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term prediction model of traffic flow status and tested its performance in the real 
world environment. Study sites were an interurban two-lane two-way highway 
section and an urban multilane corridor with varying standard. Online use of short-
term prediction models in practice was promising and even a simple prediction 
model was shown to improve the accuracy of travel time information especially 
in congested conditions. The results also indicated that the self-adapting principle 
improved the performance of the model and made it possible to implement the 
model quite quickly. As self-adapting this model performed better than without the 
self-adapting feature. The model was practical for real-time use also in the long 
term. The dissertation sums up five studies on modelling of traffic flow status for 
short-term prediction. These studies show the development process from offline 
models that use perfect data to online models that deal directly with field-measured 
data. The purpose of the online model was to produce real-time information that 
can be given to drivers.



 

 

 



 

 

VTT PUBLICATIONS 708 

Short-term prediction of traffic  
flow status for online driver 

information 
 

Satu Innamaa 
 

 

 

Dissertation for the degree of Doctor of Science in Technology to be presented 
with due permission of the Faculty of Engineering and Architecture for public 

examination and debate in the Auditorium at Helsinki University of  
Technology (Rakentajanaukio 4, Espoo, Finland) on 12th of June, 2009,  

at 12 noon. 
 



 

 2

ISBN 978-951-38-7340-0 (soft back ed.) 
ISSN 1235-0621 (soft back ed.) 

ISBN 978-951-38-7341-7 (URL: http://www.vtt.fi/publications/index.jsp) 
ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp) 

Copyright © VTT 2009 

 

JULKAISIJA – UTGIVARE – PUBLISHER 

VTT, Vuorimiehentie 5, PL 1000, 02044 VTT 
puh. vaihde 020 722 111, faksi 020 722 7001 

VTT, Bergsmansvägen 5, PB 1000, 02044 VTT 
tel. växel 020 722 111, fax 020 722 7001 

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O. Box 1000, FIN–02044 VTT, Finland 
phone internat. +358 20 722 111, fax + 358 20 722 7001 

 

 

 

 
 
 

 
 
Technical editing Maini Manninen 
 
 
 
Edita Prima Oy, Helsinki 2009 

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp


 

 3

Satu Innamaa. Short-term prediction of traffic flow status for online driver information [Liikenne-
tilanteen lyhyen aikavälin ennustaminen ajantasaisen kuljettajatiedotuksen tarpeisiin]. Espoo 2009. 
VTT Publications 708. 79 p. + app. 90 p. 

Keywords prediction, traffic flow status, travel time  

Abstract 
The principal aim of this study was to develop a method for making a short-term 
prediction model of traffic flow status (i.e. travel time and a five-step travel-
speed-based classification) and test its performance in the real world 
environment. Specifically, the objective was to find a method that can predict 
the traffic flow status on a satisfactory level, can be implemented without long 
delays and is practical for real-time use also in the long term. A sequence of 
studies shows the development process from offline models with perfect data to 
online models with field data. Models were based on MLP neural networks and 
self-organising maps. The purpose of the online model was to produce real-time 
information of the traffic flow status that can be given to drivers. The models 
were tested in practice. In conclusion, the results of online use of the prediction 
models in practice were promising and even a simple prediction model was 
shown to improve the accuracy of travel time information especially in 
congested conditions. The results also indicated that the self-adapting principle 
improved the performance of the model and made it possible to implement the 
model quite quickly. The model was practical for real-time use also in the long 
term in terms of the number of carry bits that it requires to restore the history of 
samples of traffic situations. As self-adapting this model performed better than 
as a static version i.e. without the self-adapting feature, as the proportion of 
correctly predicted traffic flow status increased considerably for the self-
adapting model during the online trial. 
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Tiivistelmä 
Tutkimuksen päätavoitteena oli kehittää menetelmä liikennetilanteen lyhyen 
aikavälin ennustamiseen ja testata sen toimivuus todellisissa liikenneolosuhteis-
sa. Tässä liikennetilanteella tarkoitetaan matka-aikaa ja viisiportaista matka-ai-
kaan perustuvaa luokittelua. Erityisesti tavoitteena oli löytää liikennetilannetta 
tyydyttävästi ennustava menetelmä, joka voidaan ottaa käyttöön ilman pitkiä 
viipeitä ja joka on käytännöllinen ajantasaisessa käytössä myös pitkällä aikavä-
lillä. Tutkimussarja näyttää kehitysprosessin täydelliseen aineistoon perustuvista 
tutkimusmalleista maastosta mitattua aineistoa käyttäviin ajantasaisiin malleihin. 
Mallit perustuivat MLP-neuroverkkoihin ja itseorganisoituviin karttoihin. Ajan-
tasaisen mallin tarkoituksena on tuottaa reaaliaikaista tietoa liikennevirran tilasta 
kuljettajille välitettäväksi. Malleja testattiin käytännön olosuhteissa. Ajantasai-
sesta käytöstä saatujen tulosten perusteella ennustemallit vaikuttivat lupaavilta, 
ja jopa yksinkertaisen ennustemallin voitiin osoittaa parantavan matka-
aikatiedon tarkkuutta erityisesti ruuhkassa. Tulokset osoittivat myös, että itseop-
pimisen periaate paransi mallin suorituskykyä ja mahdollisti mallin suhteellisen 
nopean käyttöönoton. Malli oli tarkoituksenmukainen ajantasaisessa käytössä 
myös pitkällä aikavälillä, sillä se vaati erittäin vähän muistitilaa liikennetilanne-
historian tallentamiseen. Itseoppivana malli toimi paremmin kuin staattisena 
versiona eli ilman itseoppimisperiaatetta, sillä oikein ennustettujen liikennetilan-
teiden osuus kasvoi itseoppivalla mallilla huomattavasti käyttökokeilun aikana. 
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1. Introduction 

1.1 Background 

Real-time traffic information, including short-term forecasts, is needed for 
various intelligent transport systems (ITS) and services. However, this information 
cannot always be measured extensively or directly. It may be that the point-
related information needs to be expanded to represent the traffic situation on an 
entire link. Certain parameters also need to be estimated on the basis of other, 
more easily measurable quantities, e.g. the travel time from point speeds or the 
traffic density of a link from speeds and traffic volumes at certain points. Sometimes 
the information received from the monitoring system is already outdated – like 
travel time, which can be measured only after driving an entire link – and a 
model is needed to produce more current estimates, not to mention short- or 
long-term forecasts of the traffic situation. Hence, the future of ITS solutions is 
based on models that describe and predict the traffic flow in real time. 

Michon (1985) divided the generalised problem-solving task of the driver or 
road user into three levels of skills and control: strategic (planning), tactical 
(manoeuvring, controlled action patterns) and operational (control, automatic 
action patterns). The strategic level defines the general planning stage of a trip, 
including the determination of trip goals, route, and modal choice, plus an 
evaluation of costs and risks involved. At the tactical level drivers exercise 
manoeuvre control, allowing them to negotiate the direct prevailing 
circumstances. Although largely constrained by the exigencies of the actual 
situation, manoeuvres must meet the criteria derived from the general goals set 
by the strategic level. Conversely these goals may occasionally be adapted to fit 
the outcome of certain manoeuvres. (Michon 1985.)2 

                                                      
2 A reference after the last sentence of a paragraph (outside the full stop) indicates that 

information provided in this paragraph is from this single reference. 
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Ben-Akiva et al. (1991) stated that when making travel choices on a strategic 
level, drivers constantly combine various sources of information to form 
perceptions and expectations of traffic conditions. Conventional sources of 
information available to drivers include direct observations, personal experience, 
word of mouth, and media messages. Drivers who rely solely on such 
information are likely to have a partial and inaccurate knowledge of traffic 
conditions on the network. Since the decisions of the drivers are affected by 
expected network conditions, the most useful type of information to a driver 
faced with travel choices would be reliable predictive information. (Ben-Akiva 
et al. 1991.) 

This dissertation deals with real-time traffic information at strategic level and 
the traffic models on which this information can be based. The introduction 
reviews current literature on (1) the impacts of real-time traffic information, (2) 
the value and accuracy aspects of the information, and (3) the state of the art of 
prediction models. In other words, what kinds of impacts can be achieved with 
good-quality traffic information, what minimum requirements should be set for 
the effectiveness of the model, and what are the shortcomings and strengths of 
the developed models. 

1.2 Impacts of real-time traffic information 

1.2.1 Impacts on drivers and travellers 

Drivers can benefit from good-quality advanced traveller information in many 
ways. It can help them optimise their travelling or at least make more informed 
travel decisions. These impacts result in improved time management and 
consequently in reduced costs and stress. 

The current literature shows that commuters consider a number of factors 
when selecting their commute routes. Both static and dynamic information about 
alternative routes are important (Kitamura et al. 1999). The findings of Kurauchi 
et al. (2000) indicated that many drivers refer to travel time information 
displayed on variable message signs (VMS) and change their routes according to 
it. The simulator study of Srinivasan and Mahmassani (1999) implied congruent 
findings. 

Specifically, analyses of the Los Angeles commuter survey results of 
Kitamura et al. (1999) showed that travel time reliability (or variability) is as 
important a factor in the route choice behaviour of commuters as travel time 
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itself. An earlier preference study of Abdel-Aty et al. (1995) had a similar 
finding; in addition, they found that commuters may use information to reduce 
the degree of travel time uncertainty and it enables them to choose adaptively 
between a route that is longer but more reliable and a route that is shorter but has 
uncertain travel times. 

Mannering et al. (1994) studied the effects of traffic information and showed 
that there is a natural resistance among commuters in shifting to unfamiliar 
routes. The findings of Kitamura et al. (1999) revealed that commuters prefer 
simple routes with few roadway segments. Another finding of Mannering et al. 
(1994) was that departure time flexibility not only increases the likelihood of 
changing departure times but also of changing routes. 

Noland (1999) stated that information provision reduces expected costs by 
allowing better scheduling. According to his results, informed commuters have 
lower expected costs than uninformed commuters, but both groups become 
worse off as greater numbers of commuters are informed. 

Moreover, users of advanced traveller information services enjoy significant 
benefits in terms of time management, i.e. better on-time reliability, reduced 
early and late schedule delays, and more predictable travel time, as was shown 
by a large-scale 3-month case study in Washington DC by Wunderlich et al. 
(2001). Specifically, improved reliability and predictability of travel are likely 
good surrogates for reduced commuter stress. 

The Japanese Vehicle Information and Communication System (VICS) was 
assessed to reduce stress according to the majority of its users (ERTICO 1998). 
The majority of drivers (74%) in an online survey of Tokyo Metropolitan 
Expressways users said that they found driving much less stressful after knowing 
the travel time, and 18% found it somewhat less stressful (Chung et al. 2004). In 
the UK, 80% of the test users who had changed plans as a result of RDS-TMC 
(Radio Data System – Traffic Message Channel) messages assessed that the 
service had saved them time or stress (Tarry and Pyne 2003). 

Furthermore, Emmerink and Nijkamp (1999) concluded that driver information 
is likely to decrease travel times, as drivers are using more information to decide 
whether, where and when to travel. However, the results of Wunderlich et al. 
(2001) did not confirm this statement. In their study, drivers did not significantly 
reduce the amount of in-vehicle travel time accumulated over a month or year of 
regular trip making. 

Jung et al. (2002) conducted two parallel 12-month case studies in 
Washington DC and the Twin Cities of on-time reliability impacts of advanced 
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traveller information services. The results of the Washington DC study were 
consistent with the finding of significant on-time reliability benefits for users of 
advanced traveller information services. A small reduction in the in-vehicle 
travel time was also seen. The results of the study in the Twin Cities followed 
the same basic pattern of overall benefits, but the benefits were not seen 
throughout the day. Jung et al. assessed that this resulted from very little 
variability in roadway travel times and the inherent error in observations of 
advanced traveller information services, which caused service users to misjudge 
trip timings and routing decisions more frequently than a familiar non-user. 

The available literature shows that compliance with driver information varies 
according to the gender, standard of living and driving experience of the user. 
Specifically, Kitamura et al. (1999) made the following two findings with 
respect to commuter attributes: (1) Female commuters were more likely to 
obtain information pre-trip, but not en-route. (2) Commuters with a college 
education (and above) were more likely to obtain information, either pre-trip or 
en-route than those with a lower level education. Already the results of 
Mannering et al. (1994) were in accordance with the first result, but Mannering 
et al. found that higher-income commuters tended to be less likely influenced by 
pre-trip traffic information. 

Furthermore, the findings of Kitamura et al. (1999) indicated that male drivers 
and experienced drivers tended not to follow prescriptive information. However, 
compliance with the information depended not only on how the information was 
given, but also on the road type. According to the study of Kitamura et al., an 
instruction to take a motorway was more readily accepted than an instruction to 
take e.g. a two-lane road. Perceptions of the accuracy of a system relied more 
heavily on the accumulation of past experience rather than on the most recent 
experience. Kitamura et al. concluded that an aberration in system performance 
will not turn away users, while consistently poor information will. 

In conclusion, drivers can benefit from static and dynamic information about 
traffic situations on alternative routes by making more informed travel decisions, 
and therefore being able to improve time management and consequently reduce 
costs and stress. Information on travel time reliability is an important factor in 
addition to the travel time itself. Nevertheless, the impact that information 
provision has on route choice, for example, depends also on other things like 
familiarity and complexity of the recommended route. The compliance of driver 
information varies according to gender, standard of living and driving 
experience.  
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1.2.2 Impacts on network operation and safety 

Besides impacts and benefits at the individual driver or traveller level, several 
studies have shown that the provision of advanced driver information can have 
positive impacts at the transportation network level. Specifically, advanced 
traveller information can reduce congestion in transportation networks (Khattak 
et al. 1999). Laine and Pesonen (2002) argued that one of the main objectives of 
traffic information provision is to reduce the negative effects of traffic peaks by 
transferring part of the demand outside of the peak periods. However, they 
assessed that only a small portion of trips made in an urban area are such that 
their generation could be influenced by information. Consequently, the demand 
for trips does not decrease and in the long-term information will not reduce the 
total number of trips. 

However, when evaluating the effects of information in smoothing traffic 
peaks, it is not enough to consider only the travel time saved by transferring the 
departure time. Although this would make the arrival time flexible, such a 
transfer would cause a loss of convenience and an inefficient use of waiting 
time. (Laine and Pesonen 2002.) 

The Delphi study of Aittoniemi (2007) suggested that a route guidance system 
could reduce the number of injury accidents by 0.5–2.5%. An incident warning 
system was assessed to have no impact on the number of injury accidents in 
Finland because of the small number of incidents and resulting accidents. 
Nevertheless, injury accidents during incidents could be reduced by roughly 1%. 
These results were estimated assuming a 100% utilisation rate for the services. 

Despite the positive effects of advanced traveller information mentioned 
above and in the previous chapter, the effects of information can also be 
negative. Ben-Akiva et al. (1991) identified three adverse effects, namely 
oversaturation, overreaction and concentration. Oversaturation is mainly a 
problem resulting from human-machine interaction. It occurs if drivers are 
unable to process the supplied information properly. Much research has been 
devoted to driver workload and distraction, but these issues lie outside the scope 
of this dissertation. Overreaction occurs when drivers' reactions to traffic 
information cause congestion to transfer from one road to another. Part of the 
blame for overreaction lies in the failure of the information provider to predict 
accurately driver behaviour and reaction to information. (Ben-Akiva et al. 1991.) 

