
•V
IS

IO
N

S•
SCIENCE•TEC

H
N

O
L

O
G

Y
•RESEARCHHIGHLI

G
H

T
S

Dissertation

37

Reusable, semantic,
and context-aware
micro-architecture
Approach to managing interoperability
and dynamics in smart spaces

Susanna Pantsar-Syväniemi

VTT SCIENCE 37

Reusable, semantic, and
context-aware micro-
architecture
Approach to managing interoperability and
dynamics in smart spaces

Susanna Pantsar-Syväniemi

Thesis for the degree of Doctor of Science in Technology, to be presented
with due permission for public examination and criticism in OP-sali (Auditori-
um L10), at the University of Oulu, on the 28th of August, 2013, at 12 noon.

ISBN 978-951-38-8009-5 (Soft back ed.)
ISBN 978-951-38-8010-1 (URL: http://www.vtt.fi/publications/index.jsp)

VTT Science 37

ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)

Copyright © VTT 2013

JULKAISIJA – UTGIVARE – PUBLISHER

VTT
PL 1000 (Tekniikantie 4 A, Espoo)
02044 VTT
Puh. 020 722 111, faksi 020 722 7001

VTT
PB 1000 (Teknikvägen 4 A, Esbo)
FI-02044 VTT
Tfn +358 20 722 111, telefax +358 20 722 7001

VTT Technical Research Centre of Finland
P.O. Box 1000 (Tekniikantie 4 A, Espoo)
FI-02044 VTT, Finland
Tel. +358 20 722 111, fax + 358 20 722 7001

Kopijyvä Oy, Kuopio 2013

http://www.vtt.fi/publications/index.jsp

3

Reusable, semantic, and context-aware micro-architecture
Approach to managing interoperability and dynamics in smart spaces

Uudelleenkäytettävä, semanttinen ja kontekstitietoinen pienoisarkkitehtuuri. Menetelmä
yhteentoimivuuden ja dynamiikan hallintaan älykkäissä tiloissa. Susanna Pantsar-
Syväniemi. Espoo 2013. VTT Science 37. 72 p. + app. 122 p.

Abstract
The amount of shared information has increased a great deal in ubiquitous sys-
tems, where the previously isolated devices and appliances have become part of
the system and are producing or consuming the information. The ubiquitous sys-
tem, or the smart environment, lacks an approach that supports scalability and
enables semantic interoperability. It is challenging to provide a dynamic behavior
at the run time without human intervention. A number of dedicated solutions have
been developed for the ubiquitous environment because of its complexity. The
dedicated solutions are usually non reusable.

An approach is needed that i) is reusable as such or partly, ii) provides the se-
mantic interoperability, iii) enables dynamic and behavioral interoperability be-
tween the receiver and sender of the information at run time, and iv) is scalable by
being modular, and decoupled.

This thesis proposes a novel approach to managing interoperability and dynam-
ics in smart spaces. The approach includes a Context-Aware Micro-Architecture
(CAMA), and a Context Ontology for Smart Spaces (CO4SS). This approach is
independent of implementation languages and communication techniques. CAMA,
as an architectural pattern, is usable without its semantic support, CO4SS. In the
literature, it is the first approach that fulfills the requirements that are set for a
context data distribution system.

The power in CAMA relies on the usage of the standard and web-based tech-
niques, in the separation-of-concerns principle, and in the enhanced control loop,
MAPE-K. The latter has four parts, Monitor; Analyze; Plan; Execute that share
Knowledge. CAMA is highly dynamic, which is due to the run-time updatable rules.
The creation of the rules is laborious, as they are written into text boxes of Mes-
sage Sequence Charts. This will be improved when new tools are developed for
the rule creation. Additional research is needed to validate the scalability of the
approach with a “Big data”. CO4SS can be widened with the domain-specific and
quality ontologies. It supports the evolution management of the smart space: all
smart spaces and their applications ‘understand’ the common language that is
defined by it. CO4SS has the potential to be a de facto ontology for the context-
aware, i.e., intelligent applications.

Key words ontology, software architecture, embedded, ubiquitous system, design
pattern

4

Uudelleenkäytettävä, semanttinen ja kontekstitietoinen pienoisarkki-
tehtuuri
Menetelmä yhteentoimivuuden ja dynamiikan hallintaan älykkäissä tiloissa

Reusable, semantic, and context-aware micro-architecture. Approach to managing interop-
erability and dynamics in smart spaces. Susanna Pantsar-Syväniemi.
Espoo 2013. VTT Science 37. 72 s. + liitt. 122 s.

Tiivistelmä
Kaikkialla läsnä oleva, ns. Ubi-järjestelmä, sisältää paljon yhteistä tietoa, jonka
määrä kasvaa, kun ennen erillään toimineet laitteet tulevat osaksi järjestelmää.
Ubi-järjestelmä, tai älykäs tila, tarvitsee uusia menetelmiä, jotka tukevat järjestel-
män skaalautuvuutta sekä mahdollistavat semanttisen yhteentoimivuuden eri
laitteiden ja applikaatioiden välillä. Tällainen järjestelmä on dynaaminen, ja on
haasteellista saada sitä tukevaa automaattista toimintaa toimimaan reaaliajassa.
Ubi-järjestelmä on myös monimutkainen, ja siksi olemassa olevat järjestelmät ovat
olleet hyvin erikoistuneita, eivät uudelleenkäytettäviä.

Tarvitaan siis ratkaisumalli, joka i) on uudelleenkäytettävä sellaisenaan tai osit-
tain, ii) tarjoaa semanttisen yhteentoimivuuden, iii) mahdollistaa dynaamisen ja
yhteentoimivan toiminnan reaaliajassa tiedon lähettäjän ja vastaanottajan välillä ja
iv) on skaalautuva. Väitöstyössä on kehitetty uusi menetelmä yhteentoimivuuden
ja dynamiikan hallintaan älykkäissä tiloissa. Menetelmässä on kontekstitietoinen
mikroarkkitehtuuri (CAMA) sekä kontekstiontologia (CO4SS). Ne ovat riippumat-
tomia toteutuskielistä ja kommunikointiteknologioista. CAMA on arkkitehtuurimalli,
ja se on käytettävissä ilman semanttista tukeaan eli kontekstiontologiaa, CO4SS.
Menetelmä on kirjallisuudessa ensimmäinen, joka täyttää kontekstitiedon jakelu-
järjestelmän vaatimukset.

Mikroarkkitehtuurin vahvuus on siinä, että se käyttää sekä standardoituja että
web-pohjaisia tekniikoita. Arkkitehtuuri pitää kontekstinhallinnan erillään muusta
ohjelmistosta ja hyödyntää parannettua MAPE-K mallia, jonka neljä osaa – moni-
torointi (M), analysointi (A), suunnittelu (P) ja toteutus (E) – hyödyntävät tietämystä
(K). Reaaliaikaisesti päivitettävät säännöt tekevät kehitetystä mikroarkkitehtuurista
hyvin dynaamisen. Sääntöjen luonti on työlästä, koska säännöt kuvataan tekstilaa-
tikkoina toimintajärjestyskuviin. Tämä paranee tulevaisuudessa, kunhan uusia työka-
luja sääntöjen kuvaamiseen saadaan kehitettyä. Menetelmän skaalautuvuutta suuri-
en datamäärien kanssa on vielä tarpeen tutkia lisää. Kontekstiontologia on laajen-
nettavissa niin sovellusalue- kuin laatuontologioilla. Se tukee älytilojen evoluutiota
tarjoamalla yleisen kielen, jota kaikki älytilat ja niihin liittyvät ohjelmistot ymmärtävät.
Ontologialla on edellytyksiä kehittyä ns. de facto -kontekstiontologiaksi, kun luodaan
kontekstitietoisia eli älykkäitä ohjelmistoja.

Avainsanat ontology, software architecture, embedded, ubiquitous system, design
pattern

5

Preface
The research work that is reported in this thesis was carried out in the Service
Architectures and Systems group at VTT Technical Research Centre of Finland
and in the Advanced Research Center on Electronic Systems for Information and
Communication Technologies E. De Castro (ARCES) at the University of Bologna,
Italy. The majority of research work was carried out during the years 2009–2012 in
the Artemis Smart Objects For Intelligent Applications (SOFIA) project.

I am grateful to Research Professor Eila Ovaska for her guidance and support.
She encouraged me to carry out part of the work abroad. She asked me whether I
could imagine working in Bologna when we were at the airport of Bologna on the
way back to Oulu from one of the first meetings of SOFIA project. As is known, I
responded positively. I wish to express my gratitude to Professor Tullio Salmon
Cinotti for allowing me to work in his group in the ARCES, guiding my work, and
helping my family in many ways during our one year stay in Bologna, Italy.

I am also grateful to Professor Olli Silvén for supervising my work and bringing
me through the last steps. I wish to thank Professor Tommi Mikkonen and Doctor
Davy Preuveneers for reviewing the manuscript of this thesis. Their feedback was
valuable and it helped me a lot to sharpen the presentation of thesis. I am indebt-
ed to Research Professor Aarne Mämmelä for his advice during my thesis work
and, especially, while I was writing the thesis. I wish to thank Mr Seppo Keränen
for checking the language.

I wish to give my sincere thanks to all my co-workers during this work: Paolo
Bellavista, Antti Evesti, Susanna Ferrari, Jarkko Kuusijärvi, Sandra Mattarozzi,
Valerio Nannini, Eila Ovaska, Anu Purhonen, Luca Roffia, Tullio Salmon Cinotti,
Kirsti Simula, Jorma Taramaa, and Guido Zamagni.

Publication II was the first paper for me as the main author and without help
and support of Jorma Tarmaa and Eila Ovaska (former Niemelä) it might never
have been published. Ned Chapin, as an editor for Journal of Software Mainte-
nance and Evolution, was patiently waiting for the author’s maternity leave to end
before kindly pushing to receive the revised version.

This thesis is financially supported by the VTT, the Finnish Funding Agency of
Technology and Innovation (Tekes), the European Union, the Seppo Säynäjäkangas
Science Foundation, the Emil Aaltonen Foundation, and the KAUTE Foundation.

6

I would like to thank my family of their patience and support during this work.
My husband Mika has made it possible to concentrate on my research in many
evenings and weekends, without forgetting the year in Bologna. My children, Atte,
Aino, and Anna, have been a powerful counterpart to my research.

Don't join an easy crowd;
you won't grow. Go where
the expectations and
the demands are high.

-Jim Rohn

Kempele, June 2013 Susanna Pantsar-Syväniemi

7

Academic dissertation
Supervisor Olli Silvén

University of Oulu
Faculty of Technology, Department of Computer Science and Engi-
neering,
P.O. Box 4500, FI-90014 University of Oulu, Finland

Advisor Eila Ovaska
VTT Technical Research Centre of Finland
Digital Services Research
P.O. Box 1100, FI-90571 Oulu, Finland

Reviewers Tommi Mikkonen
Tampere University of Technology
Department of Pervasive Computing
P.O. BOX 553, FI-33101 Tampere, Finland

Davy Preuveneers
KU Leuven
Department of Computer Science
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

Opponent Jan Bosch
Chalmers University of Technology
Department of Computer Science and Engineering
Maskingränd 2, SE-41258 Gothenburg, Sweden

8

List of publications
This thesis is based on the following original publications, which are referred to in
the text as I–IX and reprinted in Appendices. The publications are reproduced with
kind permission from the publishers.

I Pantsar-Syväniemi, S. (2012) Architecting Embedded Software for Context-
Aware Systems. In: Embedded System – Theory and Design Methodology.
Tanaka, K. (ed.). InTech, ISBN 979-953-307-580-7, Rijeka, Croatia, 123–142.

II Pantsar-Syväniemi, S., Taramaa, J., Niemelä, E. (2006) Organizational
evolution of digital signal processing software development. Journal of
Software Maintenance and Evolution: Research and Practice 18(4): 293–305.

III Pantsar-Syväniemi, S., Purhonen, A., Ovaska, E., Kuusijärvi, J., Evesti, A.
(2012) Situation-Based and Self-Adaptive Applications for Smart Environment.
Journal of Ambient Intelligence and Smart Environments 4(6): 491–516.

IV Toninelli, A., Pantsar-Syväniemi, S., Bellavista, P., Ovaska, E. (2009) Sup-
porting Context Awareness in Smart Environments: a Scalable Approach to
Information Interoperability. Proceedings of the International Workshop on
Middleware for Pervasive Mobile and Embedded Computing (M-MPAC
2009), ACM; Article No. 5.

V Pantsar-Syväniemi, S., Simula, K., Ovaska, E. (2010) Context-awareness in
Smart Spaces. Proceedings of the First International Workshop on Semantic
Interoperability for Smart Space (SISS 2010), IEEE, 1023–1028.

VI Pantsar-Syväniemi, S., Kuusijärvi, J., Ovaska, E. (2011) Context-
awareness Micro-architecture for Smart Spaces. The 6th International Con-
ference on Grid and Pervasive Computing (GPC 2011), Springer-Verlag
Berlin Heidelberg LNCS 6646/2011, 148–157.

VII Pantsar-Syväniemi, S., Kuusijärvi, J., Ovaska, E. (2012) Supporting situa-
tion-awareness in Smart Spaces. Proceedings of the First International
Workshop on Self-managing Solutions for Smart Environments (S3E 2011)
organized in association with the GPC 2011 6th International Conference
on Grid and Pervasive Computing (GPC 2011), Springer-Verlag Berlin Hei-
delberg, LNCS 7096/2012, 14–23.

9

VIII Evesti, A., Pantsar-Syväniemi, S. (2010) Towards Micro Architecture for
Security Adaptation. Proceedings of the 4th European Conference on Soft-
ware Architecture. ECSA 2010 workshops: 1st International Workshop on
Measurability of Security in Software Architectures (MeSSA 2010), ACM,
181–188.

IX Pantsar-Syväniemi, S., Ovaska, E., Ferrari, S., Salmon Cinotti, T., Zamagni, G.,
Roffia, L., Mattarozzi, S., Nannini, V. (2011) Case Study: Context-aware
Supervision of a Smart Maintenance Process. The 11th IEEE/IPSJ Interna-
tional Symposium on Applications and the Internet (SAINT2011), The Sec-
ond International Workshop on Semantic Interoperability for Smart Space
(SISS 2011), IEEE Computer Society, 309–314.

10

Author’s contributions
The writing of Publication I is done solely and Publication II mainly by the author.
These publications are affected by experiences gathered during embedded soft-
ware development at Nokia Siemens Networks (formerly Nokia Networks and
Nokia Telecommunications). The writing of Publications V, VI, VII, and IX is mainly
carried out by the author, who was responsible for the research carried out in
these publications. In Publication III, the author contributed to the adaptation
framework on behalf of the context-awareness agents, the CO4SS, the ontology
mapping and being the main author. The author has co-operated with Eila Ovas-
ka, Alessandra Toninelli, and Paolo Bellavista for the research and writing of Pub-
lication IV. In Publication VIII, the author contributed to the most relevant context
for information security and participated in the writing process. The research ideas
are validated by the implementation work carried out by Jarkko Kuusijärvi in Publi-
cations III, VI, VII and Susanna Ferrari in Publication IX.

11

Contents
Abstract ... 3

Tiivistelmä ... 4

Preface ... 5

Academic dissertation ... 7

List of publications .. 8

Author’s contributions .. 10

List of abbreviations .. 13

1. Introduction ... 16
1.1 Information – the basis for the cooperation .. 18
1.2 Software for intelligent applications ... 21
1.3 Problem statement ... 23
1.4 Goals and scope... 24
1.5 Research approach and method ... 26
1.6 Summary of the publications and overview of the thesis 30

2. Background ... 33
2.1 Software architecture and reuse-based software development 33
2.2 Architectural patterns and principles .. 34
2.3 Context-awareness and situation-awareness 37
2.4 Ontological context model ... 38

3. Reusable, semantic, and context-aware approach 40
3.1 Reusability ... 42
3.2 Context-awareness concept .. 42
3.3 Context-Aware Micro-Architecture ... 46
3.4 Context Ontology for Smart Spaces .. 48
3.5 Contributions vs. related work ... 48

12

4. Validating the context-aware micro-architecture.................................... 52
4.1 Context monitoring for run-time security management........................ 52
4.2 Context-aware behavior in the smart home .. 53
4.3 Context-based adaptation in smart building maintenance 54
4.4 Adaptation framework ... 55

5. Discussion and conclusions ... 56
5.1 The manifesto of autonomic computing and the information levels...... 56
5.2 Architecture-based adaptation and adaptation frameworks................. 59
5.3 Practical implications and limitations.. 59
5.4 Theoretical implications .. 60
5.5 Employment in the other areas .. 61
5.6 Recommendations for future work ... 62

6. Summary ... 63

References ... 65

Appendices

Publications I–IX

Publications IV, VI, VII, VIII are not included in the PDF version.
Please order the printed version to get the complete publication
(http://www.vtt.fi/publications/index.jsp).

http://www.vtt.fi/publications/index.jsp

13

List of abbreviations

2G 2nd generation mobile network. GSM being a major standard

3G 3rd generation mobile network. UMTS being a major standard

4G 4th generation mobile network. LTE being a major standard

ANSI American National Standards Institute

ARCES Advanced Research Center on Electronic Systems for Information
and Communication Technologies E. De Castro, University of Bolo-
gna, Italy

ARTEMIS European Technology Platform in the field of embedded systems

BTS Base Transceiver Station

CAMA Context-Aware Micro-Architecture

CAMPUS Context-Aware Middleware for Pervasive and Ubiquitous Service

CO4SS Context Ontology for Smart Spaces

CoDAMoS Context-Driven Adaptation of Mobile Services

CONON CONtext ONtology

CoOL Context Ontology Language

DSP Digital Signal Processor

DSPL Dynamic SPL

FOAF Friend Of A Friend ontology

GSM Global System for Mobile Communications, Groupe Spécial Mobile
(in the beginning)

GUI Graphical User Interface

IEEE Institute of Electrical and Electronics Engineers

IOP InterOperability Platform

14

ISMO Information Security Measuring Ontology

ISO International Organization for Standards

KAUTE Kaupallisten ja teknillisten tieteiden tukisäätiö

KP Knowledge Processor

KPI Knowledge Processor Interface

LTE Long Term Evolution

M3 Multipart, Multidevice, and Multivendor framework

MAPE-K Control loop of self-adaptation, decomposed into monitoring (M),
analyzing (A), planning (P) and execution (E). K means knowledge

MDA Model Driven Architecture, OMG’s standard

MSC Message Sequence Chart

OMG Object Management Group

OWL Web Ontology Language, W3C’s recommendation

OSGi Open Services Gateway Initiative, a set of specifications that de-
fines a dynamic component system for Java. OSGi is developed by
OSGi alliance

QoC Quality of Context

QoS Quality of Service

RDF Resource Description Framework, W3C’s recommendation

RF Radio Frequency

RIBS RDF Information Base Solution, a SIB for resource limited devices

RPM Run-time Performance Management ontology

SDR Software-Defined Radio

SeMaPS Self-Management Pervasive Service ontology

SIB Semantic Information Broker

Smart-M3 implementation based on the IOP

SOAP Simple Object Access Protocol, XML-based, W3C’s specification

SOFIA Smart Objects For Intelligent Applications, the European Artemis
programme under the subprogramme “Smart environments and
scalable digital service”

SOUPA Standard Ontology for Ubiquitous and Pervasive Applications

SPARQL Simple Protocol and RDF Query Language, W3C’s standard

15

SPL Software Product Line

SQL Structured Query Language, a standard of the ANSI, and of the ISO

SSAP Smart Space Application Protocol, XML based interaction protocol

SWRL Semantic Web Rule Language, W3C’s proposal

Tekes the Finnish Funding Agency of Technology and Innovation

UML Unified Modeling Language, OMG’s specification

UMTS Universal Mobile Telecommunication System

VTT VTT Technical Research Centre of Finland

W3C WWW Consortium

Web Short for World Wide Web

Wi-Fi Wi-Fi Alliance, certifies interoperability of WLAN products based on
IEEE 802.11 standards

WLAN Wireless Local Area Network

WSN Wireless Sensor Network

WWW World Wide Web

XML eXtensible Markup Language, W3C’s specification

1. Introduction

16

1. Introduction

To offer situation-based services for human beings, even proactively, is a great
challenge, especially for software. In addition to the software, computing devices
and a network are needed. These three technologies – i) cheap, low-power com-
puters, ii) software for ubiquitous applications, and iii) a network that ties every-
thing together – were mentioned in Mark Weiser’s vision [1] over two decades
ago, when he envisioned the disappearance of technologies that weave them-
selves into the fabric of everyday life, until they are indistinguishable from it. This
ubiquitous computing vision included the invisibility aim, but assumed the solutions
to appear later that will work out the technical challenges related to scalability,
interoperability and dynamics. This thesis delves deeper into software technolo-
gies, by presenting reusable, semantic, and context-aware software agent-based
micro-architecture for managing the semantic, dynamic and behavioral interopera-
bility in ubiquitous systems.

Ten years after Weiser’s vision, in 2001, Mahadev Satyanarayanan [2] dis-
cussed the challenges in the field of pervasive computing and emphasized that
ubiquitous computing could also be called pervasive computing. He introduced
how pervasive computing i) relates to distributed systems and mobile computing,
and ii) is affected by the effective use of smart spaces, invisibility, localized scala-
bility, and techniques for masking the uneven conditioning of environments. He
concluded that research has challenges, e.g., i) in the area on software agents,
and ii) expert systems and artificial intelligence. The former relates to high-level
proactive behavior and the latter has to do with decision making and planning.

In 2003, Debashis Saha and Amitava Mukherjee [3] presented pervasive com-
puting as a paradigm for the 21st century. Added to devices, networking, and ap-
plications, the authors highlighted middleware to be the fourth necessity for the
pervasive computing. Figure 1 presents their system view of pervasive computing.
This extension is achieved by integrating pervasiveness support technologies,
such as interoperability, scalability, smartness, and invisibility. The smartness is
attached to a context management that involves accurate sensing followed by
intelligent control or action between machines and humans. The authors also state
that perception, or context-awareness, is an intrinsic characteristic of intelligent
environments. Although these support technologies describe the challenges of the

1. Introduction

17

pervasive or ubiquitous system and they were introduced in more detail in [3] than
in Weiser’s vision, the solutions for the challenges were still missing.

Figure 1. System view of pervasive computing [3].

The cooperation in the environment of ubiquitous computing is based on the in-
formation. This calls for interoperability solutions provided by intelligent applica-
tions. Interoperability can be abstracted to be a sharing of information between a
sender and a receiver and it can be divided into levels, as shown in Figure 2 and
presented in Publication III. This thesis provides an approach to reaching seman-
tic, dynamic, and behavioral interoperability.

1. Introduction

18

Figure 2. Interoperability levels of the smart environment [Publication III].

1.1 Information – the basis for the cooperation

Charles W. Morris, in 1938, presented that science and signs are inseparately
interconnected and that a sign refers to something for someone [4]. He wrote that
the process in which something functions as a sign may be called semiosis. He
also presented three dimensions of semiosis:

1. A formal relation of signs to one another is called a syntactical dimension of
semiosis, syntactics.

2. A semantic dimension of semiosis is called semantics, which refers to the
relations of signs to the objects to which the signs are applicable.

3. The relation of the signs to interpreters is called the pragmatical dimension
of semiosis, pragmatics.

He wrote the foundations of the theory of signs, the semiotics, which could – in
principle, be presented as a deductive system. The work has widely been consid-
ered a step towards unification of science. He seems to have succeeded in that as
the dimensions stated above have also been used in software engineering. How-
ever, the technologies needed for building a deductive system were ignored. The

1. Introduction

19

dimensions can be thought to represent levels, so that syntactics is the first level
that correlates with the communication interoperability level of Figure 2. Semantics
is the second level and correlates with the semantic interoperability level, and
pragmatics is the third level correlating with the dynamic interoperability level.

Warren Weaver, in 1949, presented a theory to consider the information via
three levels from 1 to 3 that respectively relates to technical, semantic, and effi-
ciency problems [5]. The technical problems were, e.g., concerned with the accu-
racy of transference from the sender to the receiver of sets of symbols, or of a
continuously varying signal, or of a continuously varying two-dimensional pattern.
The semantical problems were concerned with the identity, or satisfactorily close
approximation, in the interpretation of meaning by a receiver, as compared with
the intended meaning of a sender. The effectiveness problems were concerned
with the success with which the meaning conveyed to the receiver leads to the
desired conduct on his part. Weaver’s categorization is quite similar to Morris’s,
while he seemed to have developed his approach independently of the work done
by Morris.

Claude E. Shannon, in his information theory, in 1948, stated that the funda-
mental problem of communication is that of reproducing at one point either exactly
or approximately a message selected at another point. He presented that the
messages have a meaning that they refer to or are correlated according to some
system with certain physical or conceptual entities [5]. He stated that these se-
mantic aspects of communication were irrelevant to the engineering problem.
Thus, his work concentrated on the first level of Weaver’s theory.

Later on, in the 1980’s, Werner Gitt stated that the concept of information had
become as fundamental and far-reaching as energy and matter were [6]. There-
fore, he presented that the information was the third fundamental quantity. He
declared that although Shannon’s concept of information was adequate for dealing
with the storage and transmission of data, it would fail when trying to understand
the qualitative nature of information. Gitt introduced five levels of information:
statistics, syntactics, semantics, pragmatics, and apobetics. His levels correlate
with those of Morris and Weaver, but he has divided their first and third levels. Gitt
correlated his own work to the work of Shannon, even though Shannon ignored
the semantics and pragmatics levels of the information. Figure 3 presents the
levels of information by Gitt.

The cooperation in the intelligent environment is based on the information as
mentioned above. The information layers from one to three relate directly to the
three lowest levels of the interoperability categorization, as is presented in Figure
2: i) the statistics to the connection interoperability, ii) the syntactics to the com-
munication interoperability, and iii) the semantics to the semantical interoperability.
The fourth layer, the pragmatics, relates to both the dynamic and behavioral in-
teroperability levels. The fifth layer, the apobetics, relates to the reaching of the
goal by the information. Apobetics has no counterpart in the interoperability levels,
even though the desired goal is attainable by semantic, dynamic, and behavioral
interoperability.

1. Introduction

20

Figure 3. The levels of information [6].

Figure 3 presents a generalized view of information sharing between one transmit-
ter and one receiver. The levels of information remain, even though the number of
transmitters or receivers increase. The scaling of transmitters and receivers is
usually designed in advance and managed with standards and interface specifica-
tions in the embedded system, such as a base station (BTS) that is a part of the
mobile network infrastructure. The amount of shared information increases a great
deal in the ubiquitous system, as the previously isolated devices and appliances
will be part of the system and are producing or consuming the information. The
ubiquitous system, or the smart environment, is still lacking an approach that
would support scalability and enable interoperability. Invisibility has not been in
focus in the information theory. The challenges for the applications are residing in
the third and fourth layers: semantics and pragmatics. Thus, the approach pre-
sented in this thesis needs to offer the semantics and techniques for the pragmat-
ics, to comply with the dynamic and behavioral features of the ubiquitous system.

