been developed in assembly. When
processors and compilers have become more efficient, C has been taken into use
instead. This is because assembly is not portable, it increases time-to-market, it
is harder to maintain and harder to write (Oshana 1998). However, in low-power
embedded products using fixed-point processors code is still written extensively
in processor-specific assembly (Kaikkonen 1996). Furthermore, although code
were written mainly in C, some critical functions may have to be made in
assembly. Today, DSP compilers still produce significant overhead with respect
to assembly code written and optimised by hand (Zitzler et al. 2000).

Usually the product schedules are so tight that as many design phases as possible
are done concurrently. This may sometimes lead to situations in which such
decisions have to be made, at least temporarily, that are not based on facts but
more or less on educated guesses. Later, when all the facts are known, the
decisions may have to be changed. The other thing that causes uncertainty is that
the standards that the products should be based on are not stable and may change
during the development.

The embedded software development is also influenced by the hardware that it
should interface with. The complexity of the software may depend on the
complexity of the hardware. There is always a tradeoff in the hardware/software
interface on what functionality should be put to what part and whether the
increase of hardware complexity is afforded in order to get a more efficient
software implementation. Often, software is considered to be free. Consequently,
whenever new features are required or hardware seems to become too costly, the
responsibilities of software are increased.

DSP software tools have not been on the same level as in other embedded
software development. One thing that makes the situation harder is the close
operation with the hardware. DSP code is usually difficult to test with
simulators. Therefore, the software components and hardware have often been
integrated and simultaneously tested in an emulator environment (Kaikkonen
1996).

50

3.4.3 Reuse of artefacts

Building sets of related systems together can yield improvements in
productivity, time to market, product quality, and customer satisfaction (Bosch
1998; Bass et al. 1998; Bass et al. 2000). These systems create product families.
Many mechanisms are commonly used to achieve reuse and sharing in product
families. The most common way is to manipulate source code through
conditional compilation and source code configuration management (Karhinen
et al. 1997).

In DSP software, the lack of standard coding guidelines combined with scarce
processing power has often resulted in an unclear software structure (Huotari
1999). This has caused problems for reusability. In our definition, real reuse
denotes the possibility of choosing a code component without testing it and
trusting that it does what it promises. Although these kinds of reusable
components may be found in DSP software, there is an additional problem that
the components may never be frozen. The algorithms will keep on evolving. Bit
exact functions that are not optimised with assembly are the best candidates for
reuse. For example, most channel coding functions may be reusable because
they are bit exactly described by the 3GPP WCDMA standard. Another problem
for reusability is that new standards are not exactly stable themselves and after
they are fixed, modifications may be caused by the customer preferences
especially in the base station development.

Standardisation creates possibilities for using COTS components. However, this
is not without problems. For example, while many cellular phones incorporate
software components licensed from third parties, their definition is ad-hoc, their
architecture unsophisticated, and their role in a system totally static (Lee 1999).

The industry still shows indifference to software architecture benefits (Maccari
& Saridakis 1999). They often generally underestimate the software architecture
or they do not have enough knowledge to use it in a right manner. They are
trying to evolve their old systems with minimum modifications. Finally, they do
not have clearly defined system requirements and often the strictest requirement
is the deadline for product delivery.

51

Products in a product line share a common architecture that is used to structure
the components of which the products are built. The architecture and
components are central to the set of core assets used to construct and evolve the
products in the product line. In addition to components, architecture supports the
reuse of other assets in the product line. They include personnel, defect
elimination, project planning, performance issues, processes, methods and tools,
and exemplar systems (Bass et al. 1998). One of the problems in managing
product lines is their evolution. It is not realistic to expect that assets could be
designed taking into account all thinkable forms of variability, but assets should
be designed so that the introduction of new variability requires minimal effort
(Bosch 1998).

3.5 Summary

Until recently, DSP software design has concentrated on optimising the
functionality of the algorithms. In the emergence of new technologies and need
for new types of products, the current DSP software development has the
following characteristics and challenges:

• Multimode operation and new applications create more complicated
products and more control functionality in addition to the traditional signal
processing features.

• DSP software should fulfil the requirements imposed by standards and
designed into algorithms by algorithm experts. On the other hand, it should
be done within the boundaries defined by the hardware such as processing
time, memory usage, and power usage restrictions.

• Time-to-market pressures necessitates the starting of several design
activities in parallel - due to this, requirements may still be unclear at the
moment of setting about a design task.

• Hardware and software designs are done concurrently. The
hardware/software partition is difficult to make. In addition, there is a need
for getting hardware interfaces that are more easily controlled by software.
However, this may cost in hardware.

52

• Software development is dictated by hardware architecture. Often, hardware
architecture is fixed before software design even starts. In addition, it is
frequently the case when reacting to the changing requirements that software
is considered free, with only hardware cost counting.

• The overall system functionality is difficult to manage and understand
because of rigorous optimisation. Often, only the original developer is able
to make changes to software modules. This causes problems in the training
of new people, in maintenance, and for reuse between different products.

• In order to shorten the time-to-market, there is a need to increase reuse.
Reuse between similar products creating product lines, in particular, but also
reuse from earlier products should be facilitated. Because high-level
languages are starting to be used in the development, this is now possible.

• Although control functionality increases, the main problem remains the
same: how to implement the signal processing functionality efficiently?

53

4. Quality attributes
The purpose of this chapter is to study the DSP system qualities from the
software architecture point of view. Quality attributes are the common goals that
different interest groups have for the system. Usually in a software development
project, some of them have been implicitly taken into account but they are not
written down anywhere. The quality attribute taxonomies have been earlier
published in (Purhonen 2001).

4.1 Introduction

There is a difference between the academic view of the software architecture and
the industrial view (Bosch 1998; Maccari & Saridakis 1999). Whereas academic
research has concentrated more on finding methods for validating the
functionality, the industry struggles with ensuring other factors of their products
such as performance.

The requirements that affect the DSP system’s architecture come from three
sources: standards, customers and end-users, and developing organisation. The
primary quality goals for a DSP system are classified in Figure 4-1 based on the
analysis of the previous chapter. The focus should be on the most important
quality goals because the biggest gain can be found there. This is only a list of
the primary goals; the weight of each quality should be specified for each
product individually. Consequently, the optimisation of the architecture can be
prioritised further.

Standards are the main source of performance and functionality requirements for
a DSP system. Functionality can also be derived from customer requirements,
and a development organisation can add some functions, for example, for
testability reasons. Customers and end-users value the low cost and usability.
Consequently, especially in the handsets, the weight and size of the system and
power consumption are important issues. A development organisation can have
both short-term and long-term goals. A short-term goal is to get the product
released as early as possible and a long-term goal is to also make it modifiable.

54

Standards

Customers

Development

Performance

Functionality

Usability

Product cost

Power
consumption

Weigth and
size

Short-term

Long-term

Time-to-market

Modifiability

Reuse

Figure 4-1. DSP system quality goals classified by their sources.

The non-functional quality attributes are further studied in the following
chapters. The qualities are classified under three titles: performance, cost, and
variability (see Figure 4-2). Performance handles all the resource-related quality
goals. Hardware cost is relevant to performance in measuring resource
utilisation. Cost concerns all the money-related goals. Variability is for studying
the architecture’s ability to endure change. Variability includes a modifiability
goal of one product but it also measures how well the architecture could be
applied to another similar product. The degrees of variability cover the cases
where the architecture cannot be used for another product at all, where
significant or minor modifications have to be done, or where the architecture is
valid as such.

55

Performance

Product cost

Performance

COTS
components

Hardware
cost

Average
power

utilization

Power
consumption

Time-to-market

Modifiability

Cost

Variability

Weight and
size

Maximum
resource
utilization

Developmen
t cost

Reuse

Figure 4-2. From quality goals to quality taxonomies.

The quality attributes are concretised with taxonomies. They are used for getting
a better understanding of the quality goals; how they can be measured or how
architectural choices affect them. Additionally, taxonomies offer a rationale for
asking elicitation questions in the evaluation phase and a base for tradeoff
studies. The taxonomies have the following branches (Barbacci et al. 2000):

• Response section describes the measurable or observable quantities that
characterise the quality.

• Stimulus can be divided into two types of events: some cause the execution
of the operations of the system, some require operations on the system.

• Architectural parameters are the decisions that are made during the software
architecture design. Architectural parameters are the internal factors that
affect the way the system reacts to stimulus.

56

A fourth branch not suggested by Barbacci et al. consists of external factors.
Like architectural parameters, external factors affect the qualities but they are
not included in the taxonomies because they are outside the scope of the
software architecture design. However, they have equal importance in achieving
the qualities and it can be said that the whole embedded system design is a
tradeoff between all the factors. For example, performance measurements may
have to include the time spent in hardware calculations and the cost
measurements should count the cost of hardware components although they
cannot be changed by software architecture. External factors are characterised in
Figure 4-3.

Factor

Availability

Complexity

Resource

Experience

Price

Capacity

Functionality

Personnel

Tools

ALGORITHMS

ORGANISATION

HARDWARE

Figure 4-3. External factors.

The software architecture design is constrained by the organisation, algorithm
designs and hardware designs. Because it is difficult to get trained personnel
nowadays, the importance of finding right people for development projects has
grown. In a DSP system, the complexity of the algorithms is dependent on how
good a result is required from it. Thus, in some cases, the lowering of the output
requirements may simplify the implementation significantly. During software
architecture iteration, the hardware characteristics as well as the other factors
should be fixed. However, after the software architecture is optimised, the other
factors can be changed thus causing further iterations of the software

57

architecture. On the one hand, hardware gives a limit to the maximum available
resources and on the other hand, it gives parameters in achieving the
performance goals, e.g. in the form of execution time estimates.

The taxonomies are used as a base for questions when one is trying to attain an
understanding of the system requirements. In each chapter, there is a table of
example questions, which can be asked in interviews during the requirement
study. In addition, the chapters include examples of what the answers could
include.

4.2 Performance

In DSP systems, the performance often denotes a presentation of how well the
signal that is produced by the algorithms fulfils the standards. In this context,
however, we are not considering signal-interference-ratios and such; instead, we
consider how well our implementation of the algorithms fulfils their
specification and more precisely, how the architecture affects the possible
outcome of the implementation work. Performance would not be a problem in a
perfect world. There would always be enough memory, enough processing
power etc. However, in our case there usually is not. Architecture can reduce the
performance by causing features such as indirection and additional
communication. Architecture can facilitate reaching performance requirements
with better understanding of the functionality of the system, reuse of optimised
components etc.

The performance taxonomy is presented in Figure 4-4. Performance analysis is a
mature domain and therefore the existing taxonomies and research has been
extensively utilised in creating this taxonomy (Smith & Williams 1993; Barbacci
et al. 1995; Bellay et al. 1997; Klein & Kazman 1999; Barbacci et al. 2000).

58

Performance

Architecture

Latency

Throughput

Mode

Resource type

Resource consumption

Resource allocation

Stimulus

Response

Source

Arrival pattern

Criticality

Resource utilisation

Power consumption

Figure 4-4. Performance Taxonomy.

The response section contains the measurable or observable quantities that are
used for assessing the performance. Response section contains latency,
throughput, resource utilisation, and power consumption. They are further
classified in Figure 4-5.

• Latency is a measure for how long it takes to respond to a specific event.
The worst, best and average values for latency can be calculated, although
the worst case is usually the most interesting. Jitter is a measure of the
variation of the time at which a computed result is available from cycle to
cycle.

• Throughput refers to the number of events that can be responded to over a
given interval of time. The best, average and worst case measurements can
be made from it.

• Resource utilisation is measured because the software has to work with the
resources that are given by the hardware platform. The software decisions
have an effect on what kind of hardware is needed but the hardware brings

59

about restrictions on what kind of software can be developed. Especially in
the hardware/software interface, a detailed tradeoff should be made on what
is done in software and what is done in hardware. Obviously, the software
side hopes that the data it receives from hardware is in a form that can be
easily used in software. However, this may mean an additional amount of
die area that is not acceptable. In addition to tradeoffs between software and
hardware, there are also tradeoffs between different kinds of hardware. For
example, minimisation of processor utilisation can increase memory
utilisation.

• Power consumption is separated from other resource utilisation because in
the resource utilisation side the equivalent measurement would be the price
of a battery, and therefore, the maximum usage of power. Instead, power
consumption is measured using the average utilisation of power.

Response

Resource utilisation Best/Worst case

Average power utilisationPower consumption

Throughput

Latency
Best/avg/worst case

Best/avg/worst case

Jitter

Figure 4-5. Performance taxonomy: Response.

Stimulus describes the events that cause the architecture to respond or change.
Systems can have different requirements for different modes. In addition to the
normal mode, a system can have, for example, a testing mode. Source specifies
the different types of sources of events: internal, external or clock interrupt.
Internal events come from hardware to software and external events are
commands to the DSP system from other subsystems of the product. Arrival
pattern denotes the frequency of the events and it can be periodic or aperiodic.
When it is aperiodic, it can be further specified as sporadic (minimum inter-

60

arrival time) or random. Important information is also gained by the criticality of
the events, which can be used in prioritising the handling of the events.

Architectural parameters define how the architectural decisions affect the
response of the system. Figure 4-6 presents details of the architecture section.
Performance depends on the resources and their allocation. Resource types
include CPU, memory, bus, dedicated hardware, and battery. Respectively,
resource consumption can be expressed as execution time, memory size,
bandwidth, silicon area, and power consumption. The resource allocation policy
has a primary influence on the performance of a system. For example, the worst
case latency depends on how CPU time is allocated.

Resource allocation deals with policies and procedures for deciding between
competing requests for a particular resource.

• Scheduling policies. There are various aspects in scheduling that should be
considered. Firstly, scheduling can be constructed off-line or on-line. Off-
line scheduling usually denotes a cyclic executive approach. In on-line
scheduling there are several algorithms that can be used, but before that, one
should define whether dynamic or fixed priorities are used. Additionally,
one aspect of scheduling is whether pre-emption is allowed or not.

• Queuing policies include decisions upon such issues as the queuing order
and whether there should be one queue for each resource. Mutual exclusion
methods may be needed when resources are shared.

• The communication method depends on whether the communication takes
place in the same hardware node or between separate hardware nodes. In the
same node, information can be exchanged through memory, with shared
memory, global variables or parameter passing. Methods to exchange
information between separate nodes include techniques such as interrupts,
polling, and DMA. The communication can be classified as synchronous or
asynchronous or as direct or indirect. In addition, the communication
protocol should be defined.

61

Architecture

Resource type

Resource consumption

Resource allocation

CPU

Memory

Bus

Memory size

Execution time

Bandwidth

Scheduling

Queuing

Communication

Dedicated HW

Battery

Area

Power

Figure 4-6. Performance Taxonomy: Architecture parameters.

Table 4-1 shows examples of the questions that can be presented for clarifying
the performance requirements for a DSP system. The questions can be answered
by algorithm designers, hardware experts, business experts etc. These questions
are from different phases of development. For example, execution time estimates
cannot be given before the complexity estimates of the algorithms exist and the
implementation platform has been defined.

62

Table 4-1. Performance questions.

Question Example answer

What are the modes of the system? The modes of operation are defined in a
state model in page xx in the requirements
specification.

What are the services that are
requested from DSP system i.e.
what are the external events?

The external events for DSP are defined in
table xx in the requirements specification.

What are the hardware interfaces,
i.e. what are the internal events?

The hardware interfaces are defined in the
hardware interface specifications x, y, and
z.

What is the criticality of the
events?

The criticality of the external events is
defined in table yy in the requirements
specification. The criticality of internal
events is defined in table zz of the
hardware interface specification x.

What is the execution time estimate
for algorithm x?

Algorithm x is mapped to processor y.
Therefore, its execution time estimate is z.

4.3 Cost

In this context, cost refers to what can be earned with the product. The customer
is usually interested in the price of the product, whereas the manufacturer thinks
about what is left when the production and development costs are taken out of it.
In addition, the earlier the product can be released, the more can be earned by it.

Architecture can help in reducing the development time in making the system
more understandable. It can be used when different interest groups discuss the
features of the system, so that the most difficult problems are found early in the
development cycle. It can be used for training the new developers to understand
the overall system. Architecture also helps in reducing the development time in
dividing the system into more manageable units. In addition, being a base for

63

further development, architecture can be used for organising the development
unit and assigning duties to developers. Architecture is a common tool for all the
phases of the system development - especially, integration.

Defining software cost is a complex problem and a research subject in itself
(Withey 1996; Briand et al. 2000; Boehm et al. 2000; Strike et al. 2001).
However, the goal at this point is not to give precise values to software cost but
to see how architecture can affect diverse business goals. This study is useful
especially if such features can be found that are suspected to be sources of undue
risk and, potentially, unbound cost. Characterisation of product and development
cost qualities is presented in the cost taxonomy, Figure 4-7.

Cost

Product cost

Feature

Architecture

Development cost

Resource usage

Integrability

Stimulus

Response

Module

Complexity

Size

Variant

Reuse

Personnel

Effort

Duration

Figure 4-7. Cost taxonomy.

