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Miikka Ermes. Methods for the Classification of Biosignals Applied to the Detection of Epileptiform
Waveforms and to the Recognition of Physical Activity [Menetelmiä biosignaalien luokitteluun 
sovellettuna epileptiformisten aaltojen havaitsemiseen ja fyysisen aktiviteetin tunnistamiseen]. Espoo 
2009. VTT Publications 707. 77 p. + app. 69 p. 

Keywords biosignals, classification, EEG, accelerometers, activity recognition  

Abstract 
Biosignals are such signals that quantify the physiological processes of a living 
organism. Classification of biosignals aims at inferring the physiological 
condition of the organism based on the biosignals obtained from it. In this thesis, 
the classifications of two biosignals originating from the human body are studied 
in detail: the electroencephalogram (EEG) and acceleration signals recorded 
from body-worn sensors (body accelerometry).  

EEG quantifies the electrical activity of the brain. In this thesis, EEG recorded 
in hospital operating room and intensive care unit environments is classified to 
detect epileptiform brain activity which is a potentially brain-damaging 
phenomenon. Wavelet subband entropy of EEG is shown to be statistically 
associated with epileptiform activity both in operating room patients under 
sevoflurane-induced anesthesia and in intensive care unit patients resuscitated 
after cardiac arrest. The results support the hypothesis that epileptiform activity 
can be continuously monitored in both clinical settings.  

Body accelerometry quantifies the movements of the human body with body-
worn sensors. In this thesis, body accelerometry is classified for activity 
recognition purposes, i.e. the purpose is to detect the type of physical activity of 
the subject from the body acceleration signals. State-of-the-art offline 
classification results are obtained in two studies. In addition, conversion of the 
presented offline activity classification algorithms to an online version is 
demonstrated. The results confirm that multiple classes of daily physical 
activities and sports can be reliably recognized with body accelerometry. 
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Waveforms and to the Recognition of Physical Activity [Menetelmiä biosignaalien luokitteluun 
sovellettuna epileptiformisten aaltojen havaitsemiseen ja fyysisen aktiviteetin tunnistamiseen]. Espoo 
2009. VTT Publications 707. 77 s. + liitt. 69 s. 
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Tiivistelmä 
Biosignaalit kuvaavat elävien organismien fysiologisia prosesseja. Biosignaalien 
luokittelun tavoitteena on päätellä organismin fysiologinen tila siitä kerättyjen 
biosignaalien avulla. Tässä väitöskirjassa tutkitaan kahden ihmisruumiista kerätyn 
biosignaalin luokittelua: aivosähkökäyrän (EEG:n) ja puettavista antureista kerätyn 
kiihtyvyyssignaalin.  

EEG mittaa aivojen sähköistä aktiivisuutta. Tässä väitöskirjassa sairaalan leikkaus-
salissa ja teho-osastolla kerättyä EEG-signaalia luokitellaan epileptiformisen 
aivotoiminnan tunnistamiseksi, joka on mahdollisesti aivoja vaurioittava ilmiö. 
EEG-signaalista lasketun wavelet-hajotelman kaistan entropian osoitetaan olevan 
tilastollisesti riippuvainen epileptiformisesta aivotoiminnasta sekä leikkaus-
potilailla sevofluraanianestesiassa että sydänpysähdyksestä elvytetyillä tehohoito-
potilailla. Tulokset tukevat olettamusta, että epileptiformista toimintaa voidaan 
tarkkailla molemmissa kliinisissä ympäristöissä. 

Vartalon kiihtyvyysmittaukset puettavilla antureilla tuottavat biosignaaleja, jotka 
kuvaavat vartalon liikettä. Tässä väitöskirjassa näitä signaaleja luokitellaan, jotta 
henkilön fyysisen aktiviteetin tyyppi pystyttäisiin määrittelemään. Tieteellistä 
huippua edustavia luokittelutuloksia saavutetaan kahdessa tutkimuksessa. Lisäksi 
testattujen menetelmien soveltamista reaaliaikaiseen aktiviteetin tunnistamiseen 
havainnollistetaan. Tulokset vahvistavat, että monia päivittäisiä fyysisen aktivi-
teetin muotoja voidaan luotettavasti tunnistaa puettavista kiihtyvyysantureista 
saatavista signaaleista. 
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Symbols and abbreviations 
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3D Three dimensional 

ANN Artificial neural network 
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DC Direct current 

DOA Depth of anesthesia 

EEG Electroencephalogram 

ECG Electrocardiogram 

FWT Fast wavelet transform 

HMM Hidden Markov model 

ICU Intensive care unit 

IDEEA Intelligent device for energy expenditure and activity 

MA Moving average 

NLEO Nonlinear energy operator 

OR Operating room 

PDA Personal digital assistant 

PED Periodic epileptiform discharge 

PSD Power spectral density function 
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Variables, functions, and transforms 

aj(k) Approximation coefficients of wavelet decomposition level j 

ĉj(k) Normalised version of either detail or approximation 
coefficients of wavelet decomposition level j 

cj(k) Either detail or approximation coefficients of wavelet 
decomposition level j 

dj(k) Detail coefficients of wavelet decomposition level j 

f Frequency 

H( • ) Entropy 

I( • ) Gini inpurity 

i, j, k General index variables 

N Number of elements 

ni Node i in decision tree 

P( • ) Power spectral density function 

p( • ) Probability of incidence 

s Scaling variable in wavelet transform 

S( • ) Spectral entropy  

t Time 

u Translation variable in wavelet transform 

W{ • } Wavelet transform 

X Random variable 

X(f) Signal in frequency domain 

x(n) Signal in discrete time domain 

x(t) Signal in continuous time domain 

Ψ(u,s) Wavelet atom 
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1. Introduction 
Living organisms are composed of different functional systems. In the human 
body there exist, for example, the nervous system, the cardiovascular system, the 
musculosceletal system, the digestive system, and the immune system. These 
systems employ physiological processes such as blood circulation and breathing 
in the case of cardiovascular system.  

Biosignals are signals that quantify the physiological processes. They can be 
measured as physical quantities such as temperature or pressure, electrical 
quantities such as currents and voltages and biochemical quantities such as 
concentrations. 

The clinical need for the monitoring of biosignals arises from the fact that 
diseases and dysfunctions in the biological processes cause changes that usually 
degrade their performance. Such changes lead to pathological processes – rise in 
the body temperature during an infection as an example.  

Also nonpathological changes in the status of the body can cause changes in 
the physiological processes. For example, physical strain increases the heart rate 
and blood pressure whereas talking causes irregularities in the breathing rhythm. 
The nonclinical biosignal monitoring solutions, such as fitness monitors, 
concentrate on such nonpathological changes in the biosignals. 

1.1 General outline of the thesis 

This thesis contains publications from the author’s research during years 2004–
2008 on two biosignal-based research subjects: detection of epileptiform waveforms 
(publications E1–E4) and recognition of physical activity (publications A1–A3). 
In both research subjects, the purpose has been to utilize signal processing 
methods to detect certain states, i.e. classes, in the time sequences of biosignals. 
In all of the publications, similar signal processing approach has been utilized. 
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First the obtained biosignal recordings have been divided into short segments. 
The signal in each segment has been considered stationary and features have 
been calculated from the signal in each segment. Then the obtained features have 
been used to assign classes for the segments either by automatic classification 
algorithms or by rules based on a priori knowledge. The rest of this chapter 
presents an introduction to the research subjects. 

Detection of epileptiform waveforms  

The studies on the detection of epileptiform waveforms presented in this thesis 
are based on quantitative analysis of the electroencephalogram (EEG). 
Epileptiform EEG activity is similar to that encountered in patients with 
epilepsy, but it may also occur in patients without diagnosed epilepsy. Continued 
epileptiform activity may result in brain damage and thus it should be avoided. 
Aside from patients suffering from epilepsy, epileptiform activity has been 
reported to occur during operating room (OR) anesthesia and during intensive 
care unit (ICU) treatment.  

Anesthesia is described as a drug-induced loss of consciousness during which 
a patient is not arousable. Sevoflurane is among the drugs most commonly used 
to induce anesthesia. Its patient safety has been questioned as it has been 
reported to induce epileptiform EEG activity and epileptic symptoms such as 
convulsions. The avoidance of epileptiform activity and the related symptoms 
are the motivation for the studies of EEG during sevoflurane anesthesia in 
publications E1 and E2.  

In publication E1, the EEG registered from 60 subjects during sevoflurane 
anesthesia is studied. The different EEG waveforms, including epileptiform 
activity, were annotated by a clinical expert and a classification algorithm was 
developed to recognize the annotated waveforms. In publication E2, the connection 
between the inconsistent readings of BIS, the most popular commercially 
available depth-of-anesthesia index, and epileptiform EEG activity during 
sevoflurane anesthesia was established with the same study population as in 
publication E1. In addition, a novel EEG feature, wavelet subband entropy, was 
shown to indicate the occurrence epileptiform activity and the resulting falsely 
high BIS readings. 

While the epileptiform activity during sevoflurane anesthesia is reversible and 
will disappear once the anesthesia is discontinued, the epileptiform activity 
encountered in ICU patients may not be reversible and may indicate poor patient 
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outcome. The epileptiform activity in ICU patients can be caused by a variety of 
reasons, such as ischemic brain damage and brain tumour. Because of their 
critical condition and heavy medication, patients in the ICU are often 
unresponsive and the traditional tests of neuronal recovery based on patient’s 
responses to certain stimuli, cannot be applied. This typically long-lasting 
unclear situation is difficult for the next of kin and it may also lead to suboptimal 
use of the limited ICU resources. These are the motivations for the EEG-based 
prediction of outcome presented in publications E3 and E4.  

Publication E3 presents the results of predicting the outcome of 20 ICU 
patients with a wavelet subband entropy algorithm developed originally in 
publications E1 and E2 for the detection of epileptiform activity. In publication 
E4, wavelet subband entropy, other quantitative EEG features, and conventional 
biochemical markers were examined to find out their associations with the 
patient outcome in a study of 30 ICU patients. 

Recognition of physical activity 

The recognition of physical activity presented in this thesis is primarily based on 
signals from body-worn acceleration sensors. The purpose of the activity 
recognition is to motivate people to perform more and a larger variety of 
physical exercise by giving them feedback about their daily share of activities. 
Activity counters, such as pedometers are simple examples of monitors of 
physical activity. However, activity counters are typically only able to monitor 
the duration of activity and not its type. There are at least six physiological 
aspects affected by physical activity: body shape, bone strength, muscular strength, 
skeletal flexibility, motor fitness, and metabolic fitness. In order to evaluate the 
overall effect of different activities on these aspects, more sophisticated information 
about the performed activities than that available by simple activity counters is 
needed. Wearable monitoring with activity recognition solutions could provide 
the required sophisticated information about the daily share of different activities 
and their benefits and thus promote a larger variety of physical exercise. This is 
the motivation of the studies reported in publications A1–A3. 