The aim of ubiquitous computing is to enable a smart environment, where phys-
ical and digital environments will be integrated and interoperable. The cooperation
in the intelligent environment is based on the information gathered, stored, trans-
mitted, transformed, inferred, and anticipated. The Internet is the de facto network
for data transmission and the Semantic Web provides the formats and language to
integrate and combine the data that is originated from heterogeneous sources and
to relate the data to the sources, i.e., to real world things.

1. Introduction

21

1.2 Software for intelligent applications

Ubiquitous environment is seen, in [7], to lend itself to autonomic computing, be-
cause of the complexity of installing and maintaining such an environment and
keeping it running in a stable way. One of the challenges in autonomic computing
is the requirement to carry out robust software engineering, not only to provide
solidly built autonomic systems, but systems capable of interoperating with each
other [7]. The interoperability and the complexity are the challenges facing intelli-
gent applications. It is also challenging to provide a dynamic behavior at the run
time without human intervention.

Interoperability is usually provided via specifications issued by standardization
organizations or alliances. A good example of a successful standardization effort
is the 2G mobile network and its successors, 3G and 4G. The set of specifications
has covered the overall network, e.g., a communication between a mobile device
and BTS. The communication is based on a fixed radio resource allocation. A
certain portion of the radio spectrum is assigned or licensed on a long term basis
and covering large regions, such as entire countries [8]. This approach provides
ultimate protection from harmful interference in an allocated radio band, but the
fixed radio frequency allocation may lead towards significant underutilization of the
radio spectrum, due to a highly sporadic usage across different geographical re-
gions, as well as in different periods of time [8]. Therefore, a cognitive radio is
viewed as an approach for improving the use of the radio spectrum [9].

The cognitive radio, built on a software-defined radio (SDR), is an intelligent
wireless communication system that is aware of its surrounding environment, and
uses the methodology of understanding-by-building to learn from the environment
and to adapt its internal states to statistical variations in the incoming radio fre-
quency (RF) stimuli by making corresponding changes in certain operating pa-
rameters in real time, with two primary objectives in mind: i) highly reliable com-
munication whenever and wherever it is needed, and ii) efficient use of the radio
spectrum [9]. The intelligence for the cognitive radio is created, in [10], by using a
cognition cycle. This cycle is time-sensitive and immediately acts when it is need-
ed or according to a plan-decide-act cycle. The learning path is also included and
can be used while not performing time-sensitive acts. The cognitive radio employs
software agents that are driven by knowledge. The work that is reported in this
thesis uses a similar approach. Another similarity is the usage of micro-“things”:
the cognitive radio consists of multiple micro-worlds [10] and this work is propos-
ing to approach the system development via micro-architectures.

The ubiquitous environment does not have the same kind of overall system ar-
chitecture as mobile networks do. This shortage has delayed the arrival of a ubiq-
uitous ecosystem. In the ubiquitous environment, the interoperability is achievable
by a context model. Different models have been introduced for the context design
[11]: key-value, markup scheme, graphical, object-oriented, logic-based, and on-
tology-based. The ontological models of context are emphasized to provide clear
advantages for heterogeneity and interoperability [12].

1. Introduction

22

Context-awareness has been emphasized to be a key factor for ubiquitous ap-
plications [13]. The complexity of the ubiquitous environment has led to emer-
gence of various dedicated solutions. These include a blackboard-based software
framework and a tool for mobile device context awareness [14], a formal verifica-
tion method for situation definitions [15], a resource optimized quality assured
context mediation framework [16], different approaches for a scalable tracking of
mobile object and an efficient processing on continuous spatial range queries [17],
a context data management system [18], and a Context-Aware Middleware for
Pervasive and Ubiquitous Service (CAMPUS) [19]. These dedicated solutions are
not as reusable as is the approach of this thesis.

The context data distribution system, envisioned by Bellavista et al. in [20], is
presented via a context data delivery layer, context data management layer, and
run-time adaptation support, as illustrated in Figure 4. The work of this thesis, the
context-aware micro-architecture with the software agents and the context ontolo-
gy corresponds to the context data distribution functionality and precisely to the
context data management and run-time adaptation support. This relation is illus-
trated later in Figure 10 in Section 3.1.

The logical architecture of the context data distribution system also includes the
context data sources and sinks. The context data management includes, e.g., the
context data security, which is problematic from the modularity and decoupling
point of view. The approach of this thesis is more modular, as it does not have an
embedded management of the security or other quality attributes to its functionali-
ty. Run-time security management [21] and the run-time performance manage-
ment [22] are divided into separate micro-architectures. An adaptation framework,
presented in Publication III, gathers together the adaptation functionalities of secu-
rity, performance, and context management to ease the trade-off decisions in the
ubiquitous system.

Figure 4. The context data distribution [20].

The requirements for context data distribution [20] are introduced next. The first
requirement relates to context data delivery and falls, partly, outside the scope of
this thesis. The other requirements are relevant for this work. These requirements

1. Introduction

23

are used for validating the approach of this thesis, as described in Sections 3. and 3.1.
Bellavista et al. do not emphasize interoperability in their survey and the authors
have not taken into account newer middleware or approaches like Hydra [23],
CAMPUS [19] [24], MUSIC [25], or an IOP developed in the SOFIA-project [26].
The scalability of the systems or middleware is also omitted in their survey.

i) Bellavista et al. highlight that the context data production and consumption
should be possible at different times, and sinks and sources do not have to
know each other. Thus, both time and space decoupling has to exist.

ii) The second requirement stresses that only currently required context data
needs to be distributed, and the distribution has to adapt to available re-
sources, such as computational capabilities, and wireless standards.

iii) The third requirement emphasizes that context data typically has a limited
visibility scope that depends on physical or logical locality.

iv) The fourth requirement is about an enforcement of QoC-based constraints, such
as data delivery time and reliability, to enable correct system management.

v) The fifth requirement relates to handling the life cycle of context data and
highlights that the context data distribution should be able to self-control
the data distribution process.

1.3 Problem statement

The complexity of ubiquitous computing has promoted dedicated context-aware
approaches and some of these are presented in Section 1.2. These approaches
are not reusable or have not been able to adapt the behavior of the ubiquitous
system at run time. A recent survey [20] related to context-aware middleware
solutions shows that the existing context-aware middleware solutions do not fulfill
the requirements set for the context data delivery approach. The survey has em-
bedded context data security for context data management, which is problematic
from the modularity and decoupling point of view.
Therefore, there is a need for an approach that

1. is reusable as such or partly,

2. provides semantic interoperability,

3. enables dynamic and behavioral interoperability between the receiver and
sender of the information at run time,

4. is scalable by being modular, and decoupled.

Ubiquitous systems are dynamic by nature, as there are frequent changes in the
amount of users and devices within them. Therefore, the design methods, archi-
tectural patterns and principles need to be studied if they are to be revised.

1. Introduction

24

1.4 Goals and scope

Thus, the goal of this research is to develop an approach that supports i) interop-
erability by the semantics of information, and ii) scalability by being modular, and
decoupled. The approach is also supposed to perform context management at run
time by adapting its behavior according to the situations and supporting other
software agents to adapt accordingly. The context management is to be tunable at
run time and also reusable as such or partly. To fulfill the goal of interoperability,
the relevant context ontologies need to be surveyed and used as much as possi-
ble. This is due to the need to generate a context model that forms the interopera-
bility basement by being generic and expandable with domain specific concepts.
The context model should not include concepts that are application specific or
needed for measuring or handling qualities. The software requires semantics to be
interoperable and intelligent. This thesis will focus on the ontological context mod-
el as this model is likely to have potential for achieving interoperability between
different and heterogeneous devices and their embedded smart software.

The approach we are looking for needs to be scalable to be able to provide
context management from personal to home and office spaces toward city envi-
ronment. The scalability asks for a relatively simple approach that would be easy
to understand, natural, and not complicated to use beside of being modular and
decoupled. The approach will support invisibility by being nondisturbing and em-
bedded as much as possible. The simplicity helps to manage the complexity of the
ubiquitous system. The complexity can be simplified by, e.g., dividing it according
to the characteristics or functionality of the system. The simplification can also be
done by changing from distributed to centralized computing. This is the aim in
distributed baseband computing used in the cloud as a centralized pool for meet-
ing the constantly changing capacity and coverage demands on the mobile net-
work. These demands arise as the users of smartphones, tablets, and other smart
devices switch applications and devices at different times and places [27].

The complexity of ubiquitous or autonomic computing was manifested by Paul
Horn, from IBM. The author represents the perspective of managing the complexity by
concentrating on the characteristics of the computing system [28]. This manifesto has
been inspired by the human autonomic nervous systems that are adaptive by nature.
The IBM manifesto presented eight characteristics for autonomic applications or sys-
tems, which were later formulated by Parashar and Hariri, in [29], as follows:

1. Self Awareness: An autonomic application/system “knows itself” and is
aware of its state and its behavior.

2. Self Configuring: An autonomic application/system should be able to con-
figure and reconfigure itself under varying and unpredictable conditions.

3. Self Optimizing: An autonomic application/system should be able to detect
suboptimal behavior and optimize itself to improve its execution.

1. Introduction

25

4. Self-Healing: An autonomic application/system should be able to detect po-
tenteial problems, recover from problems, and continue to function smoothly.

5. Self Protecting: An autonomic application/system should be capable of de-
tecting and protecting its resources from both internal and external attacks
and maintaining the overall system security and integrity.

6. Context Aware: An autonomic application/system should be aware of its
execution environment and able to react to changes in the environment.

7. Open: An autonomic application/system should be able to function in a
heterogeneous world and should be portable across multiple hardware and
software architectures. Consequently, it must be built on standard and
open protocols and interfaces.

8. Anticipatory: An autonomic application/system should be able to anticipate,
to the greatest possible extent, its needs and behavior and those of its con-
text, and be able to manage itself proactively.

Based on the experience of a huge, embedded, and real-time system, the author
believes that the manifesto has relevant but high-level requirements for designing
systems like the BTS of a mobile network. The manifesto is open to various inter-
pretations, as it describes the autonomic system in an abstract and mildly idealistic
way, while not providing any technological solutions for building the system. Based
on the experience, the author concentrates on the first and the sixth requirement
of the manifesto: self-awareness and context-awareness. Context-awareness in
this thesis includes both of the awareness requirements. This focus is due to the
experience that the system first has to know itself and its environment to be able
to fulfill the second, the third, the fourth, the fifth, and the eighth requirement – to
configure itself, to optimize itself, to recover, to protect itself and to be proactive.
The seventh requirement, to be open, is important for reaching interoperability. It
guides the selection of development techniques or removes restrictions where the
cognitive radio is aiming at by reusing the available radio spectrum.

The context data distribution system [20] does not use the IBM manifesto by
any means, even though there are several research results [7] [29] [30] [31] [32]
[33], in addition to the work reported in this thesis, that use the manifesto and a
closed-loop control as a basis for their approaches, surveys or systems. Bellavista
et al. in their new survey [20] stress that the context data distribution is still missing
a viable approach for the self-adaptation of data processing, i.e., aggregation and
filtering, at run time. This thesis fulfills this need except for the context delivery
part. This is due to the available technical solutions for the context data delivery.

The novel and distilled results of this thesis are:

1. A context management approach that supports i) interoperability by the
semantics of information, and ii) scalability by being modular and decou-
pled. It performs at the run time by adapting its behavior according to the
situation and by supporting other software agents to adapt accordingly. It is
tunable at the run time and also reusable as such or in part.

1. Introduction

26

2. An ontological context model for enabling and managing semantic interop-
erability. It is generic and expandable for heterogeneous domains and run-
time quality management.

3. Demonstrations that validate the developed approach and the ontological
context model.

4. A proposal to exploit the approach and the context ontology also in areas
other than smart spaces. The usage possibilities are estimated in the digital
BTS based on the experience gathered, in particular.

5. Knowledge in the area of information theory, autonomic computing, dynamic
software product lines, and embedded systems.

6. A proposal to revise SPL for the development of dynamic and context-
aware systems.

1.5 Research approach and method

The contributions of this thesis are based on the experiences gathered during
embedded software development at Nokia Networks from 1993 to 2008 and, sub-
sequently, on research at VTT Technical Research Centre of Finland. The indus-
trial experience of the huge embedded software system at Nokia Networks forms
a sound basis for building up a new approach to developing context-aware appli-
cations. Figure 5 illustrates how this research has proceeded, from software de-
velopment practices to the development of applications.

Figure 5. The path of this research, from grass-root practices to the development
of applications.

1. Introduction

27

The work began by studying the state-of-the-art results of software product line
(SPL), which is a well-known development practice to enhance the productivity of
the software development organization. An organizational evolution of digital sig-
nal processing (DSP) software development was studied and compared with both
the organizational models for the SPL and a multistage model for the software life
cycle. A new organizational model for product line development was introduced.
The new hybrid model clarifies long-term responsibilities in large software organi-
zations with hundreds of staff members and formulates the organization according
to the software architecture. The evolution phase in the multistage model was
extended for BTS DSP software.

The work continued by studying context-awareness and then extending the in-
teroperability platform of the SOFIA project [26] to support context-awareness.
According to the separation-of-concerns principle [34] [35], context-awareness
was proposed to be separated from the application logic to its own software
agents. This was done to increase reusability and to decrease complexity. In addi-
tion, the research done on embedded software product development led to the
insight that a reusable asset needs to be small and simple, not complex. With
these criteria in mind, a conceptual model for supporting context-awareness was
created. Thus, the foundation for context management in a ubiquitous system was
created. This novel model included a context ontology and a concept for context-
awareness that would enable context monitoring, context reasoning, and context-
based adaptation.

The concept was further developed and introduced as a reusable approach to
reach context-awareness. This new approach was called context-aware micro-
architecture (CAMA). The micro-architecture is a set of patterns used together to
realize parts of a system or subsystem [36]. CAMA provides a solution for manag-
ing an adaptation based on the context. It consists of three types of software
agents: context monitoring, context reasoning, and context-based adaptation
agents. These agents do not communicate directly with each other as the infor-
mation flows via a semantic database. Each agent is usable as such, can be du-
plicated when needed, and is updatable at the run time. The first result is thus
achieved.

The context ontology of the model was also developed further and published as
a context ontology for smart spaces (CO4SS). CO4SS is generic and extensive
with its six contextual dimensions: physical, digital, situational, user, social, and
historical. Consequently, the second result is achieved.

This research was carried out within real and laboratory environments, and this
is why case studies have been used as the main research method. The case
studies involved either a single case or multiple cases, and numerous levels of
analysis [37]. If the case is studied as a whole, it is called a holistic case study,
whereas if the case includes multiple units of analysis, it is called an embedded
case study. According to the guidelines introduced in [38], the case study is a
suitable research method for software engineering research since it studies con-
temporary phenomena in their natural context. In software engineering, the case
may be a software development project [39].

1. Introduction

28

The feasibility of the developed approach, including CAMA and CO4SS, is
demonstrated in four application development cases. The aim in the first applica-
tion was to use CAMA to create the context-aware agents that were configured
during the design time. This application was intended for activating the required
functionality according to the rules and existing situations in the smart home, i.e.,
to 1) wake-up the user according to the first meeting of the current day (if it is a
workday) and the time usually used for the morning activities after wake-up and 2)
prepare coffee when the user is woken up. The aim in the second application was
to use CO4SS for adding the necessary functionality at the development time and
to check its ability to expand with domain-specific parts that were created to con-
trol the lighting. The second application was in the smart home to switch on the
lighting at the right time, according to the preferences set by the user.

The third application had to do with a smart maintenance scenario. The aim
was to check i) the mapping of CO4SS and domain-specific ontology, and ii) the
reusability and reconfigurability of the context monitor agent at the run time. The
context was used to supervise the progress of the maintenance scenario. The
fourth application was GuideMe, with the aim of exploiting context, security, and
performance information for adapting the service according to the quality require-
ments and the context of the user, as well the smart environment, without bother-
ing the end-user. The implemented GuideMe was able to identify situations and
adapt itself accordingly. The GuideMe i) enhanced navigation, e.g., according to
the destination of the driver and available parking slots near by the destination and
ii) rerouted if there was an accident on the selected route. The configuration was
done at the run time. The third result is achieved with these successful applications.

The fourth result is presented in Section 5.5, which discusses the use in areas
other than the smart space. The fifth result provides new knowledge, which was
created by this research and presented in Sections 5.3 and 5.4. The sixth result
relates to the proposal to revise the SPL, which is presented in Publication I. Table
1, Table 2, and Table 3 clarify the contributions of Publications I to IX, and the
thesis according to the research steps.

1. Introduction

29

Table 1. Contributions to the state of the art.

Research
step

Ref Contribution

Study
state-of-the-art

II Study existing organization models for SPL and a multistage
model for software life cycle. Compare both models in view of the
organizational evolution of DSP software development.

III Evaluate existing interoperability models, architectures for smart
environment, and context-aware and self-adaptive solutions for
networked devices.

VI Evaluate middleware platforms that i) provide a context storage
and management layer, and ii) comply with the dimensions for
decentralization, portability, and interoperability.

VII Evaluate context ontologies that i) provide convenient, general,
and relevant concepts, and ii) are suitable for heterogeneous
smart spaces.

I Evaluate the influencing factors when architecting embedded and
real-time software for digital BTSs and compare their usefulness
for context-aware systems. Propose to revise the SPL if needed.

Thesis Supplementary study in the area of context-aware middleware
solutions, and the context ontologies.

Table 2. Contributions to the approach.

Approach IV Develop a context-awareness support for the interoperability
platform (IOP). Follow the separation-of-concerns principle.

V Develop a concept for semantic agents for managing context.

VI Create context-aware agents that are updatable at run time and
reusable.

VII Develop a generic context ontology for smart spaces which is
expandable and can be aligned with separate ontologies. The
generic context ontology should provide concepts, such as soft-
ware agents, for providing services and rules for defining use
situations. The ontology should not include concepts that are
application specific or needed for measuring or handling qualities.

1. Introduction

30

Table 3. Contributions to validating the researched and developed approach.

Application IX Test the context-based adaptation in the smart maintenance
scenario, where the context and domain-specific ontologies are
mapped for a context-aware supervision feature.
The Context Monitor agent is reconfigurable at run time.

VIII Test the usage of context monitoring in run-time security management.

III Test the usage of CAMA and CO4SS, as they are merged to the
adaptation framework and used in the navigation scenario.
Run-time configuration is used.

VI Test CAMA with CO4SS to activate the required functionality,
according to the rules and existing situations in the smart home.
This is a cross-domain (personal space and the user’s smart
home) scenario to wake the owner up with a design-time configu-
ration.

VII Test CO4SS and CAMA in the smart home to switch the lighting
on at the right time according to the preferences set by the user.
This is the cross-domain scenario between the personal space
and the home of the user, where CO4SS is used at development
time and it is expanded with domain specific parts that are created
to control the lighting in the home.

1.6 Summary of the publications and overview of the thesis

This thesis consists of an introductory part and nine original publications. The
introductory part presents the objectives and scope of this work and summarizes
the contributions. Chapter 2 presents the background for the thesis. The reusable
and semantic approach to develop context-aware applications is described in
Chapter 3. The validation of the proposed solution is introduced in Chapter 4.
Chapter 5 discusses the theoretical consequences, practical influence and the
recommendations for further research. Chapter 6 concludes the thesis.

This thesis consists of nine publications. Publication I represents a review from
the architecture perspective, when the system is either real-time and embedded in
the industrial setting or ubiquitous in the research computing. The significance of
the context is also addressed. To gain real advantage of or to be able to use the
new methods for software development, the relevant hardware support needs to
exist. The revised SPL approach is proposed to guide the architecture via an un-
derstanding of the eligible ecosystem toward small functionalities or subsystems.
Each of these subsystems is a micro-architecture with a unique role.

Publication II studies existing organization models for SPL and a multistage
model for the software life cycle. It compares both models in view of the organiza-
tional evolution of DSP software development. Publication II has been written
mainly by the author. Jorma Taramaa pointed out the relevant references for the
telecommunication domain and Eila Ovaska (former Niemelä) for the state of the
art for software architectures.

1. Introduction

31

Publication III introduces the adaptation framework for the situation-based and
self-adaptive applications. It provides state of the art analyses of the existing in-
teroperability models, architectures for the smart environment, and context-aware
and self-adaptive solutions for networked devices. CAMA is embedded to the
framework with CO4SS, which is updated by mapping it with a run-time perfor-
mance management ontology (RPM). The adaptation framework is used to devel-
op a GuideMe application and the development is successful. The development
process is also illustrated. The author contributed to the adaptation framework
concerning the context-awareness agents, CO4SS, ontology mapping and being
the main author for the publication. Jarkko Kuusijärvi was responsible for the im-
plementation work for Publication III.

Publication IV proposes an extension to the IOP to support context-awareness.
The extension follows the separation-of-concerns principle. The concept of IOP
and the primary challenges in the design of smart space applications are also
illustrated. This publication argues that to achieve the greatest possible scalability
in supporting context-awareness in smart environments, context-awareness needs
to be detached from the semantic database into separate facilities.

Publication V presents a set of new capabilities for achieving context-
awareness in smart spaces. The capabilities are a novel context ontology and a
set of software agents for context monitoring, reasoning and context-based adap-
tation. The use of the context-awareness concept is exemplified by an emergency
scenario of a smart city. The writing of Publication V was mainly carried out by the
author of this dissertation. Kirsti Simula brought her knowledge of the software
agents with beliefs, desires, and intents to the publication. She also created rules,
based on the Semantic Web Rule Language (SWRL) to check the feasibility of the
proposed context ontology. Due to space limits, these rules had to be left out of
the publication.

Publication VI describes the context-aware micro-architecture for designing
software as one that enables reacting to the current situation or being proactive
and taking upcoming circumstances into account. The CAMA approach is also
enhanced from the context-awareness concept presented in Publication II. The
enhanced CAMA is used in two scenarios, which are instantiated to a personal
smart space and a smart home. The writing of Publication VI was mainly carried
out by the author. The implementation to validate the proposed work was carried
out by Jarkko Kuusijärvi.

Publication VII presents the context ontology for smart spaces. CO4SS is cre-
ated, based on the work published in Publications II and III. CO4SS is used to
switch on lights according to the calculated wake-up time and user preference.
The context monitoring agent has been a motivator for the creation of a reusable
monitor [40] by the colleagues of the author. The writing of Publication VII was
mainly carried out by the author of this dissertation. The implementation to validate
the proposed work was carried out by Jarkko Kuusijärvi.

Publication VIII introduces the use of context monitoring in a micro-architecture
for a security adaptation. The relevant context information that affects the infor-
mation security in smart spaces is described. This approach is used, e.g., in a

1. Introduction

32

greenhouse demonstrator. Publication VIII is co-authored with Antti Evesti. The
author of this dissertation was responsible for the context ontologies and context
monitoring, while also contributing to the most relevant context for information
security.

Publication IX describes a case study where CAMA and CO4SS are used as a
part of the smart maintenance process of a building. The Context Monitor agent is
designed and implemented to supervise the phases of a building maintenance
process. A new way for binding the context information relevant for the context
monitoring agent is also presented. The writing of Publication IX was mainly car-
ried out by the author of this dissertation. The implementation was done by Su-
sanna Ferrari, as a part of her thesis work (Tesi di Laurea) at the University of
Bologna, Italy.

2. Background

33

2. Background

This chapter presents the relevant background information on software architec-
ture, software development based on the reuse principle and software develop-
ment for context-aware applications in embedded and ubiquitous systems. First,
the software architecture and reuse are introduced and then relevant architectural
patterns are presented. Context-awareness and situation-awareness are sur-
veyed. Last, the context ontologies are presented.

2.1 Software architecture and reuse-based software
development

Software architecture is an important element in each software system. It is used
to illustrate the structure and the environment of a software system. Software
architecture shares information about, e.g., the partitioning of the system to small-
er parts, the deployment to the processors, and the priorities of the tasks. Publica-
tion I presents the most common definitions for software architecture. The role of
the software architecture grew in BTS DSP software development during the
1990s and 2000s. This and other characteristics of DSP software development,
such as the use of a processor-specific assembler until the end of the 1990s, is
described in Publication II.

Software architecture has a key role when managing software development.
The exploitation of previous knowledge or the outputs of software development is
called software reuse. Software reuse can be defined as the process of creating
software systems from existing software, rather than building software systems
from scratch [41]. It has been emphasized to be a key method for significantly
improving quality and productivity [42]. Software reuse requires the commonalities
and variabilities to be found in the system under development. Publication II states
that the commitment for software reuse needs to exist at each level of the software
development organization and that software reuse needs to be planned and organized.

Software reuse based on SPLs has been successfully applied in the software
industry and several cases have been reported in various publications [43] [44]
[45] [46] [47] [48]. The SPL engineering is about finding the commonalities and
variabilities. SPL can be defined as follows:

2. Background

34

 “A software product line consists of product line architecture and a set of
reusable components that are designed for incorporation into the product
line architecture.” [45]

 “Beyond simple reuse or a component-based development strategy, a
software product line lets an organization manage and evolve its product
family holistically, as a single, unified entity.” [49]

 “A software product line is a set of software-intensive systems, sharing a
common, managed set of features that satisfy the specific needs of a par-
ticular market segment or mission and are developed from a common set
of reusable core assets in a prescribed way.” [50]

The organizational evolution of DSP software development is compared with the
organizational models for SPL. The results of the comparison analyses as well the
organizational models are presented in more detail in Publication II.

SPL is a valid approach when seeking the benefits in modifying the products of
a product group. The main process-centric SPL approaches are surveyed in Pub-
lication I. Based on this survey and the development experience gathered in the
industry, the SPL approach is recommended to be revised to better suit context-
aware systems. The revision is needed for advising the software architect to con-
centrate on small functionalities or subsystems after catching the overall under-
standing of the whole context-aware system. These subsystems are micro-
architectures, having a dedicated role like performance, energy-efficiency and secu-
rity management or a more generic role like context management.

The micro-architectures are the building blocks for dynamic ubiquitous systems,
where smart units cooperate with each other and with human beings. The micro-
architectures are to be designed from the bottom-up instead of top-down, as is the
case with the SPL approach. As stated in Publication I, the micro-architecture
should be configurable at design time, at instantiation time and during run-time.

SPLs are evolved to dynamic SPLs (DSPL), which extend existing SPL ap-
proaches by moving their capabilities to the run time [51]. DSPLs are considered
to be comparable with the other approaches for developing adaptive systems [51].
DSPLs do not have any support for interoperability. Their support for the system
changes all the time is minimal or even non-existing, because of the coming and
going of devices, appliances or user. DSPLs guide the application to be built as a
monolith and from the top-down. Therefore, the revised SPL is more suitable than
DSPL to be used for architecting context-aware systems.