Response is divided into product and development cost measures. Product cost
consists of the cost of the used resources, i.e., hardware cost. Development cost
is divided into three measures (Vigder & Kark 1994): the amount of personnel
that is needed, the effort that has to be put to the development, and the estimated

64

time-to-market i.e. duration. The cost of the tools, environments etc. is not
included in this study.

Stimulus to the cost quality consists of the features that are required from the
product. Often there are several variants of a product with different feature sets.
The architecture should support all these feature sets. Cost gives constraints to
what kinds of features can be included in the product. For example, the need of
the processing capacity of some feature can be so huge that it cannot be
implemented. In this case, the feature has to be modified or left out of the system
or the processing capacity has to be increased.

Architectural parameters are divided into resource usage, modules, and
integrability. The maximum resource usage defines, e.g. how efficient the
processor should be. In this way, cost is dependent on performance quality. In
addition, the cost depends on what type of processor is selected i.e. general-
purpose processor, DSP or some other. The release date can be calculated from
the time spent to develop individual modules and the integration time. Module
development time depends on the complexity and the size of the modules, and
reuse possibility. The module development phase can be shortened with
enforcing concurrent development. On the other hand, concurrent development
is supported by modularity. Integration time is affected by how integrable the
architecture is. Integrability means the ability to make separately developed
components work correctly together (Bass et al. 1998). Integration time will be
diminished if the architecture is integrable. In addition, the work is easier to
divide between developers, the system is more understandable, and incremental
builds are enabled. When architecture supports integrability and modularity, it
should have:

• well and completely defined component interfaces,

• well and completely defined component interaction mechanisms and
protocols, and

• clean partition of responsibilities to components.

65

The architecture can affect the development time with supporting the component
reuse from previous products or facilitating the use of COTS components. Using
patterns in solving the architectural problems increases reuse potential.

Table 4-2 shows examples of the questions that can be presented for clarifying
the cost requirements for a DSP system.

Table 4-2. Cost questions.

Question Example answer

What is the goal for release date? Release date 1 is x1.y1.z1. Release
date 2 is x2.y2.z3

What is the estimated development
time of algorithm x?

The estimated development time of
algorithm x is y.

What is the goal to the hardware cost? Cost of the hardware is estimated to be
x.

How resource usage is prioritised? Processor utilisation should be
minimised even at the cost of memory
usage.

4.4 Variability

A variability study includes the issues of how well the architecture adapts to
different types of changes and whether the same architecture can be used in
several similar products. Variable architecture should be able to cope with new
product features with minimal or no changes. Variability is a measure for
studying if the developed architecture could be taken as a base architecture to a
product line.

Reuse became an important goal also in DSP software with the possibility of
using higher level languages instead of assembly. New products are needed in
increasing pace; also, manufactures can no longer afford to develop each product
from scratch. There are needs to achieve productivity gains, improve time-to-
market, maintain market presence, compensate for an inability to hire etc. A

66

common architecture provides a base for developing a common set of assets. It
is used to structure components from which the products are built.

In this work, the focus is on the development of one reconfigurable product.
However, we want to prepare for future changes and therefore have similar goals
as in the product line architecture development. A reconfigurable multimode
product could be actually thought of as several products combined in one
product. Multimode DSP software architecture should facilitate reuse and
modifiability. In reuse, there are several viewpoints. Firstly, in a multimode
system, the architecture should facilitate reuse between different modes.
Secondly, the architecture should take into account the reuse of existing
components and encourage the developing of reusable components. The
modification of the product during its lifetime should be anticipated.

The variability taxonomy is depicted in Figure 4-8. Several sources have been
utilised in its development (Briand et al. 1998; Lassing et al. 1999; Barbacci et
al. 2000).

Variabilility

Response

Architecture

Complexity

External component

Change cost

Quality requirement

Stimulus

Defect fix

Functional requirement

Transparency

Information hiding

Modularity

Upgraded algorithm

Figure 4-8. Variability Taxonomy.

67

The response of the system or development organisation to changes is the effort
that is needed to make the change and the complexity increase that results when
the architecture has to be changed. As with the quality attribute cost, the change
cost can be classified with the following terms: product cost, personnel, effort,
duration. One example of the measures of complexity is the ratio of the number
of the interfaces to the number of components.

Stimulus is composed of various kinds of changes the architecture should adapt
to. Requirement changes come from the new or improved standards, customer
requirements, and development organisation. External components are COTS
components or internal reusable assets or hardware components. External
component change can mean a new COTS product that is taken into use, an
improved version of a COTS product or other reusable asset, a new version of a
processor etc. Most often, perhaps, the change is a defect fix. Algorithms can be
further developed during the architecture development, so they may also affect
the architecture.

The architectural parameters that support this kind of variability are:

• Transparency. The ability to move functionality within the system without
affecting other functions. The transparencies that are needed for supporting
variability include, at least, configuration and scaling transparencies
(Anthony 2001). Applications and services should function independently of
the way in which the system is configured. In addition, it should be possible
to scale-up parts of the system without changing the system structure or
algorithms.

• Information hiding, abstraction. Buschmann and his colleagues define
information hiding as “concealing the details of a component’s
implementation from its clients, to handle system complexity better and to
minimise coupling between components” (Buschmann et al. 1996).

• Modularity. Modularisation means the meaningful decomposition of a
software system and its grouping into subsystems and components
(Buschmann et al. 1996).

68

In order to be able to respond to the above-mentioned changes, the architecture
should include the following characteristics:

• Portability is needed for preparing software for hardware modifications. The
effect of hardware modification on software should be minimised. This can
be accomplished, e.g. by restricting the communication with the hardware to
few components or by using a hardware interface layer between the
hardware and application software.

• Scalability is needed for a multimode terminal in order to be able to add or
remove modes, channels etc. Additionally, the modification of the set of
applications may require that the architecture can flexibly adapt to rich or
modest feature sets.

• Extensibility ensures that the new requirements that emerge during the
lifetime of the product can be added to the system. On the other hand, it
should be possible to remove features that are not needed any more.

• Modifiability is important as standards evolve and new and better solutions
to old problems are developed. A modifiability goal in DSP software means
that new versions of algorithms can be changed to the system without
affecting the architecture. Modifiable architecture is modularised with
loosely coupled well-defined components.

• Reusability, here, means not only that it is possible to reuse components
from older products but that the components developed for this product
should be made reusable for the future products. Component reuse is based
on excellent definitions of components and on the reliability of their
implementation. In order to reuse a component, you should know its
restrictions to the full and you need to trust that it is implemented correctly
and according to its definition. If you are in any doubt, you should be able to
retest the component with the original test plan. On the other hand,
developing reusable components takes extra time and the saving can be seen
only in the future products.

Table 4-3 shows examples of the questions that can be presented for clarifying
the variability requirements for a DSP system.

69

Table 4-3. Variability questions.

Question Example answer

What are the anticipated product types
that the architecture should support?

Product types are specified in the
requirements specification in page x.

What kinds of changes are expected to
standards and customer requirements?

The presumed changes to standards
and customer requirements are
presented in document x.

What kinds of changes in the external
components might affect also DSP
software?

If components x and y change then
component z in DSP software should
be modified.

What kinds of changes are the most
likely ones?

The change types in the order of their
likelihood are presented in document
y.

4.5 Tradeoff

The analysis of individual attributes is only a start in the architecture design.
Quality attributes may contradict as well as complement each other. Therefore,
you need to consider the interdependencies and tradeoffs that exist between them
and to define a preference of one requirement against another in case of conflict.
The classification of quality attributes based on their relative importance is part
of the tradeoff analysis. In this chapter, a very general study of dependencies is
performed in order to point out possible sources of quality conflicts.

There are conflicts already inside the performance taxonomy. The goal in
performance is to maximise throughput and minimise latencies, but usually this
cannot be done without sacrificing resource utilisation. Furthermore, minimising
power consumption using power saving routines may cause additional delays.

Variability goals are often not favourable to performance. Portability can affect
the performance by introducing indirection, and consequently, overhead.
Architecture that is suitable for a large-scale product may not be optimal enough

70

for a small-scale product. New features may decrease the optimal performance
of the overall system. An optimal solution for several products may not be the
most optimal solution for the one product that is under development.
Modularisation that is needed for modifiability means indirection, but
modifiability also allows the most optimal solution of a module to be taken into
use when one is available.

From the viewpoint of performance, loosely coupled components can affect the
performance by introducing indirect calls. Components that are reused from
older products may not be optimised for the current product. However, these are
the favourable goals for cost and variability attributes. Product cost restricts the
choice of hardware; therefore, it also restricts the maximum performance that
can be achieved. On the other hand, rigorous optimisation of performance may
need some additional development time.

Variability and time-to-market are also often in conflict. Designing reusable
software adds to the development time of the current product. However,
reusability usually decreases future costs and makes the system more
understandable.

 Table 4-4 summarises the possible impacts the quality attribute measures can
have on each other. Positive and negative signs mean respective correlation. In
some cases, there can be both positive and negative consequences.

One of the things that should be considered during tradeoff analysis is the
relative importance of the quality goals. In Table 4-5, the importance of the
attributes is studied in a very general manner. In the actual product development,
the importances should be studied on a more detailed level. For example, an
importance factor can be attached to each scenario that is used for analysing the
architecture. Technology roadmaps are used as a source for importance factors
in addition to stakeholder interviews.

71

 Table 4-4. Quality attribute tradeoff.

La
te

nc
y

R
es

ou
rc

e
ut

ili
sa

tio
n

Po
w

er
 c

on
su

m
pt

io
n

Pr
od

uc
t c

os
t

D
ev

el
op

m
en

t c
os

t

C
ha

ng
e

co
st

C
om

pl
ex

ity

Throughput + - - - - - -

Latency - +- - - - -

Resource utilisation +- + - - -

Power consumption + - - -

Product cost - - -

Development cost - -

Change cost -

Table 4-5. Quality attribute importance.

Quality attribute Current importance Trend

Performance High Lower; with hardware that is
more efficient, less work needs
to be done for optimisation.

Cost High Higher; with increasing
competition, cost always matters.

Variability Low Higher; it is not economical to
design every product from
scratch.

72

5. Architecture Development

5.1 Multimode DSP system design

The DSP software architecture design flow is based on the assumption that the
multimode DSP system design is divided into the tasks defined in Figure 5-1.
Emphasis is given on the fact that the required functionality of the whole system
needs to be analysed before the implementation aspects are considered - as a
consequence, the three main tasks of system architecture design will be of equal
importance. Traditionally, only the algorithms are considered in the initial
phases of the development. Whereas in this context, the first task is to define all
the functionality that the system should implement. It is assumed that the
requirements specification is used as an input for this work. After the functional
specification, the work continues in parallel with software and hardware
architecture designs and algorithm design. In the third phase, the results of the
separate work are integrated when the quality of the system design is evaluated.
The process of the system architecture design is iterative and incremental.

Functional
specification

Software
architecture design

Hardware
architecture design Algorithm design

Evaluation

Figure 5-1. System architecture development.

73

The software and hardware architecture designs and algorithm design are done
concurrently but they are also dependent on each other. Algorithm design
completes the work in the functional specification ensuring that the signal
quality produced by the algorithms fulfils the requirements. This work should be
positioned slightly ahead of the other two tasks because the complexity of the
functionality affects architectural decisions. In the early phase, the
hardware/software partition should be made in co-operation with the hardware
and software architects. After the coarse-grained partition of functionality
between platforms, there will be finer-grained details such as defining which
party should be the more intelligent part in the interface. This work is based on
the system quality attributes causing tradeoff between software complexity and
hardware resource usage. System architects can iterate the complexity of the
system with algorithm designers. In some cases, the quality goals can be easier
to fulfil if it is possible to lower the complexity of an algorithm.

The summary of the main goals in different design tasks is illustrated in Figure
5-2. The goal of the system design is to optimise system quality. It is achieved
with relaxing from the individual goals of different design phases. As the role of
the software is often the clue between problem (algorithms) and solution (HW)
domains, the software quality goals are usually derived directly from the system
qualities.

OPTIMIZE
SYSTEM
QUALITY

ALGORITHM
DESIGN

HARDWARE
DESIGN

SOFTWARE
DESIGN

Minimise
resource
usage

Maximise
algorithm
performance

Minimise
software
complexity

Figure 5-2. System quality optimisation.

74

5.2 Software architecture design flow

Software architecture is usually described with several views. Our approach is
based on four views: logical, physical, process and development views. The
software architecture views are illustrated in Figure 5-3. The logical view
describes the required functionality in an implementation-independent way; the
development view shows how the required functionality can be developed with
today’s software platforms and technology; the physical view maps the required
functionality to the hardware platform; the process view shows the runtime
functionality of the system. The physical and process views together create a
runtime or execution view to the architecture. The physical view is mainly a
summary of the hardware architecture design from the software point of view.

Software architecture

Execution view

Logical view

Physical view Process view

Development
view

Figure 5-3. Software architecture views.

The logical view is represented by the functional specification in the system
design. The physical view is derived from the results of the hardware
architecture design. The process and development view designs have fewer
dependencies on the other tasks in the DSP system development.

The process of developing the views is iterative and incremental. First, a
conceptual version of the architecture is created. It defines the main concepts in
the architecture without considering the implementation level details. When the
main concepts are clear, the architecture is extended towards realisational
architecture. For example, the organisational aspects are taken into account

75

thereupon. The logical view is defined mainly at the conceptual level. The
development view is relevant only in realisational architecture. The physical and
process views can first be considered at the conceptual level and after details are
clarified, they are completed to realisational level. Each view may include one or
several diagrams or structures that define its content.In this work, the tasks of
software architecture design are divided into three phases that are illustrated in
Figure 5-4.

• The first task in software architecture development is to analyse the
requirements. A requirement analysis is performed in order to find out the
responsibilities of the designed system and, especially, the quality
requirements. If the system is simple, the results can be directly generated
into a class model; however, more thorough methods are usually needed.
The purpose of this phase is not to make a requirements specification for the
system but to modify and enhance the requirements so that they can be used
in the architecture evaluation.

• The second task is to design the architecture candidate, i.e. architecture
selection. The functionality, logical view, is designed for the whole system,
not for software alone. The physical view is derived from the hardware
specification. The software specific views include the process and
development views. The selection of architectural structures is based on the
quality requirements.

• Evaluation of the overall quality of the candidate is the third task.
Evaluation is based on the evaluation criteria defined in the first phase. If the
candidate is not good enough, the architecture has to be refined. When the
architecture candidate is acceptable, its description can be stored as an
architecture specification.

76

ANALYSE
REQUIREMENTS

ARCHITECTURE
SELECTION

EVALUATE

Figure 5-4. Architecture development process.

The software requirements analysis is based on the DSP system requirements
specification and the requirements of the hardware platform and other
environmental constraints. The DSP system requirements specification should
include the specification of both functional and non-functional requirements of
the product. If one wants to develop a family of products, it is of necessity that
the requirements specifications of each product are available. Requirements are
derived from product descriptions and from several standards for multimode
products. The requirements are not specifically focussed on software or
hardware but on the system. The main results of the requirement analysis are as
follows:

• Use case diagrams. Use case diagrams show the responsibilities of the
designed system from the user’s point of view. A use case is a collection of
possible sequences of interactions between the system and its users. The use
case diagram is also a context diagram that shows the external connections
to the system. An event table can be created from the external events to
support the use case diagrams. Only the main use cases need to be defined
for the purposes of architecture design.

• Evaluation profiles. The quality requirements are covered with evaluation
profiles, which are groups of scenarios that define the coverage of the

77

quality evaluation. The type of the scenarios depends on the quality attribute
it is created for.

The architecture selection includes several types of tasks for each view:

• Identification of the problems. The most critical design problems of the
view, which are relevant at the architectural level, are defined. These
problems or questions are derived from quality goals and external factors
that affect the software architecture.

• Defining strategies. Design strategies show how the most critical design
problems are solved in the view. They are used to clarify the design
approach. Initial strategies are defined when starting the architecture design,
but the list of strategies should be updated when other significant
architectural decisions are made during the architecture refinement. An
architectural strategy can mean for example a use of a style or pattern.

• Modelling is divided into a selection of architectural structures, validation,
and mapping. Architectural structures consist of components, connectors,
their topology and other design decisions specific to the view. Functionality
can be validated using the same use cases developed in the requirement
analysis. Scenarios are derived from these use cases in order to illustrate the
interaction of components. Each view describes different aspects of the
architecture. It is important that they are in conformity with each other.
Mapping serves as a means by which this can be demonstrated.

• Design rationale. The design rationale explains refinements and alternative
solutions. It is generated from an informal design history for future
purposes. The alterations after an evaluation of the architecture are called
refinements. The solutions that are considered but never actually selected are
called alternative solutions. During the lifetime of a system, several changes
are made. Most of them do not affect the architecture but sometimes the
assumptions that are made of the system when designing the architecture are
not valid anymore and therefore the architecture has to be modified. The
design rationale can be of help therein. Firstly, it shows the assumptions that
are made when selecting between different solutions; secondly, it can make

78

the alterations faster, and show the other solutions which have already been
considered and the reason for their not being selected before.