In addition, Iida et al. (1999) stated that a situation in which traffic conditions 
become worse with traffic information than without it develops because the 
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provider of information did not predict or take into account the response of 
drivers to the information. In order to enhance the effectiveness of an advanced 
traveller information system providing dynamic information in real time, it is 
necessary to study the content and accuracy of the information and the timing of 
its provision. 

Information tends to reduce variations among drivers, because it increases 
uniformity of the perceptions of network conditions around the true values. As a 
result, a greater number of drivers may select the best alternatives, and drivers 
with similar preferences will tend to concentrate on the same routes during the 
same departure times, generating higher levels of traffic congestion. (Ben-Akiva 
et al. 1991.) 

Bonsall and Palmer (1999) studied factors affecting compliance in route 
choice in response to VMS. According to their results, the simplistic 
assumptions that all motorists will obey all route choice advice or act in full 
accord with it is far from adequate. For example, message content appears to 
affect the level of compliance. (Bonsall and Palmer 1999.) 

Noland (1999) summarised that information which reduces the cost (mainly 
travel time) of highway travel will induce more travellers to reschedule their 
trips to preferred times and make it less likely that transit will be used. 
Nevertheless, he emphasised that the number of travellers with accurate travel 
time information is a critical factor. Therefore this effect is likely to result in less 
than anticipated reductions in congestion, although there may be economic 
benefits from trips that would not have occurred without information being 
available. 

In conclusion, the provision of advanced driver information can have positive 
impacts at the transportation network level, besides the impacts and benefits at 
the individual driver level. Specifically, advanced traveller information can 
reduce congestion in transportation networks or even slightly reduce the number 
of injury accidents. However, traffic information may also have negative 
impacts; many of these are due to poor design of information provision. 
Oversaturation can be avoided if the information is provided in an efficient and 
easily understandable way. Overreaction and concentration can be avoided if the 
information provider includes driver behaviour and reaction to information in  
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the model. Also, cooperative information systems3 enabling the provision of a 
set of different messages to a number of driver groups can help (Kulmala 2007). 
Nevertheless, the impact of reduced congestion is likely to be moderate as the 
number of travellers with accurate information increases. 

1.3 Information value and accuracy 

1.3.1 Value of information 

The value of information depends on the situation the user is in and on what 
kind of problem the information is supposed to solve. Information is more 
valuable when it is used to solve a problematic situation rather than a normal 
one. Users are, for example, more willing to pay for alternative route choice 
information while stuck in congestion than outside peak hours. (Herrala 2007.) 

The quality of information is defined by the requirements of different 
consumers. A certain quality level can be acceptable to some consumers but 
unacceptable to others. Although the same attributes are repeated in many 
studies, there is no general agreement on what are the dimensions of information 
quality. Nevertheless, the five most frequently cited data quality dimensions are 
accuracy, reliability, timeliness, relevance and completeness (Wand and Wang 
1996). 

In addition to a positive value, information can also have a negative value for 
the user. For example, information in the wrong place at the wrong time, 
although otherwise beneficial, can result in problems such as distraction or 
misinterpretation. The information value does not only depend on its capability 
to lead to the right decisions providing benefits, but also its ability to prevent the 
wrong decisions causing a negative value. (Herrala 2007.) 

Different traffic conditions create varying needs for information and place 
different demands on its content. The type and length of the journey, the route 
and travel mode chosen, and traffic conditions all affect the value of information 

                                                      
3  A cooperative system is an ITS system relying on communication between vehicles or 

between infrastructure and vehicles while taking into account and possibly 
communicating the requirements, intentions and actions of individual vehicle drivers 
and network operators responsible for the infrastructure. In a cooperative information 
system, information is provided to the users (drivers, travellers, etc.) by or via other 
vehicles or the infrastructure to support the users to reach their objectives in an 
optimal manner. 
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(Herrala 2007). Travel purposes can be divided into three categories: commuting 
(i.e. recurring home-work and work-home), business (i.e. other work related) 
and private trips. Business trips are usually found to be more valuable than 
commuting or private trips (Jiang and Morikawa 2004). 

Three factors are relevant to the value of travel time: (1) alternative use of the 
time saved, (2) the travel environment, and (3) the socioeconomic environment 
of individuals. Long-distance travellers usually value time more highly than do 
short-distance travellers (Herrala 2007). Kurri and Pursula (1995) assessed that 
trip frequency is also very important, although it is closely related to trip 
purpose. In the first place, if the trip is made rarely, it seems that the travel time 
is not so important. On the other hand, it seems that the more frequent the trip is, 
the more sensitive people are to changes in travel cost. 

Khattak et al. (2003) argued that travellers may be more likely to pay for 
higher quality travel information when (1) travel time uncertainty is high, e.g. if 
incident-induced congestion occurs frequently; (2) information is available to a 
selected few, e.g. if only a few individuals know about an incident, they may be 
able to divert to relatively uncongested alternative routes whereas uninformed 
drivers take the congested route; and (3) the perceived benefits of information 
use (e.g. travel time savings and anxiety reduction) exceed the perceived costs of 
information acquisition. 

1.3.2 Impact of information accuracy 

The impact of information may vary according to its accuracy. Several studies 
have investigated the impacts of the accuracy of traffic information on route-
choice behaviour and departure times. The studies have typically been carried 
out in simulated or laboratory conditions. 

Specifically, based on a simulator study, Srinivasan and Mahmassani (1999) 
stated that when reported information was inaccurate and contributed to 
schedule delay, drivers responded by switching their departure time more than 
with accurate information. However, information accuracy did not significantly 
influence route-switching behaviour. Meanwhile, Mahmassani and Liu (1999) 
noted in their simulator study that commuters tended to keep their routine 
departure time after experiencing lower reliability of real-time information.  

Moreover, the simulator study of Chen et al. (1999) implied that a hierarchy of 
information accuracy tends to exist under which different levels of route-choice 
compliance can be achieved. In their experiment, the more reliable the 
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information, the higher was the rate of route-choice compliance. In addition, 
commuters tended to comply less with real-time information when they 
experienced early-schedule or late-schedule delays. Chen et al. also found that 
the relative error explained the compliance more than the absolute error. They 
found increasing reliability of information to result in higher compliance. The 
results implied that compliance depended not only on how accurate the 
information was, but also on how frequently it was accurate.  

Chorus et al. (2007) investigated the impact of a variety of travel information 
types on the quality of travel choices. Their study confirmed the previous result 
of increasing reliability of information resulting in higher compliance, and 
generalised it to multimodal travel choices. They concluded that information 
unreliability appeared to have a double-negative effect on choice quality: it 
induced lower levels of information search, and information that was acquired 
had a lower potential to reduce uncertainty and increase choice quality. 
Although the result was obtained for multimodal travelling, it can probably also 
be applied to road traffic. 

The laboratory experiment of Iida et al. (1999) was in accordance with the 
result that drivers' route choice mechanism was influenced by the accuracy of 
the information provided. They observed a tendency of the route choice 
mechanism to become strongly dependent on information if highly accurate 
information was continuously provided. The route choice mechanism, once 
formed, did not change over a short period of time even following a change in 
the accuracy of information. 

Furthermore, not only the impacts themselves but also whether benefits can be 
gained from the use of traffic information depend on the accuracy of 
information. Peirce and Lappin (2004) found that advanced traveller information 
was consulted on 10% of trips, whereas travel behaviour was changed during 
only 1% of trips. They assessed that poor information accuracy is both a reason 
for not seeking advanced traveller information in the first place, and a barrier to 
making smart decisions with the information once it is acquired. 

Based on 12-month case studies in three cities, Jung et al. (2003) suggested 
that the net benefit of using advanced traveller information services across all 
potential trips in each network is positive only if the travel time error in service 
reporting is below the range of 10–21%, depending on the city and time of day. 
For services with decreased accuracy, only certain subsets of the driving 
populations such as those with relatively long and highly variable trips may 
realise any benefit. 
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The findings of the laboratory experiments of Kitamura et al. (1999) showed 
that an accuracy level of 75% for prescriptive information (i.e. on average one 
wrong instruction out of four) appeared to be a critical threshold. Compliance 
with route-guidance information increased with information accuracy up to the 
75% level, beyond which improved accuracy continued to contribute to 
compliance, but to a lesser extent. With incident information accurately 
provided, the 75% accuracy level attained widespread user acceptance. The 
combination of prescriptive and descriptive information enhanced the perception 
of accuracy. 

Chung et al. (2004) found that for a trip estimated to take 30 minutes, 70% of 
drivers accepted the online travel time information if the error range was ±5 
minutes or less. The response was similar in minutes for a trip estimated to take 
60 minutes. Chung et al. concluded that drivers perceive time difference not so 
much as a percentage of trip time, but rather how the time gained or lost can be 
utilised. The drivers were prepared to accept a higher degree of error for pre-trip 
information. In conclusion, Chung et al. recommended that an appropriate 
measure of model accuracy would be to use a percentage error within ±5 or ±10 
minutes. 

Although a lower limit for the accuracy of information is critical, there is also 
an upper limit above which further improvements for the model are not 
necessary. Jung et al. (2003) noted that once a regional advanced traveller 
information service reaches a level of error near or below 5%, benefits from 
further improvements to service accuracy may be outweighed by the costs 
associated with these improvements. 

In conclusion, earlier studies suggest that the accuracy of traffic information 
has an impact on information compliance shown in travel behaviour like route-
choice and/or departure times. Specifically, an increasing reliability of 
information results in higher compliance. A relative error explained the 
compliance more than the absolute error, although there were also opposite 
results. The exact numeric definition for sufficient accuracy seems to depend on 
the city and time of day. The net benefit from an advanced traveller information 
service was positive in earlier studies only if the error in service reporting was 
below the range of 10–25%, but the cost-efficiency of the service was likely to 
suffer if error levels below 5% were being pursued. 
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1.4 Travel time prediction models 

1.4.1 Static models 

Road users benefit more from accurate travel time information where there is 
great variability in travel times (Jung et al. 2002). Hence, road users expect 
information to be up to date if the actual travel time varies substantially. Travel 
time information based directly on the sum of the latest measured travel times is 
always outdated (Figure 1), and the longer the section is, the more outdated the 
information. This is because by definition a vehicle has to drive the whole 
section before its travel time can be determined. Thus vehicles used for 
measuring travel time are different from those whose drivers receive information 
at the start of the road section based on those particular measurements (Figure 2). 
Without short-term prediction, accurate real-time information on travel time 
cannot be given. 
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Figure 1. Travel time information based directly on the sum of the latest measured travel 
times on 9-10 km long sub-links vs. target travel time of the whole 28 km road section that 
was to be estimated with the sum. 
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Figure 2. Vehicle whose driver sees the travel time information (on a VMS in this example), 
and vehicles on whose travel time the information is based. The travel time of a section is 
determined as the difference between the passing times at two camera stations. 

Much research has been done over the past 15 years in the field of travel time 
prediction. Many studies are based on simulated, faultless data, which leads to 
well-performing models (Yasui et al. 1995, Suzuki et al. 2000, Chen and Chien 
2001, van Lint et al. 2002, Nanthawichit et al. 2003). However, these models 
cannot cope equally well with imperfect, real-life data. Real-life applications 
should be robust with respect to faulty and incomplete input (van Lint et al. 
2002). 

Automatic travel time monitoring systems are not common, and although the 
whole road network cannot be covered completely with loop detectors, the 
traffic information collected by inductive loops or other spot-based methods is 
used as input for many models that predict travel time (Saito and Watanabe 
1995, Lee and Choi 1998, Matsui and Fujita 1998, D’Angelo et al. 1999, 
Paterson and Rose 1999, Kwon et al. 2000, van Lint 2003, Zhang and Rice 
2003). Even though the general relations between travel time and traffic volume, 
occupancy and point speed have been widely explored, these relations might not 
apply during saturated flow conditions (Chien and Kuchipudi 2002). However, 
in those conditions the travel time information is most valuable. 

Studies in which travel time forecasts are based on abundant field 
measurements of highway travel time are few. Chien and Kuchipudi (2002) 
predicted travel time with a Kalman filtering algorithm, and Park and Rilett 
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(1998), Park et al. (1999) and Rilett and Park (2001) predicted it with neural 
networks based on travel time data provided by an automatic vehicle 
identification system on an urban motorway. To our knowledge, the current 
literature does not include prediction models based on field measurements of 
travel times made for two-lane (1+1 lanes) two-way highways. 

Few travel time prediction models that operate in an online environment have 
been published. The European DACCORD project included demonstrations of 
real-time short-term travel time prediction models that used inductive loop 
detectors (van Grol et al. 1999a, van Grol et al. 1999b, Lindveld et al. 2000). 
Three methods were tested on three fully equipped inter-urban motorway 
sections. The authors assessed that the accuracy of the travel time forecasts 
depended on the traffic characteristics. In an area with relatively stable traffic 
conditions, a fairly simple method might be used. The results showed that online 
travel time estimation using inductive loops produced RMSEPs (root mean 
squared error proportional) between 10% and 15% of cases up to moderate 
congestion levels. However, the online methods required a substantial effort to 
deal with the operational performance of the monitoring systems. The authors 
concluded that the travel time predictors either seemed to be insufficiently stable 
for use in a production environment, or showed great instability but could not be 
properly tested due to a lack of congestion at the test site. 

Another real time application has been a model that made short-term travel 
time forecasts for a motorway section in Florida and presented them in real time 
on a website (Ishak and Al-Deek 2002, Al-Deek 2003). The model used a non-
linear time series approach based on traffic information from densely spaced 
inductive loop detectors. A majority of observations produced a maximum of 
10% errors, while the overall mean error and standard error of the estimates 
were 0.01 and 6.16% respectively. The errors ranged from –0.25 to +0.50 in 
minutes per mile. The results showed that the performance of the model 
deteriorated rapidly as congestion increased, causing errors as high as 25% to 
30% under heavily congested conditions. 

Both the DACCORD and Florida applications were designed for motorway 
sections with high-quality monitoring (i.e. detectors located every half- 
kilometre or half-mile, real-time data collection) using inductive loop detectors. 
All studies involving abundant field measurements of highway travel time 
conducted on motorways are based on offline models. 

Interurban two-lane two-way highways with relatively small capacity and at-
grade junctions differ from motorways and are more sensitive to the impacts of 
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incidents. Consequently, the results obtained from motorways cannot be 
generalised to two-lane highways as such. However, two-lane highways are 
important because they carry most of the traffic in most countries. Thus, there is 
a lack of knowledge in the field of predicting travel time on interurban two-lane 
highways based on real-time field measurements of travel time. 

1.4.2 Dynamic models 

One impediment to the efficient use of all models mentioned in Chapter 1.4.1 is 
that they are static. In other words, they cannot adjust even to small systematic 
changes in the traffic process but require new, manmade calibration and new 
data. In addition, there is often too little time to collect training data, which leads 
to a small number of samples that represent random incidents and consequently 
poor ability to predict their consequences. The ability to learn while working 
online could improve this aspect. Hence, although such static models are 
practical to run online (for example no need to collect databases), they need to 
be based on large amounts of readily-collected varying data, and to be updated 
manually every now and then. A model capable of adjusting itself would be 
practical for long-term online use. 