2.2 Architectural patterns and principles

As mentioned earlier, the aim of this thesis is to find an approach that is reusable,
simple, semantic and that also offers context management at the run time. Accord-
ing to the reuse and the separation-of-concerns principle, we are looking for an
approach that is a micro-architecture and supports context-awareness. The sepa-
ration-of-concerns principle means that context-awareness will be separated from

2. Background

35

the remainder of the software system. This also complies with the reuse principle,
as context-awareness is a commonality for the ubiquitous as well as for embedded
systems.

To manage something within software, such as the context, the thing to be
managed needs to be monitored and analyzed. Usually the monitored data and
the results of the analysis are saved for future reference. Therefore, an architec-
tural pattern: a MAPE-K loop [52] [30], is exploited in the developed solution to
manage the context. IBM introduced the MAPE-K loop as a new approach for a
feedback control mechanism to monitor the behavior of the system and to enable
taking appropriate actions [52]. The MAPE-K loop, presented in Figure 6, consists
of four phases: Monitor, Analyze, Plan, and Execute, all of which share
Knowledge. The loop is called an autonomic manager. The four parts are working
together to provide a control loop functionality and they are supposed to collabo-
rate using asynchronous communication techniques, such as a messaging bus.

Figure 6. MAPE-K loop.

The MAPE-K loop has been used for communicating the architectural aspects of
autonomic systems that are also called self-managing systems or self-adaptive
systems [7]. The MAPE-K loop has also been applied in the MUSIC middleware
[25] and in a conceptual model of DSPL [53]. As mentioned earlier in this thesis,
autonomic computing is suitable for ubiquitous computing to enable intelligent
behavior. This research uses the MAPE-K loop in a new manner, by using a data-
base to share the knowledge. The MAPE-K loop has been stated [7] to be a soft-
ware component and that the knowledge is shared inside the loop. The approach
of this thesis brings more granularity to the MAPE-K loop i) by using a semantic
database to share the knowledge instead of, e.g., sending messages inside the
MAPE-K loop, and ii) by decoupling the MAPE parts to separate agents in order to
promote scalability. The semantic database forms the basis for interoperability. It
is used “globally” in the system and not only locally by the proposed approach.

The multipart, multidevice, and multivendor (M3) is a baseline architecture with
three interoperability levels – device, service, and information. The IOP, developed
in the SOFIA-project [26], complies with the M3 concept and supports information
interoperability by means of Semantic Information Brokers (SIB). The SIB forms a
backbone, which stores all the information as Resource Description Framework

Analyze Plan

Monitor Execute

Knowledge

2. Background

36

(RDF) triples. The triples are subject-predicate-object expressions, where the
subject presents the resource to be described, the predicate the type of a property
relevant to this resource, while the object can be data or another resource. Thus,
the SIB constitutes an RDF database and the RDF [54] is a directed, labeled
graph data format for representing information on the Web.

The software agents can connect to the SIB and exchange information through
a Smart Space Access Protocol (SSAP) that is an eXtesible Markup Language
(XML) based interaction protocol. The software agent is called a Knowledge Pro-
cessor (KP) in the IOP. The agents use a Knowledge Processor Interface (KPI) to
communicate with the SIB. The KPI provides SSAP operations to join, leave, in-
sert, remove, update, query, subscribe, and unsubscribe. Three different instantia-
tions of the SIB are created: The Smart-M3 SIB for resource rich devices and
systems without real-time requirements [55] [56], the SOFIA Application Develop-
ment Kit (ADK) for simulation purposes with Java, and the RDF Information Broker
Service (RIBS) [57] for resource constraint devices with high security and perfor-
mance requirements.

The work that is reported in this dissertation will combine the IOP and the
MAPE-K loop in a single solution and will also extend the IOP with a context-
awareness capability. The proposed solution, the micro-architecture for managing
the context, requires an RDF-based database, but not necessary any of the intro-
duced IOP-based SIBs. Figure 7 presents the communication via an RDB-based
database between different micro-architectures. Publication III presents how the
interoperability levels were elaborated, cf. Figure 2, in order to better adapt them
to the development of smart environments and their applications. Basically, the
first three levels (from bottom to top) are relatively similar to the levels of the C4IF
[58] and M3 models [26].

Figure 7. Micro-architectures communicate via an RDF-based database.

2. Background

37

2.3 Context-awareness and situation-awareness

It is necessary to introduce the context as a part of the software system architec-
ture. In an embedded software system, the external context of a subsystem is
drawn to show the dependencies with the other subsystems. The internal context
is also illustrated to show the dependencies between the different functionalities or
design parts inside the subsystem. The context of embedded software system is
discussed in Publication I. In ubiquitous systems, the context is often drawn via
the user and his/her location. There has been a great deal of discussion about the
context: what it is, how to model it, and how to use it to implement a ubiquitous
application. The most cited definitions for context and context-awareness have
been given by Dey and Abowd [59]:

 “Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered to be rel-
evant to the interaction between a user and an application, including the
user and the application themselves”.

 “Context-awareness is a property of a system that uses context to provide
relevant information or services to the user, where the relevancy depends
on the user’s task”.

The importance of context-awareness has been pointed out in various research
results on pervasive and ubiquitous computing [12] [13] [60] [61] [62] [63]. Con-
text-awareness will improve the software’s ability to adapt to dynamic changes
that are influenced by various factors during the operation of the software.

Context-awareness can be enhanced by situation-awareness that represents
the ability to detect and reason about real-life situations [15]. Adaptations in con-
text-aware applications are caused by a change in the situation, i.e., a change of a
context value triggers an adaptation if the context update changes the situation
[12]. The situation can be a simple one, an abstract state of a certain entity (e.g., a
room is occupied), or a human action taking place in an environment (e.g., work-
ing or cooking) [64]. There are different kinds of relationships between situations:
generalization, composition, dependence, contradiction, and temporal sequence
[64]. Therefore, the handling of situations can be considered the most important
feature to be supported by the micro-architecture of this dissertation. In embedded
software, this kind of handling has usually been managed by state machines,
whereas in ubiquitous software situations can be managed, e.g., by rules.

Embedded software is highly complex and its behavioral testing is challenging
as the amount of states is huge. A recently published approach [65] proposes
context-aware model-checking to be used for testing the behavior. The approach
refers to use cases, or scenarios, as the context. The context describes how the
environment interacts with the system. It corresponds to an operational phase
identified as a system initialization or a reconfiguration. The context is illustrated
by activity and sequence diagrams. The use of sequence diagrams is a common
way to illustrate the behavior between the different actors. This work will also use

2. Background

38

sequence diagrams to illustrate the flow of context information between the differ-
ent software agents and the SIBs when creating applications to test the proposed
solution. In an embedded software system, the environment is often well known,
which is not the case in a ubiquitous software system. Ubiquitous software uses
semantics, the ontological approach, to manage the heterogeneous environment.

2.4 Ontological context model

In connection with context and context-awareness, the role of ontologies has been
emphasized [13] [60] [61] [66]. Ontological models of context are highlighted to
provide clear advantages in terms of heterogeneity and interoperability [12], while
there are also other approaches to modeling contexts as introduced by Strang and
Linnhoff-Popien [11]. The approaches for context modeling are introduced in more
detail in Publication I.

An ontology is an explicit specification of a conceptualization [67]. The ontology
is also defined to be a shared knowledge standard or a knowledge model defining
primitive concepts, relations, rules, and their instances [68]. As mentioned above
in the Introduction, there is a need for new software approaches to enable seman-
tic interoperability. Therefore, the ontological approach is used in this research to
empower the software to understand the data, such as the value of the tempera-
ture, from heterogeneous sources.

An extensive work [69] compares the ontology-based models that are used in
pervasive computing systems and provides details of the Context Ontology Lan-
guage (CoOL) [70], the Standard Ontology for Ubiquitous and Pervasive Applica-
tions (SOUPA) [71], and the CONtext ONtology (CONON) [72] [73]. It also intro-
duces an ontology for the Context-Driven Adaptation of Mobile Services (Co-
DAMoS) [74]. The work points out that SOUPA is the most consistent set of ontol-
ogies since it imports many of its concepts from external, consensual domain
ontologies, such as the Friend-Of-A-Friend (FOAF) ontology. For more details on
FOAF, see [75].

The work in [69] criticizes the ontology-based systems, due to their attempt to
provide a single system-wide description rather than building complexity through
composition. It concludes that i) composition is clearly important within an open
pervasive system, and ii) individual issues, such as security and privacy, should
be specified separately because they have an overall effect on the information that
is collected, represented, exchanged and used. The author shares this conclusion
and emphasizes the goal of this thesis, which is to develop a generic context on-
tology that is expandable and can be aligned with separate ontologies. The gener-
ic context ontology should employ concepts, such as software agents, for provid-
ing services and rules for defining different situations. It should not include con-
cepts that are application specific or needed for measuring or handling qualities.

The generic context ontology should be composed of different dimensions, to
enable it to be reusable, as such or partly. Being generic and reusable, it lays the
foundation for the application designers to extend it with other ontologies required

2. Background

39

by the applications at hand. The existing ontologies do not meet the requirements
set for a generic ontology, even though a couple of contextual ontologies have
been presented since the comparison work was published.

The ontologies published afterward are: i) the Context-Aware Middleware for
Pervasive and Ubiquitous Service (CAMPUS) [19] [24], and ii) the Self-Management
Pervasive Service (SeMaPS) [23]. CAMPUS was first introduced as CAMPO on-
tologies with CAMPUS middleware [24] and, at that time, it was divided into con-
text, component, and application ontologies. In its new form, CAMPUS includes
context, tasklet, and service ontologies [19]. It has mixed the concept of physical
quantity to its context ontology. It does not use any concepts of situation.
CAMPUS is dedicated to work with the CAMPUS middleware and it is targeted to
enabling the changing of composition at run time. SeMaPS was presented with the
Hydra Middleware, which is dependent on OSGi [76]. SeMaPS provides a device
oriented set of ontologies for recognizing malfunctions and managing repairing
actions as far as it is possible. The concept of situation is not presented. SeMaPS
is a composition of many ontologies, including, e.g., the Quality of Service (QoS)
ontology. SeMaPS and CAMPUS based systems support dynamic context, but not
dynamically changing rules.

The IBM manifesto [28] and the autonomic computing architecture [52] do not
recognize the ontological approach as a means to create an autonomic computing
system. This is due to the fact that the ontological research has been activated
only after the manifesto and it has begun to catch the research community’s atten-
tion at the same time with the autonomic computing architecture. Seven years
after the manifesto, in 2008, semantics is mentioned by Huebscher and McCann
[7] as a challenge for the autonomic computing community. As a short summary,
generic context ontology

 is suitable for all kinds of smart space applications;
 is reusable as such or in part, i.e., it is a composition of smaller ontologies;
 supports situations and rules;
 provides the semantics, the third level of information; cf. Figure 3; and
 enables semantic interoperability, cf. Figure 2.

3. Reusable, semantic, and context-aware approach

40

3. Reusable, semantic, and context-aware
approach

In this chapter, the developed approach is presented from the concept level to the
context-aware micro-architecture. In addition, the creation of context ontology is
introduced. The use of the micro-architecture and context ontology to develop
situation-based and self-adaptive, i.e., context-aware, applications is described in
Chapter 4.

The Interoperability Platform (IOP) combines the semantic representation of
knowledge with an information-based interoperability model. The IOP is inspired
by the shared semantic-based memory presented in [77], which does not specifi-
cally address the issue of device or technology heterogeneity in ubiquitous envi-
ronments. A semantic distributed repository is proposed in [78] for the discovery
and composition of information processing services. The semantic technologies
are used, as in the IOP, to achieve information interoperability between data pro-
viders and consumers. The IOP supports any smart space application when the
proposal in [78] focuses on service input or output modeling for workflow composition.

Two approaches to extending the IOP are identified and originally described in
Publication IV. These approaches will be shortly introduced in the following as the
related work forms the basis for the incremental development by the author of the
reusable, semantic, and context-aware micro-architecture. The first approach is to
extend the SIB and it is presented in Figure 8. The second approach is to offer
context processing services as support software, as is shown in Figure 9. The SIB
offers an interface for the applications and context-aware agents as illustrated by
the form of a lollipop. The arrows represent the dependencies between the SIB
and the applications or context facilities.

3. Reusable, semantic, and context-aware approach

41

Figure 8. The extended SIB approach.

The extended SIB approach violates the separation-of-concerns principle, as the
context management is embedded to the SIB. This approach does not scale well
because the SIB is also burdened with the context-based computing. The support
software approach fulfills the separation-of-concerns principle as the context pro-
cessing is separated from the SIB and the applications. It also increases reusabil-
ity as the context management can be used as such or in part or it can be not
used, depending on the needs of the application developers. The support software
approach seemed to be the better choice for providing context management.

Figure 9. Context processing services as support software.

The support software approach complies with the first requirement set for the
context data distribution system [20]: “The context data production and consump-
tion should be possible at different times, and sinks and sources do not have to

3. Reusable, semantic, and context-aware approach

42

know each other. Thus, both time and space decoupling has to exist.” In addition
to the separation-of-concerns principle, the support software approach follows the
IOP’s publish-subscribe communication between the SIB, the context facilities and
the application agents. Therefore, data production and consumption is possible,
asynchronously and anonymously. This approach is also modular as the context
processing services are detached into separate agents. The support software
approach supports i) scalability by being modular and decoupled, ii) interoperabil-
ity with the semantics, and iii) invisibility by being nondisturbing and embedded as
much as possible. The support software approach laid the foundation for the con-
text management approach, i.e., the first result of the thesis.

3.1 Reusability

Publication II introduces the belief that it is vitally important to formulate the organ-
ization according to the software architecture, and it is essential to have a dedicat-
ed development organization with long-term responsibility for the software. Based
on the experience, it can be stated, that without long-term responsibility, there is
no software reuse. The natural way to decrease the software development efforts is
to increase reuse. To successfully reuse software, the commitment to reuse has to
exist at every level of the organization. Communication is most essential for getting
this commitment. Software architecture is really important in sharing the information
and the reasons; architecture is vital for reuse. The aim of creating a foundation for
software reuse can quite easily be sacrificed because of business pressure or un-
clear responsibility for sharing between the line organization and project(s).

The strength of the software product line (SPL) is that it clarifies responsibility
issues in creating, modifying and maintaining the software needed for the compa-
ny’s products. Publication I has identified that one key issue in the context-aware
systems is to reuse the existing, e.g., communication technologies and devices, as
much as possible, at least at the start of development, to minimize the amount of
new things. Based on the experience and an experiment, it can be stated that a
MARTE profile has been developed from a hardware design point of view because
software reuse seems to have been neglected.

3.2 Context-awareness concept

Context management is a support layer functionality for intelligent applications
and, therefore, it needs to be generic. As mentioned earlier in Chapter 2, context
management uses a semantic database, such as the SIB, to share the knowledge.
This increases modularity and reusability as each element in the context man-
agement communicates via the SIB and not directly with each other. The A and P
of the MAPE-K loop were not feasible for the context management because of its
generic nature. Those parts are meaningful, e.g., in the quality management as
the run-time security management [21] or the run-time performance management [22].

3. Reusable, semantic, and context-aware approach

43

The context management does not need the MAPE-K loop components Ana-
lyze (A) or Plan (P), as it is a servant for the other parts in the smart application. It
needs a reasoning part instead. The author prefers to use adaptation as a term
instead of execution in the context-awareness concept. Consequently, the concept
needs to include elements for monitoring, reasoning and adaptation. These ele-
ments are software agents and they are presented in more detail in Section 3.2
and, originally, in Publications V and VI. Their usage is introduced in Chapter 4
and in Publications III, VI, VII, VIII, and IX.

In addition to the approach of this thesis, there are other approaches that have
simplified the MAPE-K loop to three [7] [30] [31] [32] or even two [29] stages. The
names of those stages vary according to the approach and they are introduced in
the survey on self-healing systems [33]. The self-healing property is the 4th char-
acteristic in the IBM manifesto. The approach of this thesis uses a database for
the data-flow and, therefore, this approach does not have tight dependencies
between stages as the other approaches do due to the fact that their data flows
from stage to stage until the adaptation happens. The context-awareness concept
was originally presented in Publication V.

The semantic knowledge increases the reusability and enables information in-
teroperability. It is composed of a set of ontologies, where the context ontology
plays the core role. The context ontology is expandable with relevant ontologies
based on the needs of the application. The context ontology takes into account:

1. The varying resources: the used communication techniques and the com-
puting capabilities. This data is continuously changing.

2. The user preferences and needs, also at run time.

3. The other users and possible users as the usage and the behavior of the
smart application depends on the role of the smart space, which can be
public, such as a smart city, or private, like a personal space.

The development of the context ontology was inspired by the SOUPA [71] ontolo-
gy and the upper context conceptualization approach [61]. The former because it
has been designed for smart spaces and it is agent-centric with beliefs, desires,
and intents. The latter proposes that User is part of Environment, which is com-
posed of Digital Environment and Physical Environment. The latter and the se-
mantic context information triangle [12] are used as a basis for the creation of the
context ontology. The triangle describes that the context information is layered
from physical to digital and then to situational information. The first version of the
context ontology is shown is Figure 11. The context ontology is presented in more
detail in Section 3.3 and originally in Publication VII. Its use with context manage-
ment agents is introduced in Chapter 4 and in Publications III, VI, VII, VIII, and IX.

The context-awareness concept relates to the pervasiveness support that is il-
lustrated in Figure 1 and is described to constitute the pervasive middleware in [3].
The content of pervasive middleware is presented in Figure 4 and named as con-
text data distribution functionality. The context-awareness concept, with the soft-

3. Reusable, semantic, and context-aware approach

44

ware agents and the context ontology, corresponds to the context data distribution
functionality as highlighted in Figure 10.

Figure 10. The context-awareness concept, in comparison with the context data
distribution system described in [20].

The context-awareness concept fulfills the second requirement for the context
data distribution system [20], which is: “Only currently required context data needs
to be distributed, and the distribution has to adapt to available resources such as
computational capabilities, and wireless standards.” It does this by offering the
relevant context at the run time. The application also has its duties to configure the
context management in such a way that only the relevant context is requested.
The run-time performance management [22] takes care of, e.g., the computational
capabilities.

The third requirement for the context data distribution system [20] is: “The con-
text data typically has a limited visibility scope that depends on physical or logical
locality.” This can be dealt with by appropriate reasoning based on the context.
The reasoning is managed based on the rules that are updatable at run time, but
that are, again, based on the needs of the application. The context-awareness
concept takes care of the managing processes, while the application is responsi-
ble for the setting and updating of the rules.

The fourth requirement for the context data distribution system [20] is: “The
context data distribution is about an enforcement of QoC-based constraints, such
as the data delivery time and reliability, to enable the correct system manage-
ment.” This requirement can be dealt with by the run-time quality management
supported by the run-time context management. Publication III introduces the
adaptation framework with the performance, security, and context management
that will be enhanced by other quality attributes, such as reliability, in the future.

The fifth requirement for the context data distribution system [20] relates to
handling the life cycle of context data and highlights that the context data distribution
should be able to self-control the data distribution process. This can be fulfilled by
the run-time context management, such as the context-awareness concept. The
life cycle of context can be managed by an appropriate context model, such as the
context ontology of this thesis, which is expandable by additional ontologies.

3. Reusable, semantic, and context-aware approach

45

As far as the author is aware of the related work in the area of context data dis-
tribution systems, this work is the first one to fulfill the requirements set by Bel-
lavista et al. in [20]. Their survey claims that there is a need for new approaches to
solve the requirements set and they do not mention the work mainly done in the
SOFIA-project [26], in which the IOP was extended with run-time context man-
agement. Other more recent studies were also omitted, such as Hydra [23],
CAMPUS [19] [24], MUSIC [25]. This work differs from the aforementioned studies
regarding at least three points: i) the use of the ontologies, ii) the management of
the adaptation, and iii) the dependence on OSGi. Section 2.4 presents the reasons
for CO4SS being more advanced than the ontologies related to Hydra and CAMPUS,
and Section 5.2 compares MUSIC and Hydra with the work of this thesis. The
MUSIC and Hydra middleware are presented in more detail in Publication III.

The context-awareness concept is reusable on many levels. It supports scala-
bility because it is decoupled and modular. It uses a semantic database and uses
an ontology for the context. Thus, it is also semantic and provides interoperability.
It constitutes an embedded feature for providing run-time context management for
the smart environment. Therefore, it also supports invisibility.

Figure 11. A simplified version of the context ontology.

3. Reusable, semantic, and context-aware approach

46

3.3 Context-Aware Micro-Architecture

The aim of this work is to develop a context management approach that uses
semantics and is tunable even at the run time. The approach will need to be scal-
able from personal space to home and from office spaces to city environment. Its
execution environment is highly dynamic as the information changes constantly,
e.g., with new sensors or devices appearing, new temperature sensor output val-
ues, and new users or visitors.

As already pointed out in the concept description above, with its separated
agents using the semantic database, such as the SIB, the solution is a scalable
and reusable one. The agents also need to be scalable, reusable, and configura-
ble. An agent can be, e.g., configured to monitor a certain set of the context. This
is called contextual scoping. The scoping is a way to focus on a specific aspect or
functionality. CAMA fulfills the gap concerning the self-adaptation of context data
processing, which was identified in the recent survey by Bellavista et al. in [20].
Compared to the dedicated solutions that were introduced in Section 1.2, CAMA
has the advantage of being independent of context data delivery techniques and
implementations languages.

CAMA was compared, in Publication VI, to the middleware classification from
the viewpoint of the developer of context-aware applications. The classification was
performed by Eugster et al. for 22 middleware platforms [79]: AURA, CAMUS,
CARISMA, CARMEN, CASS, CoBrA, ContextToolkit, Cooltown, Context-aware Pub/Sub,
CORTEX, CoWSAMI, EgoSpaces, Hydrogen, INFOWARE, LimeLite, Middle-
Where, MobileGaia, MobiPADS, PERVAHO, SOCAM, SpatialViews, and STEAM.

Only few middleware platforms (3 platforms out of 22) were interesting for us
due to them both providing high-level programming support and complying with
the three given architectural dimensions. The high-level programming support
means that the middleware platform adds a context storage and management
layer to the previous layers. The three architectural dimensions are: (1) decentrali-
zation; (2) portability; and (3) interoperability. Decentralization measures a plat-
form’s dependence on specific components. Portability classifies platforms into
two groups: portable platforms, which can run on many different operating sys-
tems, and operating system dependent platforms, which can only run on few op-
erating systems (usually one). Interoperability measures the ease with which a
platform can communicate with heterogeneous software components.

Ideal interoperable platforms can communicate with many different applica-
tions, regardless of the operating system they are built on or of the programming
language they are written in. The three relevant middleware platforms were
CARISMA, Hydrogen, and CoWSAMI. Normally they do not have the ontology
support for providing an information-based interoperability as is available in the
context management approach of this thesis.

It is a common architectural pattern to simplify the complexity by dividing it ac-
cording to the characteristics or functionality of the system. According to the au-
thor’s experience, the division was done in a top-down fashion in the digital BTS,

3. Reusable, semantic, and context-aware approach

47

which is an example of the usual but huge embedded system. In ubiquitous sys-
tems the division needs to be done in a bottom-up way, as these systems are
more heterogeneous as regards their i) computing resources from sensors to
coffee makers and from cars to mobile phones, and ii) user interfaces.

The author claims that the right way to divide the complexity in ubiquitous systems
is to use contextual scoping. The context is a well-known and commonly used
term in embedded and real-time systems, where it has not been used in a very
user-oriented way, as it has been in pervasive or ubiquitous computing. The other
difference between these computing areas is to be found in the management of
privacy and security. The use of context is discussed in more detail in Publication I.

A typical example of the use of context-awareness agents is given in Figure 12.
The numbered arrows between the agents and SIB show a logical work division as
the context is usually monitored before the reasoning and context-based adapta-
tion. Publication VI presents the context monitoring, context reasoning, and con-
text-based adaptation agents more deeply.

Figure 12. Context-awareness agents and one SIB.

The context monitoring and reasoning agents can be used to communicate with
two SIBs, as is exemplified with the context reasoning agent in Figure 13. The
context reasoning agent functions as is requested in its rules, and there is a rule
also for publishing specific context information to the Home SIB alongside the
Personal SIB. This kind of communication is known as cross-domain communica-
tion as the dialogue happens with two domains: personal and home space. CAMA
thus constitutes the first result of this thesis – the context management approach
which uses semantics at the run time.

Figure 13. Example of context-awareness agents working with two SIBs.

SIB

Context
reasoning

Context
monitoring

Context-based
adaptation

1.

2.

3.

Personal
SIB

Context
Reasoning

Context-based
Adaptation

1.

2.

3.
Home
SIB

4.

Context
Monitoring

3. Reusable, semantic, and context-aware approach

48

3.4 Context Ontology for Smart Spaces

This thesis proposes a new context ontology called Context Ontology for Smart
Spaces (CO4SS) to be used for situation identification in context-aware applica-
tions. This ontology was formulated because existing ontologies do not have the
following characteristics:

 support for physical, digital, historical, situational, user, and social context
 the quality management concepts are not mixed to the context ontology
 support for illustrating a situation as a rule or a set of rules.

The core part of SOUPA [71] is very similar to that of CO4SS. SOUPA also in-
cludes extension parts for, e.g., supporting specific types of pervasive application
domains. Both CO4SS and the ‘SOUPA core’ use existing ontologies for describ-
ing the user and properties needed for pervasive and ubiquitous applications.
CO4SS does not include security concepts, unlike the SOUPA core.

CO4SS was enhanced from the context ontology presented earlier within the
context-awareness concept. It is more extensive and richer with the concepts and
properties used. The user context and the situational context form separate parts
and the social context was added after a case study where the context-aware
supervision was developed for a smart maintenance process (see Publication IX).

Previously CO4SS employed beliefs, desires and intensions enabled through
agents like in the SOUPA core. We do not have them anymore because we de-
cided to use rules for describing desired situations and intended behavior in the
smart space. CO4SS uses five contextual levels: physical, digital, situational, user,
and social. The historical context can include information from all the levels and,
therefore, it cannot be classified as one of the contextual levels.

The main class in CO4SS is the Context, including properties for representing
State, Time, and Location. The main class is one of the enhancements realized
after the first version of context ontology, as is shown in Figure 11. The properties
of the Context are passed down to the subclasses, which are: PhysicalContext,
DigitalContext, SituationalContext, UserContext, SocialContext, and HistoricalCon-
text. The contextual levels, the main class, and the subclasses are described in
more detail in Publication VII.

CO4SS is further enhanced by mapping with a Runtime Performance Man-
agement ontology [22] and an Information Security Measuring Ontology (ISMO)
[80]. The former mapping is illustrated in Publication III and the latter mapping was
originally presented in Publication VIII and, later, as an enhanced version in Publi-
cation III. CO4SS is the second result of this thesis – an ontological context model
that is generic and suitable for heterogeneous domains.