In publication A1, activity data were collected from 16 subjects while they 
performed predefined tasks under supervision. A supervisor made notes about 
the true activity of the subjects. The recorded data were later analysed offline. 
Features were extracted and classification results for the detection of the 
different activities of the recordings were obtained. For publication A2, a new 
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data collection was performed that contained data from 12 subjects. The major 
part of the recordings was made without supervision. That is, the subjects were 
instructed to make their own notes about their activities. Similar offline analysis 
as in publication A1 was performed. In publication A3, the results of converting 
the existing offline analysis methods into an online activity classification system 
are presented. The performance of the system was evaluated with 3 subjects.  

This thesis is organized as follows: Chapter 2 describes the signal processing 
concepts most important for the understanding of the thesis. Also the two 
biosignals considered in the publications, EEG and body accelerometry, are 
considered. Chapter 3 summarises the objectives of the publications. In Chapter 
4, the outlines of the publications are briefly described. Chapter 5 presents the 
results of the publications. In Chapter 6, the implications of the results are 
discussed, and Chapter 7 draws the final conclusions on the results. 
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2. Background and review of literature 
Before the classification of obtained biosignals can take place, two signal 
processing steps are typically needed: 1) signal preprocessing; and 2) feature 
extraction. In the preprocessing step, the signals are prepared for further 
processing. This step may include, for example, filtering out unnecessary 
frequencies, artefact rejection, signal resampling and scaling, and signal 
transformations. Feature extraction is often the most crucial step in a successful 
biosignal algorithm. Here the expert knowledge on the signal properties is 
utilized in extracting such features from the signals which are dependent on 
those attributes of the subject that need to be recognized. The methods used in 
feature extraction are highly dependent on the signal processing problem at 
hand. However, they can often be divided into those obtained directly from the 
time domain signal and those obtained from the frequency domain transforms of 
the signal. In the following classification step, algorithms are trained to assign 
correct classes to the data based on the input features. Classification algorithms 
are usually not dependent on any particular problem and the same algorithms 
can be utilized in a variety of different research fields.  

This chapter presents the essential biosignal processing methods needed for 
the understanding of the studies included in this thesis:  

• Wavelet decomposition, a signal preprocessing step applied in publications 
E1–E4. 

• Wavelet entropy, a feature extraction step applied in publications E1–E4  

• Spectral entropy, a feature extraction step applied in publications A1–A3 
and E4. 

• Decision tree, a classification step applied in publications A1–A3 and 
E1.  
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Also the analyses of the two most important biosignals considered in this thesis 
are described and the state of the art in the related literature is reviewed:  

• Analysis of electroencephalogram (publications E1–E4). 
• Analysis of body accelerometry (publications A1–A3). 

2.1 Wavelet transform and decomposition 

A traditional tool for the analysis of the frequency content of biosignals is the 
Fourier transform. However, the problem with the Fourier transform is that it 
provides poor time resolution, i.e., it does not describe the location of the 
frequency components in time. To improve the time resolution of Fourier 
transform, a windowed version called short-term Fourier transform (STFT) is 
often used in biomedical signal processing. In STFT, the signal is divided into 
segments and the Fourier transform is applied to each segment thus enabling a 
more accurate description of the time of occurrence of different frequency 
domain phenomena. However, the cost is that the frequency resolution of the 
transform will be less accurate. Based on Heisenberg’s uncertainty principle, 
there is always a trade-off between the accuracies of the time resolution and 
frequency resolution. The wavelet transform is an analysis tool which can 
specify the time and frequency resolutions optimally for a given application 
domain. The wavelet transform W of a signal x(t) is defined as a correlation 
between the signal and a wavelet atom Ψ: 
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where s is the scaling variable and u is the translation variable of the wavelet. 
These two variables of the wavelet transform govern the frequency and time 
localization of the wavelet atom. There are different wavelets that can be used 
and each of them has its distinct properties. Their common factor is that they all 
have their energy localized both in frequency and time domains. The Daubechies 
wavelets [Daubechies 1992] are among the most widely used ones for 
biomedical signal processing and they were also used in publications E1–E4.  

In digital signal processing, signals are discrete and the Equation 1 cannot be 
applied there. However, a wavelet transform can also be defined for discrete 
signals and in digital signal processing it is commonly implemented as Fast 
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Wavelet Transform (FWT) first presented by Mallat [Mallat 1989]. Mallat 
noticed that only a limited number of scalings and translations was needed for 
wavelet decomposition with perfect reconstruction property. The FWT algorithm 
proceeds by filtering the signal x(t) into lowpass and highpass signals with a 
conjugate mirror filter pair Lo_D and Hi_D. Lowpass and highpass signals are 
downsampled by a factor of 2 to produce the output vectors of the 
decomposition step: detail coefficients d1 and approximation coefficients a1. The 
process of an individual decomposition step is depicted in Figure 1. 

Figure 1. The first decomposition scale of the Fast Wavelet Transform (FWT). The signal 
x(t) is decomposed into highpass and lowpass signals with a conjugate mirror filter pair 
Lo_D and Hi_D. The outputs of the filters are decimated by a factor of 2 to obtain the 
detail coefficients d1 and approximation coefficients a1. 

x (t)

a 1 d1

a 2

a 3

d2

d3

 

Figure 2. The decomposition scheme of FWT. The original signal x(t) is decomposed into 
approximation coefficients (a1) and detail coefficients (d1). a1 are then decomposed 
further as if they were the original signal. This process can be continued until the resulting 
ax is a single value. 
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The properties of the conjugate mirror filter pair are designed so that a perfect 
reconstruction of the original signal can be obtained from d1 and a1. To continue 
the decomposition, a1 can be further decomposed similarly as it were the original 
signal. This process can be continued until the resulting aj is a single value 
which cannot be decomposed further. The FWT decomposition tree with three 
decomposition steps is depicted in Figure 2. 

The perfect reconstruction property of the FWT decomposition implies that all 
the information in the original signal is preserved in the decomposition 
coefficients. This is illustrated schematically in Figure 3 showing how the 
amplitude responses of the different decomposition scales fill the whole 
spectrum in the case of FWT with three decomposition steps. 

Figure 3. Schematic presentation of the amplitude responses of the FWT decomposition 
scales in the case of 3-level decomposition. Sampling frequency of the original signal is 1. 

2.2 Wavelet entropy 

Entropy is originally a thermodynamic concept which quantifies the disorder in a 
system. Influenced by this concept, Shannon defined in 1948 his information 
theoretic concept of entropy H of a random variable X as  
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where xi is a state of the variable, N is the number of the possible states and p(xi) 
is the probability of the state xi in the process [Shannon 1948]. Since then, 
different versions of the entropy concept for digital signal processing have been 
introduced. 

For wavelets, the entropy principle has been applied in different ways. A 
common way in EEG signal processing has been to calculate wavelet entropy H 
from the relative powers of wavelet decomposition details at different scales as:  
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where dj(k) is a detail coefficient of a decomposition scale j, and Nj is the 
number of detail coefficients in the time window for a particular scale [Al-
Nashash et al. 2003, Al-Nashash & Thakor 2005, Rosso et al. 2001, Quiroga et 
al. 2001]. Equation 3 considers the wavelet decomposition scales as states of the 
system and calculates the entropy based on the distribution of the signal power 
over the decomposition scales. 

In publications E1–E4, wavelet subband entropy (WSE) is defined for a 
decomposition scale j as 

where Nj is the number of wavelet decomposition coefficients (either detail or 
approximation coefficients) for the given decomposition level j, and ĉ  represent 
the normalized versions of the original coefficients c: 
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It should be noted that the WSE defined in Equations 4 and 5 is strictly speaking 
not related to the original entropy concept as it does not operate on the 
probability distributions of the wavelet coefficients. Thus it does not describe the 
information content of the EEG signal. Instead, it provides a nonlinear 
transformation of the decomposition coefficients of a certain decomposition 
level into a scale [0, 1], which describes the variation in the energy distribution 
of the wavelet coefficients in the time window. Specifically, WSE of a single 
impulse on a flat background is 0 whereas WSE of a constant DC signal is 1. 
This is a desired property as sharp spikes, which cause rapid changes in the 
power of the EEG signal, are a common feature of the epileptiform activity. 
Figure 4 illustrates the performance of WSE with 5-second EEG samples with 
and without epileptiform activity. The more uneven energy distribution in the 
EEG sample with epileptiform activity results in a lower WSE value. 
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Figure 4. Illustration of the WSE algorithm. In the first row, two 5-second EEG samples 
are presented one with epileptiform activity and the other without epileptiform activity. The 
second row presents for both samples the normalized wavelet detail coefficients of the 
decomposition scale roughly corresponding to frequency band 16–32 Hz. The coefficients 
are normalized as indicated in Equation 5. The third row shows the normalized detail 
coefficients after the logistic scaling of Equation 4 before the final summation. The WSE 
values in the last row are obtained by the summation of the coefficients with the logistic 
scaling.   
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2.3 Spectral entropy 

Spectral entropy is another form of applied entropy concept which was 
originally developed in optical signal processing in the 70’s [Frieden 1972, 
Gordon & Herman 1971, Johnson & Shore 1984]. Since then, spectral entropy 
has been successfully applied in many fields of biomedical engineering 
including depth of anesthesia monitoring [Viertiö-Oja et al. 2004] and activity 
recognition [Bao & Intille 2004, Lester et al. 2006]. Although originally defined 
as the Fourier transform of the autocorrelation function, a simple estimate of 
power spectral density (PSD) function P(f) can be obtained from the squared 
absolute value of the discrete Fourier transform X(f) of a discrete signal x(n) as: 
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where N is the number of frequency coefficients in X(f). Based on this definition 
of the PSD, spectral entropy S for a frequency band [f1, f2] is defined in 
publications A2 and A3 as 

 
 
 
 

where p(fi) represents the PSD value of the frequency component fi. The PSD 
values are normalized so that their sum in the band [f1, f2] is one. Nf1, f2 is the 
number of frequency components in the corresponding band in PSD. In spectral 
entropy, the PSD is considered a probability distribution and its frequency 
components are considered states of the system.  

2.4 Decision tree classifiers 

Decision trees are classification and decision support tools which are characterized 
by their easy understandability, possibility to add expert knowledge, and 
intuitive graphical presentation [Breiman 1984]. 

Decision tree learning algorithms are popular in data mining and machine 
learning. In Figure 5, the basic concepts and structure of decision trees are 
presented.  
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Figure 5. An exemplary structure of a binary decision tree. A classification result for a 
data sample input to the tree is defined outputs to sequential questions (e.g. comparison 
to a threshold) made in the decision nodes. The leaves represent the different classification 
results 

The end nodes (leaves) of the tree represent the classification output classes and 
the decision nodes (branches) resemble the decisions that are made in order to 
reach the end node.  