The quality taxonomies are utilised in all the phases of the architecture design
(see Figure 5-5). Response and stimulus sections are needed in creating the
evaluation profiles and for the actual evaluation. Architectural parameters are the
basis for selecting the architectural structures for the system.

Quality attribute

Response

Stimulus

Architecture

EVALUATION

SELECTION

Requirements

Figure 5-5. Usage of taxonomies in the architecture development.

The approach to software architecture is iterative. Firstly, a software architecture
design process is a series of design decisions (see Figure 5-6). Two architecture
alternatives may differ only in one aspect but a design decision is always based
on the evaluation of the whole architecture candidate. Secondly, the software
architecture for an embedded system is always dependent on the underlying
hardware architecture. Therefore, there can be various alternative software
architectures for each of the hardware architecture candidates. Finally, software
architecture includes several views to the architecture. Because of these issues,
the approach selected here is to divide the software architecture design problem
into several subproblems and then study alternative solutions to these
subproblems. Some specific subproblem can be used to separate the work into
two or more architecture candidates. After that, several refined versions can be
generated from each architecture candidate, using the results of the evaluations.

79

Architecture alternative 1 Architecture alternative 2

Architecture alternative 1 Architecture alternative 3Architecture alternative 2

Architecture alternative 1 Architecture alternative 2

DESIGN DECISION 1

DESIGN DECISION 2

DESIGN DECISION 3

Figure 5-6. Generation of architecture candidates.

5.3 Multimode characteristics

A multimode operation sets certain requirements to the architectural views:

• The logical view should find the common functionality of the different
modes. The logical view should include all the functionality that is defined
in the product requirements and the control functionality that is needed for
managing different modes. The view should define the different
combinations of functionality that can be simultaneously active. The
combinations are directly derived from the requirements.

• The physical view defines the different mappings from the configurations
that were defined in the logical view to the hardware architecture.

• The process view defines the actual runtime configurations for the system.

• The development view should advance the reuse between modes by
separating the common functionality to different domains that provide
services to the mode-specific domains.

Figure 5-7 clarifies the relationships between hardware and software entities.
HW mapping defines the location of the functionality in the hardware platform.

80

It maps the logical functionality into hardware blocks. If changes to mapping are
possible during runtime, it is necessary to define more than one mapping.

For each processor defined in a HW mapping, there can exist one or more
process mappings. Process mapping defines how the functionality defined for
the processor is mapped to processes. If mapping can change during runtime
then more than one mapping has to be defined.

HW Platform

HW mappingHW mappingHW Mapping

Processor

Process
mappingProcess
mapping

Process
Mapping

Processor

Process
mappingProcess
mapping

Process
Mapping

Figure 5-7. Relationship of hardware and software entities.

Figure 5-8 illustrates the generation of runtime configuration. Runtime
configuration combines the individual process mappings into a configuration of
the whole hardware platform. In case the configuration can change during
runtime, more than one configuration has to be defined. The initial partition of
functionality into processes starts with making one process mapping for each
processor in each HW mapping. The refinement starts after this. The quality
requirements are taken into account using strategies that optimise the process
mappings. The quality is evaluated within the scope of the entire hardware
platform. Runtime configurations are the results of the refinement process.

81

HW Mapping
HW Mapping

HW Mapping

Process Mapping

Process Mapping

INITIAL PARTITION REFINEMENT

Processor

HW Platform

Runtime Configuration A

Runtime Configuration B

Runtime Configuration C

Figure 5-8. Generation of Runtime Configurations.

When more than one runtime configuration is defined, it means that the
functionality has to be reconfigured when transferring from one configuration to
another. Reconfiguration may have various meanings. For instance, embedded
systems are usually constantly reconfigured; parameters are given new values,
and hardware resources (memory, processor, ASICs) are reserved and released.
However, the old methods may not be enough for future multimode systems.
The reconfiguration that may be needed in a multimode system is due to the fact
that in order to create affordable products, hardware resources should be spared
especially in multimode terminals. This may require, for example, that the
implementation platform for an algorithm is selected dynamically only after the
algorithm is called.

If the system is changed so that it is stopped and new software is downloaded, it
is called static reconfiguration. When the composition of the system
functionality is changed on the fly, without reset it is dynamic reconfiguration.
Dynamic reconfiguration has yet another feature; the change can be made either
transparently without affecting the normal operation, or non-transparently. The
transparent dynamic reconfiguration needs special techniques and is the most
difficult to implement. The selection between static reconfiguration and dynamic
reconfiguration is based on possible minimum downtime requirements. If there
are none and there is no need for reconfiguration during the transmission, it is
possible to use static reconfiguration.

The first task in designing reconfiguration is to define the reconfiguration unit in
addition to defining what kind of reconfiguration is actually needed. A
reconfiguration unit is the smallest unit of software that can be individually

82

replaced. In a multimode system, one example of a possible reconfiguration need
is the change of mode during an active connection. For example, a WCDMA call
is transferred to a GSM call when the WCDMA connection is lost. When the
reconfiguration needs are defined and the reconfiguration unit is specified, the
effects on the architecture can be analysed. Reconfigurability can affect the
architecture in two ways. Firstly, it might cause additional functionality into the
system. Secondly, it may set requirements to the structure and definition of the
components. Architecture design can support reconfigurability by including the
selecting of an architectural style that supports reconfiguration.

Multimode DSP software has the following kinds of reconfiguration
characteristics:

• Mode-specific components. Most of the components are specific to one
mode.

• Reused components. Some components are reused at least in two modes.

• Rearranging components. Connections between components are removed
and added depending on the mode.

• Parameterised components. Components have parameters, which have
different values depending on the mode.

• Components can be implemented in software or hardware.

• Dynamic loading. New functionality may be added to the system by
dynamic loading.

• Transfer of state. When changing mode during a connection, the state in the
old mode should be transferred and translated to the component in the new
mode. In some cases, it may not be enough to set a component to its initial
state - the state that it should have depends on the state the system was in
when the reconfiguration was requested.

• Timing. Perhaps the most important thing is to control the timing of the
mode changes. Mode change should be as seamless as possible.

83

• Dependencies. Traditionally, DSP software contains a large number of
dependencies because it has to be optimised. The dependencies make the
runtime reconfiguration harder.

• Modelling configuration, changes, and constraints. The reconfiguration
system should include an easy way to model the current configuration, the
changes and their constraints.

If a seamless transfer of services between networks is necessary, it means that
two networks should be supported simultaneously, for a short period of time.
This causes a temporal need for more processing power. One way to get the
components of two systems to be simultaneously active could be to lower the
requirements of the algorithms temporarily. In reality, it may be difficult to
accomplish a full seamless transfer without a duplication of resources (Huotari
1999). In addition, the different requirements of the applications and the
different capabilities of the networks require a careful consideration of what kind
of mode changes are possible in which situations (Soininen et al. 2001).

84

6. Architectural views
The purpose of this chapter is to define the architectural views that are useful for
designing DSP software. The aim is to define the aspects that are typical of the
DSP software development in the views. The architectural decisions should be
based on quality goals. The view development consists of finding such values to
the architectural parameters defined in the quality taxonomies that the quality
requirements are fulfilled.

The software architect does not define the architecture for himself. Architectural
views can facilitate discussion between different stakeholders. Table 6-1 maps
different interest groups to the views they should be mostly interested in. Some
examples of the usage possibilities will also be given. Software architecture can
be used in discussions between different types of developers, between
developers and managers, and between product development and marketing.

Table 6-1. Stakeholders versus views.

Stakeholder View Example usage

Development view Discussion about the responsibilities of the
modules with the other designers.

Logical view Training.

Process view Optimisation of performance.

Software developer

Physical view Integration of software and hardware components.

Algorithm designer Logical view Discussion on requirements and the complexities
of the components.

Physical view Discussion on hardware/software partition.Hardware designer

Logical view Discussion on hardware/software partition.

Marketing Logical view Discussion on the required functionality.

Project manager Development view Project planning and management.

85

Figure 6-1 illustrates how the quality taxonomies are utilised in the view
development. Defining the critical questions in the architecture design affects the
external environment and the quality measures. Architectural parameters point
out the kinds of strategies that should be created for solving these problems.
Consequently, problems and strategies are a basis for the design rationale and
strategies are utilised when modelling the architecture. On the other hand, new
strategies may be generated during the modelling. However, also these strategies
have to be derived from the quality attributes.

Architectural
parameters

Create
strategies

Response Find
problems

External factors

Model

DESIGN
RATIONALE

MODEL

Figure 6-1. Taxonomies in the view development.

The definitions of architectural views for DSP software development have been
earlier published in (Purhonen 2002).

6.1 Logical view

The logical view divides the required functionality into components known to
the application domain. It describes the functional entities in the system and how
they are connected to each other independently of the implementation. Although
the logical view is a software term, the logical view of an embedded system
should define all the functionality in the system, not just software. In addition,

86

the high-level logical view could be directly reusable between products in a
product line. The logical view should answer the following kinds of questions:

• What are the functional entities that the system is composed of?

• What are the responsibilities of the functional entities?

• How are the functional entities related to each other?

• What are the complexities of the functionalities?

Usually, the logical view is not altered much after it is finalised because it is
mainly based on the functional requirements. However, the requirements of the
system are often finalised during the architecture development, or even later.
Therefore, especially new control functionality or needs for a different partition
of the functionality may be found out during the development of the other views.

The tasks belonging to the creation of the logical view are depicted in Figure
6-2. As all the other views, the logical view development starts with defining the
problems and strategies. Class modelling finalises the work started in the
analysis phase with the functional requirements. The goal in the class modelling
is to find common behaviour. The class structure is created by first finding out
the object candidates and then adding the relationships between them. The
feature analysis and existing experience from senior designers, product
documents and literature are utilised. The responsibilities of complex objects can
be clarified with drawing state models. In the architecture design, classes should
not be defined on a level that is too detailed. Nowadays, the classes are often
used more like components such as those presented in (Hofmeister et al. 1999a).
A component approach is easier to use in identifying the interfaces without
going into any implementation level definitions such as functions.

The logical view has two dimensions: configurations and objects. A
configuration table or equivalent is essential for a multimode system. It specifies
the states the DSP system can have and defines the objects that are active in each
state. Configuration tables are utilised when making the physical view. If a
hardware platform is reconfigurable, there can be as many different hardware
platform configurations as there are configurations in the configuration table.

87

Scenarios are used for both validating and understanding functionality.
Scenarios are derived from the use cases defined in the requirement analysis.
The scenario for a particular use case can be different in each different state that
is defined by configurations. Scenarios can be made using MSC diagrams or
UML sequence diagrams. If the definitions of the classes are left on an abstract
level, one possibility in showing the responsibilities and the interfaces of the
classes is to use scenarios. Thus, they would not be made only for validating
functionality.

Problems
and

strategies

Class model

Objects

Use cases

Configurations

Scenarios

Data flow
descriptions

State models

Figure 6-2. Logical view development.

A typical aspect of DSP software is that it includes both data processing and
control objects. Class models are good at describing the relationships between
classes; however, data processing, in particular, needs additional diagrams for
clarification. The interaction between data processing objects can be abstracted
to data flow descriptions. Data flow descriptions are composed of objects and
data flows between them. Objects are derived from data processing classes in the
class model. The results of the algorithm design are utilised. The main
functionality of a DSP system is to process data. Data flow descriptions are used

88

for understanding the signal processing requirements in an implementation
independent way. They can be later used as a base to the process view. The
members of the data flows can be thought of as active objects.

A summary of the structures in the development of the logical view is presented
in Table 6-2. The class model and the configuration table are the only ones that
are necessarily needed to show the required functionality, whereas the others are
optional. The other structures support the design of more complex systems.

Table 6-2. Logical view structures.

Structure Description Used for

Class model Components: classes
Connections: is inherited from,
is part of

Describing functionality in
the system. Supports
reasoning about similar
behaviour.

Configuration
table

Two dimensions: configurations
and objects

Describing the
combinations of
functionality that can be
needed simultaneously.

Data flow
description

Components: objects
Connections: may send data to

Describing the connections
between signal processing
algorithm objects.

State model Components: states
Connections: transition to

Verifying the
responsibilities of critical
objects.

Scenarios Components: objects
Connections: may send data to

Validating functionality.

A refinement of the logical view is needed when the overall architecture does
not fulfil the quality goals that are set for it. Quality goal violations may occur, if
there are components that seem to be too complex, or the components have
complex interrelationships. The complexity can be handled using strategies and
styles and patterns such as in Table 6-3.

89

If some complex functionality cannot be divided logically, for example an
algorithm, it should not be divided on this level. If its complexity is clearly
higher than the rest of the functions then it is a good candidate for a hardware
implementation. Usually, it is not economical to size the processor capacity
according to a single functionality that needs a massive amount of processor
power compared to others.

Table 6-3. Refinements for logical view.

Refinement need Refinement Possible conflicts

Complexity of some
class is too high.

Strategy: Use functional
decomposition and class
division rules defined in
literature and try to
break complexity down.

Too many small classes
may increase the overall
complexity of the system.
Sometimes data
processing components
are indeed complex, and
this has to be taken into
account in the
implementation.

Complexity of
interrelationships
between classes.

Strategy: merge classes
and reorganise them
using decomposition
rules.

If too many classes are
merged, the complexity is
transferred inside classes.

Depending on the
requirements, different
algorithms may be used
for the same operation.

Policy pattern (Douglass
1998): a selection of
different algorithms to
implement the same
black box behaviour.

Indirection can be the
source of performance
problems.

Depending on the
workload, different
implementation
platforms can be used
for an algorithm.

Interface pattern
(Douglass 1998):
separates interface from
implementation.

Indirection can be the
source of performance
problems.

When the logical view has been prepared, the complexity estimates of each
functional entity are created. The algorithms cause the majority of the workload

90

in the DSP systems. The expertise of algorithm designers is essential in
estimating the complexity of algorithm components.

6.2 Physical view

The physical view is needed for describing the external systems that DSP
software has to connect. The view serves as input information to the process
view where additional objects are created for connections to external
components. It is also one part of the runtime view, and therefore, if hardware
mappings are changed during the execution, all the possible mappings should be
modelled. The logical view and the physical view are actually common views
between software and hardware architectures.

The physical view answers the following questions:

• What is the hardware/software partition?

• What are the external connections of DSP software?

• What are the resource usage estimates?

The physical view is composed of the results of the hardware architecture
designers. They base their work on the functionality defined in the logical view
and the work of algorithm designers. Software architecture designers provide
them with comments, utilising the results of the process and development view
design. The physical view design is based on the hardware mapping process that
selects an optimal implementation platform for each logical component.

The physical view development is constrained by the following quality
requirements:

• Processing capacity. Processing capacity requirements can change when the
development progresses: new functionality is added, complexity of existing
functionality changes, some functionality is removed etc.

91

• Power consumption. For example, if the current solution consumes too much
power, one alternative is to change the hardware platform.

• Resource cost. Cost requirements should be taken into account when
selecting hardware. If the cost of the hardware parts changes or the goal set
for the total cost changes, the physical view may need to be modified.

The physical view has three dimensions: configurations, objects, and nodes.
These dimensions are described with two types of structures: physical structure
and mappings (see Figure 6-3). The physical structure describes the hardware
components, such as processors and ASICs, and connections between them. A
mapping table maps the functionality defined in the logical view to the physical
structure. In simple cases, the physical structure and the mapping table can be
combined in a deployment diagram where the logical view components are
deployed into the physical view components. The functionality is validated by
using scenarios.

Hardware
architecture

Physical
structure

Use cases

Scenarios

Mappings

Figure 6-3. Physical view development.

Dynamic reconfiguration may be needed if different configurations reuse the
same hardware resources. Although the need for dynamic reconfiguration is
mainly decided in this phase, it is modelled in the process view. In order to be

92

able to study the resource usage, the object requirements should be compared to
the capability of the hardware resource.

A summary of the architectural structures in the physical view are presented in
Table 6-4.

Table 6-4. Physical view structures.

Structure Description Used for

Physical
structure

Components: processors, ASICs,
FPGAs, etc.
Connection: communicates with

Describing the hardware
architecture and context for
software.

Mapping
table

Three dimensions: configurations,
objects, and node

Creating mappings from
each object in the logical
view to a hardware node in
each configuration.

Scenarios Components: nodes
Connection: sends messages to

Validating functionality.

The hardware mapping process finds an optimal execution platform for each
object. The physical structure affects performance through the execution times
of individual objects. Hardware architecture dictates the maximum performance
available by the software architecture decisions. If software architecture is
estimated to have unacceptable performance, one solution is to refine hardware
architecture. However, the refinement is part of the hardware architecture design
so it is not discussed here.

In a multimode system, the goal is to optimise the performance of the whole
product - not of one configuration only. Therefore, the development of the
physical structure will need several iterations. At least in the final iteration, the
results of the process and development views should also be taken into account
when analysing the platform’s capability to perform the proposed functionality.
However, the main factor in performance is the algorithms, which take most of
the processing power in DSP systems.