3.5 Contributions vs. related work

This section introduces a side-by-side comparison of the contributions of this the-
sis with the related work in the form of a table; two tables have been set up for

3. Reusable, semantic, and context-aware approach

49

CAMA and one for CO4SS. Table 4 presents a comparison of CAMA related to
other comparable platforms and solutions. Table 5 introduces how the use of
MAPE-K in CAMA differs from the original presentation by IBM and from the use
of MAPE-K in autonomic computing and in self-adaptive software. Table 6 pre-
sents a comparison of CO4SS related to other context ontologies or ontologies
used for adaptations in the application.

CAMA uses a semantic database, such as the SIB, to share the knowledge.
This increases modularity and reusability, as the elements in the context man-
agement communicate via the SIB and not directly with each other. CAMA is an
extension of the IOP [26] and it uses the MAPE-K loop [28], [52] in a new manner.
It supports i) interoperability by the semantics of information, and ii) scalability by
being modular and decoupled. It performs context management at run time by
adapting its behavior according to the situation and supporting other software agents
to adapt accordingly. It is tunable at run time and also reusable as such or partly.

Table 4. The contributions of CAMA compared to other platforms or middleware.

Related work Differences
Mitola et al. [10]
(cognitive radio)

Similar approach
- has a cognition cycle.
- has a learning path and software agents.
- uses micro-“things”.

Korpipää [14],
Boytsov et al. [15]
Roy et al. [16],
Rothermel et al. [17],
Xue et al. [18],
Wei et al. [19]

Dedicated solutions
- are not as reusable as CAMA
- are not independent of

o context data delivery techniques
o implementation techniques.

Eugster et al. [79]
(middleware
classification)

Does not have ontology support for providing information-based
interoperability.

Bellavista et al. [20]
(context data
distribution system)

Includes
- the context data sources and sinks
- the context data security; problematic for modularity and

decoupling.
Omits scalability.
Does not emphasize interoperability.
Does not take into account:

- Hydra [23], CAMPUS [19] [24],
- MUSIC [25], and IOP [26].

Hinchey et al. [51]
(DSPL)

Has no support for interoperability.
Has minimal or even non-existing continuous support for system
changes because of the coming and going of devices, appliances or
users
Guides toward building applications as a monolith and in a top-down
way.

3. Reusable, semantic, and context-aware approach

50

Interoperability
platform [26] (IOP)

Has no context-awareness capability.

Zhang et al. [23]
(Hydra)

Uses SeMaPS ontologies
- supports a dynamic context
- no dynamically changing rules.

Is dependent on OSGi.

Hallsteinsen et al. [25]
(MUSIC)

Uses ontologies only during design-time.
Adaptation decisions are based on utility functions.
Is dependent on OSGi.
Applies the MAPE-K loop.

Bencomo et al. [53]
(conceptual model of
DSPL)

Applies the MAPE-K loop.

CAMA uses the MAPE-K loop by using a database to share the knowledge. This
work brings more granularity to the MAPE-K loop by i) using a semantic database
to share the knowledge instead of, e.g., sending messages inside the MAPE-K
loop, and ii) decoupling the MAPE parts into separate agents so as to promote
scalability. CAMA does not need the Analyze (A) or Plan (P) components of the
MAPE-K loop as it operates as a servant for the other parts in the smart applica-
tion. It requires a reasoning part instead. The author prefers to use the term adap-
tation instead of execution. Consequently, CAMA was designed to use agents for
monitoring, reasoning and adaptation. The semantic database is used as the basis
for interoperability. It is used “globally” in the system and not only locally by the
proposed approach.

Table 5. Contributions of CAMA compared to MAPE-K and autonomic computing.

Related work Differences
the IBM manifesto [28],
the IBM blueprint [52]
(MAPE-K loop)

Has control loop with four stages.
Uses communication via asynchronous technologies, such as a
messaging bus.
Has no semantics.
Has no database for the K-part.
No decoupling as the loop is deployed as one element.
Scalability is a challenge because of no decoupling.
Reuse is not considered; characteristics are not shared for
reusable and system specific ones.

Huebscher et al. [7],
(usage of MAPE-K)

The loop is a single software component.
The knowledge is shared inside the loop.
The loop has three stages.
Data flows between the stages until adaptation happens; tight
dependency.
Mentions semantics as a challenge for the autonomic computing
community.

3. Reusable, semantic, and context-aware approach

51

Kephart et al. [30]
(vision of autonomic
computing)
Salehie et al. [31]
(self-adaptive sw)
Garlan et al. [32]
(Rainbow)

The loop has three stages.
Data flows between the stages until adaptation happens; tight
dependency.
Has no database for the data-flow.

Parashar et al. [29]
(an overview of
autonomic computing)

The loop has two stages.
Has no database for the data-flow.
Data flows between the stages until adaptation happens; tight
dependency.

CO4SS is expandable for heterogeneous domains and run-time quality manage-
ment. It can be aligned with separate ontologies. It uses concepts, such as soft-
ware agents, for providing services and rules for defining use situations. It does
not include concepts that are application specific or needed for measuring or han-
dling qualities.

CO4SS is composed of smaller ontologies to enable it to be reusable, as such
or partly. Thus, it is also generic. It provides the semantics, i.e., the third level of
information, cf. Figure 3, and it also enaebles semantic interoperability, cf. Figure 2.

Table 6. Contributions of CO4SS compared to the related work.

Related work Differences
Mitola et al. [10]
(cognitive radio)

Has no support for the semantics.

Bellavista et al. [20]
(context data distriebution
system)

Has no support for the semantics.

Comparison in [69]
includes CoOL [70],
SOUPA [71], and CONON
[72] [73]. It also has
CoDAMoS [74].

Not composed of multiple ontologies.
Concepts are either application specific or needed for measuring
and handling qualities.

Wei et al. [19], [24]
(CAMPUS)

The concept of physical quantity is mixed to its context ontology.
Has no concepts for situations.
Dedicated to work with the CAMPUS middleware.
Enables changing a composition at run time.

Zhang et al. [23]
(SeMaPS)

Is presented with the Hydra Middleware; OSGi dependency.
Is a device oriented set of ontologies.
Has no concept of the situation.
Includes, e.g., Quality of Service (QoS) ontology.
Supports dynamic context.
Has no dynamically changing rules.

4. Validating the context-aware micro-architecture

52

4. Validating the context-aware micro-
architecture

The validation cases carried out will be introduced in this chapter. The first case is
concerned with the use of context monitoring to manage information security at
the run time. The second case is located in the smart home, where CAMA is used
in a cross-domain fashion with CO4SS. In this case the design-time configuration
was used. The third case has to do with a smart building maintenance solution,
which was enhanced by a context-based adaptation. The third case validates the
reconfigurability and reusability of the context monitoring agent. The fourth case
introduces the adaptation framework, where CAMA and CO4SS are adapted to be
used with the run-time security and performance management to develop situa-
tion-based and self-adaptive applications for the smart environment. The fourth
case used the run-time configuration.

The validation cases exploited the semantic information according to CO4SS. A
dynamic and behavioral interoperability between the receiver(s) and sender(s) of
the information was achievable at run time. The context-aware micro-architecture
proved to be reusable from case to case entirely or partly. It was used partly – as
a context monitoring agent – by the run-time security management, as described
in Section 4.1 and Publication VIII. The CAMA agents used the database to com-
municate with each other or with the rest of the application. Therefore, CAMA is
decoupled and it is also modular as its functionality does not include any embed-
ded management of security or any other quality attributes.

4.1 Context monitoring for run-time security management

Context monitoring is used for recognizing the changes in the context information
that are relevant for security. It is used as a part of a micro architecture for security
adaptation, as presented in Figure 14. The context information for security has
originally been presented in Publication VIII. The security is keen to be informed
when there are changes in

 the role of exchanged or stored data
 the role of the smart space and its services and repute of the services
 the role of the user in the smart space.

4. Validating the context-aware micro-architecture

53

The corresponding concepts and properties of CO4SS used for monitoring the
above mentioned context information for security are introduced in Publication III.
This case, even at the concept level, showed how easily the context monitoring
agent can be reused to produce input for the security management. In a similar
way, the context monitoring agent can also be used for fulfilling other input needs.

Figure 14. Context monitoring used in micro-architecture for security adaptation.

4.2 Context-aware behavior in the smart home

Two applications were developed to test CAMA and the coverage of CO4SS. These
cases behaved according to the design-time configuration, originally presented in
Publications VI and VII. The run-time configuration was experimented with within the
adaptation framework and is presented in Section 4.4 and in Publication III.

The behavior in the applications was illustrated as Message Sequence Charts
(MSCs), which were created with the Microsoft Visio tool. The code for the first
application was designed and generated by the Smart Modeller tool, which is
intended for end-user programming [81] [82]. The second application, which was
concerned with the lighting control system, was implemented with the Python
programming language. The latter application used RIBS [57] as a SIB for both
home and personal spaces. The intention with this application was to validate the
creation of context-awareness agents with the design-time configuration. The
applications were decided to be very simple to allow thorough testing of the practi-
cal achievements, CAMA and CO4SS.

The first application was designed for

1. Waking up the user, according to the first meeting of the current day (if a
working day) and the time that is usually used for the morning activities af-
ter wake-up

2. Preparing coffee when the user is woken up.

The latter scenario scaled up from the personal space to a cross-domain applica-
tion working between the personal and smart home spaces.

The second application was designed to switch on the lighting at the right time,
according to the preferences set by the user. The smart home was simulated. The
usefulness of the context ontology in carrying out reasoning actions based on the
user context was validated in this application. A domain specific ontology was
created to control the lights. The desired behavior for the user at home was suc-
cessfully implemented by using CAMA and CO4SS in both applications.

4. Validating the context-aware micro-architecture

54

Both of the applications showed the reusability and the scalability of the seman-
tic context-aware micro-architecture. These applications were invisible, as far as it
was possible to work based on the preferences and the calendar of the user.

4.3 Context-based adaptation in smart building maintenance

An existing smart building maintenance application was enhanced with context
monitoring to enable it to supervise its progress in a maintenance scenario. The
domain specific ontology for building maintenance was already in existence and
CO4SS was mapped with it to share the monitored context. This case study was
originally presented in Publication IX.

A new way to bond the relevant context information to the context monitoring
agent was created, in which the context is selected with a Graphical User Interface
(GUI), called Context Selector. The creation of the Context Selector was part of
the thesis work of another person and it was presented in Italian in [83]. The Con-
text Selector uses CO4SS and domain specific, i.e., building maintenance related,
ontologies in the creation of selection boxes. The user, a maintenance operator in
this case, can then select the relevant context by clicking the respective boxes.

The mapping between CO4SS and the building maintenance ontology had to
be done by hard coding because the ontologies did not share the same concepts.
The context monitor, once again, proved to be a reusable approach. It is also
scalable as it can be instantiated multiple times for different monitoring purposes,
even within a single application. The behavior of the context monitor is configura-
ble, as in this case via the Context graph.

Figure 15. Context-aware Supervision of a Smart Maintenance Process.

4. Validating the context-aware micro-architecture

55

Figure 15 illustrates the smart maintenance application that was enhanced by the
context-aware supervisor. The supervisor is a context monitoring agent that is
instantiated for every fault that appears in the building. The supervisor looks after
the building maintenance process to make sure it runs as planned. In case the
process is not proceeding the way it should, the maintenance company is in-
formed via the SIB of the delay in the building maintenance.

4.4 Adaptation framework

Context management using dynamic rules is explored in the adaptation frame-
work, where the context management is aligned with the security and performance
management. The adaptation framework represents a novel architecture with
generic ontologies for context, security, and performance management. It uses
dynamic models to perform run-time reasoning and adaptation. By using the
framework, the application developer can create situation-based and self-adaptive
applications for the smart environment. The framework has been introduced in
detail in Publication III.

The adaptation parts of context, security, and performance management are
separated from their corresponding micro-architectures and gathered together in
the framework to enable managing the adaptation. This forms a centralized ele-
ment for managing the execution of the adaptation based on the models that are
updatable at the run time. Publication III presents, in more detail, the related solu-
tions, the MUSIC [25] and the Hydra [23] middleware, which are compared to the
adaptation framework. The adaptation framework differs from MUSIC and Hydra in
the management of the adaptation, and in the run-time use of the ontologies.
MUSIC and Hydra are both dependent on OSGi, unlike the adaptation framework.

In the adaptation framework the security management, for example, constitutes
a separate element with its specific internal parts, which enables it to independent-
ly follow the execution of the rest of the MAPE-K loop. The inner parts are coupled
together, which is not the case with context building. Context building functions as
a core servant for the other run-time management facilities. Therefore its inner
parts, which are needed for monitoring, filtering, and reasoning, are working inde-
pendently and only share the context information via the SIB.

The adaptation framework showed the viability of the dynamic micro-
architectures as building blocks when developing situation-based and self-
adaptive applications for the smart environment. It also proved to work in an invis-
ible way as it did not disturb the users. Generic ontologies are needed in addition
to micro-architectures to support run-time updatable rules and to provide an
evolvable semantic interface to different devices for sharing information. This case
and the cases described above prove that the third result of this thesis – demon-
strations that validate the developed approach and the ontological context model –
is accomplished.

5. Discussion and conclusions

56

5. Discussion and conclusions

5.1 The manifesto of autonomic computing and the
information levels

IBM’s manifesto [28] has been an inspiring vision to reach a system that computes
autonomously. The manifesto provides eight characteristics that are at a high-level
of abstraction but relevant for the embedded system, such as the BTS of a mobile
network whose duty is to serve the network operator to fulfill the needs of mobile
phone users. As stated earlier in the introduction, the work that is described in this
thesis concentrates on two of these characteristics: self-awareness and context-
awareness. This is due to the experience gathered during the fifteen years at the
software development of the BTS in Nokia Siemens Networks. According to this
experience the system has to first know itself and its environment to be able to
fulfill the other requirements, such as to configure itself, to optimize itself, to re-
cover, and to protect itself. To know its state and its environment the system has
be context-aware.

CO4SS provides a common language for designing applications to be able to
form an interoperable system that also has a few – if not all – the characteristics of
the manifesto. CO4SS enables the semantics, the third level in Gitt’s layers of
information, which is presented in Figure 3. CO4SS is also modular, as it consists
of the ontologies for a physical, digital, social, user, and situational context. It is
also expandable by the domain ontologies, as was performed in the smart home
applications, described in Section 4.2. To be modular and expandable means that
CO4SS provides scalability.

CO4SS can be mapped to the existing ontology, as was done in the smart
building maintenance that was highlighted in Section 4.3. It has also been en-
hanced to work for the run-time information security as presented in Section 4.1.
In addition, it has been aligned with the run-time performance management ontol-
ogy; see Section 4.4 and Publication III. Thus, CO4SS forms the basis for achiev-
ing an interoperable system or application.

The ontologies can be seen as interface specifications of the semantic web that
is an enhancement of the current World Wide Web (WWW). The WWW is based
on the open standards and the same applies to the semantic web. The ultimate

5. Discussion and conclusions

57

idea with the ontologies in the semantic web is that they are openly usable via the
Internet, but they can also be used in a proprietary fashion. The Internet has be-
come the de facto pervasive communications system across the world [84].

The usage of ontologies complies with the seventh, “open”, characteristic of the
manifesto. Ontologies are created with a Web Ontology Language (OWL) and the
information is saved as RDF triples to the database. In the application cases of
this work, the information is exchanged through the SSAP protocol, which is the
XML-based interaction protocol. For deduction, we used a Query Language for
RDF (SPARQL), as it is a generic solution that can be applied with all application
programming languages. Publication III presents the comparison of rule lan-
guages. The OWL, RDF, XML, and SPARQL are specifications, recommenda-
tions, or standards of the W3C.

Figure 16. Enhanced Greenhouse Demonstration.

In addition to the open standards and protocol, the CO4SS, like ontologies in
general, provide a clear advantage to build a system based on heterogeneous
devices or things that are computing applications written with many languages.
The legacy devices can also be easily added as part of the system. Publication III
goes through the demonstrations done in the SOFIA project by the author and her

5. Discussion and conclusions

58

colleagues that relate to the adaptation framework which is presented shortly in
Section 4.4.

The first demonstration, Smart Greenhouse [84], impressively showed, e.g.,
how the smart space evolves and extends incrementally without modification to
the existing devices. This demonstration was later enhanced by the legacy device
to provide an indoor location of the gardener as illustrated in Figure 16. The indoor
location information was exploited to detect if or when the Gardener came close to
the external display from the Linux laptop to change the computing of the Garden-
er’s application from his portable device, Nokia N810, to the Linux laptop. The
legacy device was easily added to the existing demo with a small adapter software
that read the location information and wrote it to the SIB.

The second characteristic of the manifesto – self-configuring – is reached by
the dynamic agents of CAMA, as they are configurable at run time via the seman-
tic database, such as Smart-M3 SIB or RIBS. The GuideMe application, presented
in Publication III, was created by the adaptation framework and the actions of
context-reasoning agent were controlled by the dynamically changing rules. A
dynamic context monitoring agent was created in the smart building maintenance
case as presented shortly in Section 4.2 and in more detail in Publication IX.

CAMA and CO4SS provide the following four characteristics of the manifesto:

1. Self-awareness
2. Self-configuring
3. Context-aware
4. Open.

The remaining characteristics – self-optimizing, self-healing, self-protecting, and
anticipatory – are system specific features. Therefore, they cannot be directly
provided – even though supported – by the generic facilities offered by CAMA and
CO4SS. Scalability is not evidently clear in the manifesto, as it is an invisibility,
even though it considered as a “hidden” characteristic. CAMA and CO4SS support
both scalability and invisibility. The agents of CAMA are working on the infor-
mation levels four, pragmatics, and five, apobetics, as presented in Figure 3. They
support reaching the targeted aim by monitoring, reasoning and activating re-
quired adaptations.

Dobson et al. wrote in 2010 [85] that the original vision of autonomic computing
remains unfulfilled. The authors were asking if we engineers had set an impossible
goal for ourselves to create a true autonomy from a collection of programs. They
also state that while too many solutions to individual problems have been created,
there is a need for integrating solutions that combine the point solutions into auto-
nomic systems. CAMA and CO4SS are generic and targeted to provide interoper-
ability between the different actors in a system and, therefore, they possess the
required characteristic as an integrating solution for an autonomic and intelligent
system.

The paper by Kephart and Chess [30] has been used a great deal as a refer-
ence for the MAPE-K loop. The authors approach autonomic computing from the
viewpoint of an enterprise system and claim that self-management is the essence

5. Discussion and conclusions

59

of autonomic computing systems. They concentrate on the four characteristic of
the manifesto: self-configuration, self-optimization, self-healing, and self-
protecting. They do not concentrate on any other characteristics, as is done in this
work. The other difference is that their MAPE-K loop works inside an autonomic
element which will be an agent. Their MAPE-K works as a closed loop and inside
the agent, whereas in this work the MAPE-K loop is distributed to the different
agents which communicate via the semantic database.

5.2 Architecture-based adaptation and adaptation frameworks

Dynamic adaptation models are highlighted by Oreizy et al. in [86]. One of those
models is proposed by Kramer and Magee [87] and their model is a layered refer-
ence architecture for autonomous or self-managed systems. The reference archi-
tecture is inspired by robots and has three layers. The MUSIC development
framework [25] presents itself to be compliant with the MAPE-K model [30] and
also compares itself to the reference architecture of Kramer and Magee.

Publication III introduces, in more detail, the adaptation framework shortly pre-
sented in Section 4.4 and goes through two other context-aware and self-adaptive
solutions for networked devices which are closest to the adaptation framework.
Those solutions are MUSIC and Hydra [23].

The paper of MUSIC development framework [25] is published at the same
time with Publication III. The differences between these frameworks come from
the usage of the ontologies and the management of the adaptation. MUSIC only
uses ontologies during the design-time and adaptation decisions are based on
utility functions. Hydra has the SeMaPS ontologies that support a dynamic con-
text, but not dynamically changing rules. MUSIC and Hydra are both dependent on
OSGi, as is not the case with the adaptation framework and its micro-architectures
such as CAMA.

5.3 Practical implications and limitations

This thesis introduces a novel approach for a run-time software architecture that is
a context-aware micro-architecture, CAMA, which has a core role in managing
interoperability and dynamics. CAMA can be seen as a servant for other micro-
architectures or functionalities needed. CAMA embodies a new bottom-up way of
designing a context-aware application. It is reusable and modular, as it can be
used as such or partially by employing, for example, just its monitoring agent.
CAMA is a new architectural pattern. It is decoupled as its agents use the data-
base to communicate with each other or with the rest of the application. It supports
the semantic approach.

The semantic addition to CAMA is reached by the context ontology for smart
spaces, CO4SS. The CO4SS ontology is a new one, it provides a wide coverage
and it is composed of physical, digital, situational, user, social, and historical con-
text dimensions. It is a common language for smart space applications, expanda-

5. Discussion and conclusions

60

ble, and it can be aligned with the domain-specific and quality management ontol-
ogies. The work reported in this thesis and the related work in the micro-
architectures for the run-time security and performance management has formed
the basis for the creation of a reusable monitor agent [40].

Here are some points worth noting with regard to the implementation effects of
CAMA and the CO4SS:

 The application developer is free to choose the implementation language
and this is also supported by different KPIs that are available at the Smart-
M3 Open Source Project, see [55].

 CO4SS is an OWL-file or a composite of the OWL-files.

 The semantic approach requires an RDF-based database, such as the
SIBs are.

 The context reasoning is successfully exemplified by using the SPARQL.

 XML-based interaction protocol, SSAP, is used between the agents of
CAMA and the SIBs. The SSAP is also available at the Smart-M3 Open
Source Project, see [55].

 OWL, RDF, and XML are W3C’s recommendations and SPARQL is a
W3C’s standard.

The power in CAMA relies on the usage of the standard and web-based tech-
niques, in the separation-of-concerns principle, and in the enhanced MAPE-K
loop. CAMA is highly dynamic, which is due to the run-time updatable rules. The
creation of the rules is slightly laborious and the rules are usually created while
describing the functionality of used agents by the MSCs. The rules present the
desired behavior and are written into the text boxes of MSCs, as can be seen in
Figures 10 and 11 in Publication III. There is a lack of tools for designing this kind
of dynamic behavior. Open source tools for editing ontologies exist, such as Pro-
tégé, and NeOn toolkit.

CAMA has been validated in two different SIBs, but not with the “Big Data”
storage. The scalability seems to be attainable with CAMA through multiplying the
amount of agents. The scalability of CAMA is to be validated more thoroughly in
the future. CO4SS has the potential to become a de facto context ontology for the
context-aware, i.e., intelligent applications.

5.4 Theoretical implications

This thesis provides new knowledge, e.g., by comparing

 the development of the embedded software system to the ubiquitous one in
Publication I,

 CAMA and CO4SS to the requirements set for the context distribution system
in this thesis,

5. Discussion and conclusions

61

 the information levels originated from the information theory to the interop-
erability levels of smart environment,

 CAMA and CO4SS to the characteristics of the IBM’s manifesto for the au-
tonomic computing.

CAMA and CO4SS are similar approaches, as presented in the intelligence crea-
tion for the cognitive radio in [10] because of the usage of i) the cognition cycle in
the cognitive radio and the MAPE-K loop in this thesis, ii) the software agents
driven by knowledge, and iii) the micro-worlds in the cognitive radio and the micro-
architectures proposed to be used to design applications or systems in this work.

This thesis also highlights how the characteristics of the IBM manifesto for au-
tonomic computing is congruent with the high-level requirements of the BTS as a
huge embedded system. The control-loop technique for autonomic computing,
MAPE-K, is used in a new way for decoupling the agents by using the semantic
database to exchange information between the agents. The usefulness of the DSPL
in developing situation-based and self-adaptive applications is also discussed.

5.5 Employment in the other areas

The mobile network is global and, in that sense, it is “ubiquitous”. As it is spread
around the world, it has the potential to be an enabler for digital services. The
author believes that the base stations are viable candidates to be service provid-
ers for the smart environment. The base station can offer storage to be used for
the semantic database(s). The semantic databases can be used together with
base band pools to meet the constantly changing capacity and coverage demands
on the mobile network.

The ontologies can be used “privately” within the system, such as the digital
BTS, even though they are meant to be openly used via the Internet for all of
those that are interested in taking advantage of the ontologies. CAMA and ontolo-
gies can be used in the digital BTS:

1. to configure it

2. to develop cognitive radio

3. to activate certain features or services at the run time

4. to manage faults

5. to manage the usage of the memory in the real-time and to control the
software. The DSP software has hard real-time requirements. CAMA with
the ontologies might meet the requirements in the usage scenarios where
the requirements are “only” real-time and not hard real-time.

A smart environment can use the information that is provided by the legacy devic-
es or appliances with the help of software adapters that will do the translation from
legacy to the semantic information; cf. Indoor Location system in Figure 16. The

5. Discussion and conclusions

62

ubiquitous research has neglected the existing mobile network as a building block
to reach the Weiser’s vision.

5.6 Recommendations for future work

The context-aware ecosystem is missing, e.g., its system architecture can be
relieved by using the existing network infrastructure to carry the computing and
controlling burden. The 3G and 4G base stations and the resources in the cloud
can form the global computing pool for the smart environment. Therefore, it would
be interesting to explore the usage of the 3G and 4G base stations as computing
platforms for the semantic databases. This may enable new revenue, e.g., for
network infrastructure providers and network operators.

As written above, the CAMA, in terms of its scalability, requires further validation.
To do that, the following viewpoints are to be taken into account:

 to use the “Big Data” database, as it includes a lot more data than the SIBs
that are used during the work of this thesis.

 to multiply the amount of CAMA agents.

 to stress the context reasoning agent with more rules and with more nested
rules than is done in the work for this thesis.

6. Summary

63

6. Summary

Since 1991, when Weiser’s vision of the ubiquitous computing arose, there has
been a multitude of research results to face certain challenges or to provide other
approaches to support pervasiveness. The ubiquitous technologies are reaching
everyday life, but they have not yet been brought through. The ecosystems for the
ubiquitous appliances are still missing and this is hindering the breakthrough.
Ubiquitous ecosystems are hard to establish, as they should cover all the things
that we are using, ranging from home appliances to cars, bicycles, and portable
devices.

The main contribution of this thesis is the development of a reusable and se-
mantic approach to developing situation-based and self-adaptive software so as to
enable our surroundings to behave in an intelligent way. This approach includes
CAMA and CO4SS and it is independent of implementation languages and com-
munication techniques. Thus, it provides free hands for application developers to
use the most suitable languages and techniques. The CAMA, as an architectural
pattern, is usable without its semantic support, the CO4SS. The context monitor-
ing agent of CAMA has been a motivator for the creation of a reusable knowledge
processor by the colleagues of the author. The context monitoring agent is used,
e.g., for the run-time security management and is applied to supervise the pro-
gress of the building maintenance. It is also applied to the adaptation framework.

The validation cases done showed that CAMA is a reusable solution and to-
gether with CO4SS it provides the semantics needed for interoperability. CO4SS
proved to provide relevant concepts to build the situation-based and self-adaptive
software. It can be expanded with the domain-specific and quality ontologies.
Even though the approach that is presented in this thesis is validated to be feasi-
ble, invisible, and scalable, additional research is needed to validate the scalability
of the approach. Based on the scalability research to come, the deployment guide-
lines can be formulated.