Classification decision trees are utilised in publications A1, A2, and A3. 
Decision trees can also be considered as descriptive tools for calculating 
conditional probabilities as done in publication E1.  

The decision tree learning is an iterative task. The initial input data set is 
divided into subsets based on some criterion. These subsets are then further 
divided until the proper class division is reached. The most common version of 
decision trees is a binary tree where the initial set is always divided into two 
subsets in each decision.  

The main question in classification decision tree learning is how to optimally 
divide the initial set into the subsets. The purpose of the commonly used division 
algorithms is to divide the original set into subsets which are as “pure” as 
possible. The purity can be characterized in many different ways. In publications 
A1 and A2, The Gini impurity index has been utilized [Breiman 1984]. The 
iteration of a splitting algorithm finds a split that causes a maximal decrease in 
the impurity of the system (as compared to the impurity of the earlier node). The 
Gini impurity I(n) for a node n is measured as  
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 where p(i|n) and p(j|n) are the conditional probabilities of the output states i and 
j of the node n. The best split threshold sk using a feature vector xk is the one 
maximizing the decrease in the impurity ΔI(sk, N) of the system: 

 
where the subscripts L and R refer to the left and right subnodes. The 
probabilities of pL and pR are given by 

 
Once the optimal split and the resulting decrease of impurity are found for a 
feature vector xk, the same procedure is repeated for all features and only the one 
producing the largest decrease of impurity is used for this split. 

Also a stopping criterion needs to be introduced to govern the splitting and 
growth of the tree. Naturally, the splitting can be stopped when the nodes are 
completely pure, i.e. all the samples in the node represent the same class, or 
alternatively when the node has identical feature values for each output class 
which does not allow for further splitting. However, this might lead to an 
overfitted classifier. Especially in biomedical signal processing, the data consist 
of desired information and additionally measurement noise, artefacts and 
intrasubject and intersubject variances in the measured features. The purpose of 
the classifier is to learn the desired information and not the undesired ones. To 
stop the splitting before overfitting can occur, several methods have been 
suggested: 

1. Introducing a maximum depth of the tree. The depth is measured by the 
amount of sequential decisions in the tree (the height of the tree). 

2. Introducing a minimum node size, meaning the amount of measurements 
arriving to a node must be larger than this size to allow further splitting. 
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3. Introducing a minimum child node size, meaning the amount of 
measurements in the subnodes resulting from a split must be larger than 
this size to allow the split to occur. 

4. Introducing a minimum decrease of purity, meaning that the decrease of 
purity resulting from the split must be higher than this value to allow for 
the split to occur. 

In addition to these stopping rules, there are effective post hoc rules for pruning 
the obtained tree to an optimal size. In publications A1 and A2, a post hoc 
pruning of the tree was utilized. For this purpose, a crossvalidation procedure 
was used. The training data set was divided into 10 subsets with approximately 
equal sizes. In each crossvalidation cycle, 9 subsets were used for fitting the tree 
and the remaining subset was then tested with the obtained tree. The 
misclassifications of all 10 crossvalidation cycles were pooled together to obtain 
total misclassification cost for each pruning level of the tree. The smallest tree 
which had a misclassification cost within one standard error from the original, 
unpruned, tree was then chosen for the final result.  

Decision tree learning with the Gini impurity index is a completely automatic 
process. However, a decision tree can also be built either completely or partly 
with the help of expert knowledge. In publications A1–A3 and E1, there are 
decision tree structures that have been completely built based on expert 
knowledge. The possibility to easily embed a priori knowledge in the classifier 
was also the main motivation for the use of decision tree classifiers. In 
publications A1–A3, the structure of the decision tree was first designed based 
on expert knowledge. Then the features used in each decision node and the 
decision thresholds were manually adjusted based on the statistics of the data in 
the node. Specifically, the thresholds were selected so that they maximized the 
classification accuracy with the training data.  

In publication E1, the decision tree scheme was used for the characterization 
of a conditional probability model. In that model, first the structure of the tree 
was designed based on expert knowledge about the problem. Then, logistic 
regression classifiers combining nonlinearly information from multiple features 
were assigned for each decision node of the tree. A logistic regression classifier 
with a sigmoid output provides an output between 0 and 1. These outputs were 
then considered as probabilities. For each sample to be classified, its probability 
of belonging to a particular class was calculated for all end nodes (leaves) ni of 
the tree using the chain rule of conditional probabilities: 
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where p(ni) represents the probability of arriving to a leaf node ni and ni-1 … n1 
are the nodes through which the path leads to the node ni. This approach is 
visualized in Figure 6 in the case of two decisions leading to the leaf node. In 
this approach, the conditional probability p(ni) was calculated for every end node 
and the end node with the highest probability was chosen to be the output of the 
classifier for the particular input sample. 

 

Figure 6. Visualization of the conditional probability model with a decision tree. 

The utilization of a tree-structured classifier in publication E1 was motivated by 
the ability to easily adjust the classification accuracies of individual classes and 
intuitively understand the concequences of the adjustments. For example, 
adjusting the nonlinear regression classifier of a particular node only affects the 
classification results of the classes that are considered in the latter nodes. 
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Improving the sensitivity of a particular detection decreases the classification 
accuracy of the latter nodes as more of the samples truly belonging to the classes 
detected in these latter nodes are wrongly assigned to the earlier class because of 
the adjusted threshold. However, the classification results of the classes that 
were detected earlier in the tree stay the same.   

2.5 Analysis of the electroencephalogram 

The electroencephalogram (EEG) is a biosignal representing the electrical 
activity of the brain. Specifically, it mostly represents the electrical activity of 
the outer layer of the brain, the cortex. EEG is measured as a potential difference 
(voltage) between two electrodes placed on the scalp. The potential in the 
measurement area under each electrode is defined by the extent of cortical 
activity beneath the electrode location. It is estimated that it requires 
approximately 5 cm2 area of activation on the cortex for a visible activation on 
the EEG [Partanen & Cheour 2006]. An area of this size corresponds to an 
activation of 10000–100000 neurons simultaneously. The electrodes are most 
commonly placed on the scalp following the 10–20 system recommended by the 
International Federation of Societies for Electroencephalography and Clinical 
Neurophysiology [Klem et al. 1999, Jasper 1958]. The 10–20 system specifies 
the electrode locations by defining relative distances between anatomical 
landmarks: nasion, inion, and mastoids. This way, the EEG recordings from 
different subjects are made comparable. EEG signal, when compared to other 
bioelectric signals, is characterized by its low amplitude which is typically in the 
order of 100 μV. EEG does not have the same cyclostationary structure that 
some other biosignals (e.g. ECG) have. Healthy EEG in awake subjects can be 
modelled as a stochastic process [Stam et al. 1999]. Pathological phenomena 
such as epileptic seizures can introduce nonlinearities in the EEG [Pijn et al. 
1991, Burioka et al. 2005, Ferri et al. 2001]. EEG has also been characterized as 
a nearly random signal with chaotic properties [Pijn et al. 1991]. Four channels 
of simultaneously recorded EEG from a healthy subject are shown in Figure 7. 
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Figure 7. Four simultaneously recorded channels of healthy EEG. The horizontal axis is 
time in seconds. The vertical axes are μV. The sampling frequency is 128 Hz. 

The clinical use of EEG is mostly based on qualitative analysis performed by a 
clinical specialist, a neurophysiologist. When the content of EEG is quantitatively 
described, the description is traditionally based on the dominance of certain 
frequency bands in the signal: Delta band below 4 Hz; Theta band from 4 to 8 Hz; 
Alpha bands from 8 to 13 Hz; and Beta band above 13 Hz [Partanen & Cheour 
2006, Fisch & Spehlmann 1991]. These rhythms are assumed to reflect the 
internal processes of the brain as different rhythms are observed under different 
situations. Factors affecting EEG frequency content include vigilance level, 
aging, diseases and medications.  

Whereas qualitative analysis by clinical experts describes the EEG 
characteristics as words, quantitative analysis describes them as numbers. 
Quantitative EEG analyses are practically always performed by computer 
programs with digital signal processing. The sampling frequencies used in 
quantitative EEG processing are recommended to be more than 200 Hz [Nuwer 
et al. 1998] as the information content of EEG is traditionally assumed to reside 
approximately between 0.5 Hz and 100 Hz, although definitions vary slightly 
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[Partanen & Cheour 2006, Sanei & Chambers 2007]. There is also increasing 
interest to analyse frequencies outside this band [Vanhatalo et al. 2004, 
Vanhatalo et al. 2005, Bragin et al. 2002] -largely due to the improvements in 
the measurement technology enabling the acquisition of very low and very high 
frequencies.  

2.5.1 Epileptiform EEG and seizures and their monitoring 

Epilepsy is a a disease of the brain caused by spontaneous, intermittent and 
abnormal electric burst activity in the brain [Partanen & Cheour 2006]. Epileptiform 
EEG activity refers to waveforms which resemble those encountered in patients 
with epilepsy. However, subjects having temporarily epileptiform EEG do not 
necessarily have epilepsy. An epileptic seizure lasting more than 30 minutes is 
called status epilepticus (SE) – a persistent state of epileptic seizure. SE is a life-
threathening condition as the mortality rate of SE patients within 30 days after 
the end of the seizure is on average 20% [DeLorenzo et al. 1995, Eriksson & 
Koivikko 1997]. An example of epileptiform EEG is presented in Figure 8. 

The automatic detection of epileptic characteristics is arguably the most 
studied research topic of clinical quantitative EEG. The first algorithms were 
suggested in the 70’s [Gotman & Gloor 1976, Babb et al. 1974, Ives et al. 1974]. 
Since then, the topic has been under constant interest mainly because of the 
unsatisfactory reliability of the presented methods for clinical use. The 
constantly increasing computation power of microprocessors is enabling the 
research and utilization of more complex algorithms for the detection of 
epileptic seizures.  

Traditionally, the detection algorithms for epileptiform activity have been 
classified to be either mimetic (copying the rationale of a human expert), linear 
predictive (using signal processing techniques to distinguish transients from 
ongoing background activity) or template based (find events that match 
previously selected spikes) [Wilson & Emerson 2002]. However, this division is 
not applicable anymore since many recent algorithms combine multiple 
approaches and cannot be classified to these categories. 
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Figure 8. An example of epileptiform EEG. The epileptiform spikes in the sample are 
indicated by the arrows. The vertical axis represents the EEG amplitude in μV. The 
horizontal axis is time in seconds. The sampling frequency is 500 Hz. 