93

When the functional entities are mapped to their implementation platforms, it is
possible to make execution time estimates from them. They are based on the
complexity estimates that were done in the logical view. The other resource
usage estimates that are most interesting from the software point of view are
traffic between hardware units and memory usage. The resource usage estimates
are done in co-operation with the hardware experts.

6.3 Process view

The process view is the second part of the runtime view of the architecture. It
divides the functionality inside the processors defined in the physical view into
independent execution threads. It also defines the internal communication
between the executing components in a processor and the external
communication to the other nodes.

The process view answers the following questions:

• What is the runtime behaviour of the system?

• What are the updated resource usage estimates?

The qualities that should be fulfilled by the process view is performance and, to
some extent, reuse. Performance is used as a main factor in the evaluation, but
reuse has to be considered from two points of views. On the one hand, some
processes might be reusable assets; on the other hand, runtime reconfiguration is
modelled on this level, if it is needed. If there are more than one mapping for a
processor in the physical view, there may exist a need for dynamic
reconfiguration.

The process view has four dimensions that are defined by a mapping table:
objects, process structure components, processors, hardware mapping. If there
are more than one processor in the DSP system, each of them creates a
subsystem and a dimension to the process view. Development of the process
view is depicted in Figure 6-4:

94

• The process structure is the static representation of the process view. It
describes the independent execution entities of the system. The
responsibilities of the processes can be sketched using state diagrams
although a detailed design of processes is not part of the architecture design.
If the process view is complex, it can be abstracted into a metamodel, which
explains the basic concepts in the process view.

• The process view defines the mapping from the process structure
components to the logical view components. Each processor has separate
process mappings. In case the system has several modes that use the same
resources, there can be more than one mapping per processor. The definition
of runtime configurations combines the individual process mappings.

• Scenarios are used for validating functionality. In addition, they show the
dynamic behaviour of the process view. Both control and data flows should
be covered.

After software and hardware functions are separated, the hardware components
become external components to software. Therefore, there will be new external
events (interrupts) to software, which are derived from the physical view.

Problems
and

strategies

Process
structures

Metamodel

Use cases

Runtime
configurations

Scenarios

State models

Figure 6-4. Process view development.

95

The structures of the process view are presented in Table 6-5.

Table 6-5. Process view structures.

Structure Description Used for

Process
structure

Components: processes, threads
Connections: messages, buffers,
etc.

Describing how the system
works during runtime. One
for each processor in a
hardware mapping.

Metamodel Components: main concepts
Connections: is related to

Understanding the main
concepts in complex
systems. Describes e.g. the
used architectural styles.

State
model

Components: states
Connections: transitions to

Verifying the
responsibilities of a
complex process.

Mapping
table

Four dimensions: objects, process
structure components, processors,
hardware mapping

Mapping the objects to
process structure
components, for each
processor in a hardware
mapping.

Scenarios Components: processes, threads
Connections: messages

Validating functionality.

The development of process structures includes the following tasks: definition of
runtime components and connectors, and selection of topology and resource
allocation policies

Runtime components are elements in the process view to which the functionality
in the logical view (i.e. functional specification) is mapped. Examples of runtime
component include process, thread, and data store.

Runtime connectors are used for connecting runtime components. In addition to
connecting, connectors can provide the following services (Mehta et al. 2000):
communication, co-ordination, conversion, and facilitation. Communication

96

denotes transmission of data among components, and co-ordination,
respectively, transfer of control among components. Conversion connectors
enable the interaction of heterogeneous components. They convert the
interaction required by one component into that provided by another. Facilitation
is an additional service when components can interoperate with each other but
there is nevertheless a need to provide mechanisms for facilitating and
optimising the interactions. There can be several types of connectors that
provide these services (Mehta et al. 2000). The basic connector types can be
combined to create more advanced connectors such as remote procedure call
(RPC).

Topology means the way the connectors combine the components creating
configurations. Dynamic systems have several configurations.

Decisions of resource allocation include defining policies for scheduling,
memory usage, bus usage, etc. The performance modelling and analysis includes
finding out the right process composition and periods and priorities. The goal in
setting priorities and periods is to minimise the overhead of context switches and
other support functions.

Architectural decisions that should be made in the process view are mainly
derived from the performance taxonomy. When styles that include processes or
threads are used, task division and priority assignment should be performed.
Several authors (Gomaa 1993; Moon 1993; Jones 1991) have studied task
division. In priority assignment, the prevention of priority inversion is essential
- techniques include priority inheritance and priority ceiling (Klein et al. 1993).

Examples of refinement methods that can be used in creating the process view
are presented in Table 6-6.

97

Table 6-6. Refinements for process view.

Refinement need Refinement Possible conflicts

There are real-time
latency requirements
with the production of
final outputs and the
topology consists of
multiple processes
arranged as concurrent
pipelines.

Performance ABAS:
Concurrent pipelines
(Klein & Kazman 1999)

Potential pitfalls: priority
assignment, completion
times.

There are real-time
performance
requirements and
multiple processes on a
single processor share a
resource.

Performance ABAS:
Synchronisation (Klein
& Kazman 1999)

Potential pitfalls:
prioritisation strategy,
sources of blocking,
priorities used during the
critical section.

Some process is too
complex.

Task division strategies
(Gomaa 1993; Moon
1993; Jones 1991).

When processes are
added, context switches
are increased.

Handling of data flows. Pipes and filters
(Buschmann et al. 1996).

Indirection can be the
source of performance
problems.

Handling of data flows,
when the scheduling
order cannot be defined
beforehand.

Blackboard (Buschmann
et al. 1996).

If the scheduling is very
straightforward,
blackboard probably
causes too much
overhead.

When the process view has been prepared, the resource usage estimates can be
updated with values that are more accurate and that also contain the workload of
control functions. The complexity estimates may need to be updated with the
additional workload of control functions such as operating system calls.

98

6.4 Development view

The development view provides the architecture with the organisational view. It
presents the actual modules that should be developed. Therefore, it facilitates
project planning. Modules can be grouped into different levels of abstractions.
Multimode DSP software has to fulfil similar requirements as the product-line
software. Thus, although the development view is product-specific, it may take
into account some product-line requirements.

The questions that the development view answers are the following:

• What are the actual software modules that should be developed?

• Can COTS components be used?

• Is it possible to reuse components from earlier projects?

• What are the reusable assets?

The development view may be constrained by the decisions that the organisation
has made concerning COTS components and reuse of older software. Such can
be the case, for example, when a decision has been made upon using a specific
operating system. Additionally, if product-line architecture is to be built, the
product-line specification informs one of what are the reusable assets in the
product family. The qualities that restrict the creation of the development view
are mainly product-line concerns and development time. Cost is considered
when COTS component recommendations are given.

The development view is composed of a module structure and an associated
mapping table (see Figure 6-5). Modules are the actual software components that
will exist in the DSP system. The mapping table maps subsystems and
components to the logical view. The execution architecture (physical and
process views) is used for specifying the support components. The module
structure is characterised by the following entities:

• Domains. Each group of functions is put into a particular level of
abstraction. The criteria for the division of functionality can be, for example,

99

distance from the hardware. Domains should be strictly separated from each
other, and in principal, domains should not know the internals of the other
domains. It is the layered style that is traditionally used in the composition
of domains. Sometimes it is necessary to make exceptions to the rules of this
style, e.g. for reasons of efficiency. In such a case, the reason should be
explicitly explained.

• Subsystems. When the structure of a domain is still complicated, it should be
further divided into subsystems. For example, RTOS or libraries of COTS
components can be subsystems inside domains.

• Components in the development view are the modules that should be
developed. Relationships between the modules are is_composed_of or uses.

Problems
and

strategies

Module
structure

Use cases

Mappings

Scenarios

Figure 6-5. Development view design.

The structures in the development view are summarised in Table 6-7.

100

Table 6-7. Development view structures.

Structure Description Used for

Module
structure

Components: modules,
subsystems
Connections: is a submodule of

Defining the modules that have
to be developed or acquired as
COTS components or reused
from other products.

Mapping
table

Three dimensions: objects,
modules or subsystems,
domains.

Mapping the defined modules
and subsystems to the objects
from the logical view and
process view.

Scenarios Components: modules
Connections: sends messages to

Validation of functionality.

The patterns that can be used for refining the module structure are presented in
Table 6-8. The module structure is usually based on the layered architectural
style. In addition, modules are also classified by whether they are included in
reusable assets or not. Some new modules can later be accepted as reusable
assets in the product family.

Table 6-8. Refinements for development view.

Problem Refinement Possible conflicts

Architecture does not
fulfil modifiability
scenarios.

Modifiability ABAS:
Layering (Klein &
Kazman 1999)
Minimising the effect of
changes to one layer
when a portion of
another layer changes.

Can the system’s
performance afford the
number of layers
proposed? Is the layering
strict or is there any
bridging?

Architecture does not
fulfil portability
scenarios.

Wrapper. For example,
hardware wrapper hides
the changes in the
hardware. (Schmidt
1999)

Indirection may cause
performance problems.

101

The challenge in the development view is to know to what extent the architect
identifies the components. The domains represent different types of expertise
that are needed from the developers. At some point, the experts of each field
should take the responsibility for the definition of the components. The
architecture description of a domain should include the knowledge of the domain
that the other domains need. Anything internal to the domain need not to be
included in the architecture description. The development view is used
especially in the project planning and integration. It is used for the creation of
development time estimates for each module and subsystem.

6.5 Summary

The development of DSP software architecture is based on four views: logical,
physical, process, and development. Each of them illustrates different aspects of
the architecture. The relationships of the architectural views are illustrated in
Figure 6-6. The logical view divides the required functionality into meaningful
components. The complexity estimates of the functionality in the logical view
are needed when searching for the optimal implementation platform in the
physical view. The physical view provides the hardware/software partition when
defining the hardware platform. In addition, it gives the initial resource usage
estimates for the process view. The process view is used for validating the
runtime operation of the system. The development view shows how the system
is actually developed. The development view gets the division of required
functionality from the logical view, additional hardware related components
from the physical view, and support functionality from the process view.

102

Development
view

Logical view

Physical view

Process view

Fu
nc

tio
na

l e
nt

iti
es

,
co

m
pl

ex
iti

es

O
bj

ec
ts

 m
ap

pe
d

to
H

W
 p

la
tfo

rm
s,

re
so

ur
ce

 u
sa

ge

Processes,
communication

methods

Hardware drivers

Algorithms

Figure 6-6. Relationships of architectural views.

103

7. Architecture evaluation
The purpose of this chapter is to present an evaluation strategy for comparing
DSP software architectures. Architecture evaluation is based on the defined
quality attributes.

7.1 Evaluation strategy

Products have to be evaluated from two perspectives: ability to fulfil the
functional requirements, and ability to respond to the quality requirements.
Classic testing often concentrates on functionality. In our case, the goal was to
find tools for a designer to choose between architecture candidates. Because
functionality is not architectural in nature (Bass et al. 1998), the basic
assumption is that the required functionality exists in every case. Because of
these reasons, this study concentrates on quality evaluation. To ensure that all
the functions are unambiguously defined in an architecture representation,
scenarios are derived from use cases when developing the views.

In this work, the evaluation is considered from the point of view of confidence
building. It is assumed that the architect makes the evaluation, and when the
results should be accepted, the review team makes the risk assessment. In order
to prepare for the review, the architect may want to ensure that the result of the
risk assessment will be acceptable so there is a need to define evaluation criteria
that also cover the risks. However, it is often difficult for a designer to find out
the exceptional situations; therefore, a risk assessment by an external review
team is desirable. The two sets of criteria for evaluation may consequently
overlap, but the starting point for the evaluations is nevertheless different.

Although this study concentrates on the tools of the architect, the same
techniques that are used for evaluating the architectural decisions in the
architecture design phase can be used for re-evaluation in the later phases of the
product’s life cycle. In addition to the internal changes in the product’s
requirements, the advances in the external environment such as advances in
techniques and methods may require architecture re-evaluation. Consequently,
the results of the evaluation done by an architect can be used:

104

1. To guide the design process. They show what should be done in order to
make the design better.

2. To open the design process. They show why decisions are made. If a wrong
decision has been made, it is possible to find out why the decision was
made; thereupon, it will be easier to carry out due corrections. In addition to
that, the wrong decisions can be detected earlier.

Quality attribute evaluation at the architectural level is a difficult task. In fact,
the quality of the architecture will be found out properly only in the course of the
following years when the architecture is used in the development and the
products are released. Thus, the value of the architecture is assessed
continuously during the different phases of its life cycle.

Because many properties of the system are still unknown in the architecture
design phase, there may exist doubts about whether the evaluation based on the
estimates is reliable enough. However, the purpose is not to give any exact
values of the quality of the architecture but to make comparisons and find
possible problems. The earlier the problems are found the better. If evaluations
are done faithfully during development as soon as a problem is found out, the
problem can be corrected by utilising the development design history. With the
carefully designed evaluation criteria, the architecture can be continuously
assessed when better estimates, such as execution time estimates or actual
values, are available and the implementation advances. If architecture evaluation
helps in avoiding problems and finding problems at least a bit earlier, it can be
considered useful. In order to encourage the continuous assessment, the
evaluation should be easy to perform.

The target is to define an evaluation strategy and to find the minimal
combination of evaluation methods that can be used in order to be able to tell the
difference between DSP software architecture candidates. The methods are
selected by using the following requirements: easy to learn, fast to perform, and
expensive tools not necessary. In addition, the evaluation procedures should be
repeatable. Although it should be possible to manage without any additional
tools, it is an advantage if there exists one. During the architecture development,
it is the architecture designer, who mainly uses these tools. However, they can
also be useful for proving for the review team that the selected architecture is the

105

best candidate, or, as testing tools during the later phases of the software
development.

The problem with the existing evaluation methods is often that they are not
meant for the architecture phase and they are too time-consuming to be used for
architecture evaluation. Usually, evaluation methods need some sort of
implementation of the system. Use of a prototype can be useful also in this case.
However, because the underlying hardware is usually not ready when DSP
software architecture is designed and the tools are not ready either, this is often
not possible.

Another reason for simple tools is that DSP software is usually not very large
compared to many other systems which are often used as examples of
architecture design. Most of the work is done in the signal processing algorithms
and the functionality is generally very restricted by the standards. Thus, it would
not be cost-effective to spend too much time in evaluating the architecture
candidates or individual architectural decisions.

The proposed architecture quality evaluation strategy is summarised in Figure
7-1. It is divided into three main phases: creation of evaluation criteria, actual
evaluation, and architecture refinement. The results of the evaluation process are
quality attribute profiles, evaluation result report, and the refined architecture.
The evaluation strategy combines several of the methods and techniques used in
the literature. The following chapters describe the phases in more detail.

106

Performance
profile

Variability
profile

Cost profile

Evaluation
result

Architecture
refinement

Architecture
candidate

Evaluation

Performance
impact

analysis

Variability
impact

analysis
Cost impact

analysis

Result
analysis

Evaluation criteria

Weighing

Scenario
elicitation

Figure 7-1. Quality evaluation strategy.

7.2 Creation of evaluation criteria

The evaluation is based on the quality attributes specified for DSP software. The
preparation of evaluation criteria should be a teamwork of all the stakeholders of
DSP software. Evaluation criteria are created in two phases:

1. Scenario elicitation. Scenario elicitation includes the creation of profiles for
the three quality attributes. The selected scenarios should be as concrete as
possible. Scenario elicitation is based on the quality taxonomies (see Figure
7-2). A stimulus section contains the variables that create the space where
scenarios should be elicited. A response section is used for restricting the
profiles to include only the most critical scenarios.

2. Weighing. After scenarios are defined, each of them is marked with weights.
Weight shows the relative criticality or importance of the scenario. On the
other hand, especially in variability scenarios it shows the likelihood of the

107

appearing of the scenario. Weight has two purposes. It is used in restricting
the amount of scenarios in detailed impact analysis and in tradeoff analysis.

Stimulus Elicit
scenarios Profile

Response Find critical
points

Figure 7-2. Scenario elicitation.

Performance profile is a group of worst-case usage scenarios. Creating a
performance profile for a DSP software is a challenging task. The usage of
several types of resources should be balanced so that worst-case situations can
still be under control. Different products may have different types of preferences
for resource usage. The art of evaluation is to find the critical scenarios - limiting
the number down to as few scenarios as possible - to make the evaluation
process fast.

The questions that should be asked when finding out the performance scenarios
are derived from the taxonomy. For example, when is it possible to exceed
latency requirement? Obviously in a real system, we cannot exceed resource
utilisation limits, but in our case, those limits are not fixed in the beginning.
Furthermore, when latency or throughput requirements are violated, the reason
for this is probably that there has been resource usage problems; therefore, one
scenario may serve as an answer to several questions.