Ohba et al. (2000) developed a travel time prediction model based on pattern 
recognition. The principle of the model was that all unusual travel time 
observations were removed. These observations included extremely short travel 
times, extremely long travel times and data deviating somewhat from the travel 
time distribution. A typical actual travel time was calculated as the average of 
the remaining data. Ohba et al. chose similar patterns according to the smallest 
sums of the squared error. The time zone that represented 1 hour before and after 
the prediction moment was selected from the patterns. The most similar of these 
samples was chosen. The final forecast was obtained by arranging the data on 
the basis of the time at which the vehicles passed through an entrance toll gate. 

The travel time prediction model of Otokita and Hashiba (1998) applied 
pattern recognition as well. They suggested that the prediction of near future was 
possible by the periodicity of chaotic time series data and that the traffic 
conditions resulting from our social activities were chaotic. In their model, 
traffic conditions (flow data) similar to the present were sought from a database. 
Samples most similar to the present traffic condition and of the time nearest to 
the prediction time were selected. The travel time forecast was based on the data 
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from these nearest neighbours. A multiple regression model was applied to the 
data to make the forecast. 

The models of Bajwa et al. (2003 and 2005) were also based on the 
assumption that the traffic scenarios similar to the present traffic condition may 
have occurred before. In their earlier study (Bajwa et al. 2003), the present 
traffic pattern was defined using occupancy measurements for 1 hour before the 
present time. In their later study (Bajwa et al. 2005), the time window for the 
pattern was adaptive to capture the effect that congestion has on travel time. 
Both studies used weighted patterns for defining traffic situations. A database of 
historical traffic situations was stored for searching the closest matched patterns 
with minimum squared difference. 

All the models referred to above are based on the principle that in order to 
learn and develop, the model should constantly add new samples to the database 
of traffic situation samples. If all the samples are stored, the database grows fast 
and requires a powerful computer to run it online in real time. If only those 
samples that differ from the samples in the database are stored, the database 
becomes skewed.  

Chung (2003) went about the problem by collecting the data into a database 
divided into segments according to the time (a.m. and p.m.), weekday, holidays 
and rainfall. However, it does not remove the underlying problem of ever-
growing databases, although segmentation does reduce the required computer 
time compared with the non-segmented solution.  

The larger the road network covered with prediction models, and the more 
input variables there are (i.e. the more diverse the monitoring system), the larger 
the database is and the faster it grows. Although computers are getting ever more 
powerful, it would be practical to find a solution other than collection of these 
databases.  

Alecsandru and Ishak (2004) presented a hybrid model for the morning peak 
period of a motorway segment in Florida. They assessed that the memory-based 
approach (case-based reasoning) would be more efficient for predicting recurrent 
traffic conditions because of its memory-like structure. However, they made the 
assumption that a model-based predictor would be better able to capture 
knowledge related to non-recurrent traffic conditions. The case-based reasoning 
system was simply a collection of cases representing typical situations and 
possible solutions. If similar cases could not be found, the solution was revised 
and retained as a new case. In those cases, the forecast was produced with a 
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neural network. The results showed that the integrated approach led to better 
prediction capabilities than separate approaches alone. 

The approach of Alecsandru and Ishak (2004) is interesting. However, as very 
similar traffic situations can lead to very different outcomes, a condensed 
version of the history of traffic situations that they used may become either 
skewed (more abnormal than normal traffic situations) or not that condensed at 
all if the whole distribution of outcomes is presented in the database. The latter 
leads to the challenge of an ever-growing database. Another challenge in their 
approach is how to make a neural network model for non-recurrent traffic 
situations. That would require a database of such samples. 

Kosonen et al. (2004) used a different approach. They designed a DigiTraffic 
concept, which pools different sources of information into an overall dynamic 
traffic simulation model. This model can be also used to produce short-term 
forecasts. The forecasting is based on the current traffic situation. A copy of that 
is run with maximum speed to make a near-future (15–60 minutes ahead of the 
present time) image of traffic. The model relies on estimates and predictions of 
incoming traffic volumes in the near future. The fact that these estimates and 
predictions are not always accurate causes ambivalence between the predicted 
traffic status and the real one. Ambivalence may also be caused by incidents that 
cannot be foreseen with the model, and the traffic-light control which may 
change its principles in reality within the prediction period. 

The DigiTraffic concept of Kosonen et al. (2004) seems promising. However, 
it is a future approach to prediction making – at least on a large scale. Although 
computational power is probably no longer a limiting factor, traffic system 
dynamics are not known in enough detail to produce realistic large-scale traffic 
flows further into the future. In addition, the traffic monitoring network that can 
be used by an online application needs further development. 

1.5 Effects of the monitoring system structure 

Few studies discuss the effects of the structure of the monitoring system, that is, 
which part of the information is more important and which is less so to the 
prediction of the traffic situation. Usually everything available is used – which is 
understandable – but there is no evaluation or consideration of the additional 
benefit of each piece of information. Some aspects related to the structure of the 
monitoring system are discussed by Chen and Chien (2001), Chien and 
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Kuchipudi (2002), and Park and Rilett (1998). These studies evaluate the effect 
of the location and of the number of detectors. 

Chen and Chien (2001) studied the additional value of dividing the section 
into sub-links by comparing section-based travel time prediction with sub-link-
based methods. In the sub-link-based method, the travel time of the section was 
the sum of travel times of all consisting links. Chen and Chien predicted 
motorway travel time with a Kalman filter based on simulated travel time data of 
probe vehicles. Their results showed that the section-based prediction method 
performed better over the sub-link-based method under normal flow conditions. 
They assessed that the difference in the prediction performance could be 
attributed to the variance of the probe vehicles. Adding link travel times together 
propagated the variance of the total travel time of the section. Hence, with larger 
variance of travel time estimates, the sub-link-based prediction models were 
more likely to produce less satisfactory results. However, Chen and Chien 
acknowledged that the simulation study could concern only recurrent, incident-
free traffic conditions and that the sub-link-based method could be more 
sensitive to incidents than the section-based method. They assessed that 
intuitively, when vehicle probes are the only source of traffic data, closely 
tracking link travel time could facilitate incident detection. 

Furthermore, Chien and Kuchipudi (2002) performed a corresponding study 
but applied the method to real-world data. Section-based travel time was a better 
pick in the morning peak hours and only while using historical data. However, 
throughout the rest of the day, the sub-link-based model performed relatively 
well. They considered that section-based travel time was reliable only when 
uniform traffic conditions were prevailing throughout the network, which was 
not always the case in real-world situations. Congestion or an incident on a sub-
link did affect the value of section travel time, but when using sub-link-based 
models it would have affected only the travel time of that particular sub-link. 

Park and Rilett (1998) indicated that intuitively, in addition to average travel 
times in preceding time periods, other important parameters for predicting travel 
time were link travel times experienced on the upstream and downstream links 
during the preceding time periods. They assessed that a shockwave formed 
upstream or downstream from the target link has the potential to affect the target 
link in the future. The hypothesis was certified when predicting three to five 5-
minute time steps ahead in a later study (Park and Rilett 1999). In that case, the 
neural network model that employed travel times from upstream and 
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downstream links in addition to the target link gave superior results compared to 
the model that only considered previous time steps from the target links. 

In conclusion, in real-world application, dividing the section for which travel 
time needs to be predicted into sub-links is beneficial. In addition to average 
travel times of the target section, other important input parameters are link travel 
times experienced on the upstream and downstream links during the preceding 
time periods. 

1.6 Synthesis of the literature review 

Drivers can benefit from static and dynamic information of traffic situations on 
alternative routes by making more informed travel decisions, thus being able to 
improve their time management with ensuing reductions in cost and stress. 
Information on travel time reliability is an important factor in addition to the 
travel time itself. Nevertheless, the impact that information provision has on 
route choice, for example, also depends on other things like familiarity and 
complexity of the recommended route. The compliance of driver information 
varies with gender, standard of living and driving experience. 

The provision of advanced driver information can have positive impacts on a 
transportation network level. Specifically, advanced traveller information can 
reduce congestion in transportation networks or even slightly reduce the number 
of injury accidents. However, traffic information may also have negative 
impacts if the driver cannot deal with all the information available or the 
provider of information does not predict, or take into account, the response of 
drivers to the information. In the future, cooperative information systems could 
help. 

The value of information depends on the situation the user is in and on what 
kind of problem the information is supposed to solve. Information is more 
valuable when it is used to solve a problematic rather than normal situation. The 
type and length of the journey, the route and travel mode chosen, and traffic 
conditions all affect the value of information. 

The accuracy of information is a critical factor. An aberration in system 
performance will not turn away users but consistent poor information will. The 
accuracy of the given traffic information has been shown to affect the route-
choice compliance and departure times. The more reliable the information, the 
higher is the rate of compliance. Results have also implied that compliance 
depends not only on how accurate the information is, but also on how frequently 
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it is accurate. There is a certain limit for error below which the information does 
not benefit drivers, and it depends on the location and time of day. However, 
there is also an upper limit above which it is not worth improving the accuracy. 

Road users will benefit more from accurate travel time information where 
there is great variability in travel times. Hence, road users expect information to 
be up to date if the actual travel time varies substantially. However, without 
short-term prediction, real-time information on travel time cannot be given. 
Much research has been done over the past 15 years in the field of travel time 
prediction. At any rate, there is a lack of knowledge in the field of predicting 
travel time on interurban two-lane highways based on real-time field 
measurements of travel time. However, static models cannot adjust themselves 
but occasionally require new, man-made calibration and new data. 
Unfortunately, there is often too little time to collect data for creating such a 
model, leading to a small number of samples that represent random incidents and 
consequently poor ability to predict their consequences. The ability to learn 
while working online could improve this. Consequently, there is a lack of 
knowledge on how to develop a practical, self-adapting prediction model. 

1.7 Purpose and hypotheses of the study 

The principal aim of this study was to develop a method for making a short-term 
prediction model of traffic flow status (i.e. travel time and a five-step travel-
speed-based classification) and to test it in a real world environment. 
Specifically, the objective was to find a method that could predict the traffic 
flow status on a satisfactory level, could be implemented without long delays, 
and would be practical for online use also in the long term. The main approach 
to the dissertation was from the viewpoint of transportation engineering. 
Therefore the focus was on the two-lane traffic environment, data collection, 
how the models were run, and on the challenges of running an online model in a 
real-world environment. 

The previous chapters emphasised the impacts of real-time traffic information, 
the value and accuracy aspects of the information, and the state of the art of 
prediction models (Figure 3). The studies that form the content of the 
dissertation deal with the modelling of traffic flow status for short-term 
prediction. The sequence of articles appended shows the development process 
from offline models that use perfect data to online models that deal directly with 
field-measured data. The purpose of the online model is to produce real-time 
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information of the traffic flow status that can be given to drivers. The models 
have been tested in practice on an interurban two-lane two-way highway section 
and an urban corridor with varying standard. 

Offline models (Studies I and II)
• methods for making the model
• value of various choices for input

Static online models (Studies III and IV)
• the online working environment

Literature review
• impacts of real-time traffic information
• value and accuracy aspects of the information
• state of the art of prediction models

Dynamic online models (Study V)
• the self-learning principle
• practicality in long term online use

Discussion
• validation of hypotheses
• assessment of the approach and designs
• scientific implications
• needs for future research  

Figure 3. Structure of the dissertation. 

The main hypotheses of the study are listed as follows: 

1. Predicted travel time is considerably more accurate than non-predictive 
information, especially in congested conditions. 

2. Predicting normal traffic conditions can be quite straightforward, but the 
prediction of exceptional conditions can also be accomplished with 
sufficient accuracy. 

3. The input information measured upstream or downstream of the target 
section improves considerably the model’s ability to predict the traffic 
situation. 
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4. The inclusion of weather and weekday (working day vs. weekend) 
information improves forecasts considerably. 

5. It is possible to develop a good prediction model capable of learning 
while working online. 

In the following the general method is described, then the findings along with 
study-specific methods are presented in integrated form in three sections. First, 
the performance of a static prediction model is tested in an offline environment 
along with the effects of the structure of the monitoring system on forecasts 
(Studies I and II). Second, the same principles are applied to an online 
environment (Studies III and IV). Third, the principles are developed for a 
dynamic model that is capable of learning while working online (Study V). The 
model development includes improvements assessed to be necessary with 
respect to long-term online use and the lessons learned with the previous online 
model. Finally, the overall findings are discussed and recommendations given. 
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2. Method 

2.1 Data 

Real-life field data was chosen as the basis for the study. As the modelling 
procedure was aiming at an online prediction model that works in a real world 
environment, all phases of the modelling – including offline models – were 
based on field data. Field-measured data gave robustness to the models. In 
comparison with simulation programs, the field data provides the realistic 
element of randomness missing from simulated data. 

There was no information available on the incidents at the study sites during 
the data collection periods. Mark and Sadek (2004) showed that the addition of 
accident information (i.e. capacity reduction, accident location and time 
remaining until the accident is removed) would have improved the ability of 
neural networks to predict travel time in the presence of accidents.  

A specific problem arises if the training data set (i.e. data that can be used for 
model making) does not represent the actual traffic in a comprehensive manner 
and includes unrepresentative samples. Such samples are often included in field-
measured travel time data. There are two sources of such incorrect travel times: 
faults in the measurement system itself, and the measurement of travel times that 
are unrepresentative4 for information. All these false observations should be 
identified and excluded from the input data in order to get a realistic picture of 
the traffic situation. When making an offline model, the data can be filtered 
partly manually. However, for online use, the filtering procedure has to be 
automatic. 

                                                      
4 Unrepresentative travel times are unrepresentative in the sense that we do not attempt 

to predict travel times of drivers who have stopped on the section to make e.g. a 
phone call, or temporarily diverted from the section and then returned. 
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In a measurement system based on reading licence plates, the automatic 
pattern recognition process is not fully accurate and may cause mismatches, 
which lead to incorrect interpretations of the travel time. Deviating observations 
also exist, as there are always some samples of vehicles that have not travelled 
the route for which the travel time is actually measured. This is because some 
vehicles stop along the section or turn off it and come back if the detector net 
excludes minor intersections. In addition, there may be some vehicles that have 
travelled the route without obeying the legislation (e.g. a motorcycle passing 
slow queues along the hard shoulder or centre of the road) and thus represent 
irrelevant travel times with regard to the traffic being predicted. 

Partial manual checking of the data employing graphical printouts was chosen 
when making the offline model (Studies I and II) because of the sensitivity of 
the educated human eye. It is hard to replace it with a simple algorithm without 
losing some valid data. Because the number of observations measured in 
congested conditions was limited, it was in our interests to use as much of it as 
possible. Therefore an objective and rigorous alarm system (the moving average) 
was set to identify data periods that might experience some problems, but as 
congestion sometimes develops quickly, they may also be samples of a true fast-
increasing congestion. The educated human eye was used in a systematic way to 
resolve which case was which. 

On the other hand, the monitoring system on the site of static models was new 
when the offline study started, and at that time we were still hoping that the 
problems leading to e.g. small sample size could be resolved before a real online 
application was ready. Hence, it was desirable to carry out the study without 
limiting it to the present problems. 