Many of the algorithms for the detection of epileptiform activity are in practice 
designed to detect the epileptiform spikes in EEG. EEG spike in general is a 
triangular transient distinguishable from the rest of the EEG activity, often 
described as ‘background activity’ [Gloor 1975]. The estimation of the background 
activity is a fundamental first step in many of the detection algorithms for 
epileptiform EEG as the exact amplitude of an epileptiform spikes is usually less 
important than its amplitude relative to the background activity [Gotman 1982]. 

In the approach of Gotman and Gloor [Gotman & Gloor 1976], the 
background activity was defined as the average amplitude of the half-waves 
from the 5 seconds preceeding a potential spike. In the revised algorithm of 
Gotman [Gotman 1982] the background was defined similarly but the time 
window of calculation was from 28 seconds before the potential spike until 12 
seconds after the spike. Guedes de Oliveira et al. [Guedes de Oliveira et al. 
1983] used the standard deviation of the amplitude of the EEG and its first and 
second derivatives for the definition of background EEG level. Wilson et al. 
[Wilson et al. 1999] defined the background from the previous 5 seconds of 
EEG from curvatures and angles. 

When considering the EEG feature extraction for the detection of epileptiform 
activity, there are two prominent categories of presented features: those based on 
half-wave decomposition and those based on wavelet transforms. 

The half-wave approach was first used by Gotman and Gloor [Gotman & 
Gloor 1976]. In their work, the EEG signal is decomposed into halfwaves, which 
are lines connecting two consecutive extrema (minimum and maximum, or vice 
versa) of the EEG signal. These halfwaves generate waves that are then further 
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processed to extract features of relative amplitude, pseudoduration, relative 
sharpness and the duration of a third half-wave to describe a spike. The features 
are then normalised by dividing them by their corresponding background activity 
values. Other features extracted from the halfwave representation include, e.g., 
standard deviation of the halfwaves and their first and second derivates [Guedes 
de Oliveira et al. 1983], curvatures and angles [Wilson et al. 1999], and 
coefficient of variation [Saab & Gotman 2005, Khan & Gotman 2003].  

In the recent publications on epileptiform EEG recognition, the interest has 
been shifted to the utilization of wavelet transforms. The use of wavelets may 
seem intuitive as many of them resemble epileptic spikes and the convolution of 
them with the EEG signal should be expected to produce good ‘template 
matching’ results. 

Khan et al. [Khan & Gotman 2003] presented a partly wavelet-based method 
for seizure detection on intracranial EEG. 5-level wavelet decomposition was 
performed for the 100 Hz EEG signals. The features extracted from the detail 
coefficients included: 1) Energy as measured from the sum of the squared detail 
coefficients and normalized so that the sum of the energies from all 
decomposition levels equals one; 2) Coefficient of variation calculated by first 
applying the half-wave decomposition by Gotman [Gotman 1982]. The 
coefficient of variation was then obtained by dividing the variance of the 
amplitudes of the half-waves with the squared average of the amplitudes of the 
half-waves; 3) Relative amplitude, as defined by the mean of the half-wave 
amplitudes in the segment divided by the average amplitude from a time window 
from 35 to 20 seconds before the segment. 

Saab and Gotman [Saab & Gotman 2005] applied a 5-level wavelet transform 
for 2 second epochs of 100 Hz EEG although coefficients only from scales 3–5 
were utilized in features calculation. The features extracted from the detail 
coefficients were similar to those obtained by Khan and Gotman [Khan & 
Gotman 2003]. Bayesian rules were used in the classification procedure.  

Goelz and co-workers apply continuous wavelet transform (CWT) to obtain a 
highly detailed time-frequency presentation of EEG which is also translation-
invariant [Goelz et al. 2000]. This is achieved by using complex wavelets. They 
also consider the use of matching pursuit algorithm [Mallat & Zhang 1993] in 
the search for an optimal wavelet presentation of an EEG signal. 

Osorio and colleagues [Osorio et al. 1998] used Daubechies 4 wavelet as a 
bandpass filter whose output was utilized when changes in the EEG patterns 
were detected.  
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Besides half-wave and wavelet approaches, also other methods have been 
recently presented for the feature extraction of epileptiform activity. The Reveal 
algorithm by Wilson [Wilson et al. 2004] uses Gabor atoms instead to obtain a 
time-frequency presentation of the EEG for seizure detection. In the work by 
Navakatikyan and colleagues [Navakatikyan et al. 2006] a seizure detection 
algorithm is presented for neonates which calculates a moving average (MA) 
and then finds the intersection points of the MA output and the EEG signal and 
calculates features based on the intersections.  

2.5.2 EEG activity during anesthesia and its monitoring 

The EEG of healthy subjects in full awareness contains desynchronized, low 
voltage, high frequency patterns (alpha and beta waves) [Rampil 1998]. Depression 
of consciousness, caused by sleep, illness, or anesthesia, in general slows down 
the EEG rhythms as the synchrony of the neurons on the cortex is increased. 

General anesthesia is described as a drug-induced loss of consciousness 
during which patients are not arousable, even by painful stimulation. Anesthesia 
is mostly used in hospitals during surgical operations. Anesthetic drugs also 
depress many other physiological processes than just brain activity. Cessation of 
heart beating and breathing are among the risks associated with a too deep 
anesthesia. These are among the reasons for developing methods for the assessment 
of adequacy of anesthesia. The most straightforward way for the assessment has 
been to estimate the drug dosage in the body. However, it has been shown that 
EEG patterns can provide a better objective estimate on the adequacy of 
anesthesia than direct estimation from the drug dosage [Hoffman 1995, 
Schwilden et al. 1995] as there seems to be large patient-to-patient differences in 
the body sensitivities to anesthetic drugs.  

The drugs used to induce anesthesia can be divided into intravenous (i.v.) 
drugs and volatile drugs (inhaled anesthetics). The EEG effects of drugs belonging 
to these groups are mostly similar, although each family of drugs has its own 
characteristic effects on the EEG. The most common changes in EEG in the 
order of increasing concentrations of anesthetics are: 1) Initial shift of the EEG 
power to higher bands (especially beta band); 2) Shift of the EEG power from 
higher to lower bands (delta and theta); 3) Alternating periods of slow EEG 
activity and EEG suppression 4) Complete EEG suppression. The EEG features 
of inhalational anaesthetics are generally less dramatic than with i.v. anaesthetics. 
All of these changes are reversible when the anesthesia is discontinued. The 
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complexity of this sequence of changes is a challenge for the EEG signal 
processing in anesthesia. [Binnie 2003] 

Sevoflurane is an ultra-short-acting volatile anesthetic. Hemodynamic stability, 
fast onset and offset, and lack of respiratory irritation are some of its most 
important assets. Since its introduction to clinical practice in 1990, it has begun 
to replace many older anesthetic drugs in use. However, its use has also raised 
concern as it has been reported to generate epileptiform EEG activity 
[Woodforth et al. 1997, Vakkuri et al. 2001, Vakkuri et al. 2000, Yli-Hankala et 
al. 1999, Jääskeläinen et al. 2003]. The appearance of the epileptiform activity 
during sevoflurane anesthesia has been considered an alarming finding [Vakkuri 
et al. 2001, Hilty & Drummond 2000, Schultz et al. 2001] as also external 
epileptic symptoms similar to seizures have been reported [Yli-Hankala et al. 
1999, Hilty & Drummond 2000, Adachi et al. 1992]. Prolonged epileptiform 
activity during anesthesia may result in ischemic brain damage the same way as 
the regular epileptic seizure and thus it should be avoided.  

Total EEG power was the first EEG-based feature used in controlling the 
depth of anesthesia [Bickford 1950]. The traditional frequency band approach 
was also considered for the monitoring of depth of anesthesia but it was soon 
observed that the frequency band variables were not suitable features for the 
purpose because of the complexity of EEG waveform changes during deepening 
anesthesia and differences in the waveforms when different anesthetic drugs are 
used. Since then, more sophisticated EEG features for the monitoring of depth-
of-anesthesia (DOA) have been investigated.  

Bispectral Index (BIS) is the best-known index of DOA. The algorithm is 
proprietary and has not been completely published, although the main concept 
has been revealed [Rampil 1998]. The algorithm has been developed with 
exploratory data analysis meaning that a large data library was collected, a large 
number of features were extracted and the most important features correlating 
with the depth of anesthesia were identified and later implemented in the 
commercial solution. A nonlinear sigmoid mapping is used to map the value of 
the linear combination of the features to a scale between 0 to 100 which has then 
became the de facto standard scale for the DOA monitors. BIS calculates the 
bispectral index from 2 second EEG epochs. Other components of BIS include 
the detection of burst suppression waveform with 2 different algorithms and 2 
ratios of spectral powers. BIS has been shown to decrease monotonously with 
increasing depth of anesthesia [Rampil 1998] and its values have been shown to 
correlate with the concentrations of hypnotic agents [Doi et al. 1997, Katoh et al. 
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2000, Lysakowski et al. 2001]. However, during stable and deep sevoflurane 
anesthesia, BIS has been reported to increase during epileptiform activity [Kaisti 
et al. 1999] or to fluctuate abnormally [Chinzei et al. 2004]. 

2.5.3 EEG activity during intensive care and its monitoring 

Patients with the most life-threatening conditions are treated in hospital intensive 
care units (ICUs). The physiological processes of ICU patients are close to collapse 
and the patients often need support to their ventilation and blood circulation, for 
example. For monitoring the status of the physiological processes, many different 
biosignals need to be monitored. These include electrocardiogram (ECG), blood 
oxygen saturation, blood pressure, body temperature and blood markers.  

The usefulness of EEG in the ICU is currently studied intensively for several 
reasons [Jordan 1999, Hirsch 2004]: 

• EEG is sensitive to the most common causes of cerebral injury: hypoxia 
and ischemia. Brain tissue is often the first to suffer from reduced 
oxygen delivery which eventually may lead to a permanent brain 
damage. If the cerebral blood flow falls too low, it is indicated in the 
EEG as a suppression of the high frequency activity. If the ischeamia 
continues, the death of the brain cells is indicated by the decrease in the 
EEG amplitude finally leading to a complete EEG silence, which is a 
sign of brain death. 

• EEG may detect neuronal recovery when the clinical examination 
cannot: Patients with suspected neuronal damage are often unresponsive 
because of sedation and possible neuromuscular blocking agents. Such 
patients cannot be tested with the traditional neurological tests requiring 
responsiveness [Teasdale & Jennett 1974]. So, their desired neurological 
recovery is difficult to assess. The neurological recovery is often visible 
in the EEG already before the return of the responsiveness as an increase 
in the amplitude, return of high frequency activity and temporal 
variability in the long-term EEG records. 

• EEG is the best available method for detecting epileptiform activity: 
subclinical epileptic seizures (those that would remain unnoticed 
without EEG monitoring) seem to be common in ICU patients [Towne 
et al. 2000]. Prolonged epileptic seizure can lead to a permanent brain 
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damage and increased mortality [Wijdicks et al. 2006]. Continuous EEG 
monitoring is the only means to detect the subclinial seizures. 