Cost profile is dependent on how many different feature sets have been defined
for the architecture. In addition, if the products are going to be developed
incrementally, each version can be analysed separately. Cost profile is used

108

when trying to find the optimal feature set for a system or for comparing
architecture candidates for a particular feature set. The profile should include the
scenarios that are critical in terms of product and development cost.

Variability profile includes the change scenarios. Because it is impossible to
detect and use all the possible scenarios that may exist, the scenarios are handled
in groups. A number of representative scenarios should be created for each
group. First, the basic scenarios are formed based on the sources of changes as
shown in the variability taxonomy. After the most probable scenarios are found,
some risk assessment scenarios should be thought of in each source group. The
following categories of complex scenarios are used (Lassing et al. 1999): 1.
Adaptations to the system with external effects. 2. Adaptations to the
environment with effects on the system. 3. Adaptations to the macro
architecture. 4. Adaptations to the micro architecture. 5. Introduction of version
conflicts. After scenarios are elicited from each group, the possible duplicate
scenarios can be removed, and it may be possible to combine some scenarios.
The idea of groups and categories is to help to cover all the possible scenario
types. It is possible that the final scenarios could be allocated to more than one
group.

7.3 Impact analysis

The evaluation starts with creating an impact analysis of each quality attribute
(see Figure 7-3). An impact analysis is based on the created profiles. In the
impact analysis, the impact of each scenario to an architecture candidate is
assessed.

109

Response Impact
analysis Result

Select
method

Profile

Figure 7-3. Impact analysis.

For the impact analysis, several estimates have to be derived from the
architecture (see Figure 7-4). Complexity estimates are derived from the logical
view, the physical view provides the initial resource usage estimates for each
component, the process view refines the resource usage estimates, and the
development view is used for estimating development times.

Development
view

Logical view

Physical view

Process view

Complexity
estimates

Resource usage
estimates

Refined resource
usage estimates

Development
time estimates

Performance

Cost

Variability

Figure 7-4. Estimates from the architectural views.

110

7.3.1 Performance

Analytic models provide a basis for relating quality attribute parameters such as
queuing policies and execution time estimates to quality attribute measures. A
schedulability analysis is appropriate for acquiring worst-case behaviour. Many
of the results of the scheduling analysis are either directly applicable to a
performance analysis of real-time systems, or offer valuable intuition. A queuing
theory can be used to model a system as one or more service facilities that
perform services for a stream of arriving customers.

Because the actual resource usage of the components is not yet known in the
architecture design phase, estimates will be used in the analysis. These estimates
can be replaced with real values as soon as they are available. There are worst-
case execution time analysis tools available but they are usually for analysing
implemented code, not architectural level descriptions. In fact, the actual values
of the performance concerns are not even interesting because they depend on the
implementation. It is more important to find out how architectural decisions
affect the concerns and, specifically, what kind of conflicts there are between the
concerns.

The performance measurements are made for each of the scenarios defined in
the performance profile. For each scenario, the values of performance measures
(latency, throughput, memory utilisation, processor utilisation, bus utilisation,
power utilisation) are estimated and then compared to the requirements.

A performance impact analysis is made by using the process view. In addition to
the profile that defines the test cases for the impact analysis, the following
information is needed: resource usage estimates for runtime components, and
resource usage restrictions defined in the physical view.

7.3.2 Cost

A cost impact analysis is divided into the following tasks:

111

• The product cost depends on the software/hardware partition and the
software resource usage. The worst-case resource usage values can be
derived from the results of the performance evaluation.

• Effort estimation is divided into module development times estimation and
integration time estimation. Module development time depends on the
complexity of the module, the size of the module, and the experience of the
developer. Of these, architecture can affect the first two. Module
development time estimates can be derived from the complexity estimates
prepared for the functional entities. Integration time depends on the
dependencies between the developed modules and on the overall complexity
of the system. Metrics can be used to support this work.

• The amount of personnel needed for the changes depends on the skills of the
staff and the amount of concurrency needed in the work.

• The duration, i.e., time-to-market, is counted from module development
times and integration time. The duration depends on how much concurrency
can be used in developing the system.

Every architecture evaluation should consider the cost consequences of the
proposed design. The external factors, and not only the software, have to be also
considered in the cost analysis. For example, software architecture affects the
product cost only indirectly through resource usage. If software exceeds the
resource usage limits, it should be considered whether it should be the software
or the hardware that needs to be changed. If hardware is changed, this will affect
the product cost.

7.3.3 Variability

A variability impact analysis is performed in two phases. First, each scenario is
analysed individually. The second task is to reveal scenario interaction. The
values for variability measures should be estimated for each scenario in order to
be able to analyse the impact of the scenario. The variability measures are the
cost of the change and the complexity of the architecture after the change.

112

When comparing two architecture candidates, it is important to compare their
overall complexities. It is possible that some architecture fulfils all the possible
change scenarios, but because of that, its overall complexity is higher and it is
therefore harder to implement and test. Another architecture may be easy to
change although it does not directly fulfil all the change scenarios.

Because exact values cannot be defined, only relative values are used for
evaluating the impact of the scenario. In our case, we sum up the results of the
four questions and give one qualitative value for the impact:

• Minimum impact: no change, or so small a change (e.g. only to one existing
component) that there is no need to change the architecture.

• Low impact: several components are modified or new components are
added, but they are of the same type than the old ones.

• High impact: changes to architectural views and structures.

• Maximum impact: major reforms to architectural views which means that
completely new architecture is needed.

If there is a maximum impact for a relevant scenario, the evaluated architecture
cannot be accepted. In case of minimum impact, there is no need for changes in
the architecture. The most interesting cases are the high and low impact. All the
high impact cases should be carefully studied and considered if there is a way to
reduce the impact. In case of low impact, the weight of the scenario is taken into
use. In case there are a large number of scenarios to be analysed, the scope of the
detailed analysis should be narrowed. Using the weights, it is only the most
important scenarios that have low impact that are studied in more detail.

The other part of impact analysis is to study the scenario interactions. Clustering
means that several scenarios cause changes to the same architectural component
(Bass et al. 1998). First, the scenarios can be variations of a same scenario,
which is a good thing and means that the system’s functionality is modularised
properly. Secondly, the scenarios may be entirely different. High interaction
among scenarios that are fundamentally different corresponds to low cohesion
and suggests high structural complexity. High interaction among fundamentally

113

similar scenarios signals high cohesion. Additionally, if a group of similar
scenarios affects many different components throughout an architecture,
modularisation has not succeeded.

7.4 Result analysis

The main task of result analysis is to identify the quality conflicts. Quality
conflicts are the features that are advantageous to one quality but unfavourable
to another quality. After the quality conflicts are found out, the weights can be
used to make compromises. A result analysis is divided into three tasks:

1. An analysis of the individual qualities based on the impact analysis results.
In the event that the architecture does not fulfil the quality requirements,
changes are proposed.

2. An analysis of conflicting requirements, using the impact analysis results.
Each proposed change is analysed for its impact concerning the other quality
attributes.

3. An analysis of the evaluation results, and making a decision upon whether
the architecture candidate thus fulfils the requirements or not. If the
candidate is not good enough, refinements are needed.

In this phase, the result takes the form of a decision upon whether the
architecture fulfils the requirements or not. If not, then a decision should be
made about the possible realisation of the proposed refinements. If the
refinements to software are too costly to make, refinements to algorithm design
or hardware architecture should be considered instead. This is because the
ultimate goal is to optimise the whole DSP system, not just software or hardware
separately.

7.5 Architecture refinement

The architecture refinement is performed in two phases:

114

1. An analysis of the required changes. The refinement of the architecture can
be directed to software architecture, hardware architecture, or even to
algorithm design. After the refinement responsibilities are divided between
these three areas, the actual refinement can be performed separately.

2. Actual refinement. Each view has specific patterns, styles and other
strategies that can be used to achieve better quality.

If initial assumptions for the architecture are changed, the architecture has to be
re-evaluated. For example, any change to the system may affect its performance
because performance is optimised to the particular set of operations. Therefore,
after each refinement, the architecture should be re-evaluated. In addition, when
some actual or better values for the execution time estimates or other estimates
are received later on, the architecture should be re-evaluated.

115

8. Validation

8.1 Case study

The case study that is used to validate the architectural methods and techniques
is a hypothetical personal mobile multimedia terminal called Multics terminal
(Soininen et al. 2001). The case study was used as a source of ideas and as a
validation vehicle in the Multics project. Although the whole terminal was
specified in the requirements specification, the focus of the research was on the
lower layer services and especially on the digital signal processing parts. This
domain was called Transceiver. Both hardware and software architectures were
considered. This work utilises the results of the software architecture research.

The goal was to create a terminal that could work optimally in any network.
'Optimally' meaning that it provides the best performance possible with the
available resources at any time. In the initial requirements, Transceiver supports
WLAN, GSM, and WCDMA standards. GSM and WCDMA are alternate
standards but WLAN can be utilised simultaneously with either of them. The
mode of operation depends on the user needs and the availability of the
networks. The operation of Transceiver should be transparent to the user.

8.2 Requirement analysis

The functional requirements were analysed using use case-diagrams. The high
level use case diagram for a Multics terminal is depicted in Figure 8-1. The use
case diagram also shows some of the internal functionality, because
telecommunication systems are traditionally divided into layers. The Radiolink
actor refers to physical connection whereas Network actor creates a logical
connection to the terminal.

The use cases Transmit messages, Receive messages, and Control transmission
describe the responsibilities of the Transceiver. Control transmission was further
specified as low-level use cases. The problem with use case diagrams is to find
the right level of detail in which to define responsibilities. If there is too much
detail, use cases restrict the architecture design too much, but if there are too few

116

details, the actual responsibilities remain unclear. Generation of use cases for a
multimode terminal requires a good knowledge of the application area and
understanding of the standards.

User

Network

Radiolink

Execute
applications

Monitor inputs

Generate
outputs

Control
resources

Decode
messages

Code
messages

Transmit
messages

Receive
messages

Control
connections

Control
transmission

uses

uses

uses

uses

uses

usesuses

uses

usesuses uses

uses

uses

uses

uses

Figure 8-1. Multimode terminal use case diagram.

Evaluation profiles were defined for each of the quality attributes. The
preparation of a performance profile needs an expert in the DSP domain both in
hardware and software. Finding out the critical scenarios is a difficult task. The
cost of the resources affects the type of the resource that is being used and the
maximum possible value there can be for its usage. Therefore, there are two
types of processes for creating performance profiles: one where resource usage
restrictions are set beforehand, and another, more difficult one, where resource
usage is balanced during the architecture evaluation. In this case, we did not fix
any of the variables beforehand.

Table 8-1 shows two different types of example scenarios for performance
profile. Scenario 1 is used for ensuring that the maximum available values are
never exceeded for latency, processor utilisation and memory utilisation, in
order to ensure reliable operation of the system. Scenario 2 is for user
convenience. The most typical user scenario is considered to be GSM voice call,

117

and the power consumption should be minimised in that condition. Both of these
scenarios have equal importance.

Table 8-1. Performance profile.

Scenario Description Weight

1. Simultaneous
high-bit rate
connections in
WLAN and
WCDMA

Scenario initiation:
WCDMA transmitting Turbo coding
WCDMA receive Turbo coding
WCDMA cell search for handover
WLAN receiver is activated

Assumption:
Whenever there is a possibility of WCDMA blocking
resources from WLAN, this will happen.

Scenario execution:
TransceiverFrontEnd receives data and WLAN starts
receiving 54 M/s. (Event = RF-DATA) In addition,
WCDMA both receives and sends data (RF-DATA,
BAS-DATA).

1

2. Plain GSM
connection

Scenario initiation:
GSM voice call is going on.

Assumption:
Naturally, both receiver and transmitter are working.

Scenario execution:
TransceiverFrontEnd receives data and GSM starts
processing received data. (Event = RF-DATA).
Protocols send also data to be transmitted (BAS-
DATA).

1

Cost was estimated only for one feature set, which was defined in the
requirements. In addition, the cost analysis is difficult if not impossible without
the knowledge of the organisation that should develop the product. Therefore,
the results of the cost analysis could be used only for comparing architecture
candidates. With the proposed functionality, the following measures were
estimated:

118

1. What is the hardware cost for the product (use estimates of maximum
memory utilisation of different types of memory and processor type)?

2. What are the module development times? If the architecture allows using
COTS components, then it is considered as an advantage.

3. What is the integration time?

4. How many people would be needed to develop this?

Variability profile consists of the scenarios of which some examples are
presented in Table 8-2. Variability scenarios should be gathered from several
people that represent different interest groups. In our case, this could not be
done, but scenarios were gathered to different categories based on the experience
and literature.

Table 8-2. Variability profile.

Source Scenario Weight

Changes in the
external
components

Change the type of a processor. 0.8

Changes in
functional
requirements

New mode in addition to GSM/WCDMA/WLAN is
needed.

0.5

Changes in
quality
requirements

A cheaper version of the terminal is needed. The SW
should be fitted to one processor instead of two

0.7

8.3 Architecture selection

This chapter describes the created views. The views are based on the object-
oriented approach and UML notation. The evaluation of the constructed
architecture is presented in Chapter 8.4.

119

8.3.1 Logical view

The critical problems studied for the logical view were:

1. How to enable multimode operation?

2. How to enable an optimal usage of resources?

The logical view is composed of class models, scenarios, state diagrams and data
flow descriptions. A class model defines the types of objects that can be used in
the system and the various kinds of static relationships between them. Figure 8-2
depicts the conceptual class model for the Transceiver. The class model allows a
dynamic reconfiguration of connections between terminal applications and the
networks.

Controller

Algorithm

Connection
*

1

*

1

Configurator
1

1

1

1

*

1

ConfiguresConfigures

*

1 *
1

SpecifiesSpecifies

*
1

Service
*

1

*

1

* 1* 1

*

1
MapsMaps

*

1

Figure 8-2. Transceiver class model.

The main strategies followed in the class model were:

1. Scalability: There can exist more than one simultaneous radio connections,
to the same or different networks. The Controller is separated from the
Connections having responsibility of the things that concern all the
Connections. The functionality related to individual radio connections is
then encapsulated in Connections and Services.

120

2. Adaptability: The data flow members i.e. Services are separated from their
implementations, i.e. Algorithms. There could exist more than one mapping
from a Service to Algorithms. Additionally, two different Services could use
the same Algorithm. Services contain the specifications on what should be
done and Algorithms contain the capabilities of what can be done.

3. Modifiability: Separation of concerns. The configuration issues are
separated from the application issues. The management of resources is
performed in one place and not distributed in every Connection. Controller
handles external events and forwards them to Connections when necessary.

4. Extensibility: New types of algorithms and new types of modes can be
added.

The internal behaviours of the classes are defined by state diagrams or algorithm
descriptions. The collaboration of a group of objects is illustrated with
interaction diagrams in Figure 8-3. An interaction diagram, scenario, captures
the behaviour of a single use case. It shows the collaborating objects and the
message flows between them.

Description
myController

:Controller
myConnection

:Connection
myConfigurator

:Configurator

Message to a connection RL-SETUP
If not found create Connection create

Forward event RL-SETUP
If not all services call Configurator configure
Handle original event init

When ready send CONFIRMATION CONFIRMATION

myController
:Controller

myConnection
:Connection

myConfigurator
:Configurator

Message to a connection RL-SETUP
If not found create Connection create

RL-SETUP
If not found create Connection createcreate

Forward event RL-SETUP
If not all services call Configurator configure
Handle original event init

RL-SETUP
If not all services call Configurator configureconfigure
Handle original event initinit

When ready send CONFIRMATION CONFIRMATIONCONFIRMATION

Figure 8-3. Interaction diagrams are derived from use cases.

Configuration tables have two responsibilities. Firstly, they define the states the
system can be in, i.e. configurations. Secondly, they show the implementation
alternatives for those configurations. We defined about 30 configurations for
Transceiver that defined different combinations of WCDMA, GSM, and WLAN
functionality that could be simultaneously active. First, the possible states for
each standard were specified and then the required combinations were derived

121

from the user requirements. Data flow descriptions were used for illustrating
how the configurations are actually formed. Data flow descriptions show how
the chains that perform the data processing are actually created. The
responsibilities of the control classes were verified with state models.

The class model is used especially for finding common behaviour. In addition,
the logical view stays the same independently of the particular implementation
platform of the components. The same logical view can be used for several
products with different hardware platforms. Algorithms have different kinds of
performance requirements compared to control code. When algorithms and
control components are separated on this level, it is easier to take into account
their diverse requirements. The logical view defines what kind of functionality
can be simultaneously active. When configurability requirements are cleared in
the logical view, the requirements of different configurations can be estimated
and used in making the other views.

The logical view was found useful for discussing the required functionality. The
contribution of algorithm experts is essential in this phase. However, UML and
the object-oriented approach are not actually so easy to understand for those who
are not already familiar with them. Therefore, only the basic features, which can
be explained in the beginning of the process, should be used.

8.3.2 Physical view

The physical structure derived from the hardware architecture is illustrated in
Figure 8-4. The physical model consists of two processors (Codec and Sync) and
three hardware nodes. In addition, the external software (Protocols) and shared
memory that can be accessed by all the nodes are presented as nodes. The
physical model is, at the same time, a context diagram to the process view. It
shows all the external connections to the Transceiver software.