Ubiquitous computing is still missing system architecture that enables forming a
robust ecosystem that is also profit-making. Without a viable system architecture,
there is a lack of control and this is hindering the breakthrough of ubiquitous com-
puting or intelligent systems. CO4SS has the potential to be either the de facto
ontology for creating situation-based and self-adaptive software, or to form the
ontology basis for ubiquitous systems. CAMA embodies a highly dynamic ap-

6. Summary

64

proach to managing the context needed for specific applications or for specific
system functionalities, such as the control of energy consumption, information
security management, fault management, or performance management.

In addition to the practical results, i.e., CAMA and the CO4SS, this thesis has
produced new knowledge by comparing the information levels originated from the
information theory with the interoperability levels of smart environment. In addition,
this thesis highlights how the characteristics of the IBM manifesto for autonomic
computing are congruent with the high-level requirements of the BTS as a huge
embedded system. The standardization of the mobile networks has created a
basis for building up ecosystems, even though the regulators based on the stand-
ardization are still hindering the breakthrough of the technique, such as a cognitive
radio for reusing the radio spectrum available. CAMA and CO4SS might be usable
in the creation of intelligence for the cognitive radio.

New knowledge is also provided by comparing the proposed approach with the
characteristics of the IBM manifesto for autonomic computing as well by compar-
ing the proposed approach with the requirements set for the context data distribu-
tion system. The control-loop technique for autonomic computing, MAPE-K, is
used in a new way to decouple the agents by using the semantic database to
exchange information between the agents. The usefulness of the DSPL in devel-
oping situation-based and self-adaptive applications is also discussed.

65

References
[1] Weiser, M. The Computer for the 21st Century. Scientific American, 265(3)

(1991), 94–104.

[2] Satyanarayanan, M. Pervasive Computing: Vision and Challenges. IEEE
Personal Communications, 8(4) (2001), 10–17.

[3] Saha, D., Mukherjee, A. Pervasive Computing: A Paradigm for the 21st

Century. Computer, 36(3) (2003), 25–31.

[4] Morris, C.W. Foundations of the Theory of Signs. International Encyclopedia
of Unified Science. Vol.1, No. 2, The University of Chicago Press, originally
published in July 1938, 9th impression (1957).

[5] Shannon, C.E., Weaver, W. The Mathematical Theory of Communication.
University of Illinois Press. Originally published in a clothbound edition in
1949, 6th printing of the paperbound edition (1975). ISBN 0-252-72548-4.

[6] Gitt, W. Information: The Third Fundamental Quantity. Siemens Review
6(89) (1989), 36–41.

[7] Huebscher, M.C., McCann, J.A. A survey of Autonomic Computing – De-
grees, Models, and Applications. ACM Computing Surveys, 40(3) (2008),
Article 7.

[8] Valenta, V., Marsalek, R., Baudoin, G., Villegas, M., Suarez, M., Robert, F.
Survey on Spectrum Utilization in Europe: Measurements, Analyses and
Observations. Proceedings of CROWNCOM 2010. 5th International Con-
ference on Cognitive Radio Oriented Wireless Networks and Communica-
tions, IEEE Computer Society (2010), 1–5.

[9] Haykin, S. Cognitive Radio: Brain-Empowered Wireless Communications.
IEEE Journal on Selected Areas in Communications, 23(2) (2005), 201–220.

[10] Mitola, J. III, Maquire, G.Q. Jr.. Cognitive Radio: Making Software Radios
More Personal. IEEE Personal Communications, 6(4) (1999), 13–18.

[11] Strang, T., Linnhoff-Popien, C. A Context Modelling Survey, Proceedings of
UbiComp 2004, the 1st International Workshop on Advanced Context
Modelling, Reasoning and Management, (2004), 31–41.

[12] Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranga-
nathan, A., Riboni, D. A Survey of Context Modelling and Reasoning Tech-
niques. Pervasive and Mobile Computing, 6(2) (2010), 161–180.

66

[13] Hong, J., Suh, E., Kim, S. Context-aware Systems: A Literature Review and
Classification. Expert System with Applications, 36(4) (2009), 8509–8502.

[14] Korpipää, P. Blackboard-based Software Framework and Tool for Mobile
Device Context Awareness. Ph.D. dissertation, VTT Publications 579, VTT
Technical Research Centre of Finland (2005) 225 p.
http://www.vtt.fi/inf/pdf/publications/2005/P579.pdf.

[15] Boytsov, A., Zaslavsky, A. Formal Verifications of Context and Situation Models
in Pervasive Computing. Pervasive and Mobile Computing, 9(1) (2013), 98–
117.

[16] Roy, N., Gu, T., Das, S.K. Supporting Pervasive Computing Applications
with Active Context Fusion and Semantic Context Delivery. Pervasive and
Mobile Computing, 6(1) (2010), 21–42.

[17] Rothermel, K., Schnitzer, S., Lange, R., Dürr, F., Farrell, T. Context-aware
and Quality-aware Algorithms for Efficient Mobile Object Management.
Pervasive and Mobile Computing, 8(2) (2012), 131–146.

[18] Xue, W., Pung, H.K., Sen, S. Managing context data for diverse operating
spaces. Pervasive and Mobile Computing, 9(1) (2013), 57–75.

[19] Wei, E.J.Y., Chan, A.T.S. CAMPUS: A Middleware for Automated Context-
aware Adaptation Decision Making at Run Time. Pervasive and Mobile
Computing, 9(1) (2013), 35–56.

[20] Bellavista, P., Corradi, A., Fanelli, M., Foschini, L. A Survey of Context
Data Distribution for Mobile Ubiquitous Systems, ACM Computing Surveys,
44(4) (2012), Article No. 24.

[21] Evesti, A., Suomalainen, J., Ovaska, E. Architecture and Knowledge-
Driven Self-Adaptive Security in Smart Space. Computers, 2(1) (2013), 34–
66.

[22] Purhonen, A., Stenudd, S. Runtime Performance Management of Infor-
mation Broker-Based Adaptive Applications. In: Software Architecture,
ECSA 2011, Vol. 6903, I. Crnkovic, V. Gruhn and M. Book, (eds.). Springer-
Verlag Berlin and Heidelberg (2011), 203–206.

[23] Zhang, W., Hansen, K.M., Kunz, T. Enhancing Intelligence and Dependability
of a Product Line Enabled Pervasive Middleware. Pervasive and Mobile
Computing, 6(2) (2010), 198–217.

http://www.vtt.fi/inf/pdf/publications/2005/P579.pdf

67

[24] Wei, E.J.Y., Chan, A.T.S. Semantic Approach to Middleware-driven Run-
time Context-aware Adaptation Decision. Proceedings on the IEEE Interna-
tional Conference on Semantic Computing, (2008), 440–447.

[25] Hallsteinsen, S., Geihs, K., Paspallis, N., Eliassen, F., Horn, G., Lorenzo, J.,
Mamelli, A., Papadopoulos, G.A. A development framework and methodolo-
gy for self-adapting applications in ubiquitous computing environments. The
Journal of Systems and Software, 85(12) (2012), 2840–2859.

[26] SOFIA project, http://www.sofia-project.eu, Accessed 03.05.2012.

[27] Liquid Radio – Let traffic waves flow most efficiently. White paper. Ac-
cessed 26.4.2012, Available from http://www.nokiasiemensnetworks.com/
portfolio/liquidnet.

[28] Horn, P. Autonomic Computing: IBM’s perspective on the State of Infor-
mation Technology. (2001). Accessed 26.4.2012, Available from
http://www.research.ibm.com/autonomic/index.html.

[29] Parashar, M., Hariri, S. Autonomic Computing: An Overview. The Proceed-
ings of UPP2004, Springer-Verlag, LNCS 3566/2005, (2005), 247–259.

[30] Kephart, J.O., Chess, D.M. The Vision of Autonomic Computing. Computer,
36(1) (2003), 41–50.

[31] Salehie, M., Tahvildari, L. Self-Adaptive Software: Landscape and Re-
search Challenges. ACM Transactions on Autonomous and Adaptive Systems,
4(2) (2009), Article 14,1–42.

[32] Garlan, D., Cheng, S-W., Huang, A-C., Schmerl, B., Steenkiste, P. Rainbow:
Architecture-Based Self-Adaptation with Reusable Infrastructure. Computer,
37(10) (2004), 46–54.

[33] Psaier, H., Dustdar, S. A survey on self-healing systems: approaches and
systems. Computing, 91(1) (2011), 43–73.

[34] Parnas, D.L. On the Criteria to Be Used in Decomposing Systems into
Modules. Communications of the ACM, 15(12) (1972), 1053–1058.

[35] Tarr, P., Ossher, H., Harrison, W., Sutton, S.M.Jr. N Degrees of Separation:
Multi-Dimensional Separation of Concerns. The Proceedings of ICSE’99,
ACM Press, (1999), 107–119.

[36] Alur, D., Malks, D., Crupi, J. Core J2EE Patterns: Best Practices and Design
Strategies (2nd Edition) (2003).

http://www.sofia-project.eu
http://www.nokiasiemensnetworks.com/portfolio/liquidnet
http://www.research.ibm.com/autonomic/index.html

68

[37] Yin, R.K. Case study research: Design and methods, 3rd edn. Sage Publi-
cations. Thousand Oaks, California, USA (2003). ISBN 978-0-7619-2553-8.

[38] Runeson, P., Höst, M. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering 14
(2009) 131–164.

[39] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.
Experimentation in Software Engineering. Springer-Verlag. Berlin Heidelberg
(2012) 55–72. ISBN 978-3-642-29043-5 (Print), 978-3-642-29044-2 (Online).

[40] Kuusijärvi, J., Stenudd, S. Developing Reusable Knowledge Processors for
Smart Environments, Proceedings of SISS 2011, the 2nd International
Workshop on Semantic Interoperability for Smart Spaces on the 11th

IEEE/IPSJ International Symposium on Applications and the Internet
(SAINT 2011), (2011), 286–291.

[41] Krueger, C. Software Reuse. ACM Computing Surveys, 24(2) (1992), 131–183.

[42] Frakes, W., Terry, C. Software Reuse: Metrics and Models. ACM Computing
Surveys, 28(2) (1996), 415–435.

[43] Pohl, K., Böckle, G., van der Linden, F. Software Product Line Engineering:
Foundations, Principles, and Techniques, Springer-Verlag, Berlin, Germany,
(2005).

[44] Bosch, J. Design and Use of Software Architectures: Adopting and evolving
a product-line approach, Addison-Wesley, Reading, Massachusetts, (2000).

[45] Verlage, M., Kiesgen, T. Five Years of Product Line Engineering in a Small
Company, The Proceedings of the 27th Int’l Conference on Software Eng.
(ICSE’05), ACM Press, (2005), 534–543.

[46] Birk, A., Heller, G., John, I., Schmid, K., von der Massen, T., Muller, K.
Product Line Engineering, the State of the Practice. IEEE Software, 20(6)
(2003), 52–60.

[47] Clements, P., Northrop, L. Software Product Lines: Practices and Patterns,
Addison-Wesley, Reading, Massachusetts, (2002).

[48] Bosch, J. Product-line Architectures in Industry: A Case Study, The Pro-
ceedings of the 21st Int’l Conference on Software Eng. (ICSE’99), IEEE
Computer Society Press, Los Angeles, CA, (1999), 544–554.

[49] Clements, P., Lawrence, J., Northrop, L., McGregor, J. Project Management
in a Software Product Line Organization. IEEE Software, 22(5) (2005), 54–62.

69

[50] Clements, P., Bachman, F., Bass, L., Garland, D., Ivers, J., Little, R. Nord, R.,
Stafford, J. Documenting Software Architectures: Views and Beyond, Addi-
son-Wesley, Boston, Massachusetts, (2003).

[51] Hinchey, M., Park, S., Scmid, K. Building Dynamic Software Product Lines.
Computer, 45(10) (2012), 22–26.

[52] An Architectural Blueprint for Autonomic Computing. (2003). Accessed
26.4.2012, Available from http://cs.nju.edu.cn/yangxc/autonomic-computing/
ACwpFinal.pdf.

[53] Bencomo, N., Hallsteinsen, S., Santada de Almeida, E. A View of the Dy-
namic Software Product Line Landscape. Computer, 45(10) (2012), 36–41.

[54] Manola, F., Miller, E., McBride, B. (ed.) RDF primer, W3C Recommendation
10 February 2004, (2004), http://www.w3.org/TR/rdf-primer/.

[55] Smart-M3 Open Source Project, http://sourceforge.net/projects/smart-m3/.

[56] Honkola, J., Laine, H., Brown, R., Tyrkkö, O. Smart-M3 Interoperability
Platform, Proceedings of SISS 2010, 1st International Workshop on Semantic
Interoperability for Smart Spaces on IEEE Symposium on Computers and
Communications (ISCC 2010), IEEE Computer Society (2010), 1041–1046.

[57] Suomalainen, J., Hyttinen, P.,Tarvainen, P. Secure Information Sharing
Between Heterogeneous Embedded Devices, Proceedings of the 4th Euro-
pean Conference on Software Architecture, ECSA 2010 workshops: 1st Int.
Workshop on Measurability of Security in Software Architectures (MeSSA
2010), ACM, (2010), 205–212.

[58] Peristeras, V., Tarabanis, K. The connection, communication, consolida-
tion, collaboration interoperability framework (C4IF) for information systems
interoperability, IBIS – Interoperability in Business Information Systems
1(1) (March 2006), 61–72.

[59] Dey, A.K., Abowd, G.D. Towards a Better Understanding of Context and
Context-Awareness. Technical Report GIT-GVU-99-22, Georgia Institute of
Technology, College of Computing, USA, (1999).

[60] Truong, H., Dustdar, S. A Survey on Context-aware Web Service Systems.
International Journal of Web Information Systems, 5(1) (2009), 5–31.

[61] Soylu, A., De Causmaecker, P., Desmet, P. Context and Adaptivity in Per-
vasive Computing Environments: Links with Software Engineering and On-
tological Engineering. Journal of Software, 4(9) (2009), 992–1013.

http://cs.nju.edu.cn/yangxc/autonomic-computing/ACwpFinal.pdf
http://www.w3.org/TR/rdf-primer/
http://sourceforge.net/projects/smart-m3/

70

[62] Kapitsaki, G.M., Prezerakos, G.N., Tselikas, N.D., Venieris, I.S. Context-
aware Service Engineering: A Survey. The Journal of Systems and Soft-
ware, 82 (2009),1285–1297.

[63] Achillelos, A., Yang, K., Georgalas, N. Context Modelling and a Context-
aware Framework for Pervasive Service Creation: A model-driven ap-
proach. Pervasive and Mobile Computing, 6(2) (2010), 281–296.

[64] Ye, J., Dobson, S., McKeever, S. Situation Identification Techniques in
Pervasive Computing: a Review. Pervasive and Mobile Computing, 8(1)
(2012), 36–66.

[65] Dhaussy, P., Roger, J-C., Boniol, F. Context Aware Model-Checking for
Embedded Software. In: Embedded System – Theory and Design Method-
ology. Tanaka, K. (eds.). InTech. Rijeka, Croatia (2012), 167-184. ISBN
979-953-307-580-7.

[66] Baldauf, M., Dustdar, S., Rosenberg, F. A Survey on Context-aware Sys-
tems, International Journal of Ad Hoc and Ubiquitous Computing, 2(4)
(2007), 263–277.

[67] Gruber, T. A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5(2) (1993), 199–220.

[68] Zhou,J. Knowledge Dichotomy and Semantic Knowledge Management,
Proceedings of the 1st IFIP WG12.5 Working Conference on Industrial Ap-
plication of Semantic Web, Springer-Verlag, Vol.188 (2005), 305–316.

[69] Ye, J., Coyle, L., Dobson, S., Nixon, P. Ontology-based Models in Perva-
sive Computing Systems. The Knowledge Engineering Review, 22(4)
(2007), 315–347.

[70] Strang, T., Linnhoff-Popien, C., Frank, K. CoOL: A Context Ontology Lan-
guage to enable Contextual Interoperability. In Stefani, J.-B., Dameure, I.
and Hagimont, D.(eds.). Proceedings of 4th IFIP WG 6.1 International Con-
ference on Distributed Applications and Interoperable Systems
(DAIS2003), LNCS 2893, Springer Verlag, (2003), 236–247.

[71] Chen, H., Finin, T., Joshi, A. The SOUPA Ontology for Pervasive Compu-
ting. In: Ontologies for Agents: Theory and Experiences. Tamma, V.,
Cranefield, S., Finin, T.W., Willmott, S. (eds.). Whitestein Series in Soft-
ware Agent Technologies and Autonomic Computing, Birkhäuser Verlag.
Basel, Switzerland (2005), 233–258. ISBN 3-7643-7237-0.

[72] Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q. An Ontology-based Context
Model in Intelligent Environments. Proceedings of the Communication

71

Networks and Distributed Systems Modeling and Simulation Conference
(CNDS’04), Society for Computer Simulation, (2004), 270–275.

[73] Wang, X.H., Gu, T., Zhang, D.Q., Pung, H.K. Ontology Based Context
Modeling and Reasoning Using OWL. Proceedings of the Workshop on
Context Modeling and Reasoning (CoMoRea’04), (2004), 18–22.

[74] Preuveneers, D. Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P.,
Clerckx, T., Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K. To-
wards an Extensible Context Ontology for Ambient Intelligence. Proceed-
ings of the 2nd European Symposium on Ambient Intelligence (EUSAI
2004), (2004), 148–159.

[75] Brickley,D., Miller, L. FOAF Vocalubary Specification 0.98. Namespace Do-
cument 9 August 2010. (2010), http://xmlns.com/foaf/spec/20100809.html.

[76] OSGi Alliance. OSGi Platform – Service Compendium, Technical Report
Release 4, Version 4.1, OSGi (2007).

[77] Khushraj, D., Lassila, O., Finin, T. sTuples: Semantic tuple spaces. In:
Proc. of the 1st Annual Int. Conference on Mobile and Ubiquitous Systems:
Networking and Services (MobiQuitous 2004), IEEE Computer Society
(2004), 268-277.

[78] Bouillet, E., Feblowitz, M., Zhen Liu, Ranganathan, A., Riabov, A. Semantic
Models for Ad Hoc Interactions in Mobile, Ubiquitous Environments. In:
Proc. of IEEE Int. Conference on Semantic Computing (ICSC 2008), IEEE
Computer Society (2008), 589–596.

[79] Eugster, P.T., Garbinato, B., Holzer, A.. Middleware Support for Context-
aware Applications. In: Middleware for Network Eccentric and Mobile Ap-
plications. Garbinato, B., Miranda, H., Rodrigues, L. (eds.). Springer-
Verlag. Berlin Heidelberg (2009), 305–322. ISBN 978-3-540-89706-4.

[80] Evesti, A., Savola, R., Ovaska, E. The Design, Instantiation, and Usage of
Information Security Measuring Ontology. In: Proc. of the 2nd Int. Conference
on Models and Ontology-based Design of Protocols, Architectures and
Services (MOPAS 2011), IARIA (2011), 1-9.

[81] Katasonov, A. Enabling non-programmers to develop smart environment
applications. In: Proc. of the 1st Int. Workshop Semantic Interoperability for
Smart Spaces (SISS 2010) in IEEE Symposium on Computers and Com-
munications (ISCC 2010), IEEE Computer Society (2010), 1059-1064.

http://xmlns.com/foaf/spec/20100809.html

72

[82] Katasonov, A., Palviainen, M. Towards ontology-driven development of
applications for smart environments. In: Proc. of the 8th PERCOM Work-
shops, IEEE Press (2010), 696-701.

[83] Ferrari, S. Gestione del contesto su architettura Smart M3, Tesi di Laurea
in Calcolatori Elettronici L-A (Sessione III, Anno Accademico 2009/10),
University of Bologna, Italy, (2011).

[84] Evesti, A., Eteläperä, M., Kiljander, J., Kuusijärvi, J., Purhonen, A., Ste-
nudd, S. Semantic Information Interoperability in Smart Spaces. in: Proc. of
the 8th Int. Conference on Mobile and Ubiquitous Multimedia (MUM’09),
ACM International Conference Proceeding Series (2009), 158-159.

[85] Dobson, S., Sterritt, R., Nixon, P., Hinchey, M. Fulfilling the vision of auto-
nomic computing. Computer, 43(1) (2010), 35–41.

[86] Oreizy, P., Medvidovic, N., Taylor, R.N. Runtime Software Adaptation:
Framework, Approaches, and Styles. In: Proc. of the Int. Conference on
Software Engineering (ICSE´08), ACM International Conference Proceeding
Series (2008), 899-909.

[87] Kramer, J., Magee, J. Self-Managed Systems: an Architectural Challenge.
In: Proc. of the Conference on Future of Software Engineering (FOSE’07),
IEEE Computer Society Press (2007), 259-268.

Publications IV, VI, VII, VIII are not included in the PDF version.
Please order the printed version to get the complete publication
(http://www.vtt.fi/publications/index.jsp).

http://www.vtt.fi/publications/index.jsp

PUBLICATION I

Architecting embedded
software for context-aware

systems

In: Embedded Systems – Theory and Design
Methodology. Pp. 123–142.

Copyright 2012 InTech.
Reprinted with permission from the publisher.

I/1

I/1

6

Architecting Embedded Software
for Context-Aware Systems

Susanna Pantsar-Syväniemi
VTT Technical Research Centre of Finland

Finland

1. Introduction
During the last three decades the architecting of embedded software has changed by i) the
ever-enhancing processing performance of processors and their parallel usage, ii) design
methods and languages, and iii) tools. The role of software has also changed as it has
become a more dominant part of the embedded system. The progress of hardware
development regarding size, cost and energy consumption is currently speeding up the
appearance of smart environments. This necessitates the information to be distributed to our
daily environment along with smart, but separate, items like sensors. The cooperation of the
smart items, by themselves and with human beings, demands new kinds of embedded
software.

The architecting of embedded software is facing new challenges as it moves toward smart
environments where physical and digital environments will be integrated and interoperable.
The need for human beings to interact is decreasing dramatically because digital and
physical environments are able to decide and plan behavior by themselves in areas where
functionality currently requires intervention from human beings, such as showing a barcode
to a reader in the grocery store. The smart environment, in our mind, is not exactly an
Internet of Things (IoT) environment, but it can be. The difference is that the smart
environment that we are thinking of does not assume that all tiny equipment is able to
communicate via the Internet. Thus, the smart environment is an antecedent for the IoT
environment.

At the start of the 1990s, hardware and software co-design in real time and embedded
systems were seen as complicated matters because of integration of different modeling
techniques in the co-design process (Kronlöf, 1993). In the smart environment, the co-design
is radically changing, at least from the software perspective. This is due to the software
needing to be more and more intelligent by, e.g., predicting future situations to offer
relevant services for human beings. The software needs to be interoperable, as well as
scattered around the environment, with devices that were previously isolated because of
different communication mechanisms or standards.

Research into pervasive and ubiquitous computing has been ongoing for over a decade,
providing many context-aware systems and a multitude of related surveys. One of those
surveys is a literature review of 237 journal articles that were published between 2000 and

I/2 I/3

Embedded Systems – Theory and Design Methodology

124

2007 (Hong et al., 2009). The review presents that context-aware systems i) are still
developing in order to improve, and ii) are not fully implemented in real life. It also
emphasizes that context-awareness is a key factor for new applications in the area of
ubiquitous computing, i.e., pervasive computing. The context-aware system is based on
pervasive or ubiquitous computing. To manage the complexity of pervasive computing,
the context-aware system needs to be designed in new way—from the bottom up—while
understanding the eligible ecosystem, and from small functionalities to bigger ones. The
small functionalities are formed up to the small architectures, micro-architectures.
Another key issue is to reuse the existing, e.g., communication technologies and devices,
as much as possible, at least at the start of development, to minimize the amount of new
things.

To get new perspective on the architecting of context-aware systems, Section two
introduces the major factors that have influenced the architecting of embedded and real-
time software for digital base stations, as needed in the ecosystem of the mobile network.
This introduction also highlights the evolution of the digital base station in the revolution
of the Internet. The major factors are standards and design and modeling approaches, and
their usefulness is compared for architecting embedded software for context-aware
systems. The context of pervasive computing calms down when compared to the context
of digital signal processing software as a part of baseband computing which is a part of
the digital base station. It seems that the current challenges have similarities in both
pervasive and baseband computing. Section two is based on the experiences gathered
during software development at Nokia Networks from 1993 to 2008 and subsequently in
research at the VTT Technical Research Centre of Finland. This software development
included many kinds of things, e.g., managing the feature development of subsystems,
specifying the requirements for the system and subsystem levels, and architecting
software subsystems. The research is related to enable context-awareness with the help of
ontologies and unique micro-architecture.

Section three goes through the main research results related to designing context-aware
applications for smart environments. The results relate to context modeling, storing, and
processing. The latter includes a new solution, a context-aware micro-architecture (CAMA),
for managing context when architecting embedded software for context-aware systems.
Section four concludes this chapter.

2. Architecting real-time and embedded software in the 1990s and 2000s
2.1 The industrial evolution of the digital base station

Figure 1 shows the evolution of the Internet compared with a digital base station (the base
station used from now on) for mobile networks. It also shows the change from proprietary
interfaces toward open and Internet-based interfaces. In the 1990s, the base station was not
built for communicating via the Internet. The base station was isolated in the sense that it
was bound to a base station controller that controlled a group of base stations. That meant
that a customer was forced to buy both the base stations and the base station controller from
the same manufacturer.

In the 2000s, the industrial evolution brought the Internet to the base station and it opened
the base station for module business by defining interfaces between modules. It also

I/3

Architecting Embedded Software for Context-Aware Systems

125

dissolved the “engagement” between the base stations and their controllers as it moved
from the second generation mobile network (2G) to third one (3G). Later, the baseband
module of the base station was also reachable via the Internet. In the 2010s, the baseband
module will go to the cloud to be able to meet the constantly changing capacity and
coverage demands on the mobile network. The baseband modules will form a centralized
baseband pool. These demands arise as smartphone, tablet and other smart device users
switch applications and devices at different times and places (Nokia Siemens Networks,
2011).

Fig. 1. The evolution of the base station.

The evolution of base-band computing in the base station changes from distributed to
centralized as a result of dynamicity. The estimation of needed capacity per mobile user was
easier when mobiles were used mainly for phone calls and text messaging. The more fancy
features that mobiles offer and users demand, the harder it is to estimate the needed base-
band capacity.

The evolution of the base station goes hand-in-hand with mobile phones and other network
elements, and that is the strength of the system architecture. The mobile network ecosystem
has benefited a lot from the system architecture of, for example, the Global System for
Mobile Communications (GSM). The context-aware system is lacking system architecture
and that is hindering its breakthrough.