Because of the sedative medication needed by most of the ICU patients to relieve 
anxiety, the EEG content of ICU patients without neurological dysfunctions 
mainly consists of delta and theta waves. Malignant EEG waveforms encountered 
in comatose ICU patients include [Young et al. 1997]: 

• Triphasic waves, a slow-wave pattern mostly associated with metabolic 
disorders. 

• Burst-suppression, an EEG pattern with intermittent EEG suppression 
indicating reduced brain metabolism and possible death of neuronal cells 
if encountered in patients without affecting medication.  

• Unreactive coma pattern, a waveform with stationary alpha or theta 
waves or spindles without temporal variability. 

• Epileptiform activity, a waveform representing increased exitation. 

• Complete suppression, sign of maximally reduced brain metabolism. 

Epileptic seizures seem to be surprisingly common in ICU patients. In an EEG 
examination, 8% of comatose ICU patients were found to have SE without its 
external symptoms [Towne et al. 2000]. EEG analysis is a mandatory tool for the 
diagnosis of SE [Treiman et al. 1998]. However, long-term monitoring and 
review of EEG by a neurophysiologist in the ICU is not always possible due to 
the limited resources especially during night shifts and weekends.  

The variety of malignant EEG patterns in ICU patients poses serious 
challenges on the design of EEG monitoring. EEG signal processing in the ICU 
is a novel research field and only a few signal processing applications have been 
presented.  

In the study of Si et al [Si et al. 1998], a system for the EEG monitoring in the 
pediatric ICU is presented. Data were collected from 74 patients in the pediatric 
ICU with the purpose to generate an automatic system that would estimate the 
abnormality of the EEG similarly as a trained EEG expert does. The signal 
features calculated included 1) EEG amplitude from the past 5 minutes; 
2) Asymmetry, as calculated by the logarithm of the ratio of band power in the 
left hemisphere divided by the band power in the right hemisphere; 
3) Front/back differentiation as calculated by the logarithm of the ratio of band 
power in the posterior region divided by the band power in the anterior region. 
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They used fuzzy membership learning and neural networks to obtain the 
classification to seven classes reflecting the severity of the abnormality.  

Agarwal et al. presented a method for compressing long-term EEG recordings 
into two pages [Agarwal et al. 1998]. The method breaks down the EEG into 
stationary segments and features are used to assign classes for the segments. The 
presented method is based on the finding that certain EEG patterns tend to cycle 
in a recurrent manner. The method uses the Nonlinear Energy Operator (NLEO) 
for the segmentation of the EEG [Agarwal & Gotman 2001]. Features used for 
the classification of the segments are: 1) average amplitude of the segment; 
2) mean frequency of the segment; 3) frequency-weighted energy measure also 
obtained with the NLEO. For the clustering of the segments, an ad-hoc k-means 
clustering method was utilized. The target EEG classes for the classification 
were 7 classes representing the severity of the abnormality.  

Many studies have tested BIS in ICU setting with conflicting results. The 
study by Shibata et al indicated that BIS could be used in the survival prognosis 
of ICU patients [Shibata et al. 2005]. Vivien et al found that BIS is useful in the 
assessment of brain death in ICU patients [Vivien et al. 2002]. However, for the 
assessment of sedation, BIS has been found both inappropriate [Nasraway et al. 
2002] and appropriate [Simmons et al. 1999]. Frenzel et al. found that BIS is 
correlated with the assessment of sedation of only some ICU patients [Frenzel et 
al. 2002]. The further study by Vivien et al revealed that the existence of 
electromyographic activity increased the BIS values significantly [Vivien et al. 
2003] in ICU patients. This finding supports the assumptions that BIS should not 
be applied for the monitoring of sedation in general ICU patients and algorithms 
specifically targeted at ICU monitoring are needed. 

2.6 Analysis of physical activity 

Physical activity is defined as behaviour that results in any movement contributing 
to the total energy expenditure of the human [Caspersen et al. 1985]. In the 
studies concerning the effects of physical activity on the human body, accurate 
quantitative measurements of the physical activity are needed.  

A common way to estimate physical activity is self-reporting, i.e. the subjects 
complete questionnaires, interviews or surveys. In large epidemiological studies, 
self-observations have been the primary tool for the assessment of physical 
activity as they are practical, easy to use and they have low study cost. However, 
directly measuring physical activity by physiological monitoring or motion 
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sensors offers potential advantages over self-reporting by reducing bias resulting 
from the poor memory and overreporting and underreporting [Haskell & 
Kierman 2000].  

Energy expenditure is the most studied measurable component associated with 
physical activity. Traditional methods for the measurement of energy 
expenditure include indirect calorimetry (usually meaning the estimation of 
energy expenditure by measuring respiratory gases) and doubly labelled water 
tests (measurement of the produced carbon dioxide related to the energy 
expenditure by laboratory analysis of body fluids). However, neither of these 
methods is suited for long-term recording of human activity outside a laboratory 
environment. Indirect calorimetry requires a gas mask to be worn by the 
subjects, which disturbs daily living. The doubly labelled water test on the other 
hand requires periodic sampling of body fluids.  

For long-term unobtrusive monitoring of energy expenditure, heart rate 
monitors have been used. If individually calibrated, heart rate monitors can be 
used to measure the energy expenditure. The relation between heart rate and 
energy expenditure is roughly linear for high intensity activities. However, for 
low intensity activities the relation is not linear and an accurate estimation of the 
energy expenditure cannot be derived [Haskell & Kierman 2000]. Heart rate is 
also affected by other factors such as psychological stress which may cause bias 
in the measurements. Because of these problems, more sophisticated methods 
based on heart rate have been developed to overcome these limitations and the 
research on methods that do not require calibration is under constant research 
[Spurr et al. 1988, Rennie et al. 2001, Firstbeat 2007]. 

Other sensor types utilized in the analysis of physical activity include e.g. 
video recordings, floor sensors, and pedometers. The movement pattern specific 
for each activity can be recognized from a video signal that captures the subject 
from a distance [Haritaoglu et al. 2000, Uddin et al. 2008, Niu & Abdel-
Mottaleb 2004]. Floor sensors can be used to detect the changes in the indoor 
location of the subject [Murakita et al. 2004, Rimminen et al. 2008]. Both video 
cameras and floor sensors only work in the locations where they have been 
installed. Pedometers are simple devices for the rough estimation of walking 
distance and also other activities involving steps. Many of them also provide 
estimates of the energy expenditure caused by the walking. However, there does 
not exist a gold standard calibration method for pedometers which makes them 
in general unsuitable for the estimation of energy expenditure [Kashiwazaki et 
al. 1986]. In addition, they only measure activities that involve footsteps and do 
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not properly estimate the energy expenditure during e.g. such activities as 
weightlifting or cycling. 

There are dedicated wearable devices for the estimation of energy expenditure 
such as CSA, TriTrack-R3D, RT3, SenseWear Armband and Biotrainer-Pro (see 
[King et al. 2004] for comparison). These devices contain accelerometers as 
their main measurement component. In addition, they may contain other sensors 
such as those measuring the heat generated by the body. 

Although most studies on the measurement of physical activity have concentrated 
on the estimation of energy expenditure, it cannot describe all the concequences 
of physical activity. An international consensus statement regarding physical 
activity, fitness, and health [Bouchard & Shephard 1994] identifies six areas 
affected by physiological effort: body shape, bone strength, muscular strength, 
skeletal flexibility, motor fitness, and metabolic fitness. All of these have their 
own distinct impact on an individual’s general well-being, and thus, estimating 
energy expenditure alone is not sufficient in order to assess the overall impact of 
the physical activities on the individual’s well-being. A more detailed analysis of 
physical effort can be obtained by activity recognition, i.e., by detecting the 
exact form of activity the subject is performing. For this type of more detailed 
activity analysis, wearable accelerometers are studied in this thesis.  

2.6.1 Body accelerometry 

Advances in sensor technology are making acceleration sensors, i.e. accelerometers, 
smaller, cheaper and less power consuming [Mathie et al. 2004]. Their feasibility for 
tracking human body motions has been shown on many occasions. Because of 
these factors, they have become popular in the research of wearable technology.  

In this thesis, body accelerometry is defined to comprise the technology of 
measuring the motion of the human body with acceleration sensors worn on 
different parts of the body. Such sensors are called ‘wearable’. 

Accelerometers are defined as instruments that can measure acceleration 
forces that are affecting them. They can be sensitive to acceleration in only one 
direction, but the advanced accelerometers are nowadays able to measure all 
three dimensions simultaneously. Although there is a variety of mechanically 
and electronically different accelerometer types, they all utilise the same concept 
of a spring mass system [Mathie et al. 2004]. A mass is attached to a spring 
which holds the position of the mass constant when no force is applied to the 
mass. An applied force either stretches or compresses the spring. The 
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displacement of the spring or the mass is measured and scaled to represent the 
acceleration. Each measurement dimension needs a separate spring mass system. 

Accelerometers are sensitive to forces caused by the movements of the sensor 
and to the gravitational force. Some accelerometers do not generate a DC-level 
output and thus do not reflect the contant gravitational force. However, such 
accelerometers are seldom used in the body accelerometry as the measurement 
of gravitation force has several benefits. The accelerometers can be calibrated 
and static body and limb positions can be detected with it. 

Mathie et al. have identified three main purposes for ambulatory monitoring 
of body motion with accelerometers [Mathie et al. 2004]: 

• Objective assessment of body movements. In these studies, typically 
features that characterize certain conditions and diseases are sought. 
Typical examples are studies for the assessment of gait. 

• Monitoring of adverse events. In these studies, features that show rapid 
changes in the body status are used. Such rapid changes could include 
falls and epileptic seizures. 

• Long-term monitoring in unsupervised free living. In this diverse 
cathegory, features that can monitor slowly changing trends in the 
behaviour of the subject are utilized. The monitoring solutions for 
activity recognition and for supporting independent living belong to this 
category. 

Additionally, in the studies of sleep and circadian rhythm, actigraphy has been 
utilized [Ancoli-Israel et al. 2003]. Actigraphs are devices which are used to 
record the limb movements of the subject. They are usually placed on the wrist 
and their measurement is based on an accelerometer. The sleep/wake rhythm of 
the subject is detected based on the variations in the acceleration signal. 

The positioning of accelerometers on the body depends on the targeted 
application. For example, leg movements have been studied with accelerometers 
attached to the thigh or ankle [Aminian et al. 1999], energy expenditure has been 
estimated with accelerometers placed close to the center of mass of the human 
body [Bouten et al. 1997] and Parkinson disease has been monitored with 
sensors placed on the wrist [Veltink et al. 1995] and on the center of mass 
[Sekine et al. 2002]. For advanced activity classification, sensors on more than 
one position are used [Bao & Intille 2004]. 
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2.6.2 Body accelerometry in activity recognition 

Although activity recognition in wide sense can be considered to include the 
recognition of all the actions performed by a subject, in this thesis activity 
recognition means the recognition of the form of physical activity (e.g. walking, 
running, sitting, etc.) of a human subject.   