122

Codec
<<Processor>>

Sync
<<Processor>>

Protocols
<<External SW >>

DeSpreader
<<HW Component>>

FrontEnd
<<HW Component>>

CodecAcc
<<HW Component>>

CommonAreaForAllNodes
<<Shared memory>>

Figure 8-4. Physical model for Transceiver software.

8.3.3 Process view

Following questions are answered by the process view:

1. How are data processing tasks arranged?

2. How is control of data processing arranged?

3. How is data transfer between tasks performed?

4. What is the scheduling policy?

5. How are the operation parameters transferred to the data processing?

6. How is the multimode operation supported?

The questions are based on the study of the features of the hardware platform
and the quality goals. The goal has not been to define independent problems but
different aspects of the process view design; therefore, the solutions may also
overlap.

123

Two candidates were prepared for the process view. The first version is based on
the pipes and filters style (Buschmann et al. 1996) (see Figure 8-5). It is
especially designed for systems that process streams of data. Each processing
step is encapsulated in a filter component. Pipes implement the data flow
between adjacent processing steps. The sequence of filters combined by pipes is
called a pipeline.

Filters

Pipes

Figure 8-5. Pipes and filters style.

The blackboard style is applied in the second candidate. The idea behind the
blackboard style is a collection of independent programs that work co-
operatively on a common data structure (Buschmann et al. 1996) (see Figure
8-6). Each program is specialised in solving a particular part of the overall task.
There is no predetermined sequence for their activation. Instead, the direction
taken by the system is mainly determined by the current state of the system.

Blackboard
(shared data)

Figure 8-6. Blackboard style.

124

Two types of diagrams were developed for modelling the process view. The
metamodel of the first process view candidate is depicted in Figure 8-7. The
metamodel shows the main entities of the Transceiver from the runtime point of
view. The data processing is performed in pipelines that are constructed from
pipes and filters. Filters can be either software processes (DataProcess) or
hardware components (HWComponent). Pipes are constructed from interprocess
communication (IPC) and hardware drivers. A pipeline manager takes care of
forwarding the configuration parameters to the pipelines. A resource manager
controls the assigning of resources from nodes to the pipelines.

Pipeline ManagerPipeline +controls

Driver

Resource Manager
+assigns

Filter

1..*

0..*

1..*

0..*

HW Component

Transceiver
1

1

1

1

1

0..*

1

0..*

1

1

1

1
Node

+assigned

+assigns
1..*

1

1..*

1

DataProcess

Pipe
1..*

0..*

1..*

0..*

0..*

0..*

0..*

0..*

+uses
IPC

+uses

Figure 8-7. Process view metamodel.

The actual processes are shown in collaboration diagrams. All the control-related
processes and the data processes that are closer to the higher-level software are
situated in the Codec processor in Figure 8-8.

The difference between the two candidates was mainly in their way of handling
the configurations. The first candidate has a more static approach. When a
connection is requested, a pipeline is created for that connection. The pipes and
filters are reserved for that pipeline until the release of that connection is
requested. The second candidate differs from the first one in that the
implementation of a service is decided upon when the service is called. The
implementation depends on the current status of the system.

125

WlanTxBit
<<Process>>

Protocols

GsmTxBit
<<Process>>

GsmRxBit
<<Process>>

WlanRxBit
<<Process>>

WcdmaRxBit
<<Process>>

ResourceManager
<<Process>>

PipelineManager
<<Process>>

WcdmaTxBit
<<Process>>

WcdmaRxSoftbit
<<Process>>

CodecAcc

DeSpreader

DeSpreaderDriver
<<Driver>>

Sync

CodecAccDriver
<<Driver>>

Figure 8-8. Collaboration of processes in the Codec processor.

The functionality of the process view was validated using scenarios similarly to
the logical view. In order to keep the views in consistence, the process view
components were mapped to the logical view components. The main strategies
followed in the process view were:

1. Processor utilisation: Minimise context switches. If there is no specific
reason to make a separate process for something then it is not done.

126

2. Latency: Critical functionality is mapped to a separate process. When some
functionality needs a fast response, it is not combined with a less critical
functionality.

3. Latency and memory usage: Avoid copying data and parameters. Shared
memory is used for delivering control parameters and data.

4. Memory usage: Minimise the number of active processes. It is possible to
remove unused processes in order to save memory space, if needed.

5. Power utilisation: Allow shutting down unused resources. It is possible to
shutdown the unused nodes and also the unused blocks of memory.

6. Scalability: Allow a dynamic addition and deletion of connections and a
separation of uplink and downlink.

8.3.4 Development view

Problems of the development view should be derived from the features of the
development environment, i.e. hardware platform, development organisation,
etc. Because there was no assumption of the development organisation in
Multics, it could not be taken into account. The following questions are
answered with the development view:

1. How is the complexity of hardware hidden from the application
programmer?

2. How is control and data processing separated?

3. How should one handle the components of different modes?

4. How is the distribution hidden?

5. How are the layers separated from each other?

6. How are the modifications restricted to only few components?

127

7. What are the layering criteria?

The domains in the development view are illustrated in Figure 8-9.

• Applications. The application processes belong to this domain. They are
independent of the underlying infrastructure. Therefore, they can be ported
to different hardware and software platforms.

• Algorithms. This domain provides the algorithm library that is used by the
Applications. The interface of the domain specifies the capabilities of the
algorithms.

• Support. The communication methods and other operating system
functionality are in this domain. This domain creates a software platform so
that an application process does not need to know what is processed next
and where.

• Devices. Hardware device drivers and interrupt handlers belong to this
domain. It hides the actual composition of the hardware platform. Together
with Support, it hides the infrastructure from the Applications.

Support

Device

Algorithms

Application

Figure 8-9. Development view.

128

The development view supports portability with using separate domains for
hardware components and with using an operating system to hide processors.
Extensibility is ensured with a specific domain to algorithms. Interfaces between
domains are specified for facilitating modifiability. However, minimising the
amount of sequential domains i.e. layers helps avoiding latencies.

8.4 Architecture evaluation

In the evaluation, two architecture candidates were compared. Their main
difference was that they had different process views. The goal was to refine the
architecture candidates, when necessary, according to the results of the
evaluation. For convenience, the architecture candidate the process view of
which was based on the pipes and filters style is called here the pipes and filters
architecture and the other architecture candidate is called the blackboard
architecture.

The performance impact analysis was performed using the execution time
estimates from hardware architecture design for individual components. In
addition, the time spent in control operations was estimated. RMA was used
manually for analysing the performance. Estimates for processor utilisation, bus
utilisation, memory usage, latencies and power consumption were prepared for
each of the scenarios in the performance profile. The results were analysed in
order to find out the points that needed changing. For example, the following
changes were proposed to the original version of the pipes and filters
architecture:

• Maximum power utilisation should be lowered for the Sync processor.
Consequently, the following changes could be made: enable dynamic
processes, remove inactive processes, rearrange processes, and shutdown the
hardware parts when they are not active.

• Shorten latencies. The following changes are needed: add processing power,
increase parallelism by using shorter periods, or rearrange the processes.

• Reduce memory usage of buffers. This means that the periods of processes
should be shortened.

129

The cost impact analysis was difficult to perform because there was no
estimation of the organisation that would develop the system. Therefore, relative
values were used in the analysis. The results of the analysis could be used only
for comparing the architecture candidates.

In the variability impact analysis, the impact of each change scenario was
analysed. In addition, the scenario interaction analysis was used for covering the
dependencies between the scenarios. The following types of changes were
proposed for the initial version of the pipes and filters architecture:

• Both processors had their own drivers for hardware nodes. If processor
allocation is changed, drivers, consequently, will need changing. There
should be either one driver/node or one driver/HW component.

• Every time a new type of algorithm is added to the system, the selection of
the algorithm has to be made in the data process. The Controller could give
the pointers to the used algorithms and the conditions in the initialisation; or,
one could use a dynamic inheritance pattern (Cohen 1996).

• Control process is too complicated. Therefore, it is divided into Resource
manager and Pipeline manager.

In the tradeoff analysis, each of the proposed changes was studied and the
impact of the proposed changes to the other attributes was analysed, Table 8-3.
In accordance with the results of the tradeoff analysis, the following refinements
were made for the original version of the pipes and filters architecture:

• Control process was divided into Resource and Pipeline managers to reduce
the complexity of control.

• Dynamic processes were enabled for allowing updating for future purposes.

• One driver/HW node was selected for clear division of responsibilities. As a
consequence there is no need for special assumptions of HW capabilities. It
is assumed that HW components are fixed to the node they are now
assigned.

130

The analysis of the pipes and filters architecture was partly redone after the
refinements after which it better fulfilled the requirements.

Table 8-3. Examples of the result of the tradeoff analysis.

Result of impact
analysis

Change request Tradeoff

Performance

Minimise power
utilisation in some states
by moving operations to
one processor and
putting the other
processor in power-
saving state.

Enable dynamic
processes, remove
inactive processes, re-
arrange processes and
shutdown the hardware
parts when they are not
active.

The use of dynamic
processes in “a static
way” does not cause any
additional overhead and
therefore can be
accepted. The only
problem is if such a
RTOS can be found for
DSP.

Shorten latencies. Increase parallelism by
finding out the optimum
period.

Does not affect other
quality attributes but
causes increase in buffer
utilisation if periods are
lengthened.

Variability

The same encoding is
used in two processes.

Move the encoding to a
separate process.

Too much overhead
compared to the
execution time of the
encoding.

Control process is too
complicated

It is divided into two
processes. Resource
management is separated
to a different process.

Adds a little bit to the
execution time but
because it is not critical
functionality it is ok.

In comparing the final designs, the pipes and filters architecture was considered
to be the better alternative with the given requirements. The reason for this is the
slightly better result in the cost evaluation and the fact that the performance of

131

the blackboard architecture is too sensitive to changes in process partition and
periods. If an emphasis were laid on the importance of adaptivity so that the
implementation platform of an algorithm should be selected for each call
separately, the blackboard architecture would be a valid option.

The summary of the selected and alternative solutions to the design problems is
presented in a design rationale. Part of the design rationale for the process view
is shown in Table 8-4.

Table 8-4. Solutions to Process view problems.

Problem Selected solution Explanation Alternative solutions

How are data
processing
tasks
arranged?

Pipes and filters
style

Strategy: Allow
a dynamic
addition and
deletion of
connections.

Proposed: blackboard
style, if the system has
to be able to select
between different
alternative
implementations to a
service during runtime.

How is the
control of data
processing
arranged?

Main control and
resource
management are
in separate
processes.

Strategy: Use a
separation of
concerns

Removed solution: one
Controller for
everything because it
would have been too
complex to maintain.

The evaluation shows that even with inadequate knowledge of the system in the
early phases of the development, the architecture evaluation can be used for
comparing design decisions. The openness of the process enables the same tests
to be repeated when more accurate knowledge is available. In the end, even the
final, implemented product can be evaluated in order to find out whether the
initial assumption applies and the selected architecture still fulfils its
requirements. This evaluation was done manually; however, when there are
larger evaluation profiles and several iterations of the architecture candidates,
good tools are necessary.

132

8.5 Discussion

Two candidates for Transceiver architecture were developed. Although the two
architecture candidates were mainly separated by the used architectural style in
the process view, this is only one solution to one design problem. In fact, more
than one architectural styles or patterns could have been used. Furthermore, in
each view could be used different styles and patterns as long as they do not
conflict with each other. Use case diagrams were utilised for validating the
functionality with scenarios. They also served as a way to link the different
views together. The design decisions were supported by the evaluation results.
For supporting the future development of the system, the design decisions were
explained in a design rationale. Furthermore, the alternative solutions that had
been already considered were also documented. The architecture candidate
based on the pipes and filters style proved to be the more appropriate base for a
multimode Transceiver architecture. However, if other hardware architecture
platforms, organisation and other environmental factors, and more detailed
quality requirements were studied, refinements would be needed.

Software architecture design creates a bridge from the requirements to the
detailed design. It is a basis for creating a system that fulfils its requirements, not
only the functional but also non-functional ones. Furthermore, it facilitates a
discussion on what the requirements actually are. The architecture design
ensures that the major design decisions are made first, before detailed design,
and not only after problems are found in testing.

The quality requirements specification should be emphasised in DSP software
architecture development. It is the possible future needs, in particular, that
should be considered. Without a proper understanding of the quality
requirements, the comparison of design decisions becomes impossible.
Generation of evaluation profiles would need the co-operation of different
experts and stakeholders in order to be sure that everything is covered. However,
it is important that only the critical scenarios are taken into the final profiles to
keep the evaluation as fast as possible. Especially, the performance profile
should include several scenarios, which reflect the different conditions in which
the system is used.

133

Evaluation profiles enable the repetition of evaluations from the early
architecture drafts to the implemented version of the system. When requirements
change or new, more accurate values for estimations are received, or other
assumptions do not hold any more, it is a signal that the architecture should be
re-evaluated in order to find out if changes are needed.

The greatest advantage of the documentation of the architecture with views is
that the different aspects of the design are explicitly shown somewhere. When
the design decisions are explained, they can be truly followed and utilised in the
later phases of the development. Furthermore, the experience gathered in one
project can be used as a starting point in the following projects. This way
although the people change in the organisation, the knowledge remains.

Design rationale covers the alternative design decisions. If there is a need to
change the architecture, the already covered solutions are easy to find out and
utilise, when possible. It is not necessary to write down the flow of each version
of a candidate in detail. An informal design history (like a version list) could be
enough for collecting all the changes done to the candidate. In the end, using the
design history, a more formal summary of the significant design decisions and
generations could be written down to the architecture document that is kept up-
to-date and reviewed. Thus, the design history would not be reviewed or
maintained otherwise but only when adding new “versions”.

The architecture design of complex systems is an iterative process and therefore,
in the future, more emphasis should be put on developing easier and faster
evaluation methods. For example, when there is more than a couple of
performance scenarios, the evaluation would be much easier with a
schedulability analyser

This work functions as a start in defining an architecture evaluation and
refinement process for multimode DSP software. The purpose has been to give a
general impression of the way quality requirements can be taken into account in
the architecture design. A summary of the advantages of the proposed
architecture development approach is presented as follows:

134

• Architectural views provide a way to manage complexity. An understanding
of the overall system functionality grows. It is easier to find out the specific
aspects of the system when the views are separated.

• The defined views support multimode operation. The logical view defines
the different combinations of functionality that can be simultaneously active.
The physical view defines all the possible mappings from logical
components to the hardware architecture. The process view defines the
actual runtime configurations. The development view supports the
development of mode-specific and common components.

• In addition to the functional requirements, the architecture is derived from
the quality requirements through applied strategies.

• Concurrent development is supported. Communication is easier when there
is a common understanding of the system before detailed design starts.
Development view defines the interfaces between different domains. An
individual designer can find the module under work in the architecture and
know its place in the system.

• Hardware/software partition is supported with two views. The required
functionality is defined in an implementation-independent way in the logical
view. The physical view is a communication media between hardware and
software designers.

• The logical view provides the constraints and the possibilities for reuse. The
actual work is done in the development view.

• The focus stays in the algorithm development. The logical view separates
the control and the algorithms. In addition, the development view separates
the algorithm development from the application development.

The pitfalls in the architecture development process are as follows:

• Use cases become the architecture design. If use cases go into too many
details, they will start to restrict the design decisions more than is necessary.

135

• Not all the critical scenarios are covered in the evaluation profiles. The
profiles are the main factor to the success of the evaluation.

• Too many scenarios are defined in the profiles. If the profiles become too
large, the evaluation does not focus on the critical points, and furthermore,
the evaluation becomes too cumbersome and time-consuming to be helpful.

• Academic discussion on notations and methods destroys the discussion on
the actual contents of the views. The way views are described is not
important as long as everybody in the project understands and accepts it.
The guidelines concerning what diagrams are drawn and with what method
should be established before the project starts.

• The architecture tries to solve all the problems at once. The architecture
should concentrate on the most critical design decisions - detailed design is
left to others.

• Evaluation of the architecture does not continue after the first version is
released. There are many uncertain elements in the beginning of the project.
There are many estimated values, in particular, that are used in the
architecture evaluation. As soon as correct values or better values are
received, the validity of the architecture should be re-evaluated.

• The detailed design is not in conformance with the architecture. The
architect should make sure that the designers follow the guidelines that the
architecture has given. If changes to the architecture are considered
necessary in the detailed design, the architect should receive the change
request. The architect then analyses the architecture if the change is really
needed. The change to the architecture needs to be accepted before it can be
done at the implementation level.

• Too much documenting frustrates the designers. Although there are certain
things that should be written down, the purpose of architecture
documentation is to provide a quick view of the properties of the system.
The final formal documentation is different from what is done during the
work. During the architecture design, the design decisions and evaluation
results should be written down in an informal and fast way. A sort of a diary

136

should be kept. After the design starts to be more stable, the informal notes
are generated into architecture documents and evaluation reports.