2.2 Prediction models 

Feedforward multilayer perceptron (MLP) neural networks (Studies I–IV) and 
self-organising maps (SOM, Study V) were chosen for this study. They are 
described separately for each model in the relevant chapters and Appendix B. 
The choice of method was made in each case without further investigation. 
Several methods have been used successfully in prediction models as described 
in the previous chapter, and any one of them could have been chosen. However, 
neural networks had previously been successfully proven to be useful in 
prediction of traffic flow status by the author (Innamaa and Pursula 2000 etc.). 
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In addition, neural networks were an established technique in solving non-linear 
problems with no theoretical solution available. 

2.3 Evaluation of the effectiveness of the model 

The order of superiority of the models depended on which measure of 
effectiveness was used. Road users want information to be sufficiently accurate 
as often as possible, regardless of whether the model makes slight errors. 
Consequently, when making prediction models for travel time, the effectiveness 
of the models was determined as the proportion of forecasts that lay within an 
accepted error margin. The width of the 10% accepted error margin was used in 
this study. It is in accordance with the limit of 13% set by Toppen and 
Wunderlich (2003) or the limits of 10% to 21% obtained by Jung et al. (2003).  

2.4 Procedure 

A self-adapting online model was developed as follows: First, an offline model 
was developed (Study I), during which the methods for making the model and 
the value of various choices for input were evaluated (Studies I and II). In an 
offline environment, many challenges related to working in the real world – such 
as delays in data transfer or faults in the monitoring equipment – either do not 
exist or can be excluded. The second step was to study how the online working 
environment affected the model and how those effects should be taken into 
account (Studies III and IV). Challenges related to the online working 
environment included delays and online filtering of data. Finally, it was 
investigated how the model should be if it is run online in the long term. At that 
stage the self-adapting feature was added to the model (Study V). 

The traffic model is one of four elements of the traffic control process 
consisting of the model, traffic control or information, the traffic process and the 
monitoring system (Figure 4). Traffic control or information affects the traffic 
flow. Its effects can be seen using the monitoring system. The traffic model 
interprets the measurements and updates the traffic situation picture, which in 
turn forms the basis for adequate control of information. 
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Figure 4. The traffic control process and its components. 

Ideally, the monitoring system provides extensive and reliable real-time 
information to the model, which converts the measurements into a true picture of 
the traffic situation. This allows the best possible control actions to be taken or 
information to be given and the traffic flow to be adjusted as desired. However, 
the real world is often far from ideal. The monitoring system may give a partial 
and outdated picture of the traffic situation; consequently the model makes a 
false interpretation of it. In addition, drivers take unpredictable actions when 
driving, making the modelling task difficult. Therefore control actions or given 
information may be far from ideal. This may lead to undesirable consequences in 
the traffic situation. An online traffic model that is used in an ITS solution 
should overcome all possible such challenges in order to work at optimal level. 
The closer the system gets to this level, the better the results. 
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3. Offline model for travel time prediction 
(Studies I and II) 

3.1 Purpose of the offline model study 

The purpose of the offline model study was first to investigate the predictability 
of travel time with a model based on travel time data measured in the field on an 
interurban two-lane two-way highway (Study I). Second, the purpose was to 
determine whether the forecasts would be accurate enough to implement the 
model in an actual travel time information service (Study I). Specifically, a 
target was set to get 90% of the forecasts within a 10% error margin (±10%). In 
practice, this 10% accepted error was approximately 2 minutes in free-flowing 
traffic and up to 5 or 6 minutes in congestion for the whole study section. 
Finally, the purpose was to investigate how the structure of the measurement 
system affected the short-term forecasts of travel time based on it (Study II). 
Specifically, the effects of section length and the location of different 
measurement stations were investigated. 

3.2 Method 

3.2.1 Study site 

Studies I–III were carried out on Finnish main road 4 between the cities of Lahti 
and Heinola in southern Finland. The study section was an interurban two-lane 
two-way highway section with alternating passing lanes. Because the site was 
located between two motorways, traffic congestion was a problem during 
weekend peak hours with the heaviest traffic. The free-flow travel speed on the 
section was around 100 km/h. In congested conditions the travel time might be 
up to three times normal – especially northbound on Fridays. The average 
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summer traffic volume on the section (both directions together) was 17,000 
vehicles per day and the traffic volume exceeded 2,000 vehicles/hour during the 
busiest hours (Finnra 2001). The proportion of heavy traffic was on average 13% 
and during workdays 20%. 

The 28 km long study section was equipped with an automatic travel time 
monitoring system. The system was based on an image processing and neural 
network application, which automatically reads licence plates at several 
locations in both directions (Finnra 2000). 

There were two types of monitoring stations within or near the study site: 
camera stations belonging to the travel time monitoring system, and inductive 
loop detectors. The study section was divided into three sub-links by four 
camera stations (marked A, B, C, and D in Figure 5). The distance between two 
consecutive camera stations varied between 8.7 and 10.3 km. Inductive loop 
detectors were installed at location C and 11.9 km south of location A on the 
other side of the nearby city to gather information about traffic volumes and 
point speeds. Loop detectors north of the study section could not be used in the 
offline model studies (Studies I and II) due to a monitoring station malfunction. 

Camera
station

Camera
station

Inductive
loop detectors

Inductive
loop detectors

Lahti

Heinola

9.
1 

km

8.7 km
10.3 km

11.9 km

A

B

C
D 9.1 km

 

Figure 5. Study site with number of lanes, link lengths and traffic monitoring equipment. 
The section contained four camera stations (A–D) used to measure travel time, and 
inductive loop detectors at location C. There were also loop detectors south of A and 
north of D, on the far side of the cities closest to the section. 
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According to the data, in the southbound direction DA congestion always 
occurred between camera stations D and C. In the opposite direction, AD, 
congestion occurred most often between camera stations B and C and sometimes 
also between camera stations A and B. When there was congestion on sub-link 
AB it usually meant that the congestion on sub-link BC was more severe than 
when traffic on sub-link AB was flowing freely. Congestion on sub-link BC did 
not always indicate problems on sub-link AB, as the traffic on AB could also be 
flowing freely despite congestion on BC. The cause of the congestion was 
unknown. In the direction DA, traffic on sub-link CA and in the opposite 
direction on sub-link CD was always flowing freely.  

VMSs located 4.2 km south of location A and 1.5 km north of location D 
displayed expected travel times between the two cities for northbound and 
southbound travellers, respectively. The goal of the system was to inform 
drivers about congestion and to offer an estimate of the expected travel time. 
The underlying rationale was that congestion is more tolerable when drivers are 
aware of the expected traffic conditions, as shown by Luoma (1998). In addition, 
travel time information was provided on the Internet. 

In the original system of the Finnish Road Administration, the travel time 
displayed on VMSs was not a forecast but an estimate of travel time. This was 
based on the sum of latest measured travel times for each sub-link – or on a 
combination of sub-links in case one or two camera stations were not operating 
along the section. The range of travel time shown on VMS was based on 25% 
and 75% points of travel time observations. However, the minimum difference 
between the lower and upper limit of the shown travel time information was set 
to be 5 minutes and the minimum lower limit was set according to speed limits. 
In conditions where the mean travel speed was lower than 75% of the free flow 
speed (i.e. congested conditions), the VMS in the northbound direction displayed 
the correct travel time information (measured value was between the upper and 
lower limit shown on the VMS) 32.9% of the time and in the opposite direction 
49.7% of the time.  

3.2.2 Data 

Studies I and II were based on data collected over roughly 4 months in 
summertime conditions 24 hours a day, 7 days a week. The raw data of 
individual vehicles produced by the travel time monitoring system as well as 
inductive loops near the study site were included. The travel time monitoring 
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system was capable of reading on average 40% of all licence plates on the 
monitored lane at a single point in good conditions when the camera was clean. 
The travel time measurement system was installed only for one lane per 
direction. Consequently, only the northbound traffic flow at camera stations B 
and C was fully monitored, as camera stations A and D were located on 
motorways (2+2 lanes) and at locations B and C the southbound direction had 
two lanes. Hence, the sample sizes were small in the travel time monitoring 
system and the number of travel time observations was not equal to the flow. 
The monitoring system did not keep a record of the types of passed vehicles 
(heavy vs. light). 

Most of the data was from free-flowing traffic. Traffic was defined as 
congested if the mean travel speed was lower than 75% of the free-flow speed, 
i.e. slow, queuing or stopped traffic, according to Kiljunen and Summala (1996) 
in Table 1. 

Table 1. Definition of flow status classes. These definitions are based on the driver’s 
perception of the traffic situation (Kiljunen and Summala 1996). 

Flow status Travel speed / free speed (%) 
Free-flowing traffic > 90 
Heavy traffic 75–90 
Slow traffic 25–75 
Queuing traffic 10–25 
Stopped traffic < 10 

 

An objective and rigorous alarm system (the moving average) was set to identify 
questionable periods of individual vehicle travel-time data. However, as 
congestion sometimes develops fast, these could also be samples of a true 
quickly increasing congestion. An educated visual evaluation was made to 
determine which it was, minimising the unnecessary loss of data as the number 
of observations measured in congested conditions was limited. 

After filtering, the data was aggregated. This data included 1-minute average 
and median travel times, and the median travel time and standard deviation of 
the observations from the last 5 minutes or the last 10 or 20 vehicles. In addition, 
it included the 1-minute flow, mean point speed and standard deviation of the 
point speed at the inductive loop detectors. 
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3.2.3 Prediction models 

The offline models (Studies I and II) were made as feedforward MLP neural 
networks to keep the model simple but effective. A separate neural network was 
trained to predict the travel time of each sub-link. As output, the models gave the 
average travel time for vehicles entering the section within the following minute. 
The 1-minute aggregation period was chosen to ensure fast detection of the 
changes in travel times. The drawback of the 1-minute average is that it is less 
stable and more sensitive to erroneous observations than e.g. a 5-minute average; 
the advantage, however, is that it detects tendencies or changes faster. The 
sample sizes would also have been greater for a longer aggregation period, but 
as this model was made for study purposes to run offline and the raw data could 
be checked manually, the problems caused by small sample size were partly 
overcome.  

The input traffic information obtained by the models was based on the latest 
measurements of traffic volumes and point speeds, in addition to the latest travel 
time information (measured for vehicles having exited the link during the time 
period in question.). The input parameters were selected according to their 
correlation with the travel time to be predicted (referred to hereafter as the 
prediction travel time) and to the mutual correlation of the input parameter 
candidates.  

The time series of average travel times was chosen as the basis for input of the 
prediction models. The criterion of a minimum correlation coefficient of 0.20 
with the prediction travel time was used for testing input parameters. However, 
if two input parameter candidates had a high mutual correlation (minimum 
coefficient of 0.95), the parameter that correlated most highly with the prediction 
travel time was chosen and the other parameter was excluded from the input. 
Several lengths were used for the input time series: five, four and three 
consecutive 1-minute observations. The selected input parameters are given in 
Appendix B. 

The raw data did not include observations for each sub-link for every minute. 
The input data set was built on the principle that the value of an input parameter 
was assumed to be invariant until a new observation was obtained. However, if 
the information on some of the input parameters was older than 30 min, the 
sample was dropped from the training set. All samples without a fresh 
measurement for the output parameter were excluded from the set. 
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The number of input neurons was equal to the number of input parameters; the 
number of output neurons was one, since there was just one output parameter 
(Appendix B). The input parameters were normalised to have a zero mean and 
standard deviation of one. The structure of the neural network was to be kept 
simple: neural networks were to have one hidden layer. The number of hidden 
neurons was such that the number of training samples was at least ten times the 
number of parameters to be estimated. However, the number of hidden neurons 
was limited to no more than 20 to keep the training process fast. The activation 
function of the hidden layer was chosen to be a hyperbolic tangent and that of 
the output layer a linear function. 

Neural networks were trained with the Fletcher–Reeves update (Demuth and 
Beale 2001), which is one of the conjugate gradient algorithms. In this study, 
several stopping conditions were given to prevent the neural network from 
learning the training data too well. These criteria were the maximum number of 
training epochs, the minimum values of the gradient and of the mean squared 
error, and the point at which the mean squared error of the calibration data 
stopped decreasing. In practice, training stopped most of the time because of the 
latter. For this latter criterion, the original training data set was divided into three 
sub-sets: training, calibration and validation set. The training was performed 
with the training set. The calibration set was used to track the point at which the 
model started to learn the peculiarities of the training set and no longer the 
general features of the modelled phenomenon. The validation set was not used in 
the training process in any way. It was used, however, after the training to check 
how the model performed with new data. 

3.3 Results 

3.3.1 Statistical examination 

The statistical examination was performed with different error terms: the mean 
error and relative error, the mean absolute value of error and relative error, and 
the mean squared error (Study I). The first two error terms measured whether the 
model tended to underestimate or overestimate the travel time; the last three 
measured the magnitude of the errors. 

The length of the time series of input travel time information was chosen for 
each model so as to minimise the error terms. The results showed that the 
models were very good at prediction over all time periods (mean squared error 
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0.2–2.5 min2 and mean error 0.0 for all sections) and that the majority of the 
forecasts were close to the measured values (mean relative error 0.5–0.7% and 
mean absolute value of relative error 5.5–6.9%). However, on average the 
models tended to slightly overestimate the forecasts rather than underestimate 
them. 

In practice, most of the forecasts that were considered false were outcomes of 
situations where the models predicted travel time to be less than 20 min but the 
measured travel time was 22–25 min (i.e. slightly outside the accepted 10% error 
margin). On section DA, all these observations were from situations where the 
model missed an isolated longer travel time (an isolated peak). Besides missing 
isolated peaks, the model for section AD was also occasionally delayed from the 
start of congestion. 

Isolated peaks were either local, quickly-resolved incidents or situations 
where filtering of the raw data had been too coarse. After filtering, some 
observations remained for which it was hard to tell whether they were deviant. If 
the mean value is based on a few observations only, an individual deviating 
observation may have a significant effect on it. 

The first type of error (missing a short isolated peak) was not serious – or could 
even be considered beneficial – but errors of the second type (being delayed 
from the start of congestion) should be avoided. However, it is challenging if the 
first signs of an unusual situation cannot be measured until after making the 
forecast. In that case it is hard to come up with an analysis technique that could 
resolve the problem of being delayed from the start of congestion. 

3.3.2 Effectiveness in terms of the information system 

The VMS informed road users that the travel time would be the predicted travel 
time ±10% (i.e. the accepted error margin was chosen to be ±10%). However, 
the absolute minimum travel times shown would be those based on the speed 
limit; i.e. predicted travel times shorter than those would not have been shown. 
Hence, the displayed travel time was not considered erroneous if vehicles 
travelled faster than the limit and the VMS showed the minimum travel times 
allowed. 

First, the correctness of the forecasts was investigated for both uncongested 
and congested traffic together (Study I). The same analysis was also made for 
samples for which the average travel speed was less than 75% of the free flow 
speed (congested conditions). These proportions could not be defined for all the 
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sub-links, because they had almost no congestion whatsoever during the data 
collection period. 