Wearable accelerometers are well-suited for activity recognition as they 
contain information about the frequency and intensity of movements as well as 
the body position. The intensity and frequency content of the body 
accelerometer signal is different for different activities. Running measured from 
the ankle produces acceleration peaks of the magnitude 8.1–12.0 g [Lafortune 
1991, Woodward & Cunningham 1993]. Regular walking is reported to produce 
accelerations in the order of less than 1 g [Cappozzo 1982]. As the extreme case, 
acceleration of more than 80 g has been measured from the wrist of a baseball 
pitcher [Paradiso 2006]. An example of acceleration signal measured from the 
ankle during walking is shown in Figure 9. 

 

Figure 9. Acceleration signal measured from the ankle during walking. The three dimensions 
of the sensor are shown separately (X shows acceleration in the left-right direction, Y in 
the vertical direction, and Z in the back-forth direction). The gravitational force is visible in 
Y as a negative DC component in the signal. The vertical axes are arbitrary units. The 
horizontal axis is time in seconds. The sampling frequency of the signals is 50 Hz. 
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For multiclass activity recognition with wearable sensors, a multisensor approach 
is commonly used. Accelerometers are often placed on the hip [Bao & Intille 
2004], waist [Mathie et al. 2003], chest [Aminian et al. 1999, Foerster et al. 
1999], arm [Bao & Intille 2004], ankle [Bao & Intille 2004] and thigh [Bao & 
Intille 2004, Aminian et al. 1999, Foerster et al. 1999]. Although multisensor 
approaches undoubtedly produce better results, they may not be feasible in 
commercial applications. For that reason, Lester et al have introduced an activity 
recognition system with just one accelerometer sensor unit [Lester et al. 2006, 
Lester et al. 2005] that can be placed on different parts of the body depending on 
the situation. 

The most important frequency band for the monitoring of daily activities is 
considered to be 0.3–3.5 Hz [Sun & Hill 1993]. Bouten et al. gave a rule of 
thumb that for the monitoring of daily activities accelerometers should be able to 
measure ±12 g and their frequency range should be 0–20 Hz [Bouten et al. 1997]. 

The three-step signal processing approach of preprocessing, feature extraction 
and classification is commonly performed in activity recognition from the body 
accelerometry. Typically, acceleration signal features are calculated with sliding 
time windows and with features assuming piecewise stationarity within the time 
windows.  

The time domain signal features of activity recognition from body accelerometry 
typically include: 

• signal magnitude (area under the 3D acceleration magnitude curve)  
[Mathie et al. 2003, Mathie et al. 2004, Karantonis et al. 2006]; 

• rectified averaged AC values [Foerster & Fahrenberg 2000]; 

• first and second moments (average, variance, energy) [Bao & Intille 
2004, Lester et al. 2006]. Standard deviation, which is a derivate of the 
second moment, is also used [Lee & Mase 2002]; 

• correlations between acceleration signals from different locations [Bao 
& Intille 2004]; 

• median and absolute deviation [Aminian et al. 1999]. 

The frequency domain signal features include: 

• frequency domain entropy [Bao & Intille 2004, Lester et al. 2006] ; 

• power in certain frequency bands [Lester et al. 2006, Foerster et al. 
1999, Foerster & Fahrenberg 2000]. 
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Additionally, wavelet-based approaches have been suggested that cannot be 
classified belonging either to time-domain or frequency-domain categories 
[Sekine et al. 2002, Sekine et al. 2000]. 

The classification methods used in the activity recognition are fairly simple 
starting from the most simple case of fixed thresholds [Aminian et al. 1999, 
Mathie et al. 2003]. Other methods include decision tables, nearest-neighbour 
classification, Bayesian models, and decision trees [Bao & Intille 2004]. Clustering 
approaches have also been utilised [Foerster et al. 1999]. For modelling the 
temporal connections between different activities, Hidden Markov Models (HMM) 
have been popular [Lester et al. 2006]  

The most recognized commercial solution to activity recognition is the 
Intelligent Device for Energy Expenditure and Activity (IDEEA) [Zhang et al. 
2003]. IDEEA has been tested with 32 types of physical activity and validated 
with 76 subjects. The activity types detected by IDEEA include sitting, standing, 
lying, running, walking, cycling, jumping, stair ascending and descending, and 
different transitions, among others. The usability of IDEEA is limited by the fact 
that it comprises 5 wired sensors attached to the chest, thighs and feet. Thus, the 
system is not suitable as a consumer product and is primarily targeted at 
professional use. 
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3. Objectives of the thesis 
The general objective was to present methods and their results for the classification 
of signals originating from the human body. The following describes in detail 
the research problems of the two study entities included in this thesis.  

3.1 Detection of epileptiform waveforms 

The objective of the studies E1–E2 was to develop and validate algorithms for 
the classification of EEG waveforms encountered during sevoflurane anesthesia 
with special interest on the epileptiform EEG activity. The objective of the 
studies E3–E4 was to validate the algorithms developed for the detection of 
epileptiform EEG activity in ICU setting for the prediction of patient outcome. 

3.2 Recognition of physical activity 

The objective of studies A1–A3 was to develop and validate practical algorithms 
for the classification of daily activities and sports primarily based on signals 
from wearable accelerometers. 
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4. Study outlines 

4.1 Detection of epileptiform waveforms 

In publications E1 and E2, the same dataset was studied, which consisted of 
EEG recorded from 60 patients undergoing elective surgery. The data were 
pooled from two earlier published studies [Vakkuri et al. 2000, Yli-Hankala et 
al. 1999]. The patients received sevoflurane anesthesia during the recordings. 
The EEG was obtained from the following electrode pairs: Fp1-A1, Fp2-A2, 
Fpz-F7, and Fpz-F8. The sampling frequency of the EEG was 128 Hz. In 
addition, BIS depth-of-anesthesia index was recorded with a designated monitor. 
To obtain a reference for the algorithm development, a neurophysiologist 
classified the EEG waveforms encountered in the recordings. 

In publication E1, a large variety of features was extracted from 5 second 
EEG segments. The extracted features are listed in Table 1. 
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Table 1. EEG features extracted in publication E1. 

Time domain features 
Mean amplitude 

Median amplitude 

Root mean square amplitude 

Peak-to-peak amplitude 

Features from wavelet decomposition 
Standard deviation of coefficients 

Skewness of coefficients 

Kurtosis of coefficients 

Wavelet subband entropy 

Frequency domain features 
Spectral peak power 

Spectral peak frequency 

Spectral edge frequency 95% 

Spectral edge frequency 50% 

Spectral entropy 

Power (8.2- 20 Hz) / Power(1.0-8.0 Hz) 

Spectral entropies, relative powers, and absolute powers of the bands 1.0–3.8 Hz, 
4.0–8.0 Hz, 8.2–13.0 Hz, 13.2–20.0 Hz, 20.2–47.0 Hz, and 1.0–50.0 Hz 

 

For classification, a probabilistic decision tree model was used. The structure of 
the tree was designed based on the a priori knowledge of the different 
waveforms and their clinical meaning. The data were divided into training (30 
patients) and validation sets (30 patients). The features and the threshold values 
of the decision tree were optimized with the training data. The performance 
assessment results were obtained with the validation data. 

After having identified the most promising features for the discrimination of 
EEG waveforms in publication E1, a more detailed analysis targeted on 
epileptiform activity was performed in publication E2. This time, only WSE was 
calculated from all the EEG channels based on 5-level wavelet decomposition. 
Sequential floating forward search was used for the feature selection [Pudil et al. 
1994]. Two indexes were developed: one for the quantification of the slow 
monophasic component of EEG, which preceeded the epileptiform spikes, and 
one for the quantification of epileptiform spikes. For the development of the 
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algorithms, the data were similarly divided into training and validation data as in 
publication E1. The temporal evolutions of the developed indexes were 
compared to BIS readings to evaluate the potential of the indexes to detect the 
falsely high BIS readings during epileptiform activity. 

In publication E3, EEG data obtained from 20 patients resuscitated after out-
of-hospital cardiac arrest were studied. After arrival to the ICU, the patients 
were treated with a 24-hour hypothermia protocol. EEG recording was also 
started upon arrival. EEG was recorded from channels Fp1-At1, Fp2-At2, At1-
A1, and At2-A2. The sampling frequency was 500 Hz which was downsampled 
to 128 Hz for further analyses. The recordings were made continuously until the 
patients were extubated, transferred to the ward, or when five days had passed 
since the cardiac arrest. The information about patient outcomes, meaning 
whether they survived after the treatment or not, was used as the reference in the 
analysis. WSE from the detail coefficients of the second decomposition scale 
roughly corresponding to frequency band 16–32 Hz was calculated for each 5-
second EEG segment. In addition, the signal powers in the band 16–32 Hz and 
in band 1–60 Hz were obtained for reference purpose. For each hour of recorded 
EEG, the average values of each of the three features (WSE and the two band 
powers) were calculated and their distributions were examined to find out if they 
differed between the survivors and non-survivors. 

In publication E4, the same data set as in publication E3 was used with the 
extension of data from 10 more patients thus resulting in EEG data from 30 
resuscitated cardiac arrest patients. For this study, the EEG signals were also 
analysed by a neurophysiologist for the following EEG characteristics: 
Continuity, suppression, burst suppression, discharges, spindles, myoclonia, and 
status epilepticus. The following EEG features were obtained: burst-suppression 
ratio (BSR), State Entropy (SE), Response Entropy (RE), and wavelet subband 
entropy (WSE). Statistical testing was performed to evaluate the dependencies 
between the EEG features compared to the outcome groups and EEG 
characteristics. 

4.2 Recognition of physical activity 

The activity data analysed in publication A1 was collected from 16 recruited 
volunteers. Altogether 22 signals from body-worn devices were collected. 
Accelerometers were placed on the wrist and chest. They had a sampling rate of 
200 Hz for the chest and 40 Hz for the wrist sensor. The dynamic range of the 
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accelerometers was -2 g … 2 g. Altogether 31 hours of annotated activity data 
were collected and stored on a compact PC for later offline analysis. The test 
persons followed a predefined scenario of activities to perform. The scenario 
contained the following activity classes: 1) lying, 2) sitting/standing, 3) walking, 
4) Nordic walking, 5) running, 6) rowing (with a rowing machine) and 7) cycling 
(with an exercise bike). The exact durations and locations of the activities were 
decided by the subjects. The duration of each measurement session was 
approximately 2 hours. The test person was accompanied by a supervisor who 
used a special program running on a PDA to mark the changes in activity for 
reference purposes. The time-domain features extracted from acceleration 
signals included mean, variance, median, skewness, kurtosis, 25% percentile and 
75% percentile calculated using a sliding window. Frequency-domain features 
were spectral centroid, spectral spread, estimation of peak frequency, estimation 
of power of the peak frequency and signal power in different frequency bands. 
Both 4-second and 10-second windows were used in the feature calculation. The 
feature selection was done visually by comparing the distributions of the features 
between the target classes. For classification, two decision trees models and an 
artificial neural network (ANN) were applied. The classifiers were trained by 
using the feature signals as inputs and PDA annotations as targets. For all the 
three classifiers the classification results were acquired by leave-one-subject-out 
cross validation. 