2.2 The standardization of mobile communication

During the 1980s, European telecommunication organizations and companies reached a
common understanding on the development of a Pan-European mobile communication
standard, the Global System for Mobile Communications (GSM), by establishing a dedicated
organization, the European Telecommunications Standards Institute (ETSI, www.etsi.org),
for the further evolvement of the GSM air-interface standard. This organization has
produced the GSM900 and 1800 standard specifications (Hillebrand, 1999). The
development of the GSM standard included more and more challenging features of
standard mobile technology as defined by ETSI, such as High Speed Circuit Switched Data
(HSCSD), General Packet Radio Service (GPRS), Adaptive Multirate Codec (AMR), and
Enhanced Data rates for GSM Evolution (EDGE) (Hillebrand, 1999).

 1990 2005 2020

http://www.etsi.org

I/4 I/5

Embedded Systems – Theory and Design Methodology

126

The Universal Mobile Telecommunication System (UMTS) should be interpreted as a
continuation of the regulatory regime and technological path set in motion through GSM,
rather than a radical break from this regime. In effect, GSM standardization defined a path
of progress through GPRS and EDGE toward UMTS as the major standard of 3G under the
3GPP standardization organization (Palmberg & Martikainen, 2003). The technological path
from GSM to UMTS up to LTE is illustrated in Table 1. High-Speed Downlink Packet Access
(HSDPA) and High-Speed Uplink Packet Access (HSUPA) are enhancements of the UMTS
to offer a more interactive service for mobile (smartphone) users.

GSM -> HSCD, GPRS, AMR, EDGE UMTS -> HSDPA, HSUPA LTE
 2G => 3G => 4G

Table 1. The technological path of the mobile communication system

It is remarkable that standards have such a major role in the telecommunication industry.
They define many facts via specifications, like communication between different parties. The
European Telecommunications Standards Institute (ETSI) is a body that serves many players
such as network suppliers and network operators. Added to that, the network suppliers
have created industry forums: OBSAI (Open Base Station Architecture Initiative) and CPRI
(Common Public Radio Interface). The forums were set up to define and agree on open
standards for base station internal architecture and key interfaces. This, the opening of the
internals, enabled new business opportunities with base station modules. Thus, module
vendors were able to develop and sell modules that fulfilled the open, but specified,
interface and sell them to base station manufacturers. In the beginning the OBSAI was
heavily driven by Nokia Networks and the CPRI respectively by Ericsson. Nokia Siemens
Networks joined CPRI when it was merged by Nokia and Siemens.

The IoT ecosystem is lacking a standardization body, such as ETSI has been for the mobile
networking ecosystem, to create the needed base for the business. However, there is the
Internet of Things initiative (IoT-i), which is working and attempting to build a unified IoT
community in Europe, www.iot-i.eu.

2.3 Design methods

The object-oriented approach became popular more than twenty years ago. It changed the
way of thinking. Rumbaugh et al. defined object-oriented development as follows, i) it is a
conceptual process independent of a programming language until the final stage, and ii) it is
fundamentally a new way of thinking and not a programming technique (Rumbaugh et al.,
1991). At the same time, the focus was changing from software implementation issues to
software design. In those times, many methods for software design were introduced under
the Object-Oriented Analysis (OOA) method (Shlaer & Mellor, 1992), the Object-Oriented
Software Engineering (OOSE) method (Jacobson et al., 1992), and the Fusion method
(Coleman et al., 1993). The Fusion method highlighted the role of entity-relationship graphs
in the analysis phase and the behavior-centered view in the design phase.

The Object Modeling Technique (OMT) was introduced for object-oriented software
development. It covers the analysis, design, and implementation stages but not integration
and maintenance. The OMT views a system via a model that has two dimensions
(Rumbaugh et al., 1991). The first dimension is viewing a system: the object, dynamic, or

http://www.iot-i.eu

I/5

Architecting Embedded Software for Context-Aware Systems

127

functional model. The second dimension represents a stage of the development: analysis,
design, or implementation. The object model represents the static, structural, “data” aspects
of a system. The dynamic model represents the temporal, behavioral, “control” aspects of a
system. The functional model illustrates the transformational, “function” aspects of a
system. Each of these models evolves during a stage of development, i.e. analysis, design,
and implementation.

The OCTOPUS method is based on the OMT and Fusion methods and it aims to provide a
systematic approach for developing object-oriented software for embedded real-time
systems. OCTOPUS provides solutions for many important problems such as concurrency,
synchronization, communication, interrupt handling, ASICs (application-specific integrated
circuit), hardware interfaces and end-to-end response time through the system (Awad et al.,
1996). It isolates the hardware behind a software layer called the hardware wrapper. The
idea for the isolation is to be able to postpone the analysis and design of the hardware
wrapper (or parts of it) until the requirements set by the proper software are realized or
known (Awad et al., 1996).

The OCTOPUS method has many advantages related to the system division of the
subsystems, but without any previous knowledge of the system under development the
architect was able to end up with the wrong division in a system between the controlling
and the other functionalities. Thus, the method was dedicated to developing single and
solid software systems separately. The OCTOPUS, like the OMT, was a laborious method
because of the analysis and design phases. These phases were too similar for there to be any
value in carrying them out separately. The OCTOPUS is a top-down method and, because of
that, is not suitable to guide bottom-up design as is needed in context-aware systems.

Software architecture started to become defined in the late 1980s and in the early 1990s.
Mary Shaw defined that i) architecture is design at the level of abstraction that focuses on
the patterns of system organization which describe how functionality is partitioned and the
parts are interconnected and ii) architecture serves as an important communication,
reasoning, analysis, and growth tool for systems (Shaw, 1990). Rumbaugh et al. defined
software architecture as the overall structure of a system, including its partitioning into
subsystems and their allocation to tasks and processors (Rumbaugh et al., 1991). Figure 2
represents several methods, approaches, and tools with which we have experimented and
which have their roots in object-oriented programming.

For describing software architecture, the 4+1 approach was introduced by Philippe
Krüchten. The 4+1 approach has four views: logical, process, development and physical. The
last view, the +1 view, is for checking that the four views work together. The checking is
done using important use cases (Krüchten, 1995). The 4+1 approach was part of the
foundation for the Rational Unified Process, RUP. Since the introduction of the 4+1
approach software architecture has had more emphasis in the development of software
systems. The most referred definition for the software architecture is the following one:

The structure or structures of the system, which comprises software elements, the
externally visible properties of those elements, and the relationships among them,
(Bass et al., 1998)

Views are important when documenting software architecture. Clements et al. give a
definition for the view: “A view is a representation of a set of system elements and the

I/6 I/7

Embedded Systems – Theory and Design Methodology

128

relationships associated with them”. Different views illustrate different uses of the software
system. As an example, a layered view is relevant for telling about the portability of the
software system under development (Clements, 2003). The views are presented using, for
example, UML model elements as they are more descriptive than pure text.

Fig. 2. From object-oriented to design methods and supporting tools.

Software architecture has always has a role in base station development. In the beginning it
represented the main separation of the functionalities, e.g. operation and maintenance,
digital signal processing, and the user interface. Later on, software architecture was
formulated via architectural views and it has been the window to each of these main
functionalities, called software subsystems. Hence, software architecture is an efficient
media for sharing information about the software and sharing the development work, as
well.

2.4 Modeling

In the model-driven development (MDD) vision, models are the primary artifacts of
software development and developers rely on computer-based technologies to transform
models into running systems (France & Rumpe, 2007). The Model-Driven Architecture
(MDA), standardized by the Object Management Group (OMG, www.omg.org), is an
approach to using models in software development. MDA is a known technique of MDD. It
is meant for specifying a system independently of the platform that supports it, specifying
platforms, choosing a particular platform for the system, and transforming the system
specification into a particular platform. The three primary goals of MDA are portability,
interoperability and reusability through the architectural separation of concerns (Miller &
Mukerji, 2003).

MDA advocates modeling systems from three viewpoints: computational-independent,
platform-independent, and platform-specific viewpoints. The computational-independent
viewpoint focuses on the environment in which the system of interest will operate in and on
the required features of the system. This results in a computation-independent model (CIM).
The platform-independent viewpoint focuses on the aspects of system features that are not
likely to change from one platform to another. A platform-independent model (PIM) is used
to present this viewpoint. The platform-specific viewpoint provides a view of a system in
which platform-specific details are integrated with the elements in a PIM. This view of a
system is described by a platform-specific model (PSM), (France & Rumpe, 2007).

http://www.omg.org

I/7

Architecting Embedded Software for Context-Aware Systems

129

The MDA approach is good for separating hardware-related software development from the
application (standard-based software) development. Before the separation, the maintenance
of hardware-related software was done invisibly under the guise of application
development. By separating both application- and hardware-related software development,
the development and maintenance of previously invisible parts, i.e., hardware-related
software, becomes visible and measurable, and costs are easier to explicitly separate for the
pure application and the hardware-related software.

Two schools exist in MDA for modeling languages: the Extensible General-Purpose
Modeling Language and the Domain Specific Modeling Language. The former means
Unified Modeling Language (UML) with the possibility to define domain-specific extensions
via profiles. The latter is for defining a domain-specific language by using meta-modeling
mechanisms and tools. The UML has grown to be a de facto industry standard and it is also
managed by the OMG. The UML has been created to visualize object-oriented software but
also used to clarify the software architecture of a subsystem that is not object-oriented.

The UML is formed based on the three object-oriented methods: the OOSE, the OMT, and
Gary Booch’s Booch method. A UML profile describes how UML model elements are
extended using stereotypes and tagged values that define additional properties for the
elements (France & Rumpe, 2007). A Modeling and Analysis of Real-Time Embedded
Systems (MARTE) profile is a domain-specific extension for UML to model and analyze real
time and embedded systems. One of the main guiding principles for the MARTE profile
(www.omgmarte.org) has been that it should support independent modeling of both
software or hardware parts of real-time and embedded systems and the relationship
between them. OMG’s Systems Modeling Language (SysML, www.omgsysml.org) is a
general-purpose graphical modeling language. The SysML includes a graphical construct to
represent text-based requirements and relate them to other model elements.

Microsoft Visio is usually used for drawing UML–figures for, for example, software
architecture specifications. The UML–figures present, for example, the context of the
software subsystem and the deployment of that software subsystem. The MARTE and
SysML profiles are supported by the Papyrus tool. Without good tool support the MARTE
profile will provide only minimal value for embedded software systems.

Based on our earlier experience and the MARTE experiment, as introduced in (Pantsar-
Syväniemi & Ovaska, 2010), we claim that MARTE is not as applicable to embedded systems
as base station products. The reason is that base station products are dependent on long-
term maintenance and they have a huge amount of software. With the MARTE, it is not
possible to i) model a greater amount of software and ii) maintain the design over the years.
We can conclude that the MARTE profile has been developed from a hardware design point
of view because software reuse seems to have been neglected.

Many tools exist, but we picked up on Rational Rhapsody because we have seen it used for
the design and code generation of real-time and embedded software. However, we found
that the generated code took up too much of the available memory, due to which Rational
Rhapsody was considered not able to meet its performance targets. The hard real-time and
embedded software denotes digital signal processing (DSP) software. DSP is a central part
of the physical layer baseband solutions of telecommunications (or mobile wireless)
systems, such as mobile phones and base stations. In general, the functions of the physical

http://www.omgmarte.org
http://www.omgsysml.org

I/8 I/9

Embedded Systems – Theory and Design Methodology

130

layer have been implemented in hardware, for example, ASIC (application-specific
integrated circuits), and FPGA (field programmable gate arrays), or near to hardware
(Paulin et al., 1997), (Goossens et al., 1997).

Due to the fact that Unified Modeling Language (UML) is the most widely accepted
modeling language, several model-driven approaches have emerged (Kapitsaki et al., 2009),
(Achillelos et al., 2010). Typically, these approaches introduce a meta-model enriched with
context-related artifacts, in order to support context-aware service engineering. We have
also used UML for designing the collaboration between software agents and context storage
during our research related to the designing of smart spaces based on the ontological
approach (Pantsar-Syväniemi et al., 2011a, 2012).

2.5 Reuse and software product lines

The use of C language is one of the enabling factors of making reusable DSP software
(Purhonen, 2002). Another enabling factor is more advanced tools, making it possible to
separate DSP software development from the underlying platform. Standards and
underlying hardware are the main constraints for DSP software. It is essential to note that
hardware and standards have different lifetimes. Hardware evolves according to ‘Moore’s
Law’ (Enders, 2003), according to which progress is much more rapid than the evolution of
standards. From 3G base stations onward, DSP software has been reusable because of the
possibility to use C language instead of processor-specific assembly language. The
reusability only has to do with code reuse, which can be regarded as a stage toward overall
reuse in software development, as shown in Figure 3.

Regarding the reuse of design outputs and knowledge, it was the normal method of
operation at the beginning of 2G base station software developments and was not too tightly
driven by development processes or business programs. We have presented the
characteristics of base station DSP software development in our previous work (Pantsar-
Syväniemi et al., 2006) that is based on experiences when working at Nokia Networks. That
work introduces the establishment of reuse actives in the early 2000s. Those activities were
development ‘for reuse’ and development ‘with reuse’. ‘For reuse’ means development of
reusable assets and ‘with reuse’ means using the assets in product development or
maintenance (Karlsson, 1995).

Fig. 3. Toward the overall reuse in the software development.

I/9

Architecting Embedded Software for Context-Aware Systems

131

The main problem within this process-centric, ‘for reuse’ and ‘with reuse’, development was
that it produced an architecture that was too abstract. The reason was that the domain was
too wide, i.e., the domain was base station software in its entirety. In addition to that, the
software reuse was “sacrificed” to fulfill the demand to get a certain base station product
market-ready. This is paradoxical because software reuse was created to shorten products’
time-to-market and to expand the product portfolio. The software reuse was due to business
demands.

In addition to Karlsson’s ‘for and with reuse’ book, we highlight two process-centric reuse
books among many others. To design and use software architectures is written by Bosch
(Bosch, 2000). This book has reality aspects when guiding toward the selection of a suitable
organizational model for the software development work that was meant to be built around
software architecture. In his paper, (Bosch, 1999), Bosch presents the main influencing
factors for selecting the organization model: geographical distribution, maturity of project
management, organizational culture, and the type of products. In that paper, he stated that a
software product built in accordance with the software architecture is much more likely to
fulfill its quality requirements in addition to its functional requirements.

Bosch emphasized the importance of software architecture. His software product line (SPL)
approach is introduced according to these phases: development of the architecture and
component set, deployment through product development and evolution of the assets
(Bosch, 2000). He presented that not all development results are sharable within the SPL but
there are also product-specific results, called artifacts.

The third interesting book introduces the software product line as compared to the
development of a single software system at a time. This book shortly presents several ways
for starting software development according to the software product line. It is written by
Pohl et al. (Pohl et al., 2005) and describes a framework for product-line engineering. The
book stresses the key differences of software product-line engineering in comparison with
single-software system development:

 The need for two distinct development processes: domain engineering and application
engineering. The aim of the domain-engineering process is to define and realize the
commonality and the variability of the software product line. The aim of the
application-engineering process is to derive specific applications by exploiting the
variability of the software product line.

 The need to explicitly define and manage variability: During domain engineering,
variability is introduced in all domain engineering artifacts (requirements, architecture,
components, test cases, etc.). It is exploited during application engineering to derive
applications tailored to the specific needs of different customers.

A transition from single-system development to software product-line engineering is not
easy. It requires investments that have to be determined carefully to get the desired benefits
(Pohl et al., 2005). The transition can be introduced via all of its aspects: process,
development methods, technology, and organization. For a successful transition, we have to
change all the relevant aspects, not just some of them (Pohl et al., 2005). With the base
station products, we have seen that a single-system development has been powerful when
products were more hardware- than software-oriented and with less functionality and
complexity. The management aspect, besides the development, is taken into account in the

I/10 I/11

Embedded Systems – Theory and Design Methodology

132

product line but how does it support long-life products needing maintenance over ten
years? So far, there is no proposal for the maintenance of long-life products within the
software product line. Maintenance is definitely an issue to consider when building up the
software product line.

The strength of the software product line is that it clarifies responsibility issues in creating,
modifying and maintaining the software needed for the company’s products. In software
product-line engineering, the emphasis is to find the commonalities and variabilities and
that is the huge difference between the software product-line approach and the OCTOPUS
method. We believe that the software product-line approach will benefit if enhanced with a
model-driven approach because the latter strengthens the work with the commonalities and
variabilities.

Based on our experience, we can identify that the software product-line (SPL) and model-
driven approach (MDA) alike are used for base station products. Thus, a combination of
SPL and MDA is good approach when architecting huge software systems in which
hundreds of persons are involved for the architecting, developing and maintaining of the
software. A good requirement tool is needed to keep track of the commonalities and
variabilities. The more requirements, the more sophisticated tool should be with the
possibility to tag on the requirements based on the reuse targets and not based on a single
business program.

The SPL approach needs to be revised for context-aware systems. This is needed to guide
the architecting via the understanding of an eligible ecosystem toward small functionalities
or subsystems. Each of these subsystems is a micro-architecture with a unique role. Run-
time security management is one micro-architecture (Evesti & Pantsar-Syväniemi, 2010) that
reuses context monitoring from the context-awareness micro-architecture, CAMA (Pantsar-
Syväniemi et al., 2011a). The revision needs a new mindset to form reusable micro-
architectures for the whole context-aware ecosystem. It is good to note that micro-
architectures can differ in the granularity of the reuse.

2.6 Summary of section 2

The object-oriented methods, like Fusion, OMT, and OCTOPUS, were dedicated for single-
system development. The OCTOPUS was the first object-oriented method that we used for
an embedded system with an interface to the hardware. Both the OCTOPUS and the OMT
were burdening the development work with three phases: object-oriented analysis (OOA)
object-oriented design (OOD), and implementation. The OOD was similar to the
implementation. In those days there was a lack of modeling tools. The message sequence
charts (MSC) were done with the help of text editor.

When it comes to base station development, the software has become larger and more
complicated with the new features needed for the mobile network along with the UML, the
modeling tools supporting UML, and the architectural views. Thus, software development
is more and more challenging although the methods and tools have become more helpful.
The methods and tools can also hinder when moving inside the software system from one
subsystem to another if the subsystems are developed using different methods and tools.

Related to DSP software, the tight timing requirements have been reached with optimized
C-code, and not by generating code from design models. Thus, the code generators are too

I/11

Architecting Embedded Software for Context-Aware Systems

133

ineffective for hard real time and embedded software. One of the challenges in DSP software
is the memory consumption because of the growing dynamicity in the amount of data that
flows through mobile networks. This is due to the evolution of mobile network features like
HSDPA and HSUPA that enable more features for mobile users. The increasing dynamicity
demands simplification in the architecture of the software system. One of these
simplifications is the movement from distributed baseband computing to centralized
computing.

Simplification has a key role in context-aware computing. Therefore, we recall that by
breaking the overall embedded software architecture into smaller pieces with specialized
functionality, the dynamicity and complexity can be dealt with more easily. The smaller
pieces will be dedicated micro-architectures, for example, run-time performance or security
management. We can see that in smart environments the existing wireless networks are
working more or less as they currently work. Thus, we are not assuming that they will
converge together or form only one network. By taking care of and concentrating the data
that those networks provide or transmit, we can enable the networks to work seamlessly
together. Thus, the networks and the data they carry will form the basis for interoperability
within smart environments. The data is the context for which it has been provided.
Therefore, the data is in a key position in context-aware computing.

The MSC is the most important design output because it visualizes the collaboration
between the context storage, context producers and context consumers. The OCTOPUS
method is not applicable but SPL is when revised with micro-architectures, as presented
earlier. The architecting context-aware systems need a new mindset to be able to i) handle
dynamically changing context by filtering to recognize the meaningful context, ii) be
designed bottom-up, while keeping in mind the whole system, and iii) reuse the legacy
systems with adapters when and where it is relevant and feasible.

3. Architecting real-time and embedded software in the smart environment
Context has always been an issue but had not been used as a term as widely with regard to
embedded and real-time systems as it has been used in pervasive and ubiquitous
computing. Context was part of the architectural design while we created architectures for
the subsystem of the base station software. It was related to the co-operation between the
subsystem under creation and the other subsystems. It was visualized with UML figures
showing the offered and used interfaces. The exact data was described in the separate
interface specifications. This can be known as external context. Internal context existed and
it was used inside the subsystems.

Context, both internal and external, has been distributed between subsystems but it has
been used inside the base station. It is important to note that external context can be context
that is dedicated either for the mobile phone user or for internal usage. The meaning of
context that is going to, or coming from, the mobile phone user is meaningless for the base
station but it needs memory to be processed. In pervasive computing, external context is
always meaningful and dynamic. The difference is in the nature of context and the
commonality is in the dynamicity of the context.

Recent research results into the pervasive computing state that:

I/12 I/13

Embedded Systems – Theory and Design Methodology

134

 due to the inherent complexity of context-aware applications, development should be
supported by adequate context-information modeling and reasoning techniques (Bettini
et al., 2010)

 distributed context management, context-aware service modeling and engineering,
context reasoning and quality of context, security and privacy, have not been well
addressed in the Context-Aware Web Service Systems (Truong & Dustdar, 2009)

 development of context-aware applications is complex as there are many software
engineering challenges stemming from the heterogeneity of context information
sources, the imperfection of context information, and the necessity for reasoning on
contextual situations that require application adaptations (Indulska & Nicklas, 2010)

 proper understanding of context and its relationship with adaptability is crucial in
order to construct a new understanding for context-aware software development for
pervasive computing environments (Soylu et al., 2009)

 ontology will play a crucial role in enabling the processing and sharing of information
and knowledge of middleware (Hong et al., 2009)

3.1 Definitions

Many definitions for context as well for context-awareness are given in written research. The
generic definition by Dey and Abowd for context and context-awareness are widely cited
(Dey & Abowd, 1999):

‘Context is any information that can be used to characterize the situation of an entity. An
entity is a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and the application themselves. ’

‘Context-awareness is a property of a system that uses context to provide relevant
information and/or services to the user, where relevancy depends on the user’s task. ’

Context-awareness is also defined to mean that one is able to use context-information (Hong
et al., 2009). Being context-aware will improve how software adapts to dynamic changes
influenced by various factors during the operation of the software. Context-aware
techniques have been widely applied in different types of applications, but still are limited
to small-scale or single-organizational environments due to the lack of well-agreed
interfaces, protocols, and models for exchanging context data (Truong & Dustdar, 2009).

In large embedded-software systems the user is not always the human being but can also be
the other subsystem. Hence, the user has a wider meaning than in pervasive computing
where the user, the human being, is in the center. We claim that pervasive computing will
come closer to the user definition of embedded-software systems in the near future.
Therefore, we propose that ‘A context defines the limit of information usage of a smart space
application’ (Toninelli et al., 2009). That is based on the assumption that any piece of data, at
a given time, can be context for a given smart space application.

3.2 Designing the context

Concentrating on the context and changing the design from top-down to bottom-up while
keeping the overall system in the mind is the solution to the challenges in the context-aware
computing. Many approaches have been introduced for context modeling but we introduce
one of the most cited classifications in (Strang & Linnhoff-Popien, 2004):

I/13

Architecting Embedded Software for Context-Aware Systems

135

1. Key-Value Models

The model of key-value pairs is the most simple data structure for modeling contextual
information. The key-value pairs are easy to manage, but lack capabilities for
sophisticated structuring for enabling efficient context retrieval algorithms.

2. Markup Scheme Models

Common to all markup scheme modeling approaches is a hierarchical data structure
consisting of markup tags with attributes and content. The content of the markup tags is
usually recursively defined by other markup tags. Typical representatives of this kind
of context modeling approach are profiles.

3. Graphical Model

A very well-known general purpose modeling instrument is the UML which has a
strong graphical component: UML diagrams. Due to its generic structure, UML is also
appropriate to model the context.

4. Object-Oriented Models

Common to object-oriented context modeling approaches is the intention to employ the
main benefits of any object-oriented approach – namely encapsulation and reusability –
to cover parts of the problems arising from the dynamics of the context in ubiquitous
environments. The details of context processing are encapsulated on an object level and
hence hidden to other components. Access to contextual information is provided
through specified interfaces only.

5. Logic-Based Models

A logic defines the conditions on which a concluding expression or fact may be derived
(a process known as reasoning or inferencing) from a set of other expressions or facts.
To describe these conditions in a set of rules a formal system is applied. In a logic-based
context model, the context is consequently defined as facts, expressions and rules.
Usually contextual information is added to, updated in and deleted from a logic based
system in terms of facts or inferred from the rules in the system respectively. Common
to all logic-based models is a high degree of formality.

6. Ontology-Based Models

Ontologies are particularly suitable to project parts of the information describing and
being used in our daily life onto a data structure utilizable by computers. Three
ontology-based models are presented in this survey: i) Context Ontology Language
(CoOL), (Strang et al., 2003); ii) the CONON context modeling approach (Wang et al.,
2004); and iii) the CoBrA system (Chen et al., 2003a).

The survey of context modeling for pervasive cooperative learning covers the above-
mentioned context modeling approaches and introduces a Machine Learning Modeling
(MLM) approach that uses machine learning (ML) techniques. It concludes that to achieve
the system design objectives, the use of ML approaches in combination with semantic
context reasoning ontologies offers promising research directions to enable the effective
implementation of context (Moore et al., 2007).

I/14 I/15

Embedded Systems – Theory and Design Methodology

136

The role of ontologies has been emphasized in multitude of the surveys, e.g., (Baldauf et al.,
2007), (Soylu et al., 2009), (Hong et al., 2009), (Truong & Dustdar, 2009). The survey related
to context modeling and reasoning techniques (Bettini et al., 2010) highlights that
ontological models of context provide clear advantages both in terms of heterogeneity and
interoperability. Web Ontology Language, OWL, (OWL, 2004) is a de facto standard for
describing context ontology. OWL is one of W3C recommendations (www.w3.org) for a
Semantic Web. Graphical tools, such as Protégé and NeOnToolkit, exist for describing
ontologies.

3.3 Context platform and storage

Eugster et al. present the middleware classification that they performed for 22 middleware
platforms from the viewpoint of a developer of context-aware applications (Eugster et al.,
2009). That is one of the many surveys done on the context-aware systems but it is
interesting because of the developer viewpoint. They classified the platforms according to i)
the type of context, ii) the given programming support, and iii) architectural dimensions
such as decentralization, portability, and interoperability. The most relevant classification
criteria of those are currently the high-level programming support and the three
architectural dimensions.

High-level programming support means that the middleware platform adds a context
storage and management. The three architectural dimensions are: (1) decentralization, (2)
portability, and (3) interoperability. Decentralization measures a platform’s dependence
on specific components. Portability classifies platforms into two groups: portable
platforms can run on many different operating systems, and operating system-dependent
platforms, which can only run on few operating systems (usually one). Interoperability
then measures the ease with which a platform can communicate with heterogeneous
software components.