All the models in direction DA gave correct travel time information more than 
97% of the time on average, and in the opposite direction more than 95% of the 
time. If the forecasts for sections AD and DA had been presented on VMSs in 
congested conditions, the proportion of correct forecasts would have been 71% 
of the time for section AD and 79% for section DA.  

A limited examination was performed on the width of the accepted error 
margin. An increasing number of forecasts lay within the margins, as the 
margins were set further away from the 0% error, but this increase got smaller as 
the margins became wider. When the width of the accepted margin was changed 
from 5.0% to 7.5% the proportion of correct forecasts improved by 15.4 
percentage points on average, whereas the improvement was 11.6 percentage 
points when the width was changed from 7.5% to 10.0% and 8.6 percentage 
points if it was changed from 10.0% to 12.5%, being only 5.8 percentage points 
when the width was changed from 12.5% to 15.0%. 

3.3.3 Effects of the monitoring system structure 

The effects of the structure of the measurement system were studied (Study II) 
based on the available detectors at the test site (four camera stations and two 
inductive loop detectors). The study was conducted by assuming that only part 
of the measurement equipment would be available. Hence, the models were 
always made to predict the travel time solely on the basis of input parameters 
measured by the detectors in use in each particular case. 

First, it was assumed that the travel time information system was based only 
on the two camera stations at the start and end of the section for which the travel 
time was predicted. For all sections starting from the same point, the proportion 
of correct forecasts in congested conditions increased with the length of section. 

Second, the impact of additional camera stations on the forecast was studied, 
as well as where they should be located. Additional camera stations increased 
the proportion of correct forecasts in congested conditions compared with the 
models based on two camera stations only. The more additional camera stations 
there were, the bigger the proportion was. The improvement with one well-
located additional camera was up to 14 percentage points and with two 
additional cameras up to 21 percentage points. An additional camera station 
within or upstream of the section improved the results more than a station 
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downstream of it. This difference was up to 7 percentage points and 4 
percentage points, respectively. It also seemed that an additional camera close to 
the starting point of the section improved the results more than an additional 
station close to the end point. The difference was up to 10 percentage points. 

Finally, the effect of information obtained from inductive loop detectors on 
the results was studied. The information from the loop detectors did not improve 
the results as much as the information from additional camera stations. However, 
the effect of additional loop information was also favourable. Specifically, the 
improvement was up to 8 percentage points compared with the model with no 
loop information. The loop detector station south of location A improved the results 
more than the detector at location C, the difference being up to 5 percentage 
points. The two loop detector stations together improved the results more than 
just one detector did, this improvement being up to 10 percentage points. 

3.4 Discussion 

This offline model study was designed, first, to investigate the predictability of 
travel time when the forecast was based on travel time data measured in the field 
on an interurban two-lane two-way highway (Study I). Second, the purpose was 
to determine whether the forecasts would be accurate enough to implement the 
model in an actual travel time information service (Study I). Finally, this study 
was designed to investigate how the structure of the measurement system 
affected the forecasts (Study II). 

In conclusion, the results of the offline travel time prediction model were 
found to be promising, and even this kind of simple prediction model could 
improve the accuracy of travel time information, especially in congested 
conditions (Study I). The findings suggested that forecasts could be improved by 
setting up an adequate monitoring system (Study II). 

The structure of the monitoring system was shown to affect the forecasts 
(Study II). Additional camera stations and inductive loop detectors could offer 
information that improved the model’s ability to react to changes in a traffic 
situation. The main findings of Study II suggested that the structure of the 
monitoring system should be based on an analysis of congestion. It was 
important to know where congestion usually occurs in the area and how it 
develops. Besides the two cameras that measure travel time along the whole 
section, it was important to minimise the data collection delay in the area where 
congestion usually developed. For better accuracy as to the timing of the start of 
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congestion, the prediction model should include information on incoming flow 
rates. A travel time monitoring system does not have to be equally distributed 
along the section for which the travel time is predicted. It is important to cover 
the area well where congestion usually builds up; the rest of the section can be 
left with less inspection. On that part of the section, the distance between two 
consecutive cameras should be based on the maximum delay for detecting 
incidents. 
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4. Static online model for travel time 
prediction (Studies III and IV) 

4.1 Purpose of the static online model study 

The purpose of the static online model study (Studies III and IV) was to test the 
lessons learned with the offline prediction model presented in Chapter 3, and 
bring the model to the online real-world environment. First, the performance of 
the online prediction model was evaluated on the basis of a trial period (Study III). 
Second, the potential to improve the model in situations where its performance 
was not satisfactory was examined (Study III). Finally, the purpose was to discuss 
the challenges posed by working in real time in a real-world environment (Study IV). 

4.2 Method 

4.2.1 Study site 

The research on the static online model (Studies III and IV) was conducted on 
the same site as the offline model study (Studies I and II, Figure 5). However, 
the loop detectors north of location D on the far side of the nearest city (outside 
the section) that could not be used in the offline model study (Studies I and II) 
were used in the static online model study (Studies III and IV). 

4.2.2 Data 

The prediction model of the pilot study (Study III) was based on approximately 
4 months of summertime data (training phase data). Night-time observations 
(22:00–08:00) were excluded due to the low amount of traffic. The travel time 
data was the raw data produced by the monitoring system. Deviating individual 
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travel time observations in the raw data were not excluded in real time because 
the number of observations per aggregation period was not sufficient to judge 
which observations were true and which were biased. 

The prediction model had to overcome all the delays caused by the online 
working environment. The model received data every 5 minutes. The collection 
of travel time data caused a delay equal to the travel time itself, whereas the data 
transfer produced no significant additional delays. However, the aggregated loop 
information was usually received with a 10 to 15 minute delay.  

The travel time prediction model was run online. This study used data from a 
14-month-long period (evaluation phase data). The travel time estimates based 
directly on the latest measurements (the original non-predictive system) were 
collected for comparison over the same time period. 

A VMS was installed on the study section at the start of the pilot trial period 
(evaluation phase) to provide information in congested conditions about an 
alternative route on a parallel road. This information led to more vehicles 
choosing the alternative route than before the sign was installed, and probably 
slightly changed the shape of the congestion. 

4.2.3 Prediction models 

The prediction models were constructed as MLP feedforward neural networks 
(Studies III and IV). The main principles behind the structure of the neural 
networks were based on the offline models (Study I). The numbers of neurons in 
different layers are shown in Appendix B. 

Travel time was predicted for the northbound and southbound sections AD 
and DA (Study III). As output, the prediction model gave the expected median 
travel times for vehicles entering the sections within the next 5 minutes, while 
the last measurements were used as input.  

Travel times on sub-links that were never congested during the data collection 
period were excluded from the input data set (Appendix B), because they had 
poor correlation with the travel time to be predicted (less than 0.2 in congested 
traffic). At any rate, the travel time of the always free-flowing links (a constant) 
would make no difference as input because the neural network has to learn to 
vary the prediction travel time along with the changes in the input travel times 
that vary. Therefore only the variables with higher correlation coefficients were 
selected for the input. The input data consisted of the three latest values of each 
input quantity. In the training procedure, no data transfer delay was used for the 



4. Static online model for travel time prediction (Studies III and IV) 

 48

travel time data, whereas the delay was assumed to be 10 minutes for point-
based information. 

As individual vehicle travel time data could not be filtered online, individual 
median values were assessed before accepting them. If the median was based on 
the travel time of a single vehicle, the value was updated only if the new value 
differed from the old value by less than 20%. 

Some situations arose where part of the input was unknown. However, it was 
considered worthwhile to make predictions even then. Hence, a separate neural 
network was created for each detector combination, simulating situations where 
one or several detectors were out of order. If the information break from an 
individual detector lasted 30 minutes or less, the input value was kept unchanged 
until a new value was received. If the break was longer than 30 minutes, the 
forecast was made using a neural network that was trained without that 
particular piece of information.  

The travel time was not predicted if too many or critical detectors were down 
(Appendix B), because it was crucial for the credibility of the system that overly 
unreliable forecasts were not shown. The neural networks that produced 
forecasts that were correct less than 60% of the time in congested conditions 
during the training phase were left out. Consequently, there were 10 neural 
networks predicting travel time for the northbound section AD, and 13 neural 
networks for the southbound section DA. 

4.3 Results 

4.3.1 Evaluation results of the online model 

Not all the neural networks made to predict travel time with different detector 
combinations were used during the trial period (evaluation phase, Study III). 
Specifically, there were three models in the northbound direction AD and five 
models in the opposite direction that were used for more than 3 hours in 
congested conditions. All these models gave correct forecasts 94–99% of the 
time on average. Specifically, the longest northbound link AD gave correct 
forecasts 97% of the time and the opposite direction link DA gave them 99% of 
the time. In congested conditions, the proportion of correct forecasts varied 
between 34% and 80% of the time, the models of the longest links AD and DA 
producing correct forecasts 53% and 80% of time. 
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The prediction model performed worse in the online environment (evaluation 
phase) than expected on the basis of the training phase results. However, the 
prediction model still performed much better than the original non-predictive 
system. 

A detailed analysis of the development of congestion and the corresponding 
performance of the prediction model showed that the model was able to predict 
the travel time for the southbound section DA when sub-link DC was congested. 
When the input information from the inductive loop detector north of location D 
was missing, the shape of the predicted congestion was correct but the forecast 
came 10–15 minutes late. When the input information from the inductive loop 
detector north of location D was missing, and the camera station at location C 
was down, the forecast came 20–30 minutes late and the peak of the congestion 
was not always at the correct level. No forecasts were made with all the 
detectors working. The model did not detect congestion on other sub-links 
caused by incidents and predicted free-flowing traffic. 

The performance of the southbound model DA could be considered 
satisfactory, although it was not as good as expected. At least part of the decline 
in performance could be explained by inactive detectors and random incidents 
creating congestion different from the instances of congestion in the training set.  

The northbound model AD did not predict the travel time well in all 
circumstances. Congestion on the northbound section AD was a more diverse 
phenomenon than in the opposite direction. Hence, the reasons for unsatisfactory 
performance of the model were less evident than those of the southbound model 
DA. In the northbound direction AD, congestion was more severe than in the 
opposite direction, thus the effect of route guidance information in the form of 
travel time information displays (VMS) might also have been greater. It was 
unclear whether the model was sufficiently complex to process the congestion 
phenomenon in the northbound direction AD or whether the phenomenon itself 
changed due to the route guidance information. 

The findings suggest that the southbound model DA could be accepted as 
such, while the northbound model AD should be improved. Despite partially 
unsatisfactory results, the prediction model still performed much better than the 
original non-predictive system, which gave travel time estimates based on the 
latest measurements. 
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4.3.2 Further development of the model 

The objective was to improve the prediction performance of the northbound 
model AD, because either the model was not sufficiently complex to process the 
congestion phenomenon or the phenomenon itself changed due to the route 
guidance information (Study III). The method used to further develop the model 
was the same as before except for (1) a new data set, (2) additional input for the 
models, and (3) the number of hidden neurons. The new data set (evaluation 
phase data) represented the new traffic situation, while the last two items 
increased the complexity of the model. 

First, a similar model as in the original pilot version of the prediction model 
was made using data collected during the trial period (evaluation phase data). 
Second, the benefit of increasing the number of input variables was examined. 
Third, the effect of an increase in the number of hidden neurons was studied. 
Finally, new neural networks were made for all the detector combinations, with 
the improvements found to be beneficial. 

A similar neural network as in the first pilot version of the prediction model 
was made using the data collected during the pilot trial period. The ability of the 
model to predict correct travel times in congested conditions improved 
substantially over the model trained with original training phase data. The 
proportion of correct forecasts increased from 53% to 64%. The overall 
performance improved in producing correct forecasts from 97% to 98% of the 
time. Consequently, the use of the new data set was beneficial. 

The effect of the additional input information in the form of new variables (the 
travel time of road section CD, the mean speed at location C and the traffic 
volume at the loop detector south of location A, on the far side of the nearby 
city) was beneficial, but small. The complexity of the model was increased both 
by adding new input variables and by increasing the number of hidden neurons 
from 20 to 30, 40 and 50. The performance of the model improved slightly as the 
number of hidden neurons was increased.  

4.3.3 Challenges specific to the online environment 

Often monitoring systems are not originally designed for the purposes of the 
online traffic model. Challenges in the monitoring system are related to data 
supply delays, incorrectly working detectors and other failures (Study IV). 
Problems related to these challenges may lead to a false picture of the traffic 
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situation, no matter how good the traffic model is. A false interpretation of the 
traffic situation may result in incorrect control actions or information, which 
have a negative impact on traffic flow. 

Data supply delays have to be considered when constructing a model. The 
delay may be due to data collection or data transfer. If individual vehicle data is 
stored and transmitted forward by the monitoring system in aggregated form, 
data processing also takes time and causes delay. In many cases, the cost of data 
transfer varies according to the frequency with which the data is transferred. If 
the monitoring system is designed mainly for the compilation of statistics, the 
frequency is probably kept low. Thus if the model is to predict several minutes 
ahead of the present moment, in reality it has to be able to predict that plus the 
delay in receiving the information. 

A detector may break down and stop functioning. In addition to long breaks, 
in our experience there are many short, less than 30-minute-long breaks in data 
supply for one reason or another. Failures in communication systems such as a 
mobile phone network or Internet connections cause breaks in data transfer as 
well. Hence, although the monitoring system might be working well, there could 
be temporary problems with data transfer. 

The lack of synchronisation between different clocks in the measurement 
system may cause errors in the data. Usually the challenge is to detect clocks 
that are gradually losing or gaining time. Initially the lapse is small, but over 
time the error increases. 

An online telematics application relies on the interpretation of the traffic 
situation that it receives from the traffic model. However, the model may 
interpret the traffic situation erroneously if the traffic model cannot deal with the 
data it receives from the monitoring system, if the model receives incorrect 
information or if it is used beyond its scope. False interpretations may lead to 
incorrect control actions or information and thereby to undesirable 
consequences. 

A model that works properly in an offline environment may encounter 
problems in an online environment. The change from simulated data to real-
world data may lead to problems if the model is not robust enough, because 
online field data may include greater variation than simulated data. Even if the 
offline model is based on field data, problems may arise when only a relatively 
small amount of field data is used in developing the model. 

Even if the training data of the model is representative and covers all normal 
situations, it can never cover all possible incidents. A great variety of incident 
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scenarios should be considered when designing the model. The creation of 
different incidents is easy with a simulation model, but the response of the 
model to incidents should be of special concern when working with field data. 
Consequently, the scope for which the model is calibrated should always be 
acknowledged and the model should be used beyond it only with caution. 

A specific problem arises if the training data set includes false or irrelevant 
observations. All of them should be identified and excluded from the input data 
to get a realistic picture of the traffic situation.  

The sample may also be biased and unrepresentative of the actual traffic flow. 
At the site of Studies I–III, the travel time monitoring system did not cover the 
overtaking lane, which alternated from one direction to another. The basic lane 
gave an idea of the fluency of traffic flow on the road, but the sample of vehicles 
that were detected by the system did not represent a random sample of the whole 
traffic flow. Therefore it should be acknowledged that the traffic picture 
produced by the model, and on which the displayed information was based, was 
biased. 