8.6 Future research

Because applying architecture design methods and techniques in DSP software
design is a new subject, there is still much to do. The quality attribute
taxonomies can be used as checklists in different points in the architecture
development. In order to be reliable, they should be refined according to the
experience that is received from several real-life projects.

In this work, the tools were not the main concern; in the future, however, it will
be essential to find practical, useful tools for the evaluation process. Architecture
evaluation will be used, as it should, only when its execution is fast and reliable.
Therefore, the next step after this work will be to refine and polish the evaluation
strategy and find tools that support it.

This research has concentrated on studying the qualities from the software point
of view. However, the quality of a DSP system also depends on the hardware.
Therefore, one interesting subject for future research is to broaden the quality
analysis to cover both hardware and software. Traditionally, the hardware has
guided the system design. However, more and more of the DSP systems are
implemented in software. It would be about time for the software designers to
take a more active role in the system design. One way to do this would be to take
the ideas from the software architecture community to system architecture
design.

137

9. Conclusions
This thesis has presented an approach to multimode DSP software architecture
development. It was argued that the architecture development should be based
on the quality requirements. Using the experience in DSP software architecture
projects and literature, three quality attributes were defined for multimode DSP
software. The different aspects of the attributes were clarified by using
taxonomies. The architecture development process was divided into requirement
analysis, selection of the architectural structures, and evaluation of the
architecture candidates. The taxonomies were the starting point in all the three
phases.

The approach is based on the utilisation of existing methods and techniques in
the software architecture research field. During the late 1990’s, software
architecture research has evolved, and methods and techniques have been
developed for each phase of the architecture development. This research
combines the methods that are suitable for the multimode DSP software
development. Digital signal processing software has long concentrated on saving
the hardware resources and reaching the signal quality requirements. Now, when
the processors and compilers finally enable the use of higher level languages in
the implementation, and the complexity of software grows with multimode
requirements, the focus has been turned also on the architecture design.

The research aimed at defining the architecture development approach that met
the special requirements of the multimode DSP software. The research questions
were the following:

1. What are the quality attributes of the multimode DSP software?

2. What are the architectural descriptions that should be used to specify
multimode DSP software architecture?

3. How do quality attributes affect the selection of the architectural structures?

4. How are quality attributes used in the evaluation of architecture candidates?

138

The first question was answered by defining the quality attribute taxonomies.
Based on the problem analysis, the critical quality attributes to multimode DSP
software are performance, cost, and variability.

As an answer to the second question, four views are needed to define multimode
DSP software architecture. The logical view divides the required functionality
into implementation independent components. The physical view summarises
the hardware architecture from the software point of view and also shows the
external connections of the software. The process view shows how software
works during runtime. And finally, the development view presents the actual
modules that should be implemented. Each view can consist of several diagrams.

The third question is dealt with by means of quality taxonomies. The quality
attribute taxonomies are used in every phase of the architecture development.
Problems and strategies are defined on the basis of the taxonomies for each
view. Strategies guide the selection of the architectural structures. The external
environment and the quality measures affect the defining of the critical questions
in the architecture design. Architectural parameters in the taxonomies point out
what kind of strategies should be created for solving these problems.

The fourth problem, the evaluation, is supported by the taxonomies when
creating the evaluation criteria and when specifying the actual measures that
should be evaluated during the impact analysis. Evaluation profiles are created
for each of the attributes. A stimulus section contains the variables that create
the space where scenarios should be elicited. A response section is used for
restricting the scenarios only to the most critical ones. It is possible to compare
different architecture candidates by using the evaluation results; consequently,
the one that best fulfils the requirements can be chosen.

The proposed architecture design approach is iterative and incremental. It is
based on the existing methods and tools in the software architecture research
field. The main idea is that without actually specifying the quality requirements,
it is not possible to compare design decisions and to know that the developed
system will be of the kind pursued. It was shown that even with an inadequate
knowledge of the system in the early phases of the development, the quality
evaluation can be used for comparing architectural decisions.

139

References
Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L., Zaremsky, A.
1997. Recommended Best Industrial Practice for Software Architecture
Evaluation, Technical Report CMU/SEI-96-TR-025. Software Engineering
Institute, Carnegie Mellon University. 43 p.

Akao, Y. 1990. Quality function deployment: integrating customer requirements
into product design. Cambridge: Productivity Press. 387 p. ISBN 0-915-29941-0

Allen, R., Garlan, D. 1997. A Formal Basis for Architectural Connection. ACM
Transactions on Software Engineering and Methodology. Vol. 6, No. 3, pp. 213-
249.

Alonso, A., de la Puente, J. A. 1993. Dynamic Replacement of Software in Hard
Real-Time Systems. Proceedings of the Fifth Euromicro Workshop on Real-
Time Systems, Oulu, Finland, June 22-24, 1993. Pp. 76-81.

Anthony, R.J. 2001. A Taxonomy of Transparency and a Dependency Graph.
Proceedings of the IASTED International Conference, Applied Informatics,
February 19-22, 2001, Innsbruck, Austria. Pp. 692-699.

Bachmann, F., Bass, L., Chastek, G., Donohoe, P., Peruzzi, F. 2000. The
Architecture Based Design Method, Technical Report CMU/SEI-2000-TR-001.
Software Engineering Insitute, Carnegie Mellon University. 56 p.

Barbacci, M., Klein, M.H., Longstaff, T.A., Weinstock, C.B. 1995. Quality
Attributes. Technical report CMU/SEI-95-TR-021. Software Engineering
Institute, Carnegie Mellon University. 56 p.

Barbacci, M.R., Ellison, R.J., Weinstock, C.B., Wood, W.G. 2000. Quality
Attribute Workshop Participants Handbook, Special Report CMU/SEI-2000-SR-
001. Software Engineering Institute, Carnegie Mellon University. 44 p.

Bass, L., Clements, P., Donohue, P., McGregor, J., Northrop, L. 2000. Fourth
Product Line Practice Workshop Report, CMU/SEI-2000-TR-002. Software
Engineering Institute, Carnegie Mellon University. 36 p.

140

Bass, L., Clements, P., Kazman, R. 1998. Software Architecture in Practice.
Reading, Massachusetts: Addison-Wesley. 452 p. ISBN 0-201-19930-0

Bass, L., Kazman, R. 1999. Architecture-Based Development, Technical Report
CMU/SEI-99-TR-007. Software Engineering Institute, Carnegie Mellon
University. 36 p.

Bass, L., Klein, M., Moreno, G. 2001. Applicability of General Scenarios to the
Architecture Tradeoff Analysis Method, Technical Report CMU-SEI-2001-TR-
014. Software Engineering Institute, Carnegie Mellon University. 65 p.

Bellay, B., Gall, H., Hassler, V., Klösch, R., Trausmuth, G., Beckaman, H.,
Eixelsberger, W. 1997. Software Architecture through Architectural Properties,
Technical Report TUV-1841-97-03. Technical University of Vienna. 21 p.

Bengtsson, P., Bosch, J. 1999. Architecture Level Prediction of Software
Maintenance. Proceedings of Third European Conference on Software
Maintenance and Reengineering, Amsterdam, Netherlands, March 1999. Pp.
139-147.

Bhattacharyya, S., Murthy, P., Lee, E. 1999. Synthesis of Embedded Software
from Synchronous Dataflow Specifications. Journal of VLSI Signal Processing,
Vol. 21, No. 2, pp. 151-166.

Bieman, J.M., Kang, B-K. 1998. Measuring Design-Level Cohesion. IEEE
Transactions on Software Engineering, Vol. 24, No. 2, pp. 111-124.

Boehm, B., Abts, C., Chulani, S. 2000. Software Development Cost Estimation
Approaches - A Survey, Technical Report USC-CSE-2000-505. USC Center for
Software Engineering. 45 p.

Boehm, B., In, H. 1996. Identifying Quality-Requirement Conflicts. IEEE
Software, Vol. 13, No. 2, pp. 25-35.

Bosch, J. 1998. Evolution and Composition of Reusable Assets in Product-Line
Architectures: A Case Study. 1sr Working IFIP Conference on Software
Architecture, October 1998. 13 p.

141

Bosch, J. 2000. Design and Use of Software Architectures, Adopting and
evolving a product-line approach. Pearson Education Limited. 354 p. ISBN 0-
201-67494-7

Bosch, J., Molin, P. 1999. Software Architecture Design: Evaluation and
Transformation. Proceedings of the IEEE Engineering of Computer Based
Systems Symposium (ECBS99), December 1999. Pp. 4-10.

Bot, S., Lung, C.-H., Farrell, M. 1996. A Stakeholder-Centric Software
Architecture Analysis Approach. Proceedings of the Second International
Software Architecture Workshop (ISAW-2), San Francisco, California, USA,
Pp. 152-154.

Bratthall, L., Runeson, P. 1999. A Taxonomy of Orthogonal Properties of
Software Architectures. Proceedings of the Second Nordic Workshop on
Software Architecture (NOSA'99).

Briand, L., Carrière, J., Kazman, R., Wüst, J. 1998. COMPARE: A
Comprehensive Framework for Architecture Evaluation. Technical Report
IESE-046.98/E, November 1998. Fraunhofer IESE. 14 p.

Briand, L.C., Langley, T., Wieczorek, I. 2000. A Replicated Assessment and
Comparison of Common Software Cost Modeling Techniques. Proceedings of
the 22nd International Conference on Software Engineering (ICSE 2000),
Limerick, Ireland, June 4-11. Pp. 377-386.

Briand, L.C., Morasca, S. 1996. Property-Based Software Engineering
Measurement. IEEE Transactions on Software Engineering. Vol. 22, No. 1, pp.
68-85.

Briand, L.C., Morasca, S., Basili, V.R. 1999. Defining and Validating Measures
for Object-Based High-Level Design. IEEE Transactions on Software
Engineering, Vol. 25, No. 5, pp. 722-743.

142

Briand, L.C., Wüst, J. 2001. Integrating scenario-based and measurement-based
software product assesment. The Journal of Systems and Software, Vol. 59, No.
1, pp. 3-22.

Buschmann, F., Meunier, R., Rohnert, H., Sommerland, P., Stal, M. 1996.
Pattern-Oriented Software Architecture - A System of Patterns. Chichester: John
Wiley & Sons. 457 p. ISBN 0-471-95869-7

Cohen, S. 1996. Dynamic Inheritance in C++. C++ Report, Vol. 8, No. 4, pp. 30-
37.

Coplien, J., Hoffman, D., Weiss, D. 1998. Commonality and Variability in
Software Engineering. IEEE Software, Vol. 15, No. 6, pp. 37-45.

Dobrica, L., Niemelä, E. 2000. A strategy for analysing product line software
architectures. VTT Publications 427, URL: http://www.inf.vtt.fi/pdf/. Espoo:
Technical Research Centre of Finland. 124 p.

Douglass, B.P. 1998. Real-Time UML: Developing Efficient Objects for
Embedded Systems. Addison-Wesley. 365 p. ISBN 0-201-32579-9

Drew, N., Dillinger, M.M. 2001. Evolution Toward Reconfigurable User
Equipment. IEEE Communications Magazine, Vol. 39, No. 2, pp. 158-164.

Dueñas, J.C., de Oliveira, W.L., de la Puente, J.A. 1998. A Software
Architecture Evaluation Model. Proceedings of the Second International
ESPIRIT ARES Workshop, Las Palmas, February, 1998, LNCS 1429. Springer
Verlag. Pp. 148-157.

Egyed, A., Medvidovic, N. 1999. Extending Architectural Representation in
UML with View Integration. Proceedings of the 2nd International Conference on
the Unified Modeling Language (UML), Fort Collins, CO, October 1999. Pp. 2-
16.

Gacek, C. 1998. Detecting Architectural Mismatches During Systems
Composition, Doctoral Dissertation, Center for Software Engineering. Los
Angeles, CA 90089: University of Southern California. 195 p.

143

Gamma, E., Helm, R., Johnson, R., Vlissides, J.O. 1995. Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley. 383 p. ISBN 0-201-63361-2

Gomaa, H. 1993. Software Design Methods for Concurrent and Real-Time
Systems. Addison-Wesley Publishing Company. 447 p. ISBN 0-201-52577-1

Gupta, D., Jalote, P. 1993. On-line Software Version Change Using State
Transfer Between Processes. Software-Practice and Experience. Vol. 23, No. 9.
Pp. 949-964.

Hauptmann, S., Wasel, J. 1996. On-line Maintenance with On-the-fly Software
Replacement. Proceedings of the Third International Conference on
Configurable Distributed Systems. IEEE, Annapolis, Maryland, May 1996. Pp.
70-80.

Hofmeister, C., Nord, R., Soni, D. 1999a. Applied Software Architecture.
Addison-Wesley. 397 p. ISBN 0-201-32571-3

Hofmeister, C., Nord, R.L., Soni, D. 1999b. Describing Software Architecture
with UML. Proceedings of the First Working IFIP Conference on Software
Architecture. Kluwer Academic Publishers. Pp. 145-160.

Huotari, A. 1999. Signal Processing in Multi-Mode Radio Terminal. Licentiate
Thesis. Department of Electrical Engineering, University of Oulu, Finland. 69 p.

Jaaksi, A., Aalto, J.-M., Aalto, A., Vättö, K. 1999. Tried & True Object
Development, Industry-Proven Approaches with UML. Cambridge: Cambridge
University Press. 343 p. ISBN 0-521-64530-1

Jones, D.W. 1991. Solving Timing Problems in ADA. Proceedings of Miller
Freeman, Inc., Embedded Systems Conference, Santa Clara, California
September 24-27, 1991. Pp. 242-257.

Kaikkonen, T. 1996. Improving DSP Software Development Practices. Diploma
Thesis. Department of Electrical Engineering, University of Oulu, Finland. 114
p.

144

Kalavade, A., Lee, E. 1993. A Hardware/Software Codesign Methodology for
DSP Applications. IEEE Design and Test of Computers, Vol. 10, No. 3, pp. 16-
28.

Kang, K.C, Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S. 1990. Feature-
Oriented Domain Analysis (FODA). Feasibility study. Technical Report
CMU/SEI-90-TR-21. Software engineering Institute. Carnegie Mellon
University. 147 p.

Kang, K.C., Kim, S., Lee, J., Lee, K. 1999. Feature-Oriented Engineering of
PBX Software for Adaptability and Reuseability. Software - Practice and
Experience. Vol. 29, No. 10, pp. 875-896.

Karhinen, A., Ran, A., Tallgren, T. 1997. Configuring Designs for Reuse.
Software Engineering Notes, Vol. 22, No. 3, pp. 199-208.

Kazman, R., Abowd, G., Bass, L., Clements, P. 1996. Scenario-Based Analysis
of Software Architecture. IEEE Software, Vol. 13, No. 6., pp. 47-55.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.
1998. The Architecture Tradeoff Analysis Method. Proceedings of the 4th
International Conference on Engineering of Complex Computer Systems
(ICECCS98), Monterey, CA. Pp. 68-78.

Klein, M., Kazman, R. 1999. Attribute-Based Architectural Styles. Technical
Report CMU/SEI-99-TR-022. Software Engineering Institute, Carnegie Mellon
University. 82 p.

Klein, M.H., Ralya, T., Pollak, B., Obenza, R., Harbour, M.G. 1993. A
Practitioner's Handbook for Real-Time Analysis: Guide to Rate Monotonic
Analysis for Real-Time Systems. Massachusetts: Kluwer Academic Publishers.
712 p. ISBN 0-7923-9361-9

Kruchten, P. 1995. The 4+1 View Model of Architecture. IEEE Software, Vol.
12, No. 6, pp. 42-50.

145

Kukkohovi, M. 1996. Software Architecture for a Dual Mode Cellular Phone,
Diploma Thesis. Department of Electrical Engineering, University of Oulu,
Finland. 57 p.

Lassing, N. 2001. Architectural-Level Modifiability Analysis, PhD Thesis. Vrije
Universiteit. URL: http://www.cs.vu.nl/~nlassing/. 236 p.

Lassing, N., Bengtsson, PO., van Vliet, H., Bosch, J. 2002. Experiences with
ALMA: Architecture-Level Modifiability Analysis. The Journal of Systems and
Software, Vol. 61, No. 1, pp. 47-57.

Lassing, N., Rijsenbrij, D., van Vliet, H. 1999. The goal of software architecture
analysis: confidence building or risk assessment. Proceedings of the 1st Benelux
conference on state-of-the-art of ICT architecture. Amsterdam, Netherlands:
Vrije Universiteit. 6 p.

Lee, E.A. 1999. Embedded Software - An Agenda for Research. ERL Tehnical
Report UCB/ERL No. M99/63. Berkeley, CA, USA: University of Berkeley. 16
p.

Lu, W.W. 2000. Compact Multidimensional Broadband Wireless: The
Convergence of Wireless Mobile and Access. IEEE Communications Magazine,
Vol. 43, No. 11, pp. 119-123.