Ideal interoperable platforms can communicate with many different applications,
regardless of the operating system on which they are built or of the programming
language in which they are written. This kind of InterOperabilility Platform (IOP) is
developed in the SOFIA-project (www.sofia-project.eu). The IOP’s context storage is a
Semantic Information Broker (SIB), which is a Resource Description Framework, RDF,
(RDF, 2004) database. Software agents which are called Knowledge Processors (KP) can
connect to the SIB and exchange information through an XML-based interaction protocol
called Smart Space Access Protocol (SSAP). KPs use a Knowledge Processor Interface
(KPI) to communicate with the SIB. KPs consume and produce RDF triples into the SIB
according to the used ontology.

The IOP is proposed to be extended, where and when needed, with context-aware
functionalities following ‘the separation of concern’ principle to keep application free of the
context (Toninelli et al., 2009).

Kuusijärvi and Stenius illustrate how reusable KPs can be designed and implemented, i.e.,
how to apply ‘for reuse’ and ‘with reuse’ practices in the development of smart
environments (Kuusijärvi & Stenius, 2011). Thus, they cover the need for programming level
reusability.

http://www.w3.org
http://www.sofia-project.eu

I/15

Architecting Embedded Software for Context-Aware Systems

137

3.4 Context-aware micro-architecture

When context information is described by OWL and ontologies, typically reasoning
techniques will be based on a semantic approach, such as SPARQL Query Language for
RDF (SPARQL), (Truong & Dustdar, 2009).

The context-awareness micro-architecture, CAMA, is the solution for managing adaptation
based on context in smart environments. Context-awareness micro-architecture consists of
three types of agents: context monitoring, context reasoning and context-based adaptation
agents (Pantsar-Syväniemi et al., 2011a). These agents share information via the semantic
database. Figure 4 illustrates the structural viewpoint of the logical context-awareness
micro-architecture.

Fig. 4. The logical structure of the CAMA.

The context-monitoring agent is configured via configuration parameters which are defined
by the architect of the intelligent application. The configuration parameters can be updated
at run-time because the parameters follow the used context. The configuration parameters
can be given by the ontology, i.e., a set of triples to match, or by a SPARQL query, if the
monitored data is more complicated. The idea is that the context monitoring recognizes the
current status of the context information and reports this to the semantic database. Later on,
the reported information can be used in decision making.

The rule-based reasoning agent is based on a set of rules and a set of activation conditions
for these rules. In practice, the rules are elaborated 'if-then-else' statements that drive
activation of behaviors, i.e., activation patterns. The architect describes behavior by MSC
diagrams with annotated behavior descriptions attached to the agents. Then, the behavior is
transformed into SPARQL rules by the developer who exploits the MSC diagrams and the
defined ontologies to create SPARQL queries. The developer also handles the dynamicity of
the space by providing the means to change the rules at run-time. The context reasoning is a
fully dynamic agent, whose actions are controlled by the dynamically changing rules (at
run-time).

If the amount of agents producing and consuming inferred information is small, the rules
can be checked by hand during the development phase of testing. If an unknown amount of
agents are executing an unknown amount of rules, it may lead to a situation where one rule
affects another rule in an unwanted way. A usual case is that two agents try to change the
state of an intelligent object at the same time resulting in an unwanted situation. Therefore,
there should be an automated way of checking all the rules and determining possible
problems prior to executing them. Some of these problems can be solved by bringing

I/16 I/17

Embedded Systems – Theory and Design Methodology

138

priorities into the rules, so that a single agent can determine what rules to execute at a given
time. This, of course, implies that only one agent has rules affecting certain intelligent
objects.

CAMA has been used:

 to activate required functionality according to the rules and existing situation(s)
(Pantsar-Syväniemi et al., 2011a)

 to map context and domain-specific ontologies in a smart maintenance scenario for a
context-aware supervision feature (Pantsar-Syväniemi et al., 2011b)

 in run-time security management for monitoring situations (Evesti & Pantsar-
Syväniemi, 2010)

The Context Ontology for Smart Spaces, (CO4SS), is meant to be used together with the
CAMA. It has been developed because the existing context ontologies were already few
years old and not generic enough (Pantsar-Syväniemi et al, 2012). The objective of the
CO4SS is to support the evolution management of the smart space: all smart spaces and
their applications ‘understand’ the common language defined by it. Thus, the context
ontology is used as a foundational ontology to which application-specific or run-time
quality management concepts are mapped.

4. Conclusion
The role of software in large embedded systems, like in base stations, has changed
remarkably in the last three decades; software has become more dominant compared to the
role of hardware. The progression of processors and compilers has prepared the way for
reuse and software product lines by means of C language, especially in the area of DSP
software. Context-aware systems have been researched for many years and the maturity of
the results has been growing. A similar evolution has happened with the object-oriented
engineering that comes to DSP software. Although the methods were mature, it took many
years to gain proper processors and compilers that support coding with C language. This
shows that without hardware support there is no room to start to use the new methods.

The current progress of hardware development regarding size, cost and energy
consumption is speeding up the appearance of context-aware systems. This necessitates that
the information be distributed to our daily environment along with smart but separated
things like sensors. The cooperation of the smart things by themselves and with human
beings demands new kinds of embedded software. The new software is to be designed by
the ontological approach and instead of the process being top-down, it should use the
bottom-up way. The bottom-up way means that the smart space applications are formed
from the small functionalities, micro-architecture, which can be configured at design time,
on instantiation time and during run-time.

The new solution to designing the context management of context-aware systems from the
bottom-up is context-aware micro-architecture, CAMA, which is meant to be used with
CO4SS ontology. The CO4SS provides generic concepts of the smart spaces and is a common
‘language’. The ontologies can be compared to the message-based interface specifications in
the base stations. This solution can be the grounds for new initiatives or a body to start
forming the ‘borders’, i.e., the system architecture, for the context-aware ecosystem.

I/17

Architecting Embedded Software for Context-Aware Systems

139

5. Acknowledgment
The author thanks Eila Ovaska from the VTT Technical Research Centre and Olli Silvén
from the University of Oulu for their valuable feedback.

6. References
Achillelos, A.; Yang, K. & Georgalas, N. (2009). Context modelling and a context-aware

framework for pervasive service creation: A model-driven approach, Pervasive and
Mobile Computing, Vol.6, No.2, (April, 2010), pp. 281-296, ISSN 1574-1192

Awad, M.; Kuusela, J. & Ziegler, J. (1996). Object-Oriented Technology for Real-Time Systems. A
Practical Approach Using OMT and Fusion, Prentice-Hall Inc., ISBN 0-13-227943-6,
Upper Saddle River, NJ, USA

Baldauf, M.; Dustdar, S. & Rosenberg, F. (2007). A survey on context-aware systems,
International Journal of Ad Hoc and Ubiquitous Computing, Vol.2, No.4., (June, 2007),
pp. 263-277, ISSN 1743-8225

Bass, L.; Clements, P. & Kazman, R. (1998). Software Architecture in Practice, first ed.,
Addison-Wesley, ISBN 0-201-19930-0, Boston, MA, USA

Bettini, C.; Brdiczka, O.; Henricksen, K.; Indulska, J.; Nicklas, D.; Ranganathan, A. & Riboni
D. (2010). A survey of context modelling and reasoning techniques. Pervasive and
Mobile Computing, Vol.6, No.2, (April, 2010), pp.161—180, ISSN 1574-1192

Bosch, J. (1999). Product-line architectures in industry: A case study, Proceedings of ICSE 1999
21st International Conference on Software Engineering, pp. 544-554, ISBN 1-58113-074-
0, Los Angeles, CA, USA, May 16-22, 1999

Bosch, J. (2000). Design and Use of Software Architectures. Adopting and evolving a product-line
approach, Addison-Wesley, ISBN 0-201-67484-7, Boston, MA, USA

Chen, H.; Finin, T. & Joshi, A. (2003a). Using OWL in a Pervasive Computing Broker,
Proceedings of AAMAS 2003 Workshop on Ontologies in Open Agent Systems, pp.9-16,
ISBN 1-58113-683-8, ACM, July, 2003

Clements, P.C.; Bachmann, F.; Bass L.; Garlan, D.; Ivers, J.; Little, R.; Nord, R. & Stafford, J.
(2003). Documenting Software Architectures, Views and Beyond, Addison-Wesley, ISBN
0-201-70372-6, Boston, MA, USA

Coleman, D.; Arnold, P.; Bodoff, S.; Dollin, C.; Gilchrist, H.; Hayes, F. & Jeremaes, P. (1993).
Object-Oriented Development – The Fusion Method, Prentice Hall, ISBN 0-13-338823-9,
Englewood Cliffs, NJ, USA

CPRI. (2003). Common Public Radio Interface, 9.10.2011, Available from
http://www.cpri.info/

Dey, A. K. & Abowd, G. D. (1999). Towards a Better Understanding of Context and Context-
Awareness. Technical Report GIT-GVU-99-22, Georgia Institute of Technology,
College of Computing, USA

Enders, A. & Rombach, D. (2003). A Handbook of Software and Systems Engineering, Empirical
Observations, Laws and Theories, Pearson Education, ISBN 0-32-115420-7, Harlow,
Essex, England, UK

Eugster, P. Th.; Garbinato, B. & Holzer, A. (2009) Middleware Support for Context-aware
Applications. In: Middleware for Network Eccentric and Mobile Applications Garbinato,
B.; Miranda, H. & Rodrigues, L. (eds.), pp. 305-322, Springer-Verlag, ISBN 978-3-
642-10053-6, Berlin Heidelberg, Germany

http://www.cpri.info/

I/18 I/19

Embedded Systems – Theory and Design Methodology

140

Evesti, A. & Pantsar-Syväniemi, S. (2010). Towards micro architecture for security adaption,
Proceedings of ECSA 2010 4th European Conference on Software Architecture
Doctoral Symposium, Industrial Track and Workshops, pp. 181-188, Copenhagen,
Denmark, August 23-26, 2010

France, R. & Rumpe, B. (2007). Model-driven Development of Complex Software: A
Research Roadmap. Proceedings of FOSE’07 International Conference on Future of
Software Engineering, pp. 37-54, ISBN 0-7695-2829-5, IEEE Computer Society,
Washington DC, USA, March, 2007

Goossens, G.; Van Praet, J.; Lanneer, D.; Geurts, W.; Kifli, A.; Liem, C. & Paulin, P. (1997)
Embedded Software in Real-Time Signal Processing Systems: Design Technologies.
Proceedings of the IEEE, Vol. 85, No.3, (March, 1997), pp.436–454, ISSN 0018-9219

Hillebrand, F. (1999). The Status and Development of the GSM Specifications, In: GSM
Evolutions Towards 3rd Generation Systems, Zvonar, Z.; Jung, P. & Kammerlander, K.,
pp. 1-14, Kluwer Academic Publishers, ISBN 0-792-38351-6, Boston, USA

Hong, J.; Suh, E. & Kim, S. (2009). Context-aware systems: A literature review and
classification. Expert System with Applications, Vol.36, No.4, (May 2009), pp. 8509-
8522, ISSN 0957-4174

Indulska, J. & Nicklas, D. (2010). Introduction to the special issue on context modelling,
reasoning and management, Pervasive and Mobile Computing, Vol.6, No.2, (April
2010), pp. 159-160, ISSN 1574-1192

Jacobson, I., et al. (1992). Object-Oriented Software Engineering – A Use Case Driven Approach,
Addison-Wesley, ISBN 0-201-54435-0, Reading, MA, USA

Karlsson, E-A. (1995). Software Reuse. A Holistic Approach, Wiley, ISBN 0-471-95819-0,
Chichester, UK

Kapitsaki, G. M.; Prezerakos, G. N.; Tselikas, N. D. & Venieris, I. S. (2009). Context-aware
service engineering: A survey, The Journal of Systems and Software, Vol.82, No.8,
(August, 2009), pp.1285-1297, ISSN 0164-1212

Kronlöf, K. (1993). Method Integration: Concepts and Case Studies, John Wiley & Sons, ISBN 0-
471-93555-7, New York, USA

Krüchten, P. (1995). Architectural Blueprints—The “4+1” View Model of Software
Architecture, IEEE Software, Vol.12, No.6, (November, 1995), pp.42-50, ISSN 0740-
7459

Kuusijärvi, J. & Stenudd, S. (2011). Developing Reusable Knowledge Processors for Smart
Environments, Proceedings of SISS 2011 The Second International Workshop on
“Semantic Interoperability for Smart Spaces” on 11th IEEE/IPSJ International Symposium
on Applications and the Internet (SAINT 2011), pp. 286-291, Munich, Germany, July
20, 2011

Miller J. & Mukerji, J. (2003). MDA Guide Version 1.0.1.
 http://www.omg.org/docs/omg/03-06-01.pdf
Moore, P.; Hu, B.; Zhu, X.; Campbell, W. & Ratcliffe, M. (2007). A Survey of Context

Modeling for Pervasive Cooperative Learning, Proceedings of the ISITAE’07 1st IEEE
International Symposium on Information Technologies and Applications in Education,
pp.K51-K56, ISBN 978-1-4244-1385-0, Nov 23-25, 2007

Nokia Siemens Networks. (2011). Liquid Radio - Let traffic waves flow most efficiently.
White paper. 17.11.2011, Available from

 http://www.nokiasiemensnetworks.com/portfolio/liquidnet

http://www.omg.org/docs/omg/03-06-01.pdf
http://www.nokiasiemensnetworks.com/portfolio/liquidnet

I/19

Architecting Embedded Software for Context-Aware Systems

141

OBSAI. (2002). Open Base Station Architecture Initiative, 10.10.2011, Available from
http://www.obsai.org/

OWL. (2004). Web Ontology Language Overview, W3C Recommendation, 29.11.2011,
Available from http://www.w3.org/TR/owl-features/

Palmberg, C. & Martikainen, O. (2003) Overcoming a Technological Discontinuity - The case of
the Finnish telecom industry and the GSM, Discussion Papers No.855, The Research
Institute of the Finnish Economy, ETLA, Helsinki, Finland, ISSN 0781-6847

Pantsar-Syväniemi, S.; Taramaa, J. & Niemelä, E. (2006). Organizational evolution of digital
signal processing software development, Journal of Software Maintenance and
Evolution: Research and Practice, Vol.18, No.4, (July/August, 2006), pp. 293-305, ISSN
1532-0618

Pantsar-Syväniemi, S. & Ovaska, E. (2010). Model based architecting with MARTE and
SysML profiles. Proceedings of SE 2010 IASTED International Conference on Software
Engineering, 677-013, Innsbruck, Austria, Feb 16-18, 2010

Pantsar-Syväniemi, S.; Kuusijärvi, J. & Ovaska, E. (2011a) Context-Awareness Micro-
Architecture for Smart Spaces, Proceedings of GPC 2011 6th International Conference
on Grid and Pervasive Computing, pp. 148–157, ISBN 978-3-642-20753-2, LNCS 6646,
Oulu, Finland, May 11-13, 2011

Pantsar-Syväniemi, S.; Ovaska, E.; Ferrari, S.; Salmon Cinotti, T.; Zamagni, G.; Roffia, L.;
Mattarozzi, S. & Nannini, V. (2011b) Case study: Context-aware supervision of a
smart maintenance process, Proceedings of SISS 2011 The Second International
Workshop on “Semantic Interoperability for Smart Spaces”, on 11th IEEE/IPSJ
International Symposium on Applications and the Internet (SAINT 2011), pp.309-314,
Munich, Germany, July 20, 2011

Pantsar-Syväniemi, S.; Kuusijärvi, J. & Ovaska, E. (2012) Supporting Situation-Awareness in
Smart Spaces, Proceedings of GPC 2011 6th International Conference on Grid and
Pervasive Computing Workshops, pp. 14–23, ISBN 978-3-642-27915-7, LNCS 7096,
Oulu, Finland, May 11, 2011

Paulin, P.G.; Liem, C.; Cornero, M.; Nacabal, F. & Goossens, G. (1997). Embedded Software
in Real-Time Signal Processing Systems: Application and Architecture Trends,
Proceedings of the IEEE, Vol.85, No.3, (March, 2007), pp.419-435, ISSN 0018-9219

Pohl, K.; Böckle, G. & van der Linden, F. (2005). Software Product Line Engineering, Springer-
Verlag, ISBN 3-540-24372-0, Berlin Heidelberg

Purhonen, A. (2002). Quality Driven Multimode DSP Software Architecture Development, VTT
Electronics, ISBN 951-38-6005-1, Espoo, Finland

RDF. Resource Description Framework, 29.11.2011, Available from
 http://www.w3.org/RDF/
Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F. & Lorensen, W. (1991) Object-Oriented

Modeling and Design, Prentice-Hall Inc., ISBN 0-13-629841-9, Upper Saddle River,
NJ, USA

Shaw, M. (1990). Toward High-Level Abstraction for Software Systems, Data and Knowledge
Engineering, Vol. 5, No.2, (July 1990), pp. 119-128, ISSN 0169-023X

Shlaer, S. & Mellor, S.J. (1992) Object Lifecycles: Modeling the World in States, Prentice-Hall,
ISBN 0-13-629940-7, Upper Saddle River, NJ, USA

Soylu, A.; De Causmaecker1, P. & Desmet, P. (2009). Context and Adaptivity in Pervasive
Computing Environments: Links with Software Engineering and Ontological

http://www.obsai.org/
http://www.w3.org/TR/owl-features/
http://www.w3.org/RDF/

I/20 21

Embedded Systems – Theory and Design Methodology

142

Engineering, Journal of Software, Vol.4, No.9, (November, 2009), pp.992-1013, ISSN
1796-217X

SPARQL. SPARQL Query Language for RDF, W3C Recommendation, 29.11.2011, Available
from http://www.w3.org/TR/rdf-sparql-query/

Strang, T.; Linnhoff-Popien, C. & Frank, K. (2003). CoOL: A Context Ontology Language to
enable Contextual Interoperability, Proceedings of DAIS2003 4th IFIP WG 6.1
International Conference on Distributed Applications and Interoperable Systems, pp.236-
247, LNCS 2893, Springer-Verlag, ISBN 978-3-540-20529-6, Paris, France, November
18-21, 2003

Strang, T. & Linnhoff-Popien, C. (2004). A context modelling survey, Proceedings of UbiComp
2004 1st International Workshop on Advanced Context Modelling, Reasoning and
Management, pp.31-41, Nottingham, England, September, 2004

Toninelli, A.; Pantsar-Syväniemi, S.; Bellavista, P. & Ovaska, E. (2009) Supporting Context
Awareness in Smart Environments: a Scalable Approach to Information
Interoperability, Proceedings of M-PAC'09 International Workshop on Middleware for
Pervasive Mobile and Embedded Computing, session: short papers, Article No: 5, ISBN
978-1-60558-849-0, Urbana Champaign, Illinois, USA, November 30, 2009

Truong, H. & Dustdar, S. (2009). A Survey on Context-aware Web Service Systems.
International Journal of Web Information Systems, Vol.5, No.1, pp. 5-31, ISSN 1744-
0084

Wang, X. H.; Zhang, D. Q.; Gu, T. & Pung, H. K. (2004). Ontology Based Context Modeling
and Reasoning using OWL, Proceedings of PerComW ‘04 2nd IEEE Annual Conference
on Pervasive Computing and Communications Workshops, pp. 18–22, ISBN 0-7695-2106-
1, Orlando, Florida, USA, March 14-17, 2004

http://www.w3.org/TR/rdf-sparql-query/

21

PUBLICATION II

Organizational evolution of
digital signal processing

software development

In: Journal of Software Maintenance and
Evolution: Research and Practice 2006(18),

pp. 293–305.
Copyright 2006 John Wiley & Sons, Ltd.

Reprinted with permission from the publisher.

II/1

II/1

JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2006; 18:293–305
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr.334

Practice

Organizational evolution of
digital signal processing
software development

Susanna Pantsar-Syväniemi1,∗,†, Jorma Taramaa1 and
Eila Niemelä2

1Nokia Networks, P.O. Box 319, FIN-90651 Oulu, Finland
2VTT Technical Research Centre of Finland, P.O. Box 1100, FIN-90571 Oulu, Finland

SUMMARY

A base station, as a network element, has become an increasingly software-intensive system. Digital signal
processing (DSP) software is hard real-time software that is a part of the software system needed in a
base station. This article reports practical experiences related to organizing the development of embedded
software in the telecommunication industry, at Nokia Networks. The article introduces the main factors
influencing the development of DSP software and also compares the evolutionary process under study with
both selected organizational models for a software product line and a multistage model for the software life
cycle. We believe it is vitally important to formulate the organization according to the software architecture,
and it is essential to have a dedicated development organization with long-term responsibility for the
software. History shows that without long-term responsibility, there is no software reuse. In this paper
we introduce a new organizational model for product line development. This new hybrid model clarifies
long-term responsibilities in large software organizations with hundreds of staff members and formulates
the organization according to the software architecture. Our case needs a couple more constraints to keep it
in the evolution stage of the software life cycle. Thus, we extend the evolution phase in the multistage model
to make it relevant for embedded, hard real-time software. Copyright c� 2006 John Wiley & Sons, Ltd.

Received 15 November 2004; Revised 19 February 2006; Accepted 20 April 2006

KEY WORDS: software product line; software reuse; embedded software; software architecture; software
maintenance; software development

1. INTRODUCTION

How can we shorten a company’s time-to-market? How can we widen its product portfolio? How can
we improve the quality and performance of the company’s products? These questions are essential

∗Correspondence to: Susanna Pantsar-Syväniemi, Nokia Networks, P.O. Box 319, FIN-90651 Oulu, Finland.
†E-mail: susanna.pantsar-syvaniemi@nokia.com

Copyright c� 2006 John Wiley & Sons, Ltd.

http://www.interscience.wiley.com
mailto:susanna.pantsar-syvaniemi@nokia.com

II/2 II/3

294 S. PANTSAR-SYVÄNIEMI, J. TARAMAA AND E. NIEMELÄ

in today’s telecommunication business, and they drive a need to rein in the efforts expended in
software development in order to meet business demands. The natural way to decrease these efforts
is to increase reuse. Software reuse based on product line architecture is successfully applied in the
software industry [1]. A software product line is a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market segment or mission and
are developed from a common set of reusable core assets in a prescribed way [2]. Software architecture
is used as a means of abstraction, communication and management [3], and therefore it is the key asset
in a product line organization. Software changes are always present [4,5]; a system that is used will be
changed, and its complexity will increase unless work is done to reduce it. Changes initiated by the use
of architecture generally affect the entire organization [3]. Therefore, full acceptance of organizational
changes is important in making successful use of architecture. Managing changes through architecture
has many similarities with other evolutionary processes [4,5]. In [6], software architecture is considered
a main research topic in handling unanticipated changes, controlling software evolution and managing
the knowledge and expertise of software teams. Moreover, raising the level of abstraction is seen as a
promising means of managing software evolution.

This article describes experiences with organizational evolution in the area of digital signal
processing (DSP) software as a part of base station development at Nokia Networks, and it proposes a
new organizational model for a DSP software product line as well as the whole base station software
product line. The findings are based on experiences gained while the authors worked in different areas
of embedded software within projects and line management in base station software development.
The findings are compared with organizational alternatives for software product lines introduced in [7].
We have chosen these alternatives because they seemed to be the most suitable for our case and their
roots are within industry. The responsibility for software maintenance of a base station product is
significant, lasting longer than 10 years. Owing to this long-lasting nature of maintenance, we compare
our case (DSP as embedded, hard real-time software) with the multistage model for the software life
cycle introduced in [6].

This paper is composed as follows. The next section introduces the factors influencing the
development of DSP software within base station software. Section 3 describes the characteristics
of both the chosen organizational alternatives when applying the software product line approach, and
the multistage model for the software life cycle. Section 4 presents the organizational evolution of
DSP software development at Nokia Networks. Section 5 discusses the results of the comparison and
introduces both the new organizational model for a software product line and the extensions of the
evolution phase in the multistage model. The final remarks are presented and future research needs are
discussed in Section 6.

2. FACTORS INFLUENCING BASE STATION DSP SOFTWARE

DSP software operates with very tight timing, memory and performance requirements. The DSP is
a central part of the physical layer base band solutions of telecommunications (or mobile wireless)
systems, such as digital mobile phones and digital base stations. In general, the functions of the physical
layer have been implemented in hardware, e.g., ASIC (application-specific integrated circuit), FPGA
(field programmable gate array) or near to hardware [8,9].

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:293–305
DOI: 10.1002/smr

II/3

EVOLUTION OF DIGITAL SIGNAL PROCESSING 295

Traditionally, systematic reuse has been difficult in DSP software because each product has required
careful optimization of resources, and the implementation language has been mainly a processor-
specific assembly. A software architecture creates a common basis between software development
and systematic software reuse. It can be used to form a common understanding of what is being
developed between different stakeholders, such as software designers, architects, managers, and
marketing people [10].

As processors and compilers have become more efficient, ever since the introduction of WCDMA
(Wideband Code-Division Multiple Access) air interface technology in UMTS (Universal Mobile
Telecommunication System), the C language has been used instead of assembly in DSP software
development. The use of C is one of the enabling factors on the way to making reusable DSP
software [10]. Another enabling factor is more advanced tools, making it possible to separate DSP
software development from the underlying platform.

Nowadays, base station software consists of a huge number of different types of embedded software,
i.e., real-time control and management, hardware-related and hard real-time software. Hard real-time
software comprises DSP software. User interface software is developed along with embedded base
station software. Each type of software has its own characteristics. For example, DSP software has
an ‘engagement’ with ASICs and FPGAs, and time-critical aspects are connected to the source code
implementation. The base station business model has changed from a closed, in-house business to
distributed development on an open market, bringing new stakeholders on the scene. An open market
requires a change towards a modular, service-oriented architecture that influences the manner of
communication. The need to distribute information among geographically separated and/or culturally
different development teams is solved by defining the stakeholders of the domain and introducing the
viewpoints necessary for service-oriented module development [11].

Standards have a major role in the telecommunication industry. They define many facts
via specifications, like communication between different parties. During the 1980s, European
telecommunication organizations and companies reached a common understanding on the development
of a Pan-European mobile communication standard, Global System for Mobile Communications
(GSM), by establishing a dedicated organization, ETSI (European Telecommunications Standards
Institute), for the further evolvement of the GSM air interface standard. This organization has produced
the GSM 900 and 1800 standard specifications [12]. The large European telecommunication companies
created a consortium. The goal of this group was to prepare a new European mobile telephone network,
GSM [13]. Nokia participated in this consortium, being one of the developers of a novel GSM digital
base station solution.

Development of the GSM standard included more and more challenging features of standard mobile
technology defined by ETSI, such as HSCSD (High Speed Circuit Switched Data), GPRS (General
Packet Radio Service), AMR (Adaptive Multirate Codec) and EDGE (Enhanced Data rates for GSM
Evolution) [12]. One should recognize the fact that UMTS (Universal Mobile Telecommunication
System) essentially should be interpreted as a continuation of the regulatory regime and technological
path set in motion through GSM, rather than a radical break from this regime. In effect, GSM
standardization defined a path of progress through GPRS and EDGE towards UMTS as the major
standard of 3G under the 3GPP standardization organization [14].