For publication A2, the study protocol was revised and a second data 
collection of activity data was performed. This time, 12 subjects were recruited.  
The duration of each measurement session was increased from 2 hours to around 
6 hours. The activity classes in this study were: 1) lying; 2) sitting and standing; 
3) walking; 4) running; 5) Nordic walking; 6) rowing with a rowing machine; 
7) cycling with an exercise bike; 8) cycling with real bike; and 9) playing 
football. A major part of the recordings was performed without supervision and 
during that time, the subjects were allowed to carry on with their normal daily 
living. However, they used a PDA program to annotate their activities and 
locations. Acceleration signals were obtained from the wrist and hip with 
sampling frequency of 20 Hz and sensor output range of -10 g … 10 g. Time 
domain features extracted from the acceleration signals included mean, variance, 
median, skewness, kurtosis, 25% percentile, and 75% percentile. Frequency-
domain features included the estimation of power of the frequency peak and 
signal power in different frequency bands. The performance of each feature was 
evaluated by the area under the receiver operator characteristic (ROC) curve. 
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Four different classifiers were used: two decision tree models, one artificial 
neural network and a hybrid model merging small neural networks into a 
decision tree structure. For all classifiers, results were acquired by leave-one-
subject-out cross validation.  

The purpose of the study reported in publication A3 was to evaluate the 
performance of the online activity recognition software designed based on the 
offline results obtained in publications A1 and A2. Three subjects were 
recruited. The subjects performed a set of predefined activities without 
predefined order: walking, running, lying, sitting, standing, and cycling with an 
exercise bike. They were instructed to perform at least 5 minutes of each of 
them. The acceleration signals were obtained from wireless sensors worn on the 
wrist, hip and ankle with sampling frequency of 50 Hz and output range of  
-10 g … 10 g. The extracted signal features included signal average, variance, 
frequency of the highest peak in the PSD, and spectral entropy. A decision tree 
model with fixed thresholds was used in the classification. The thresholds were 
derived from the earlier publications A1 and A2 and thus all the collected data 
could be used for the validation of the algorithms. 
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5.  Results 

5.1 Detection of epileptiform waveforms in anesthesia 

In publication E1, a scheme for the classification of EEG waveforms 
encountered during sevoflurane anesthesia was presented. Particular interest was 
on the epileptiform activity which was manifested as periodic epileptiform 
discharges (PED) in this data. EEG was recorded from 60 patients during 
sevoflurane anesthesia. A neurophysiologist annotated the EEG data and a 
probabilistic decision tree was developed to detect these annotated classes. 48 
signal features were extracted from the recorded EEG. The sensitivities and 
specificities of detecting different waveforms are presented in Table 2.  

Table 2. Classification specificities and sensitivies for the detection of the different EEG 
waveforms encountered during sevoflurane anesthesia. 

Waveform Specificity Sensitivity 

Awake 69 % 96 % 

Burst suppression 51 % 92 % 

PED 83 % 87 % 

Normal slow 86 % 64 % 

Abnormal slow 65 % 80 % 

Abnormal slow with spikes 54 % 84 % 

 

The study in publication E2 further exploited the results of publication E1. In 
publication E1, wavelet subband entropy (WSE) was recognized as the most 
important feature for the detection of epileptiform activity. In publication E2, 
WSE was studied in detail and used as an index to quantify the epileptiform 
activity of the EEG during sevoflurane anesthesia. In publication E2, it was 
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shown that WSE can be used to provide complementary information to BIS which 
can help the clinicians to recognize the falsely high BIS readings during epileptiform 
activity. Such false readings may compromise patient safety if the doses of 
anesthetic drugs are adjusted based on them. One of the key findings of publication 
E2 is shown in Figure 10 which illustrates how the WSE values decrease when the 
epileptiform activity (PD, periodic discharges) becomes increasingly prominent. In 
addition, the inappropriate increase in the BIS values during PD is visible. 

 

Figure 10. Median and quartile values of (A) Bispectral Index, (B) combined wavelet 
subband entropy 4–16 Hz, and (C) wavelet subband entropy 16–32 Hz for each 
electroencephalographic class: awake activity (AW); burst suppression (BS); delta activity 
(D); slow delta activity (DS); slow delta monophasic activity (DSM); slow delta monophasic 
activity with spikes (DSMS); periodic discharges (PD); burst suppression with spikes 
(SBS). The asterisks denote statistical significance (P < 0.05) between classes. 
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5.2 Detection of epileptiform waveforms in intensive care 

In publication E3, the WSE concept was applied to ICU patients. The study 
population consisted of 20 patients resuscitated after an out-of-hospital cardiac 
arrest who were treated and monitored in the ICU. Afterwards, when the 
outcomes of the patients (survivor / non-survivor) were known, WSE was calculated 
from the recorded EEG and the average WSE value was obtained for each hour 
of each recording. The distributions of hourly average values of WSE of the 
outcome groups were then compared. A statistically significant difference was 
found between the distributions. The WSE distributions of the outcome groups 
are presented in Figure 11. 

In publication E3, the research was continued and more EEG parameters were 
compared to the outcome of the patients in publication E4, where EEG derived 
features were found to be associated with the outcome of the patients already 
during the first 24 hours of the ICU treatment. Table 3 summarises the EEG 
findings of publication E4.  

 

Figure 11. Distributions of WSE values for the outcome groups in publication E3.’Good’ 
refers to WSE values from the survivors and ‘poor’ to those from the non-survivors. The 
lines inside the boxes indicate the locations the median values. The edges of the boxes 
are located at the 25th and 75th percentiles of the distributions. 
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Table 3. EEG findings in publication E4. The EEG parameters are studied in two time 
intervals, 0–24 hours and 24–48 hours after the arrival to the ICU. The EEG-parameters 
are WSE, BSR (burst-suppression ratio), RE (Response entropy), and SE (State 
entropy). The statistically significant differences (p ≤ 0.05) between the outcome groups 
are printed in bold. The results are presented as medians and ranges. 

0–24 h   Good Outcome (n = 21) Poor Outcome (n = 9) 

 WSE 0.84 (0.75–0.85) 0.83 (0.69–0.85) 

 BSR 18 (0–81) 65 (4–74) 

 RE 20 (3–51) 10 (4–22) 

  SE 19 (3–50) 9 (4–22) 

24–48 h       

 WSE 0.84 (0.80–0.86) 0.82 (0.65–0.85) 

 BSR 0 (0–17) 2 (0–26) 

 RE 67 (26–83) 55 (29–78) 

  SE 58 (24–76) 46 (28–68) 

 

5.3 Activity recognition in supervised conditions 

In publication A1, 18 different quantities were collected with wearable sensors 
during recordings from 16 subjects. In the feature selection phase, accelerometers 
proved to be superior to signals from the other sensors for the discrimination of 
the recorded activities: lying, sitting/standing, walking, Nordic walking, running, 
rowing (with a rowing machine) and cycling (with an exercise bike).  

As a result of the feature selection process, six features were selected for the 
classification process: 1) peak frequency of vertical chest acceleration, 2) median 
of vertical chest acceleration, 3) peak power of vertical chest acceleration, 
4) variance of back-forth chest acceleration, 5) sum of variances of 3D wrist 
accelerations, 6) power ratio of frequency bands 1–1.5 Hz and 0.2–5 Hz 
measured from left-right magnetometer on chest. For classification, three 
classifiers were utilized: 

• Custom decision tree which incorporates tree modelling with human domain 
knowledge and decision threshold selection based on statistical analyses 

• Automatic decision tree which used Gini impurity index for the tree 
model generation and threshold selection 
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• Artificial neural network (multi-layer perceptron) which was used as a 
reference classifier. 

The classification results for all three classifiers are summarized in Table 4. All 
results are obtained with leave-one-subject-out cross-validation (data from 4 
subjects were excluded because of technical problems). The amount of classified 
data was approximately 31 hours. 

Table 4. Summary of the classification results in publication A1. The values are percentages 
of correctly classified samples. 

  Recognized activity 

Annotation Custom decision tree Automatic decision 
tree 

Artificial neural 
network 

Lie 87 83 74 

Row 69 56 59 

Exbike 79 82 75 

Sit/Stand 96 95 96 

Run 97 97 22 

Nordic walk 90 72 52 

Walk 58 78 79 

TOTAL 82 86 82 

 

5.4 Activity recognition in unsupervised conditions 

For publication A2, a second, revised, round of data collection and analysis was 
performed. Whereas in publication A1 activity data were collected under 
supervision, in this data collection the subjects were additionally instructed to 
collect and annotated recordings made without supervision.  

For this data set, the following signal features were selected to be used in the 
classification phase: 1) peak frequency of the vertical acceleration measured 
from the hip; 2) range of the vertical acceleration measured from the hip; 
3) mean value of the vertical acceleration measured from the hip; 4) peak 
frequency of the horizontal acceleration measured from the wrist; 5) sum of 
variances of 3D acceleration measured from the hip; 6) spectral entropy of the 
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vertical acceleration measured from the hip; 7) speed measured from the GPS 
device. 

For classification, the same three classifier models as in publication A1 were 
utilized and in addition also a hybrid model in which the simple threshold 
decisions of each decision node of the tree structure of the custom decision tree 
were replaced by a small neural networks.  

Table 5. Summary of the classification results in publication A2. The values are percentages 
of correctly classified samples. 

  Recognized activity 

Annotation Custom 
decision tree 

Automatic 
decision tree 

Artificial neural 
network 

Hybrid 
model 

Lie 98 96 98 97 

Row 58 84 85 87 

Exbike 20 79 4 18 

Sit/Stand 94 53 96 97 

Run 91 83 90 89 

Nordic walk 85 66 66 70 

Walk 50 62 67 71 

Football 63 55 47 78 

Bike 52 74 67 72 

TOTAL 83 60 87 89 

 

The classification results for all three classifiers are summarized in Table 5. All 
results are obtained with leave-one-subject-out cross-validation. The amount of 
classified data was approximately 68 hours.  