Luckham, D., Vera, J. 1995. An Event-Based Architecture Definiton Language.
IEEE Transactions on Software Engineering, Vol. 21, No. 9, pp. 717-734.

Lung, C-H., Bot, S., Kalaichelvan, K., Kazman, R. 1997. An Approach to
Software Architecture Analysis for Evolution and Reusability. Proceedings of
CASCON'97. Toronto, ON. November 1997.

Maccari, A., Saridakis, T. 1999. Software Architecture in Industry: Misuse and
Non-Use. Proceedings of the Second Nordic Workshop on Software
Architecture, NOSA'99. University of Karlskrona/Ronneby.

146

Magee, J., Kramer, J. 1996. Dynamic Structure in Software Architectures.
Proceedings of ACM SIGSOFT'96: Fourth Symp. Foundations of Software
Engineering (FSE4). Pp. 3-14.

Magee, J., Kramer, J., Sloman, M. 1989. Constructing Distributed Systems in
Conic. IEEE Transactions on Software Engineering, Vol. 15, No. 6, pp. 663-675.

McCabe, T.J. 1976. A Complexity Measure. IEEE Transactions on Software
Engineering, Vol. 2, No. 4, pp. 308-320.

Medvidovic, N., Taylor, R.N. 2000. A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering. Vol. 26, No. 1, pp. 70-93.

Mehta, M., Drew, N., Niedermeier, C. 2001. Reconfigurable Terminals: An
Overview of Architectural Solutions. IEEE Communications Magazine, Vol. 39,
No. 8, pp. 82-89.

Mehta, N.R., Medvidovic, N., Phadke, S. 2000. Towards a Taxonomy of
Software Connectors. Proceedings of the 22nd International Conference on
Software Engineering (ICSE 2000), Limerick, Ireland, June 4-11. Pp. 178-187.

Mitola, J. 1995. The Software Radio Architecture. IEEE Communications
Magazine, Vol. 33, No. 5, pp. 26-38.

Mitola, J. 1999. Technical Challenges in the Globalization of Software Radio.
IEEE Communications Magazine, Vol. 37, No. 2, pp. 84-89.

Moon, M.F. 1993. Guidelines for Tasking Design. Embedded Systems
Programming. Vol. 6, No. 10, pp. 28-34.

Moriconi, M., Qian, X., Riemenschneider, R.A. 1995. Correct Architecture
Refinement. IEEE Transactions on Software Engineering, Vol. 21, No. 4, pp.
356-372.

Mouly, M., Pautet, M-B. 1992. The GSM System for Mobile Communications.
France: Published by the authors. 701 p. ISBN 2-9507190-0-7

147

Nord, R.L., Cheng, B.C. 1994. Using RMA for Evaluating Design Decisions,
Position paper. Proceedings of the Second IEEE Workshop on Real-Time
Applications, IEEE Computer Society, Washington D.C. USA, July 1994.
Pp.76-80.

Ojanperä, T., Prasad, R. 1998. Wideband CDMA for Third Generation Mobile
Communications. Boston: Artech House Publishers. 439 p. ISBN 0-89006-735-
X

Oreizey, P., Taylor, R.N. 1998. On the role of software architectures in runtime
system reconfiguration. Proceedings of the International Conference on
Configurable Distributed Systems (ICCDS4), Annapolis, Maryland, May 4-6,
1998. Pp. 137-145.

Oreizy, P., Medvidovic, N., Taylor, R.N. 1998. Architecture-based runtime
software evolution. Proceedings of the International Conference on Software
Engineering 1998 (ICSE'98). Kyoto, Japan, April 19-25. Pp. 177-186.

Oshana, R. 1998. Guidelines for DSP Development. Embedded Systems
Programming. Vol. 11, No. 10, pp. 58-71.

Oviedo, E.I. 1980. Control flow, data flow and program complexity.
Proceedings of the IEEE COMPSAC, November 1980. Pp. 146-152.

Perry, D.E., Wolf, A.L. 1992. Foundations for the Study of Software
Architecture. ACM Sigsoft, Software Engineering Notes, Vol. 17, No. 4, pp. 40-
52.

Peters, K. 1999. Migrating to Single-Chip Systems. Embedded Systems
Programming. Vol. 12, No. 4, pp. 30-45.

Petriu, D., Shousha, C., Jalnapurkar, A. 2000. Architecture-Based Performance
Analysis Applied to a Telecommunication System. IEEE Transactions on
Software Enigneering. Vol. 26, No. 11, pp. 1049-1065.

148

Prieto-Diaz, R., Freeman, P. 1987. Classifying Software for Reusability. IEEE
Software, Vol. 4, No. 1, pp. 6-16.

Purhonen, A. 2001. Quality Attribute Taxonomies for DSP Software Design.
Software Product-Family Engineering, 4th International Workshop, PFE 2001,
Bilbao, ES, Oct, 2001. van der Linden, F. (ed.). LNCS 2290. Germany:
Springer-Verlag. Pp. 238-247.

Purhonen, A. 2002. Using architectural views in DSP software development.
Proceedings of the IASTED International Conference, Applied Informatics,
International Symposium on Software Engineering, Databases, and
Applications, February 18-21, 2002, Innsbruck, Austria. Pp. 97-102.

Schmidt, D.C. 1999. Wrapper Facade: A Structural Pattern for Encapsulating
Functions within Classes. C++ Report, SIGS. Vol. 11, No. 2.

Segal, M. E., Frieder, O. 1993. On-the-fly Program Modification: Systems for
Dynamic Updating . IEEE Software, Vol. 10, No. 2, pp. 53-65.

Shaw, M., DeLine, R., Klein, D., Ross, T., Young, D., Zelesnik, G. 1995.
Abstractions for Software Architecture and Tools to Support Them. IEEE
Transactions on Software Engineering, Vol. 21, No. 4, pp. 314-335.

Shaw, M., Garlan, D. 1996. Software Architecture: Perspectives on an Emerging
Discipline. New Jersey, USA: Prentice-Hall. 242 p. ISBN 0-13-182957-2.

Smith, C.U. 1990. Performance Engineering of Software Systems. Reading,
Massachusetts: Addison-Wesley Publishing Company. 570 p. ISBN 0-201-
53769-9

Smith, C.U., Williams, L.G. 1993. Software Performance Engineering: A Case
Study Including Performance Comparison with Design Alternatives. IEEE
Transactions on Software Engineering. Vol. 19, No. 7, pp. 720-741.

149

Soininen, J-P, Purhonen, A, Rautio, T., Kasslin, M. 2001. Mobile multi-mode
terminal: making trade-offs between software and fixed digital radio. In: Del Re,
E (Ed.). Software Radio: tehnologies and services. London: Springer-Verlag,
2001. Pp. 237-249.

Soni, D., Nord, R., Hofmeister, C. 1995. Software Architecture in Industrial
Applications. Proceedings of the 17th International Conference on Software
Engineering. Seattle, Washington: ACM Press. Pp. 196-207.

Srikanteswara, S., Reed, J.H., Athanas, P., Boyle, R. 2000. A Soft Radio
Architecture for Reconfigurable Platforms. IEEE Communications Magazine,
Vol. 38, No. 2, pp. 140-147.

Strike, K., El Emam, K., Madhavji, N. 2001. Software Cost Estimation with
Incomplete Data. IEEE Transactions on Software Engineering, Vol. 27, No. 10,
pp. 890-908.

Stuurman, S., van Katwijk, J. 1998. On-Line Change Mechanisms, the Software
Architectural level. Proceedings of the ACM SIGSOFT Sixth International
Symposium on the Foundations of Software Engineering (FSE-6), Lake Buena
Vista, Florida, USA, November 3-5. New York: ACM Press. Pp. 80-86.

Tracz, W., Coglianese, L., Young, P. 1993. A Domain-Specific Software
Architecture Engineering Process Outline. ACM SIGSOFT, Software
Engineering Notes. Vol. 18, No. 2, pp. 40-49.

Varshney, U., Vetter, R. 2000. Emerging Mobile and Wireless Networks.
Communications of the ACM, Vol. 43, No. 6, pp. 73-81.

Wermelinger, M. 1997. A Hierarchic Architecture Model for Dynamic
Reconfiguration. Proceedings of International Workshop on Software
Engineering for Parallel and Distributed Systems. Piscataway, NJ: IEEE. Pp.
243-254.

Weyuker, E.J. 1988. Evaluating software complexity measures. IEEE
Transactions on Software Engineering, Vol. 14, No. 9, pp. 1357-1365.

150

Vigder, M.R., Kark, A.W. 1994. Software Cost Estimation and Control.
Technical Report of National Research Council of Canada, Institute for
Information Technology, NRC No. 37116. 69 p.

Vihavainen, K., Marttila, A. 1998. High-Level Design of Embedded DSP
Systems. Technical report 2-1998. Tampere University of Technology. 60 p.
ISBN 951-722-998-4

Wirth, N. 1971. Program Development by Stepwise Refinement.
Communications of the ACM, Vol. 14, No. 4, pp. 221-227.

Withey, J. 1996. Investment Analysis of Software Assets for Product Lines.
Technical Report CMU/SEI-96-TR-010. Software Engineering Institute,
Carnegie Mellon University. 60 p.

Xu, J., Kuusela, J. 1998. Analyzing the execution architecture of mobile phone
software with colored Petri nets. International Journal on Software Tools for
Technology Transfer, Vol. 2, No. 2, pp. 133-143.

Zitzler, E., Teich, J., Bhattacharyya, S. 2000. Multidimensional Exploration of
Software Implementations for DSP Algorithms. Journal of VLSI Signal
Processing Systems, Vol. 24, No. 1, pp. 83-98.

Published by

Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 4561
Fax +358 9 456 4374

Series title, number and
report code of publication

VTT Publications 477
VTT–PUBS–477

Author(s)
Purhonen, Anu

Title

Quality driven multimode DSP software architecture development
Abstract

Traditionally, DSP software development has concentrated on optimising the algorithms. The
future wireless communication systems create challenges to the DSP software. In order to
handle the new requirements, more emphasis has been placed on software architecture. This
thesis examines the way quality driven architecture development can be applied to multimode
DSP software. First, the main quality attributes for DSP software are defined. Performance
ensures that the timing requirements are fulfilled, with simultaneously minimising the resource
usage. Cost attribute ensures that the development of the system is affordable. Variability is for
evaluating how well the architecture can adapt to changes that are required to the system during
its lifetime.
It is proposed that the DSP software architecture should be described with four architectural
views. A logical view shows the required functionality in an implementation independent way;
a physical view depicts the deployment of logical components to the hardware architecture and
the interfaces that are relevant to the software; a process view is used for understanding the
runtime functionality of the system; a development view describes how the system is actually
implemented with today’s software platforms and technologies.
The process of developing the architectural views is iterative and incremental. More details are
added to the diagrams when the development continues. View development is a series of
iterations between refinement of architectural structures and evaluation of the decisions made.
An evaluation strategy is presented for comparing architectural decisions against quality
requirements.
The results are validated with a case study of a future multimedia terminal that supports three
systems: GSM, WLAN, and WCDMA. It is shown that the quality-driven development
clarifies the design decisions so that it is easier to compare and refine architecture candidates.

Keywords
software engineering, quality, design methods, analysis methods, wireless systems

Activity unit
VTT Electronics, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland

ISBN Project number
951–38–6005–1 (soft back ed.)
951–38–6006–X (URL:http://www.inf.vtt.fi/pdf/)

E2SU00041

Date Language Pages Price
September 2002 English 150 p. C

Name of project Commissioned by
The National Technology Agency (Tekes)

Series title and ISSN Sold by
VTT Publications
1235–0621 (soft back ed.)
1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

VTT Information Service
P.O.Box 2000, FIN–02044 VTT, Finland
Phone internat. +358 9 456 4404
Fax +358 9 456 4374

V
TT PU

BLICA
TIO

N
S 477

Q
uality driven m

ultim
ode D

SP softw
are architecture developm

ent
A

nu Purhonen

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT TIETOPALVELU VTT INFORMATIONSTJÄNST VTT INFORMATION SERVICE
PL 2000 PB 2000 P.O.Box 2000
02044 VTT 02044 VTT FIN–02044 VTT, Finland

Puh. (09) 456 4404 Tel. (09) 456 4404 Phone internat. +358 9 456 4404
Faksi (09) 456 4374 Fax (09) 456 4374 Fax +358 9 456 4374

ISBN 951–38–6005–1 (soft back ed.) ISBN 951–38–6006–X (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.inf.vtt.fi/pdf/)

ESPOO 2002ESPOO 2002ESPOO 2002ESPOO 2002ESPOO 2002 VTT PUBLICATIONS 477

Anu Purhonen

Quality driven multimode DSP software
architecture development

VTT PUBLICATIONS

459 Hakkarainen, Tuula. Studies on fire safety assessment of construction products. 2002. 109
p. + app. 172 p.

460 Shamekh, Salem Sassi. Effects of lipids, heating and enzymatic treatment on starches. 2002.
44 p. + app. 33 p.

461 Pyykönen, Jouni. Computational simulation of aerosol behaviour. 2002. 68 p. + app. 154 p.
462 Suutarinen, Marjaana. Effects of prefreezing treatments on the structure of strawberries and

jams. 2002. 97 p. + app. 100 p.
463 Tanayama, Tanja. Empirical analysis of processes underlying various technological

innovations. 2002. 115 p. + app. 8 p.
464 Kolari, Juha, Laakko, Timo, Kaasinen, Eija, Aaltonen, Matti, Hiltunen, Tapio, Kasesniemi,

Eija-Liisa, & Kulju, Minna. Net in Pocket? Personal mobile access to web services. 2002.
135 p. + app. 6 p.

465 Kohti oppivaa ja kehittyvää toimittajaverkostoa. Tapio Koivisto & Markku Mikkola (eds.).
2002. 230 s.

466 Vasara, Tuija. Functional analysis of the RHOIII and 14-3-3 proteins of Trichoderma reesei.
93 p. + app. 54 p.

467 Tala, Tuomas. Transport Barrier and Current Profile Studies on the JET Tokamak. 2002. 71
p. + app. 95 p.

468 Sneck, Timo. Hypoteeseista ja skenaarioista kohti yhteiskäyttäjien ennakoivia
ohjantajärjestelmiä. Ennakointityön toiminnallinen hyödyntäminen. 2002. 259 s. + liitt. 28 s.

469 Sulankivi, Kristiina, Lakka, Antti & Luedke, Mary. Projektin hallinta sähköisen tiedonsiirron
ympäristössä. 2002. 162 s. + liiitt. 1 s.

471 Tuomaala, Pekka. Implementation and evaluation of air flow and heat transfer routines for
building simulation tools. 2002. 45 p. + app. 52 p.

472 Kinnunen, Petri. Electrochemical characterisation and modelling of passive films on Ni- and
Fe-based alloys. 2002. 71 p. + app. 122 p

473 Myllärinen, Päivi. Starches – from granules to novel applications. 2002. 63 p. + app. 60 p.
474 Taskinen, Tapani. Measuring change management in manufacturing process. A measurement

method for simulation-game-based process development. 254 p. + app. 29 p.
475 Koivu, Tapio. Toimintamalli rakennusprosessin parantamiseksi. 2002. 174 s. + liitt. 32 s.
477 Purhonen, Anu. Quality driven multimode DSP software architecture development. 2002. 150

p.

	Abstract
	Preface
	Contents
	List of abbreviations
	1. Introduction
	1.1 Definitions
	1.2 Scope of the research
	1.2.1 Application domain
	1.2.2 Research domain

	1.3 Problem statement
	1.3.1 Research problem
	1.3.2 Research methods and results

	2. Related research
	2.1 Software quality
	2.2 Architectural views
	2.3 Refinement
	2.4 Reconfiguration
	2.5 Architecture evaluation
	2.6 Architecture design
	2.7 Summary

	3. Problem analysis
	3.1 Multimode products
	3.2 DSP system components
	3.3 DSP software characteristics
	3.4 Development characteristics
	3.4.1 Development process
	3.4.2 Development in practice
	3.4.3 Reuse of artefacts

	3.5 Summary

	4. Quality attributes
	4.1 Introduction
	4.2 Performance
	4.3 Cost
	4.4 Variability
	4.5 Tradeoff

	5. Architecture Development
	5.1 Multimode DSP system design
	5.2 Software architecture design flow
	5.3 Multimode characteristics

	6. Architectural views
	6.1 Logical view
	6.2 Physical view
	6.3 Process view
	6.4 Development view
	6.5 Summary

	7. Architecture evaluation
	7.1 Evaluation strategy
	7.2 Creation of evaluation criteria
	7.3 Impact analysis
	7.3.1 Performance
	7.3.2 Cost
	7.3.3 Variability

	7.4 Result analysis
	7.5 Architecture refinement

	8. Validation
	8.1 Case study
	8.2 Requirement analysis
	8.3 Architecture selection
	8.3.1 Logical view
	8.3.2 Physical view
	8.3.3 Process view
	8.3.4 Development view

	8.4 Architecture evaluation
	8.5 Discussion
	8.6 Future research

	9. Conclusions
	References