It is important to understand the deficiencies of detectors and the limitations 
that they pose in the model. For example, camera detectors are sensitive to dirt, 
snow and glare. Hence, their detection rate is seldom as high as it would be in 
permanently good circumstances. Because of the low detection rate, the number 
of traffic measurements that can be used in the model is limited. For this reason 
it is good to use median values, which are likely to be less sensitive to a small 
sample than mean values or standard deviations. 

Loop detectors do not always function faultlessly either. They may miss 
certain types of vehicles (e.g. motorcycles) or vehicles driving on the edge of the 
lane, or they may detect vehicles driving in the adjacent lane. Long or wide 
loops are problematic since two vehicles can occupy them at the same time, 
which may corrupt the vehicle count. 

4.4 Discussion 

This study was designed to present a static online prediction model that 
predicted travel times on an interurban two-lane two-way highway section on the 
basis of field measurements of the travel time and point-based quantities. The 
study was in three parts. First, the performance of the pilot version of the 
prediction model was evaluated on the basis of the trial period (Study III). 
Second, the possibility of improving the model in case its performance was 
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unsatisfactory was examined (Study III). Finally, experience was gathered to 
provide guidelines to assist those developing online traffic situation models 
(Study IV). 

The main implication of the studies presented so far was that even a simple 
prediction model making short-term travel time forecasts using neural networks 
can improve the accuracy of travel time information substantially compared with 
an estimate based directly on the latest measurements (Study III). The results of 
further development of the model showed that its performance, which had not 
been on a satisfactory level, could be improved especially with new data 
containing more instances of congestion. The remaining problem with the 
prediction model was that if the congestion phenomenon changed for whatever 
reason, the model would need to be retrained. Furthermore, the model cannot 
learn random incidents. Hence, the development of a self-adjusting or self-
adapting model is important. With online operation there is limited time for the 
collection of training data, and therefore the system should basically learn from 
its own mistakes and try to perform better next time. 

As many of the challenges related to the online working environment cannot 
be avoided, models should be developed to be robust, and they should regard all 
incoming data with suspicion (Study IV). In addition, the model should 
accommodate information that is incomplete in one way or another. Model 
developers should also understand the weaknesses that may result from biased 
data. If the traffic picture received by a model developer does not correspond 
fully to reality, the output of the model – no matter how close to the measured 
values – will also not correspond to reality as the driver sees it. 
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5. Dynamic online model for flow status 
prediction (Study V) 

5.1 Purpose of the dynamic online model study 

The purpose of the dynamic online model study was to develop a method for 
making a self-adapting short-term prediction model for the flow status (i.e. the 
five-step travel-speed-based classification of Kiljunen and Summala (1996), 
Table 1 on page 39). Specifically, the objective was to find a method that (1) 
could predict the flow status on a satisfactory level, (2) would learn by itself 
during online operation, and (3) would also be practical for long-term online use. 
The method was to be tested in the Helsinki metropolitan area. 

5.2 Method 

5.2.1 Self-organising maps 

A SOM (Kohonen 2001) is, in its basic form, an unsupervised neural network 
method that can be used when the classification of the data is unknown or the 
use of this classification is unwanted. The approach can also be called cluster 
analysis, clustering, or profiling of data. A SOM consists of neurons (processing 
units or map units) organised on a regular low-dimensional grid. Distances 
between the map units can be measured with the distance of their weight vectors 
in grid coordinates. 

The weight vectors connect each map unit with a counterpart in the pattern 
space and accordingly each pattern vector (input vector of the model) with the 
map unit whose weight vector is closest to the pattern vector. The distribution of 
weight vectors tends to follow the distribution of the training data. Therefore the 
map can be used to generalise data when the number of map units is small. In 
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pattern recognition, similar vectors tend to locate to map units that are close to 
each other on the grid. Consequently, similar samples are located close to each 
other. 

A SOM is trained iteratively. The best matching map unit (BMU) and its 
topological neighbours on the map are moved according to the samples in the 
training set. Supervised learning proceeds in the same way as the unsupervised 
basic method. However, the class information is added to the patterns in the 
training phase. Consequently, the separation of classes is better when compared 
to unsupervised learning. 

5.2.2 Study site 

The study site was Ring Road I in the Helsinki metropolitan area. The road was 
regularly congested during morning and evening peak hours on working days 
(Monday to Friday, Figure 6). The annual average daily traffic volume was up to 
85,000 vehicles and the highest daily traffic volumes exceeded 100,000 vehicles 
on the busiest working days. The traffic volume exceeded 9,600 vehicles per 
hour for the busiest 100 hours of the year in the middle part of the road (3+3 
lanes), being around 6,000 vehicles per hour in the western and eastern parts of 
the road (2+2 lanes). The speed limit ranged from 60 km/h to 80 km/h. 

The test road started in the west with 2+2 lanes. The number of lanes was 3+3 
from the Otaniemi junction to main road 110 and from main road 120 to main 
road 45 (Figure 6). The road had an alternating bus lane in addition to the 2+2 
lanes east from main road 4. The westernmost part of the road was connected to 
the street network by signal-controlled at-grade intersections, and only the main 
roads (marked on the map in Figure 6) were connected by grade-separated 
intersections. From main road 120 to main road 4, connections to the test road 
were only with grade-separated intersections. In the easternmost part, the street 
and road network was connected by signal-controlled at-grade intersections, 
except for the road to Mellunkylä, which connected via a grade-separated 
intersection. 
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Figure 6. Location of camera stations, traffic volume and mean speed for different 
weekdays in 2005 (westbound traffic above the map and eastbound traffic below the 
map). 
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Six camera stations (Figure 6) were used for automatic travel time monitoring on 
the test road. Cameras divided the road into 3.1–7.4 km-long sections. The 
results of the study were analysed for the two most congested road sections (A 
and B, Figure 6). Section A was from the third to the second camera station from 
the west; section B was from the fourth to the third. On section A there were on 
average 67.3 minutes of successful measurements of congestion per day and, 
respectively, 39.6 minutes per day on section B. Traffic flow was determined to 
be congested if the average travel speed was under 75% of the free flow speed. 
On all other sections of the test road, the average amount of successful 
measurements of congested traffic was less than 20 minutes per day. 

5.2.3 Data 

Raw travel time data collected by the travel time monitoring system were used in 
the study. Models were based on data collected during an 8-month period from 
January to August 2004. The prediction performance of the models was tested 
during a 250-day period starting in January 2005. 

The raw travel time data were aggregated into median values of 5-minute 
periods. These data were filtered to avoid individual deviating observations 
over-affecting the median values. Several filtering methods were evaluated. This 
was done by checking visually which observations were filtered and which were 
not. Specifically, the researcher plotted the observations that were filtered and 
those that were left on the computer screen. An educated human eye was able to 
judge the performance of the automatic filtering procedure. As the filtering had 
to be performed online and its performance was critical, especially when the 
number of observations was small, a simple method based on two threshold 
values seemed to work better than more sophisticated methods of using 
polynomial fitting. In the chosen filtering method, if the number of observations 
was less than three, the maximum difference from the latest accepted median 
was allowed to be 50%. Otherwise, the median was rejected. 

In addition to the travel time data, it was also possible in the prediction 
procedure to use the information on weather and road conditions from a 
measurement point near the test road on the intersecting main road 3. The 
weather and road conditions were classified into three categories: normal, poor 
and hazardous. 
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5.3 Results 

5.3.1 Principles of the model for the test road 

A self-adapting prediction model was made for the test road. The forecasts were 
based on the outcomes of previous occasions when the traffic situation was 
similar to the present. The forecast was equal to the most common outcome in 
the cluster of these similar samples (Figure 7). Forecasts were made for vehicles 
entering the road sections within the next 15 minutes on the basis of weather and 
road condition and travel time information. The forecast was given at 5-minute 
intervals for 5-minute periods, i.e. separately for vehicles entering the sections 
0–5 min, 5–10 min, and 10–15 min ahead of the present moment. 

 

Figure 7. Principles of the prediction model. 
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The outcome of the model was defined as the traffic flow status class of the road 
section in question. The outcome of the traffic situation was described with five 
traffic flow status classes determined from the ratio of measured travel speed to 
free speed (Table 1 on page 39). Traffic flow was considered congested if the 
flow status class was slow, queuing or stopped. 

The model input included a time series of the three latest measurements of 
5-minute median travel times of the preceding road section, the road section in 
question, and the following road section. The input was pre-processed before 
making the SOM so that none of the input variables dominated over the others, 
i.e. long travel times over shorter ones. The natural logarithm separated travel 
times better than scaling or normalising and was therefore applied to the values. 

For making the prediction model, the similarity of traffic situations (i.e. 
pattern vectors) needed to be determined and then clustered in a systematic way. 
Any method could have been chosen as long as it did not require original pattern 
vectors to be kept in a database. One solution for clustering was the SOM. 
SOMs along with the outcome distribution tables formed the prediction model. 

To make the model learn while working online from the traffic situations it 
encountered, the distribution of outcome classes was updated in the cluster used 
for making the forecast as soon as the “correct” answer was measured in the 
field. Consequently, there was no need to restore the samples to a database; 
rather, all that was needed was to increase the number of matches in an outcome 
distribution table. This table was as big as the number of clusters times the 
number of outcome classes. Updating of the flow status outcome tables was 
performed at 5-minute intervals. If for some reason no observations were 
measured, the tables were left untouched. 

5.3.2 SOM for the model 

A separate SOM was made for each road section and for each of three prediction 
periods, based on the principles of supervised learning using a hexagonal map 
grid lattice (Appendix B). A sheet shape was selected for the map topology. The 
desired number of map units (Munits) was determined with the heuristic formula 
of Vesanto et al. (2000), where dlen was the number of samples in the training 
data.  

Munits = 20 · dlen0.54321 
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The final map size was determined by calculating the two biggest eigenvalues 
of the training data and by setting the ratio of the side lengths equal to the ratio 
of these values. The final side lengths were set so that their product was as close 
to the desired number of map units as possible. 

During training, a SOM was formed to present typical observations. In 
practice, the proportion of important cases (here, congestion) in the training set 
was small. Consequently, these cases might not be able to gain any ground of 
their own from the map. Therefore, the training data were collected by randomly 
selecting an equal number of 4,000 samples from each flow status class. This led 
to SOMs that had from 2,196 to 2,822 map units (Appendix B). 

5.3.3 Sub-models 

A trial was carried out on the effect of weather and road conditions on forecasts. 
Forecasts were made without weather and road condition information; it was 
then studied whether the performance of the model differed in different weather 
and road conditions. The results showed that the average performance of the 
model was similar for both normal and hazardous weather and road conditions. 
However, some differences were observed when the results were analysed by 
flow status class. Specifically, free-flowing traffic was predicted less accurately 
when the weather and road condition was hazardous than when it was normal. 
For other flow status classes, the situation was the opposite. When the weather 
and road condition class was poor, the performance of the model was similar to 
that for normal weather and road condition status, the result being between the 
performances for normal and hazardous. 

The model was divided into sub-models according to the weather and road 
condition class (normal, poor, hazardous), although poor or hazardous 
conditions were rare on the test road because of the high flow rate and good 
maintenance in wintertime. On a road section the same SOM was used for all 
weather and road condition classes for the same prediction period, but the flow 
status outcomes were collected into separate tables based on weather and road 
conditions. 

The effect of day of the week was investigated similarly to that of weather and 
road conditions. During weekends the proportion of free-flowing traffic was 
notable (95.9–100.0%, being above 99.0% on seven of the ten road sections). 
Because the free-flowing weekend traffic was predicted on average with more 
success than during the week, there was no need to integrate information on the 
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day of the week into the model. Most of the very few, solitary observations of 
congested weekend traffic were not predicted correctly. 

5.3.4 Practicality in long-term use 

The practicality of the model in long-term online use can be assessed from e.g. 
the number of carry bits it takes to restore the history of traffic situation samples. 
In long-term use, the model should be able to run for several years if no 
significant changes are made to the road network. In 5 years this would lead to a 
database of 63,072,000 items (34,560 items per day) if all the history were 
stored for a site with 10 road sections, and nine inputs and three outputs to store 
per road section. By comparison, the dynamic online model presented in this 
study stores a condensed version of the same history in ten tables of fixed size 
not exceeding 14,110 items. 

5.3.5 Online trial 

An online trial was conducted on the test road. The input information received 
from the field was aggregated, filtered and pre-processed with a natural 
logarithm (Figure 7). The Euclidian distance from the input to each map unit of 
SOM (presented as a matrix of weight vectors of map units) was calculated. The 
map unit with the shortest distance was selected as the BMU. The forecast was 
determined as the most common flow status outcome of that particular map unit 
and weather and road condition class. Finally, when (if) the correct answer was 
measured in the field, the corresponding outcome distribution table was updated 
for the corresponding map unit and weather and road condition class. 

The model was allowed to work online and its performance was studied as a 
function of time for a 250-day period. The proportion of correct forecasts was 
93.8% over the entire trial period and 80.9% in congested conditions for the 
model of road section A in normal weather and road conditions. Corresponding 
proportions were 96.3% and 82.3% for the road section B. 

As expected, workdays had an influence on forecasts. Weekend (Saturday-
Sunday) traffic was mostly free-flowing and those forecasts succeeded better 
than the ones made during the week (during weekends, road section A: 96.8%, 
road section B: 99.6% vs. during the week, road section A: 92.5%, road section 
B: 94.9%). According to Student's t-test, the difference in performance between 
workdays and weekends was statistically significant for both road sections (road 
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section A: p = 0.001, road section B: p = 0.000). During congestion the 
proportion of correct forecasts on workdays was 83.2% for road section A and 
84.2% for road section B. At weekends there were very few, solitary 
observations of congested traffic on both road sections, and for the most part 
these were predicted wrongly.  

It was hypothesized that the performance of the model improves with time, as 
it is able to adapt itself. The average daily change in the proportion of correct 
forecasts was indeed positive over the whole trial period: +0.4% for road section 
A and +0.3% for road section B. Student's t-test was used to determine whether 
this difference was statistically significant. The equality of variances was tested 
with Levene's test. The performance of the first 30 days of the trial was 
compared with that of the last 30 days. The test showed that the difference in 
performance was statistically significant for the model of road section A (p = 
0.000) but not for that of road section B (p = 0.089). 

Two naïve comparison models were made. The first one based the forecast on 
average travel time for the 5-minute period and day of the week in question for 
each road section. These average values were calculated from the same 2004 
data used to make the model. The second comparison model used the latest 
measurements directly as forecasts. Both models were tested over the same trial 
period in 2005 as above. The latest measurements (83.2% for all conditions, 
53.1% for congestion) performed better on road section A than the averages 
(83.7% for all conditions, 1.7% for congestion). On road section B the reverse 
was true (averages: 89.7% for all conditions, 49.6% for congestion; latest 
measurements: 88.6% for all conditions, 40.5% for congestion). Both 
comparison models performed considerably worse than the self-adapting model. 

5.4 Discussion 

This study was designed to develop a method for making a self-adapting short-
term prediction model for the traffic flow status. The objective was to develop a 
method that could predict the flow status on a satisfactory level, would learn by 
itself during online operation, and would also be practical for long-term online 
use. The method was tested in the Helsinki metropolitan area. 