5.5 Online activity recognition 

In publication A3, The calculation of the following features was implemented 
onto Windows Mobile environment running on the PDA: 1) signal average; 
2) signal variance; 3) frequency of the highest peak in the PSD; 4) spectral 
entropy. All features were calculated from the accelerometer on the ankle. 

As a proof-of-concept, activity data were collected from 3 subjects and 
consisted of 5 activity classes: lying, sitting & standing, walking, running, and 
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cycling. For classification, a simplified version of the custom decision tree 
model presented in publications A1 and A2 was implemented onto the PDA. The 
average classification accuracy for the three subjects was 94%. Confusion matrix 
of the classification results is presented in Table 6. 

Table 6. A confusion matrix of the classification results in publication A3. The values are 
percentages. 

  Recognized activity 

Annotation Lie Sit/Stand Walk Run Cycle 

Lie 100 0 0 0 0 

Sit/Stand 0 100 0 0 0 

Walk 0 2 96 0 2 

Run 0 4 21 75 0 

Cycle 0 4 0 0 96 
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6. Discussion 

6.1 Accomplishment of the objectives 

6.1.1 Detection of epileptiform waveforms 

The objective of the studies E1–E2 was to develop and validate an algorithm for 
the classification of EEG waveforms encountered during sevoflurane anesthesia 
with special interest on the epileptiform EEG activity.  

The algorithm for the classification of EEG waveforms was successfully 
developed in publication E1. Publication E2 then concentrated on the quantification 
of epileptiform activity. A successful quantification was obtained as the WSE 
values during different epileptiform waveforms and during the waveforms 
preceeding them were shown to be statistically different.  

The objective of the studies E3–E4 was to validate the algorithms developed 
for the detection of epileptiform EEG activity in ICU setting for the prediction of 
patient outcome. A statistically reliable prediction model could not be generated 
with the limited study population used. However, a statistical relationship 
between WSE and the patient outcome was established in publication E3. The 
results were extended in publication E4 by showing a statistical relationship with 
a larger study population and by presenting preliminary classification results. 

6.1.2 Recognition of physical activity 

The objective of studies A1–A3 was to develop and validate practical algorithms 
for the detection of daily activities and sports performed by the subject primarily 
based on signals from wearable accelerometers.  
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The objective was accomblished in publications A1 and A2. The results of 
publication A3 exceeded the original objectives with the developed online 
activity recognition system. 

6.2 Impact of the publications in their research fields 

Although the general changes in EEG during anesthesia are well-known, the 
exact characteristics of EEG during sevoflurane anesthesia, including 
epileptiform activity, have been described only lately [Vakkuri et al. 2001, 
Vakkuri et al. 2000, Yli-Hankala et al. 1999]. Publication E1 is the first 
quantitative EEG study where the automatic classification of the epileptiform 
EEG waveforms in sevoflurane anesthesia is presented.   

The inconsistent behaviour of BIS during sevoflurane anesthesia has been 
reported previously [Woodforth et al. 1997, Vakkuri et al. 2001, Vakkuri et al. 
2000, Yli-Hankala et al. 1999, Jääskeläinen et al. 2003]. However, publication 
E2 goes further by quantifying the BIS readings during epileptiform activity and 
showing their inconsistency when compared to the concentration of the anesthetic 
agent. In addition to presenting the inconsistency of BIS readings, publication 
E2 introduces an EEG parameter, wavelet subband entropy (WSE), for the 
quantification of the epileptiform activity. The publication is unique, as no 
similar indexes for the quantification of epileptiform activity during anesthesia 
have been suggested in the literature. However, the problematic nature of 
epileptiform EEG activity is acknowledged and some DOA monitors claim to 
recognize it separately [Narcotrend 2005] to avoid misleading index values. 

Publication E3 showed that the index of epileptiform activity developed in 
publications E1 and E2 could provide information for the survival prognosis of 
ICU patients. Indirectly it also supports the assumption that epileptic seizures are 
common in resuscitated cardiac arrest ICU patients and are related to poor 
outcome.  

The prognostic characteristics of different EEG findings are partly unclear as 
in the literature the findings have been merged into categories of malignant and 
being characteristics [Wijdicks et al. 2006]. In publication E4, the importance of 
epileptiform EEG activity in the prognosis was emphasized as all patients with 
status epilepticus (SE) died. In addition, WSE was shown to be significantly 
lower for the SE patients and also in general for the non-survivor group. The 
publication simultaneously studied EEG-derived features and blood markers for 
the prediction of patient outcome. One of the findings of publications E4 was 
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that the EEG-derived features are associated with the patient outcome earlier 
than many traditional blood markers.  

There are only a few studies which have considered activity recognition in 
out-of-lab or realistic laboratory settings [Bao & Intille 2004, Foerster et al. 
1999, Uiterwaal et al. 1998]. To the author’s knowledge, publications A1 and A2 
are based on the largest out-of-lab data set collected and analysed for the activity 
recognition purposes. There is a larger variety of activities and ways to perform 
them real-life environment than in laboratory. This is shown to decrease the 
activity classification accuracy [Foerster et al. 1999]. However, publication A2 
demonstrated the robustness of the developed algorithms as the classification 
accuracy increased only slightly when the out-of-lab data was left out of the 
analysis. The recognition accuracies obtained in publications A1 and A2 are 
among the highest reported for such a multi-class activity recognition problem 
[Bao & Intille 2004, Preece et al. Accepted for publication]. 

The current challenge in the activity recognition research is to develop 
unobtrusive wearable solutions that could later become consumer products. 
Publication A3 is among the few studies which have demonstrated practical 
solutions for daily activity recognition. Other similar works include [Lester et al. 
2006, Karantonis et al. 2006].  

6.3 Limitations of the studies 

Publications E1 and E2 presented methods for the detection of epileptiform 
activity in sevoflurane anesthesia. In order to be implemented in DOA monitors, 
the algorithms should be tested also with EEG waveforms caused other anesthetic 
drugs to validate their specificity to the detection of the epileptiform activity.  

Publications E3 and E4 consider the detection of epileptiform activity in the 
EEG of ICU patients. The number of different combinations of illnesses of the 
patients and drugs used in ICU is enormous and many of them have effects on 
the EEG waveforms. This limits the applicability of the results in publications 
E3 and E4 as they show the performance of quantitative EEG parameters for one 
particular patient population: patients resuscicated after cardiac arrest and treated 
with hypothermia and sedated with midazolam and fentanyl.  

The original purpose in publication E4 was to calculate the prediction powers 
of different quantitative EEG parameters for outcome prediction. However, it 
became later clear that the study population was too small for reporting prediction 
models and accuracies in clinical journals. 
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Reporting a prediction model based on a combination of EEG features and 
blood markers in publication E4 would have been of great interest to many 
clinicians. However, the study population was too small for such purpose. The 
prediction analysis was limited to presenting preliminary results without details 
about the classification rules.  

In publications A1–A3 concerning activity recognition, altogether 31 data 
collections were performed. The applicability of the results of the publications is 
limited by the homogeneity of the subjects. In all of the studies, the average 
body mass index (BMI) of the study population was below 25 indicating that the 
study populations were on average normal weight. The users of health-promoting 
activity recognition systems however could be those with modest weight 
management problems. The presented activity recognition algorithms are not 
evaluated with such users. 

The measurement range of accelerometers in publication A1 was less than 
recommended [Bouten et al. 1997] and the same applies for the sampling 
frequency of the acceleration signal in publication A2. These limitations have 
influenced the results of the studies, which is considered in detail in the publications. 

Considering the use of solely accelerometer-based algorithms for activity 
recognition, the results in publications A1 and A2 are of limited reliability in the 
sense that in both of them also information from other sensors has been used in 
obtaining the classification results: frequency band power of magnetometer 
signal in publication A1 and speed measured from a GPS signal in publication A2.  

6.4 Suggestions for further research 

The research presented in publications E1 and E2 was targeted to a known 
problem in the existing DOA monitors – the falsely high readings during 
epileptiform activity. It should be tested that the developed algorithms do not 
react to non-epileptiform EEG waveforms encountered in anesthesia induced by 
other anesthetics. After such validation, the developed algorithm could be 
implemented to the DOA monitors. 

The vast number of different illnesses, treatments and medications used in 
ICU patients pose a challenge to the further validation of the methods presented 
in publications E3 and E4. Although all the different ICU patient groups cannot 
be tested, a larger validation study with heterogenic general ICU population 
could offer more information about the suitability of the algorithms for clinical 
practice. 
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In all of the activity recognition publications A1–A3, activity classification 
results have been calculated only based on the data in the corresponding time 
window. However, there are temporal connections between activities that could 
be utilized to improve the classification results. For example, it is unlikely that a 
subject would instantly change from lying to cycling without any other activity 
in between. On the other hand, changes from lying to standing or walking are 
pretty likely. Utilizing such a priori information could potentially improve the 
classification results. 

6.5 General discussion 

In the classification of biosignals, intrasubject and intersubject variability in the 
measured signals play an important role. Because of them, the classification 
accuracies of biosignal-based solutions need to be evaluated with large enough 
study populations. In addition, to demonstrate the general applicability of the 
presented algorithms, they must be validated with different data than those used 
for the design of the algorithms.  

In the publications of the thesis, the following procedures have been 
performed to obtain unbiased performance assessment of the classification 
results: 

1. Collection of large, well-annotated data set from multiple subjects. 
Although there are scientific ways of defining a large enough population 
for biosignal studies, such as power analysis, limited resources often set 
limits for the extent of data collection. In publications A1 and A2, 21 
hours of data from 16 subjects and 68 hours from 12 subjects, 
respectively, were collected. Both of these data collections are among 
the largest presented in the field of activity recognition. In publications 
E1 and E2, 6 minutes of EEG were recorded from 60 subjects. In 
publication E3, 914 hours of EEG from 20 subjects were used in the 
analysis and for publication E4 this was extended to 1290 hours from 30 
subjects.  

2. Division of data so that no same data are used for the design and 
validation of the algorithms. Data division is performed in publications 
A1 and A2 by a leave-one-subject-out cross-validation and in publications 
E1 and E2 by dividing the data into development and validation data 
sets both containing approximately half of the data. In publication A3 all 
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data were considered validation data as the classification algorithm had 
been adapted from the earlier publications A1 and A2. In publication 
E3, no classifications were made and no divisions were needed. In 
publication E4, the classification results presented were considered 
preliminary and no division was applied. It was stated in the publication 
that the classification model and rules used need to be validated in a 
separate study to prove their reliability. 
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7. Conclusions 
In this thesis, an index for the quantification of epileptiform EEG activity was 
presented and statistical relationship between the index and annotated epileptiform 
activity was found both in general OR anesthesia and ICU treatment.   

An offline activity recognition system was developed and validated. Also the 
first steps of developing it further into an online system were presented. 

In both of these research problems concerning the classification of biosignals, 
solutions with state-of-the-art scientific results and true applicability were 
obtained. 
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