As a result of the study, principles accordant with the objectives were 
developed for a self-adapting model and for prediction of the flow status. 
Specifically, the structure of the model (clustering and updating of the outcome 
tables) made it possible for the model to learn by itself without the need to save 
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all the data. The performance of the model could be considered satisfactory in 
relation to the coarseness of the monitoring system. The results also indicated 
that the self-adapting principle improved the performance of the model. Naïve 
models performed far worse than the self-adapting model. 

The model does not react fast to changes in traffic patterns, i.e. to situations 
where a certain traffic pattern starts to lead to a different outcome than 
previously. Hence, if there are considerable changes in the road network or 
traffic management (e.g. new signal timing at an entry to the motorway), it is 
better to initialise the outcome tables and start the collection of historic 
information anew. Slow changes like annual growth in traffic volumes change 
the most commonly used map units, but as the outcome is the same as previously 
with the same traffic volumes, there is no need to initialise the tables for that 
reason. However, if a major change (e.g. structural improvement of the road) is 
made, it is best to collect a new training data set and create new SOMs and 
outcome distribution tables for the model. 

In conclusion, if the flow status outcome classes are well separated into 
clusters, a model based on the principles described in this chapter should be able 
to detect even the impacts of incidents on flow status increasingly well over 
time. Also of importance is that there is no need to save all the data into 
databases, which makes long-term online use practical in terms of the number of 
carry bits it takes to restore the history of samples of traffic situations.  
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6. General discussion 

6.1 Validation of hypotheses 

The principal aim of this study was to develop a method for making a short-term 
prediction model of traffic flow status (i.e. travel time and a five-step travel-
speed-based classification). Specifically, the objective was to find a method that 
could predict the traffic flow status to a satisfactory level, could be implemented 
without long delays, and would be practical for online use also in the long term. 
The main hypotheses of the study were: (1) predicted travel time is considerably 
more accurate than non-predictive information, especially in congested 
conditions; (2) predicting normal traffic conditions can be quite straightforward, 
but the prediction of exceptional conditions can also be accomplished with 
sufficient accuracy; (3) the input information measured upstream or downstream 
of the target section improves considerably the model’s ability to predict the 
traffic situation; (4) the inclusion of weather and weekday (working day vs. 
weekend) information improves forecasts considerably; and (5) it is possible to 
develop a good prediction model capable of learning while working online. 

As expected in the first hypothesis, predicted travel time is on average 
considerably more accurate than non-predictive information, especially in 
congested conditions. The hypothesis was confirmed, as the results of the static 
prediction models (Studies I and III) indicated that even a simple prediction 
model could improve substantially the accuracy of travel time information, 
especially in congested conditions. In congested conditions, the original non-
predictive travel time information was correct 31% of the time in the northbound 
direction, while the offline model (Study I) would have produced correct travel 
times 73% of the time and the improved online model (Study III) 64% of time. 
In the opposite direction, the corresponding proportions would have been 47% 
for the non-predictive information, 83% for the offline model and 80% for the 
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online model. The findings of the offline model study suggested that the 
forecasts could be improved by setting up an adequate monitoring system for the 
specific site.  

According to the second hypothesis, predicting normal traffic conditions can 
be quite straightforward, but the prediction of exceptional conditions can also be 
accomplished with sufficient accuracy. At the study site of the static prediction 
models (Studies I–III), traffic was exceptionally congested over many summer 
weekends; however, the shape and timing of the congestion varied. The rest of 
the time, traffic could be considered normal. Over the whole study period, the 
average proportion of correct forecasts of the (improved) online model was 98% 
in the northbound direction and 99% southbound (Study III). As these figures 
include both normal and exceptionally congested conditions, the corresponding 
proportions being 64% and 80% in congested conditions, it suggests that normal 
traffic conditions can be predicted to a high degree and the first part of the 
second hypothesis is correct. 

There were several samples of exceptional traffic congestion during 
summertime weekends at the test site of the static prediction models (Study III). 
The definition of sufficient accuracy can, of course, be argued. Nevertheless, if 
the prediction model doubles the proportion of correct travel time information 
over the original non-predictive information, the accomplishment can be 
considered sufficient, although the target limit of providing correct information 
about exceptional conditions more than 75% of time set by Kitamura et al. 
(1999) could not be attained for all the links. A contrary example is from the 
study site of the dynamic model, where there were very few, solitary 
observations of congested traffic during weekends (Study V). Most of them were 
not predicted correctly. That implies that the more samples of exceptional traffic 
congestion there are, the better is the ability of the model to predict them. 
Therefore, the latter part of the second hypothesis is probably correct only if 
there are a sufficient number of samples of these exceptional conditions. In the 
modelling attempts within this study, however, the second hypothesis was not 
fully verified. 

The third hypothesis suggested that the input information measured 
upstream or downstream of the target section improves considerably the model’s 
ability to predict traffic situations. Regarding the effects of the monitoring 
system’s structure on the performance of the offline prediction model, the results 
showed that an additional camera station within or upstream of the section 
improved the results more than a station downstream of it (Study II). The 
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difference was up to 7 percentage points and 4 percentage points, respectively. 
Consequently, although congestion did not always build up from one sub-link to 
another but was spatially limited at that study site, upstream information turned 
out to be important; even if it did not help to time the start or end of the 
congestion, it helped to evaluate the level to which the travel time increased. 

Travel time information indicating congestion in the upstream section was 
important to the model of the downstream section; however, this did not appear 
to hold in the opposite direction – at least at that particular study site of static 
models (Studies I–III). If there was congestion upstream it usually meant high 
traffic demand and the congestion downstream was more severe than if the 
traffic upstream was flowing freely. Because part of the upstream congestion 
was caused by incidents that reduced the upstream capacity, upstream 
congestion did not always indicate problems on the downstream section; in fact 
traffic on the downstream section could be flowing freely. Hence, the small 
additional value of the extra downstream cameras was justifiable (Study II). 

Detailed analysis showed that the static online model was able to predict the 
travel time for the southbound section DA when the first of three sub-links was 
congested (Study III). The shape of the predicted congestion was correct, but the 
forecast came 10–15 minutes late when the input information from the inductive 
loop detector upstream of the section was missing. The delay was equal to that in 
receiving the first signs of a change in traffic situation. These findings suggest 
that the information about incoming flows is very important for the correct 
timing of congestion. 

Based on these results, the third hypothesis could be verified only for the 
upstream information. The findings suggest that the structure of the monitoring 
system or the area from which the input information is collected for the 
prediction should be based on an analysis of congestion (Study II). The 
collection area should be wider than the target section; however, the question of 
widening it upstream or downstream should be dependent on this analysis. 

According to the fourth hypothesis, the inclusion of weather and weekday 
(working day vs. weekend) information improves forecasts considerably. The 
effect of the weather and road surface condition information on forecasts was 
investigated for the dynamic model (Study V). The results showed that the 
average performance of the model was similar both for normal and hazardous 
weather and road surface conditions. However, there were some differences in 
the results when they were analysed by flow status classes. Specifically, free-
flowing traffic was predicted less accurately when the weather and road surface 
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condition was hazardous than when it was normal. For other flow status classes, 
the situation was the opposite. These results indicate that the separation of 
weather and road surface condition classes is beneficial. Consequently, the 
inclusion of weather information improves forecasts. However, as poor and 
hazardous weather and road surface conditions are rare on a road like the test 
road because of the high flow rate and good winter maintenance, the effect on 
the average performance of the model is modest – although it would probably be 
significant when these conditions occur more frequently. 

Weekend traffic was mostly free flowing at the dynamic model study site 
(Study V). Specifically, the flow was free-flowing 96–100% of the time during 
weekends, being above 99% on seven of the ten road sections. On average, 
weekend forecasts succeeded statistically significantly better than during the 
week. However, during congestion, the proportion of correct forecasts was on a 
satisfactory level during workdays and the very few, solitary observations of 
congested weekend traffic were usually predicted incorrectly. However, as 
explained previously, the more seldom and probably more random the 
congestion, the more difficult it is to predict. As the proportion of weekend 
congestion was so small, even considerable improvement in the ability to predict 
it would not have influenced the average numbers significantly. In addition, as 
the probable main cause for the weekend congestion is incidents, one could ask 
whether a considerable improvement in the ability of the model to predict their 
consequences can be achieved. Therefore the latter part of the fourth hypothesis 
is not verified – at least for sites with practically no weekend congestion. 

Finally, as was assumed in the fifth hypothesis, it was possible to develop a 
good prediction model that is capable of learning while working online. The 
results of the dynamic online model indicated that the self-adapting principle 
improved the performance of the model over time (Study V). Specifically, the 
average daily change in the proportion of correct forecasts was positive over the 
whole trial period: +0.4% and +0.3% for the studied road sections. This 
difference was statistically significant for both road sections. The results showed 
that the difference in the performance of the first and last 30 days of the trial was 
statistically significant for one of the two studied road sections while being 
marginally not significant for the other (p = 0.089). Naïve comparison models 
performed considerably worse than the self-adapting model. As the overall 
performance of the self-adapting model was good (proportion of correct 
forecasts 93.8% and 96.3% over the entire trial period and 80.9% and 82.3% in 
congested conditions, Study V), the fifth hypothesis was verified. 
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6.2 Assessment of the approach and designs 

The sequence of articles shows the development process from offline models 
that use perfect data (Studies I and II) to online models that deal directly with 
field measured data (Studies III–V). Although a dynamic self-adapting online 
model could have been developed directly, the weaknesses and influences of 
various factors on the model’s performance could be analysed more 
systematically using a stepwise approach. 

The performance of a prediction model is highly dependent on factors like the 
causes of congestion, location of congestion origin, amount of congested traffic, 
and the structure and technical performance of the detector network. Regular 
phenomena and free-flowing traffic are easier to predict than random incidents 
and severe congestion, and the prediction task is easier for a model based on 
densely-spaced, well-working detectors rather than on sparsely-spaced or often 
malfunctioning ones. Due to the application of specific circumstances, a numeric 
comparison between models developed for and tested at different sites is not 
terribly meaningful. The task of making sophisticated comparison models for the 
same sites using the same data as the models created in this study would have 
been overly laborious and was therefore omitted. However, naïve comparison 
models performed far worse than the self-adapting model of Study V and it can 
be argued that as self-adapting, the model performed better than as a static 
version (i.e. without the self-adapting feature), as it improved its performance 
considerably during the online trial. 

MLP neural networks were selected to form the body of the static prediction 
models (Studies I–IV). Perhaps some other method could have performed 
equally well, but the choice of MLP was justified by the encouraging results in 
previous studies using it (Park and Rilett 1999; McFadden et al. 2001; Shao et 
al. 2002). MLP neural networks have also proven to be good in predicting other 
measures that describe the traffic situation like flow rate (Smith and Demetsky 
1994, 1997; Lee et al. 1998; Innamaa and Pursula 2000). In addition, any 
method capable of clustering samples in an objective and explicit way could 
have been chosen for the self-adapting model (Study V). SOM was chosen 
because it fulfilled these requirements. 

Field data were chosen as the basis for the study, as the modelling procedure 
was aiming at an online prediction model that works in a real-world 
environment. Data produced by a simulation model would have made it possible 
to test any kind of scheme. However, as the traffic flow produced by simulation 
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programs is not fully realistic, it was decided to limit the study to scenarios 
available in field data produced by the current monitoring systems at the study 
sites. The limitations of the field data were seen most strongly in the study of the 
effects of the monitoring system structure (Study II). However, the results 
obtained by real-world data were assessed to be more valid than those produced 
by simulated data. Hence, less detailed but more valid results were preferred. 

The effectiveness of the models was determined as the proportion of forecasts 
lying within an accepted error margin (Studies I–III). Hence, the width of this 
margin had a major effect on numeric values that measure effectiveness. The 
width of the accepted error used in this study was 10%. This is in accordance 
with the limit of 13% set by Toppen and Wunderlich (2003), or the limits of 
10% to 21% obtained by Jung et al. (2003). The chosen margin width seemed to 
separate the performance of different models well, especially when the 
performance was measured in congested conditions. Consequently, the width 
was justified. 

6.3 Scientific implications 

This study generated several implications of value to science. The main ones are 
discussed briefly below. 
The main implication – especially for sites where congestion is a random rather 
than recurring phenomenon – is that models should be made with the self-
adapting principle (Studies III–V). Online operation offers limited time and 
possibilities for learning; therefore the system should learn from its own 
mistakes and aim to perform better next time. The self-adapting principle also 
made it possible to implement the model quite quickly. 

The structure of the dynamic model (Study V), especially the updatable 
condensed history in table form, was an essential contribution. A simple 
practical solution produced a great measurable advantage. The model was more 
practical for long-term online use, in terms of the number of carry bits it takes to 
restore the history of samples of traffic situations, than the models presented in 
the earlier studies as there was no need to store all the samples of the traffic 
situation (Study V). The models developed by Ohba et al. (2000), Otokita and 
Hashiba (1998) and Bajwa et al. (2003) required an ever-expanding database to 
be kept and used, which could in time lead to challenges in dealing with large 
amounts of data. For example, at the site of Study V, had all the samples been 
stored this would have led to a database of 63 million items in 5 years, as 
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demonstrated in Chapter 5.3.4. By comparison, the condensed version of the 
same history was stored in ten tables of fixed size of at most 14,000 items. The 
difference is large, although the number of input parameters was rather small at 
that site, as was the number of road sections for which the forecasts were made. 
The same principle can be applied to much more complex systems and extensive 
sites. As the history has to be used online in real-time, the condensed version of 
the history sets fewer requirements on the computer running the model, and is 
therefore more practical to use. 

Another main contribution was the successful online use of the models in 
practice in a real-world environment (Studies III and V). Specifically, a model 
was created for the first time for a site representing an interurban two-lane two-
way highway section (Studies I–III). Another new environment for a model was 
the urban corridor with a relatively sparsely spaced monitoring system and 
varying standard (Study V). Neither of the sites had strong recurrent congestion. 

The study also contributed to science in basing the models mainly on direct 
travel time measurements (Studies I–V), as most of the previous models that use 
field-measured data are based on point-based measurements. In particular, the 
combination of field measurements of travel times and two-lane two-way 
highway was modelled for the first time with considerable success (Studies I–
III). 

Another and major implication is that the structure of the monitoring system at 
a site where a prediction model is implemented should be based on an analysis 
of congestion (Study II). A travel time monitoring system does not have to be 
equally distributed along the section. It is important to cover sufficiently the area 
where congestion usually builds up, leaving the rest of the section with less 
inspection. On that part of the section, the distance between two consecutive 
sensors should be based on the maximum delay for detecting incidents. 

Furthermore, for correct timing of the start of irregular, over-demand-caused 
congestion, it is important to get information about the flows entering the section 
and at problematic locations (bottlenecks etc.) along the section (Study III). 
Another important aspect for which flow information could be helpful is the 
evaluation of whether the measured travel times make sense. If there is no 
information on flow rates, it is impossible to distinguish whether long travel 
times are likely due to over-demand, an incident, or a failure in the measurement 
system. Self-evaluation of the incoming data is a crucial part of a model working 
online (Study IV). 



6. General discussion 

 71

6.4 Needs for future research 

Many studies have argued that the accuracy of information is crucial in relation 
to the benefits the information offers. However, only a few studies have defined 
what sufficient accuracy is; all that can be said at this point is that their results 
are site-dependent. However, the definition is also dependent on the driver and 
on the characteristics of the information system. More studies measuring the 
benefits and determining minimum, or rather optimum, accuracy levels for the 
information are needed before general conclusions can be made. 

The literature review suggested that the provision of advanced driver 
information can have positive impacts on a transportation network level. 
Specifically, advanced traveller information can reduce congestion in 
transportation networks or even slightly reduce the number of injury accidents. 
However, these studies are based on telephone interviews, expert opinions and 
models, not field-measured real-world data. It is left for future research to prove 
that these effects really exist. 

Another matter for future research is the online filtering of data. The model 
should work smoothly despite imperfect input information. In this study, a 
simple filtering method was chosen based on a cursory comparison (Studies III 
and V). Although the method seemed to work on a satisfactory level, the 
filtering method suitable for online models and small samples should be 
developed further. 

The results indicated that up-to-date traffic volume information could improve 
traffic status forecasts. It is left for future research to develop a model based on 
principles developed for the dynamic prediction model with input that includes, 
besides the travel time information, good-quality up-to-date traffic volume 
information on main incoming flows and at bottleneck locations. 

Simulation models should be developed further, also on two-lane roads. There 
is a clear demand for producing training data for prediction models with 
simulation. Such data could contain all kind of traffic scenarios along with a 
variety of incidents. However, to produce training data for an online application, 
the simulation model should be able to produce traffic scenarios that are realistic 
both macroscopically and in detail, and that cover a wide range of realistic 
situations. To accomplish that, traffic system dynamics should be studied further 
in detail, with special emphasis on incidents. 

The future of traffic status prediction models may include hybrid models in 
which real time traffic measurements are fed to simulation-based prediction 
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models. The first steps of this research have already been taken in small scale 
applications by Kosonen et al. (2004). 

The future of traffic management includes cooperative traffic management 
where information can be passed selectively to road users. Such management 
provides new possibilities for the road operator to optimise the use and 
performance of the road network. However, it brings new challenges to the 
modelling of traffic situations, which become more dependent on the 
management decisions taken by the road operator. A first step in understanding 
the process would be predicting the effects of the travel time prediction on user 
behaviour and the consequent dynamic changes in the traffic flow pattern across 
the entire network. 

The future will also bring personalised travel time prediction models that 
operate as a dynamic layer for navigation. This kind of solution calls for a 
flexible model capable of predicting the travel time between any given points 
within a given time window. 

One more matter for future research is moving from prediction of incident 
impacts (e.g. on travel time) to prediction of incidents on the basis of flow 
pattern changes etc. As the impacts of incidents cannot be foreseen before the 
first signs can be measured, and even then the ability to make a correct forecast 
varies, it would be a significant advantage to be one step ahead and to be able to 
predict the incident itself. 
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Appendix B: Neural networks of the models 

Study I 

Artificial neural networks (ANNs) are models that simulate the structure and 
processing mechanisms of the human brain. Inspired by the structure and 
function of biological neurons, ANNs are information processing systems that 
have certain performance characteristics in common with biological neural 
networks. They consist of a large number of elementary processing units called 
neurons, nodes, or processing elements. Each neuron is connected to other 
neurons by communication links, each of which has an associated weight or 
connecting strength. (McFadden et al. 2001.) 

The so-called back-propagation neural network (BPN) is probably the most 
popular type of ANN in terms of its architecture. It has been used to solve 
problems in many disciplines. A BPN is designed to operate as a multilayer 
feedforward network and is trained in a supervised mode. The terminology 
“supervised mode” means that the network weights are calibrated using a set of 
example input-output data values. Training of a BPN involves a back-
propagation procedure. (McFadden et al. 2001.) 

The prediction models of Study I were made as feedforward multilayer 
perceptron (MLP) neural networks (Figure B1). MLP neural networks are easy 
to implement, and there have been encouraging results in previous travel time 
prediction studies using the same method (Park and Rilett 1999; McFadden et al. 
2001; Shao et al. 2002). MLP neural networks have also proven to be good in 
predicting other measures that describe the traffic situation like flow rate (Smith 
and Demetsky 1994, 1997; Lee et al. 1998; Innamaa and Pursula 2000). 
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Figure B1. Structure of MLP neural network. 

In a basic feedforward neural network, raw input data are presented to 
processing elements in the input layer. The input values are then weighted and 
passed to the hidden layer through the connections. Processing elements in the 
hidden layer sum and process their inputs and then pass the output to the output 
layer. Processing elements in the output layer sum and process their weighted 
inputs to produce the network output. The following equation represents this 
process in a functional form: 

( )[ ]211122 Θ+Θ+ΦΦ= XWWY  

where Y is the output, Ф1 is an activation function for layer 1, W1 is an array of 
connection weights for layer 1, X is input values and Θ1 is an array of bias 
values for layer 1. The connecting weight serves to join processing elements 
within the neural network and they can be compared with coefficients in a 
regression model. Bias is a constant input to each processing element. An 
activation function (or a transfer function) is an operator, usually nonlinear, that 
is applied to the summed inputs of a processing element to produce the output 
value. (Smith and Demetsky 1994.) 

The input parameters (Table B1) were selected in Study I according to their 
correlation with the travel time to be predicted and to the mutual correlation of 
the input parameter candidates. The length of time series of average values 
varied between three and five consecutive 1-minute observations. The median 
value and the standard deviation of the travel time were calculated for the input 
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of either the 10 or 20 latest measured observations or observations of the latest 5 
minutes. The input parameters were normalised to have a zero mean and 
standard deviation of one. 

As there was no justification to use a very complex model, a simple structure 
with one hidden layer was chosen. The number of hidden neurons was chosen 
with Widrow’s rule of thumb, i.e. the number of training samples was at least ten 
times the number of parameters to be estimated. However, the number of hidden 
neurons was limited to no more than 20 to keep the training process fast (Table 
B2). The activation function of the hidden layer was chosen to be a hyperbolic 
tangent and that of the output layer a linear function. Innamaa and Pursula 
(2000) found that this combination provides good results. 

Neural networks were trained with the Fletcher–Reeves update (Demuth and 
Beale 2001), which is one of the conjugate gradient algorithms. In those 
algorithms, the search is performed along conjugate directions. This produces 
generally faster convergence than the steepest descent direction, which is a 
common method in basic back-propagation algorithms. In this study, several 
stopping conditions were given to prevent the neural network from learning the 
training data too well. These criteria were the maximum number of training 
epochs, the minimum values of the gradient and of the mean squared error, and 
the point at which the mean squared error of the calibration data stopped 
decreasing. 
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Table B1. Input parameters. 

Road section for which the model was made, southbound 

Input, travel time DA DB DC CA CB BA 

DA Average Time 
series 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

- 

 Median  20 obs. 10 obs. 20 obs. 20 obs. 20 obs. 20 obs. 
 Standard deviation 10 obs. 10 obs. 20 obs. - 10 obs. - 
DB Average Time 

series 
Time 
series 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

 Median  10 obs. 10 obs. 10 obs. 20 obs. 20 obs. 10 obs. 
 Standard deviation 5 min 5 min 10 obs. - - - 
DC Average Time 

series 
Time 
series 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

 Standard deviation 10 obs. 10 obs. 10 obs. - - - 
CA Average Time 

series 
Time 
series 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

 Median  10 obs. 20 obs. 20 obs. 20 obs. 20 obs. 20 obs. 
 Standard deviation 20 obs. 20 obs. 20 obs. 20 obs. 20 obs. 20 obs. 
CB Average Time 

series 
Time 
series 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

 Median  20 obs. 20 obs. 20 obs. 20 obs. 20 obs. 10 obs. 
 Standard deviation 20 obs. 20 obs. 20 obs. 10 obs. 10 obs. 20 obs. 
CA Average Time 

series 
- Time 

series 
Time 
series 

Time 
series 

Time 
series 

 Median  20 obs. 20 obs. 20 obs. 20 obs. 20 obs. 20 obs. 
 Standard deviation - 20 obs. 20 obs. - 10 obs. - 
Traffic volume,  
location C 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

- 

Average point speed, 
location C 

- - Time 
series 

- - - 
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Road section for which the model was made, northbound 
Input, travel time AD AC AB BD BC CD 
AD Average Time 

series 
Time 
series 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

 Median  10 obs. 10 obs. 10 obs. 10 obs. 10 obs. 20 obs. 
 Standard deviation 5 min 5 min 5 min 5 min 5 min - 
AC Average Time 

series 
Time 
series 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

 Median  - - - - - - 
 Standard deviation 5 min 5 min 5 min 5 min 5 min - 
AB Average Time 

series 
Time 
series 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

 Median  - - - - - - 
 Standard deviation 20 obs. 20 obs. 5 min 20 obs. 20 obs. - 
BD Average Time 

series 
Time 
series 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

 Median  20 obs. 10 obs. 20 obs. 10 obs. 20 obs. 20 obs. 
 Standard deviation 5 min 5 min - 5 min 5 min - 
BC Average Time 

series 
Time 
series 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

 Median  - - - - - - 
 Standard deviation 5 min 5 min 5 min 20 obs. 20 obs. - 
CD Average Time 

series 
Time 
series 

Time 
series 

Time 
series 

Time 
series 

- 

 Median  20 obs. 20 obs. 20 obs. 20 obs. 20 obs. 20 obs. 
 Standard deviation 20 obs. 20 obs. 20 obs. 20 obs. 20 obs. - 
Traffic volume,  
location C 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

- 

Average point speed, 
location C 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

- 

Traffic volume, south of 
location A 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

Time 
series 

- 
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Table B2. Number of neurons in the input layer and hidden layer of feedforward MLP 
neural networks. There was one neuron in the output layer, the number of hidden layers 
was one and the maximum number of neurons in the hidden layer was set to be 20. 

Road section for which the model was made, southbound Length of 
time 
series Layer DA DB DC CA CB BA 

5 min Input 45 41 51 42 44 32 
 Hidden 14 12 18 19 16 19 
4 min Input 38 35 43 35 37 27 
 Hidden 17 15 20 20 19 20 
3 min Input 31 29 35 28 30 22 
 Hidden 20 18 20 20 20 20 

Road section for which the model was made, northbound Length of 
time 
series Layer AD AC AB BD BC CD 

5 min Input 54 54 53 54 54 28 
 Hidden 20 20 20 20 20 20 
4 min Input 45 45 44 45 45 23 
 Hidden 20 20 20 20 20 20 
3 min Input 36 36 35 36 36 18 
 Hidden 20 20 20 20 20 20 
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Study III 

The prediction models were constructed as MLP feedforward neural networks 
(Studies III and IV). The main principles behind the structure of the neural 
networks were based on the offline models (Study I). 

First, the input of the model AD consisted of a time series of the three latest 
5-minute observations of median travel time for road sections AD, AC, AB, BD, 
and BC as well as a time series of the three latest 5-minute observations of 
traffic volume at the inductive loop detector south of location A and of average 
point speeds at location C. In the further development stage of model AD, a time 
series of the travel time on sub-link CD, the mean speed at location C and the 
traffic volume at the loop detector south of location A, on the other side of the 
nearby city were also added to the input. 

The input of the model DA consisted of a time series of the three latest  
5-minute observations of median travel time for road sections DA, DB, and DC 
and a time series of the three latest 5-minute observations of traffic volume at 
the inductive loop detector north of location D and at location C. 

The number of hidden layers was one and, first, the number of neurons in the 
hidden layer was 20. The number of input neurons was 21 for the model AD and 
15 for the model DA. In the further development stage of model AD, the number 
of input neurons was 30. The number of hidden neurons was increased from 20 
to 30, 40 and 50. 

Forecasts were made despite of the partial input. However, the travel time was 
not predicted if too many or critical detectors were down. In practice, no forecast 
was made 

• if the camera detector was down at the starting point of the road section 
for which the travel time was predicted  

• if more than one camera detector was down 

• in the northbound direction AD, if one of camera detectors was down and 
at the same time the loop detector south of location A was down 

• in the southbound direction DA, if one of camera detectors was down and 
at the same time both the loop detectors were down. 

Consequently, there was a separately trained neural network for prediction 
making for these combinations of working and non-working detectors (Table 
B3). 
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Table B3. Combinations of working and non-working detectors for which prediction 
models were made. 

Southbound direction AD 

Camera detectors Loop detectors 
A B C D South of A C 

working working working working working working 
working working working working working down 
working working working working down working 
working working working working down down 
working down working working working working 
working down working working working down 
working working down working working working 
working working down working working down 
working working working down working working 
working working working down working down 

Northbound direction DA 

Camera detectors Loop detectors 
D C B A North of D C 

working working working working working working 
working working working working down working 
working working working working working down 
working working working working down down 
working down working working working working 
working down working working down working 
working down working working working down 
working working down working working working 
working working down working down working 
working working down working working down 
working working working down working working 
working working working down down working 
working working working down working down 
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Study V 

The prediction models of Study V included self-organising maps (SOM, 
Kohonen 2001). A SOM consists of neurons (processing units or map units) 
organised on a regular low-dimensional grid (feature map, Figure B2). Distances 
between the map units can be measured by the distance of their weight vectors in 
grid coordinates. In this study, the Euclidian distance was used. The Euclidean 
distance between points P = (p1, p2, …, pn) and Q = (q1, q2, …, qn), in Euclidean 
n-space, is defined as: 

( ) ( ) ( ) ( )∑
=

−=−++−+−
n

i
iinn qpqpqpqp

1

222
22

2
11  

 

Figure B2. Structure of SOM. 

SOMs were made based on the principles of supervised learning. Supervised 
learning proceeds in the same way as the unsupervised basic method. However, 
the class information is added to the patterns in the training phase. 
Consequently, the separation of classes is better than with unsupervised learning. 
SOMs were trained with a batch-training algorithm (Vesanto et al. 2000).  
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The vectors that were introduced to the SOM contained three consecutive  
5-minute median travel time observations from the road section in question, 
from the previous road section and from the following road section. 

SOMs were made using a hexagonal map grid lattice. A sheet shape was 
selected for the map topology. The desired number of map units (Munits) was 
determined with the heuristic formula of Vesanto et al. (2000), where dlen was 
the number of samples in the training data.  

Munits = 20 · dlen0.54321 

The final map size (Table B4) was determined by calculating the two biggest 
eigenvalues of the training data and by setting the ratio of the side lengths equal 
to the ratio of these values. The final side lengths were set so that their product 
was as close to the desired number of map units as possible. 

Table B4. Number of map units for models predicting 0–5 min, 5–10 min and 10–15 min 
ahead of present moment.  

Number of map units Road Section Number of 
input 
vector 
units 

0–5 min 
model 

5–10 min 
model 

10–15 min 
model 

Eastbound 1st 6 2,808 2,800 2,800 
Eastbound 2nd 9 2,800 2,800 2,800 
Eastbound 3rd 9 2,492 2,494 2,492 
Eastbound 4th 9 2,511 2,490 2,490 
Eastbound 5th 6 2,508 2,508 2,516 
Westbound 1st 6 2,196 2,211 2,208 
Westbound 2nd 9 2,808 2,822 2,822 
Westbound 3rd = B 9 2,494 2,490 2,490 
Westbound 4th = A 9 2,511 2,492 2,492 
Westbound 5th 6 2,496 2,484 2,516 
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