3GPP within ETSI [15] is a body that serves the players who benefit the most from network and
element-level standardization, i.e., network suppliers and network operators. However, these bodies do
not standardize the internal interfaces of network elements. For this purpose we need industry forums

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:293–305
DOI: 10.1002/smr

II/4 II/5

296 S. PANTSAR-SYVÄNIEMI, J. TARAMAA AND E. NIEMELÄ

such as OBSAI (Open Base Station Architecture Initiative). OBSAI was set up to define and agree on
open standards for base station internal architecture and key interfaces. Module vendors can develop
modules with the specified interface and sell them to base station manufacturers [16].

From the above we can highlight that the issues that set the main constraints for organizing initial
development and maintenance of DSP software are the underlying hardware, standards, and a common
architecture. It is essential to note that these constraints have different lifetimes. Hardware evolves
according to ‘Moore’s Law’ [5], and that progress is much more rapid than the evolution of ETSI [15]
and OBSAI [16] standards.

3. FRAMES OF COMPARISON

As stated earlier, we selected two frames of comparison: organizational alternatives for software
product lines and a multistage model for the software life cycle. To be able to foresee and deal with
the factors introduced in Section 2, the former frame provides an appropriate software product line
for our case, which is embedded, hard real-time software and a part of a huge embedded software
system needed for a base station as a network element. Another aspect of the former frame is that the
most suitable organizational alternative has to be changed according to varying needs in the company’s
software development. It is interesting to see how this aspect correlates with our case. The latter frame
gives a deeper view of software maintenance and evolution in our case.

3.1. Organizational alternatives for software product lines

The strength of the software product line is that it clarifies responsibility issues in creating, modifying
and maintaining the software needed for the company’s products. The characteristics of organizational
alternatives are grouped around four main models: the development department, business units, the
domain engineering unit and the hierarchical domain engineering unit [7]. These models are described
in Table I.

3.2. Multistage model for the software life cycle

The multistage model presents the software life cycle as a sequence of stages, with initial development
being the first stage [6]. It separates the ‘maintenance’ phase into an evolution stage followed by
servicing and phase-out stages, as shown in Figure 1. A few characteristics of the stages are listed
in Table II.

4. CHARACTERISTICS OF BASE STATION DSP SOFTWARE DEVELOPMENT

As mentioned earlier, our focus is on DSP software within base station software. Base station systems
in the early 1990s were hardware based, and software’s task was mainly to control the hardware.
A big achievement of that time was that engineers cooperated with the GSM standardization body.
Development work was done within one site, meaning the software engineers were gathered together
to work side by side. Thus, information sharing within the development department was handled easily
and quickly. When base station software development was in its initial phase, there were only a few

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:293–305
DOI: 10.1002/smr

II/5

EVOLUTION OF DIGITAL SIGNAL PROCESSING 297

Table I. Characteristics of organizational alternatives for software product lines.

Organizational Number of
alternatives software staff Responsibility for assets How work is organized

Development
department

<30 A single organizational unit
that develops and maintains
reusable assets

No permanent structure, work is
typically organized in projects

Business units 30–100 Each business unit is
responsible for the
development and evolution of
one product or a few products

Product (type of systems) centric

Business units share reusable
assets

Domain engineering
unit

100–hundreds Separates the development
and evolution of shared assets
from the development of
concrete systems

The domain engineering unit
distributes software architecture
and components to the product
(system) engineering units

One (or multiple) domain
engineering unit(s) and
several product engineering
units

Hierarchical domain
engineering units

Hundreds Specialized domain
engineering units that
develop and evolve reusable
assets for a subset of the
products in the family

Architecture-centric: general
assets for all, specialized assets
for a set of products

software engineers working in DSP software development at the time. The physical layer solution
was implemented using both hardware and DSP software. Development was managed by hardware
technologies. More characteristics of software development of that time are described in Table III.

4.1. In the mid-1990s

Even though base station development was hardware oriented, the role of DSP software was growing
in the physical layer implementation. GSM recommendations required flexible control of hardware,
which could only be achieved by using DSP software. In practice, this still meant, however, that
hardware persons made the decisions of codesign. The DSP software made it possible to correct
the functionality of hardware and to evolve old base stations with novel physical layer features by
producing new software. Software provided real business benefits.

The DSP software was coded with a processor-specific assembler language. Development of base
station software was done on a project basis, and the project was organized according to the architecture
that was familiar from the beginning. There were just a few software engineers specializing in DSP
software. Roughly, the size of the whole base station software department was in the order of tens
of employees. The characteristics of software development at that time are described in Table IV.

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:293–305
DOI: 10.1002/smr

II/6 II/7

298 S. PANTSAR-SYVÄNIEMI, J. TARAMAA AND E. NIEMELÄ

Figure 1. Multistage model.

After the first version of the whole base station software was ready to be delivered to customers, the
next version was under development in a new project, based on the version created earlier. The new
project took care of developing new features for the base station and also maintaining the software
made earlier.

4.2. At the end of the 1990s

‘Moore’s Law’ [5] and the evolving ETSI standards [15] were the primary factors behind the need
to scale development work. The natural way to scale was to establish new development projects for
different products and separate projects for software maintenance. In DSP software this meant the
newer base station was going to have a newer processor than the earlier base station product(s).
In addition, a typical trend of that time was an expansion of the number of software developers.
This situation forced us to build a multisite organization.

The most essential nature of DSP development at that time was adding new GSM features into the
existing base station hardware platform with DSP software. This extended the application knowledge
of DSP software developers, but similar features were developed in parallel projects by different
DSP software developers. Still, software development was organized according to the architecture.
There were no other assets than the common architecture. The projects had the resources to create their
own solutions even for common tasks or features. The characteristics of this development phase are
introduced in Table V.

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:293–305
DOI: 10.1002/smr

II/7

EVOLUTION OF DIGITAL SIGNAL PROCESSING 299

Table II. Characteristics of the multistage model for the software life cycle.

Stage Characteristics of the stage

Initial
development

The first version of the software system is developed. This stage provides knowledge about
the application domain, user requirements, the role of the application in the business process,
the operating environment, program architecture, etc.

Evolution After successful initial development, the software is in the evolution stage. The goal is to
adapt the application to the ever-changing user requirements and operating environment.
It corrects faults in the application. The software is being evolved because it is successful in
the marketplace (revenue streams are buoyant, user demand is strong, the development
atmosphere is vibrant and positive, the organization is supportive). Return on investment is
excellent. Both the software architecture and the knowledge of the software team make
evolution possible

Servicing Only minor tactical changes (patches, code changes, wrappers) are possible. They further
deteriorate the architecture. The software is likely to no longer be a core product for
business, the cost benefits of changes are much more marginal. If the knowledge necessary
for evolution is lost, changes in the software will lead to faster deterioration of the software
architecture

Phase-out No more servicing is being undertaken, but the system may still be in production

Close-down Software use is disconnected and the users are directed towards a replacement

Table III. Characteristics of software development in the beginning.

Number of Number of
software software

persons in the persons Language
base station developing used in

software DSP DSP
department software software Products Development work Organizational units

<20 <5 Processor-
specific
assembler

GSM base
station

Hardware-oriented
product
development

Project according to the
product under
development

The physical layer
was implemented
using both
hardware and DSP
software

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:293–305
DOI: 10.1002/smr

II/8 II/9

300 S. PANTSAR-SYVÄNIEMI, J. TARAMAA AND E. NIEMELÄ

Table IV. Characteristics of software development in the mid-1990s.

Number of Number of
software software

persons in the persons Language
base station developing used in

software DSP DSP
department software software Products Development work Organizational units

30–60 <10 Processor-
specific
assembler

GSM base
station

Hardware-oriented
product
development

Project; no permanent
unit for handling
software maintenance

DSP software
achieved a
significant role in
the physical layer

Software development
was organized
according to the
architecture

The common
architecture was
an asset

Table V. Characteristics of software development at the end of the 1990s.

Number of Number of
software software

persons in the persons Language
base station developing used in

software DSP DSP
department software software Products Development work Organizational units

<200 <50 Processor-
specific
assembler

GSM base
stations

Project specific
domain engineering

Concurrent
multi-site projects

4.3. In the early 2000s

After the concurrent development teams in different projects for base station products, the next major
step in the organizational evolution was the establishment of reuse activities; development ‘for reuse’
and development ‘with reuse’. ‘For reuse’ means development of reusable assets and ‘with reuse’
means using the assets in product development or maintenance [17]. The main problem within this
process-centric, ‘for reuse’ and ‘with reuse’, development was that it produced an architecture that
was too abstract. The reason was that the domain was too wide, i.e., the domain was base station
software in its entirety. Project-specific solutions were created during reuse activities despite the fact

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:293–305
DOI: 10.1002/smr

II/9

EVOLUTION OF DIGITAL SIGNAL PROCESSING 301

Table VI. Characteristics of the software development in the early 2000s.

Number of Number of
software software

persons in the persons Language
base station developing used in

software DSP DSP Development Organizational
department software software Products work units

>200 >50 C GSM and WCDMA Reuse-based Architecture-centric
base stations

that software reuse was meant to happen. Thus, the meaning and benefits of domain engineering were
not understood. The scope within one specific project was to get a certain base station product ready
for the market.

Usually, one project will carry the responsibility for developing a specific and new base station
product. Afterwards, this project does not have long-term responsibility for maintaining the product
or the software embedded in the product. In effect, product concepts and software development will
change quite a bit. As a consequence of this change there will be a need to assign responsibility for
development and maintenance of the software to a certain organizational unit. Owing to the temporal
nature of a project, maintenance should be assigned to a ‘permanent’ unit that is not a separate project.
The characteristics of software development in this period are described in Table VI. The commitment
of the line and project management is vital for domain engineering. The aim to create a foundation for
software reuse can be quite easily sacrificed because of business pressure or unsuitable responsibility
issues between line organizations and project(s).

4.4. In the mid-2000s

Here the organizational unit’s responsibility means that the unit, such as the DSP software development
department, has long-term responsibility for different specifications, interfaces and software modules.
This situation in DSP software development has been analyzed in [18]. The unit is also responsible
for the software architecture in its own domain. Domain architectures are defined according to the
architecture of the whole base station system.

As a very large software development organization with hundreds of developers, the base station
software development department is too large to be a pure domain engineering unit, and because of
the open module business, a new organizational model for software development is needed. Adoption
of a product line architecture is required both in module service development and in the development
of base station services [11]. Domain development is not a separate activity to product development.
On the contrary, domain engineering has to be closely linked to the development of products; even the
development of new features is primarily part of the activities in application (or system or product)
engineering.

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:293–305
DOI: 10.1002/smr

II/10 II/11

302 S. PANTSAR-SYVÄNIEMI, J. TARAMAA AND E. NIEMELÄ

5. RESULTS

In this section the findings based on experiences and the comparison between the case under study
and the chosen frames are discussed. The purpose is to identify both a suitable software product line
and correlations between the evolutionary path and the organizational alternatives for software product
lines introduced earlier in this article. Another idea is to clarify our software maintenance and evolution
against the frame for the software life cycle.

5.1. New organizational alternative for a software product line

During the evolutionary path a project-based style was used to organize the software engineers and
the development of base stations was hardware oriented. Establishing new projects for different base
station products scaled development. The fundamental issue was the growing number of projects within
the evolving technologies of the telecommunication infrastructure industry, where maintenance has to
be provided for sold products for at least 10 years. The maintenance of software was organized on the
basis of a product or product family.

In the project-based phase within our evolutionary process the software engineers were assigned
to teams according to the common architecture for the duration of a project. The common software
architecture was good and relevant for development at that time, but it was no longer suitable when the
diversity of products increased. As mentioned earlier, our development department was working like a
product line. In the product-based phase, we also used a common architecture. In this phase we scaled
development by establishing new product projects within a product line and by establishing product
lines for separate business units. A characteristic of this approach was the expansion of the number
of software developers. That situation forced us to build a multisite organization. In the ‘for reuse’
and ‘with reuse’ phase, we tended to build up a platform for sharing components and architecture.
This phase was a natural step in the evolutionary path towards the new model needed for service-
oriented software development.

Our solution for a new model is a hybrid model, which is a combination of the hierarchical domain
model for the base station product line and the development departments for module (such as baseband)
development. This hybrid model is a newcomer in the field of organizing software development in very
large organizations. The difference between our hybrid model and the hierarchical domain engineering
model [7] is that we prefer a development department to a domain engineering unit. We consider that,
for the module product line, the development department would be more useful than the pure domain
engineering unit because of clear responsibility sharing. The development department type of product
line has overall responsibility for domain and application engineering projects as well as responsibility
for the common software architecture of all products to be produced within this product line. Based on
our experiences, our evolutionary path in the context of organizational units (as shown in Table VII) has
evolved from project type to product type, continuing via the platform-centric mode to the architecture-
centric mode for organizing the developers.

With the hybrid model, we will be able to have the long-term responsibility that is the key issue in the
context of software reuse. Herein software reuse is based on product line architectures. The motivation
for using the hybrid model is to be able to produce large, growing and complicated software efficiently
and cost-effectively. With a ‘permanent unit’ and clear responsibilities, the organizations will be able to
achieve an easier continuum for ever-evolving hardware platforms and development tools independent
from the hardware platform.

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:293–305
DOI: 10.1002/smr

II/11

EVOLUTION OF DIGITAL SIGNAL PROCESSING 303

Table VII. Similarities and differences between the case under study and organizational alternatives for
a software product line.

The way
development work

was organized
within the

Correlating organizational Assets in base station evolutionary step
Case under study alternative according to [7] software in the case

Starting phase Development department Common architecture Project

Concurrent Development departments in Common architecture Product
development groups separate business units

‘For reuse’ and ‘with Domain engineering unit Platform, shared Process-centric
reuse’ development components
projects

Service-oriented Combination of the Shared components Architecture-centric
module development development department and according to the
(hybrid model) the hierarchical domain architecture

engineering units

In the sense of DSP software, this means the DSP software developers are responsible for
development and maintenance of the assets needed in the DSP software area. When the responsibility
is divided according to the architecture, it is also good to organize the software developers accordingly.
This can be called a competence-centric way of organizing the software developers. We consider the
architecture or competence-centric way to be the best choice for organizing the staff for a system like
the base station, with long-term maintenance responsibility for the customers.

5.2. Extended staged model for software life cycle

Based on our experience, we see that DSP software inside the base station needs a few more constraints
for the evolution stage in the software life cycle because of very tight timing requirements and a close
relationship between hardware and DSP software. DSP software is in the evolution stage as long as it
can be optimized or the underlying hardware is capable enough. At some point, financial reasons will
lead the software to the servicing stage.

6. FINAL REMARKS

In this paper we introduced a company’s evolutionary process for organizing DSP software
development. The amount of software has grown during the years. The role of software has
also changed: it has become more dominant. The underlying hardware, standards and a common
architecture were the issues that set the main constraints for organizing development and maintenance

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:293–305
DOI: 10.1002/smr

II/12 II/13

304 S. PANTSAR-SYVÄNIEMI, J. TARAMAA AND E. NIEMELÄ

of the software. As the size of the company and the number of projects and products increased, it
became necessary to reorganize the structure of working. A development department with a common
architecture was applied when only a few software developers were involved. In concurrent software
engineering, software development and maintenance of the software were allocated to separate business
units. When the focus was on a platform and shared components, software development was process-
centric: ‘for reuse’ and ‘with reuse’ development. Shifting towards service-orientation required a new
organization model: a hybrid model, which is a combination of the development departments and the
hierarchical domain engineering units.

In [4], it was argued that, to a certain extent, the evolution phenomenon controls the organization.
We hold the view that the given argument is true when it comes to maintenance and evolution of the
software. In the initial development phase of the software, it might be an organization that leads the
evolution by influencing customers to make a certain evolution happen. As far as the multistage model
is concerned, we found the need to expand its evolution stage to be relevant for our case as embedded
and hard real-time software. The expansions were to make the underlying hardware efficient enough
and to optimize the software itself.

To successfully reuse software, the commitment to reuse has to exist at every level in the
organization. Communication is most essential for getting this commitment. Software architecture is
really important in sharing the information and the reasons; architecture is vital for reuse. The aim of
creating a foundation for software reuse can quite easily be sacrificed because of business pressure or
unclear responsibility for sharing between the line organization and project(s).

Work will continue within the hybrid model introduced for the first time in this paper. Upcoming
research should also consider how to progress from a product program-focused mode to reuse-driven
software development.

REFERENCES

1. Bosch J. Product-line architectures in industry: A case study. Proceedings 21st International Conference on Software
Engineering (ICSE’99). IEEE Computer Society Press: Los Alamitos CA, 1999; 544–554.

2. Clements P, Bachman F, Bass L, Garland D, Ivers J, Little R, Nord R, Stafford J. Documenting Software Architectures:
Views and Beyond. Addison-Wesley: Boston MA, 2003; 294 pp.

3. van der Raadt B, Soetendal J, Perdeck M, van Vliet H. Polyphony in architecture. Proceedings 26th International
Conference on Software Engineering (ICSE 2004). IEEE Computer Society Press: Washington DC, 2004; 533–542.

4. Lehman MM, Belady LA. Program Evolution: Processes of Software Change. Academic Press: London, 1985; 1–38,
275–287.

5. Enders A, Rombach D. A Handbook of Software and Systems Engineering. Empirical Observations, Laws and Theories.
Pearson Education: Harlow, 2003; 160–177, 244.

6. Bennett KH, Rajlich VT. Software maintenance and evolution: A roadmap. Proceedings of the Conference on the Future
of Software Engineering. ACM Press: New York NY, 2000; 73–87.

7. Bosch J. Software product lines: Organizational alternatives. Proceedings 23rd International Conference on Software
Engineering (ICSE 2001). IEEE Computer Society Press: Washington DC, 2001; 91–100.

8. Paulin PG, Liem C, Cornero M, Nacabal F, Goossens G. Embedded software in real-time signal processing systems:
Application and architecture trends. Proceedings of the IEEE 1997; 85(3):419–434.

9. Goossens G, Van Praet J, Lanneer D, Geurts W, Kifli A, Liem C, Paulin P. Embedded software in real-time signal
processing systems: Design technologies. Proceedings of the IEEE 1997; 85(3):436–454.

10. Purhonen A. Quality Driven Multimode DSP Software Architecture Development. VTT Electronics: Espoo, Finland, 2002;
41–52.

11. Matinlassi M, Pantsar-Syväniemi S, Niemelä E. Towards service-oriented development in base station modules.
Proceedings of the 17th European Meeting on Cybernetics and Systems Research (EMCSR 2004), vol. 2, Trappl R (ed.).
Austrian Society for Cybernetic Studies: Vienna, 2004; 440–444.

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:293–305
DOI: 10.1002/smr

II/13

EVOLUTION OF DIGITAL SIGNAL PROCESSING 305

12. Hillebrand F. The status and development of the GSM specifications. GSM Evolutions Towards 3rd Generation Systems.
Zvonar Z, Jung P, Kammerlander K (eds). Kluwer Academic Publishers: Dordrecht, 1999; 1–14.

13. Nokia. The history of Nokia 1865–2002. http://www.nokia.com/A402756 [19 February 2006].
14. Palmberg C, Martikainen O. Overcoming a technological discontinuity: The case of the Finnish telecom industry and the

GSM. Discussion Papers No.855, The Research Institute of the Finnish Economy, Helsinki, Finland, 2003; 55 pp.
Available at: http://www.etla.fi/files/677 dp855.pdf [10 February 2006].

15. ETSI. Welcome to ETSI. The European Telecommunications Standards Institute: Sophia Antipolis, France, 2004.
http://www.etsi.org/home.html [14 February 2006].

16. OBSAI. Welcome to OBSAI. Open Base Station Architecture Initiative, 2002; 1 pp.
http://www.obsai.org/ [14 February 2006].

17. Karlsson E-A. Software Reuse. A Holistic Approach. Wiley: Chichester, 1995; 3–34, 249–270, 287–376.
18. Kääriäinen J, Taramaa J, Alenius J. Configuration management support for the development of an embedded system:

Experiences in the telecommunication industry. Proceedings of the 5th International Symposium on Tools and Methods of
Competitive Engineering (TMCE 2004), vol. 2. Millpress: Rotterdam, 2004; 605–616.

AUTHORS’ BIOGRAPHIES

Susanna Pantsar-Syväniemi is a Software Specialist in WCDMA RAN Research
and Development at Nokia Networks, Oulu, Finland. Since 1993, she has been
working for embedded systems with Nokia Networks. Her research topic is related to
organizational issues on company’s reuse strategy. She graduated (MSc, in 1993) in
Information Processing from the Lappeenranta University of Technology, Finland. She is a
postgraduate student in information processing science at the University of Oulu, Finland.

Jorma Taramaa is a R&D Manager at Nokia Networks, Oulu, Finland with 20 year’s
experience in software research and development of embedded systems. He finished his
doctoral thesis on software configuration management of embedded systems in 1998 at the
University of Oulu, Finland. As a R&D Manager, he has been responsible for competence
management of digital signal processing software for WCDMA-based basestations.

Eila Niemelä is a Research Professor at VTT Technical Research Centre of Finland.
Her main research interests are product family architectures, service architectures, quality-
driven architecture design and quality evaluation. Since 2002 she has also worked as a
docent of software architectures and components at the University of Oulu. She obtained
her MSc degree in 1995 and the PhD degree in 2000 in Information Processing Science
from the University of Oulu, Finland.

Copyright c© 2006 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2006; 18:293–305
DOI: 10.1002/smr

http://www.nokia.com/A402756
http://www.etla.fi/files/677
http://www.etsi.org/home.html
http://www.obsai.org/

PUBLICATION III

Situation-based and
self-adaptive applications for

the smart environment

In: Journal of Ambient Intelligence and Smart
Environments 2012 (4), pp. 491–516.

Copyright 2012 IOS Press and the authors.
Reprinted with permission from the publisher.

III/1

Situation-based and self-adaptive

applications for the smart environment

Susanna Pantsar-Syväniemi
*

, Anu Purhonen, Eila Ovaska, Jarkko Kuusijärvi and Antti Evesti

VTT Technical Research Centre of Finland, P.O. Box 1100, FI-90571 Oulu, Finland

E-mail: {susanna.pantsar-syvaniemi,anu.purhonen,eila.ovaska,jarkko.kuusijarvi,antti.evesti}@vtt.fi

Abstract. Situation-based and self-adaptive applications are the key enablers of smart environments and ecosystems. In those

environments, developers and users focus on innovating and making added-value applications, instead of solving the problems

of interoperability and complexity of heterogeneous systems. This paper contributes by introducing an innovative adaptation

framework for the situation-based and self-adaptive applications of smart environments. The framework embodies a novel

architecture, generic ontologies for context, security, and performance management, and dynamic models for performing run-

time reasoning and adaptation. The framework is intended for an application developer who is i) creating application scenarios,

and ii) transforming the scenarios into annotated sequence diagrams with the help of the static models of the framework, the

ontologies, and the rules defined in them. Thereafter, the application developer iii) transforms the annotated application behav-

ior description into the selected rule language, SPARQL. The approach is exemplified through the creation of the GuideMe

application, which exploits context, security, and performance information to adapt the service according to the quality re-

quirements and the context of the user, as well as the smart environment, without bothering the end-user.

Keywords: Run time, ontology, context-awareness, performance, security

1. Introduction

Recently, an increasing amount of research fund-

ing has been dedicated to developing technologies

and applications for smart environments and smart

spaces. A smart environment is a physical space

where smart applications that are executed locally or

globally interact in order to achieve intelligence that

fulfills an emerging need of space users by answering

the following questions: What is the space used for?

Who is using the space? What roles, rights and re-

sponsibilities might users have? Thus, the smart

space emphasizes the purpose of an environment, and

the ‘smart environment’ is its physical realization

formed from a set of physical things (i.e., devices,

actuators, sensors, etc.) that are able to interoperate in

an ambient way.

Because of the dynamicity of emerging and disap-

pearing devices, the overall structure of a smart envi-

ronment cannot be fully specified at design time.

However, the co-operating software subsystems that

∗

 Corresponding author.

create the overall system at any specific time need to

be designed and tested.

The biggest obstacles in establishing smart envi-

ronments are heterogeneity and complexity of com-

puting, communication, and software technologies.

These technologies more likely hinder rather than

promote the construction of innovative applications

based on evolving devices and systems and changing

user and business requirements. Dynamism is at the

core of smart environments, and therefore applica-

tions should be able to react and even anticipate

changes that will happen inside and outside of the

application execution platform [6]. Being reactive

and proactive requires that the application be aware

of the changes happening around it and that it be able

to reason based on available information about the

situation. The application is to be interoperable with

other applications, the platform, users and their sur-

roundings. Thus, solutions for interoperability are

required at different levels, such as connectivity, data,

the semantics of data, context, change of context, and

application behavior [32].

The main contribution of this paper is a reusable

adaptation framework for developing situation-based

Journal of Ambient Intelligence and Smart Environments 4 (2012) 491–516
DOI 10.3233/AIS-2012-0179
IOS Press

1876-1364/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved

491

III/1

Situation-based and self-adaptive

applications for the smart environment

Susanna Pantsar-Syväniemi
*

, Anu Purhonen, Eila Ovaska, Jarkko Kuusijärvi and Antti Evesti

VTT Technical Research Centre of Finland, P.O. Box 1100, FI-90571 Oulu, Finland

E-mail: {susanna.pantsar-syvaniemi,anu.purhonen,eila.ovaska,jarkko.kuusijarvi,antti.evesti}@vtt.fi

Abstract. Situation-based and self-adaptive applications are the key enablers of smart environments and ecosystems. In those

environments, developers and users focus on innovating and making added-value applications, instead of solving the problems

of interoperability and complexity of heterogeneous systems. This paper contributes by introducing an innovative adaptation

framework for the situation-based and self-adaptive applications of smart environments. The framework embodies a novel

architecture, generic ontologies for context, security, and performance management, and dynamic models for performing run-

time reasoning and adaptation. The framework is intended for an application developer who is i) creating application scenarios,

and ii) transforming the scenarios into annotated sequence diagrams with the help of the static models of the framework, the

ontologies, and the rules defined in them. Thereafter, the application developer iii) transforms the annotated application behav-

ior description into the selected rule language, SPARQL. The approach is exemplified through the creation of the GuideMe

application, which exploits context, security, and performance information to adapt the service according to the quality re-

quirements and the context of the user, as well as the smart environment, without bothering the end-user.

Keywords: Run time, ontology, context-awareness, performance, security

1. Introduction

Recently, an increasing amount of research fund-

ing has been dedicated to developing technologies

and applications for smart environments and smart

spaces. A smart environment is a physical space

where smart applications that are executed locally or

globally interact in order to achieve intelligence that

fulfills an emerging need of space users by answering

the following questions: What is the space used for?

Who is using the space? What roles, rights and re-

sponsibilities might users have? Thus, the smart

space emphasizes the purpose of an environment, and

the ‘smart environment’ is its physical realization

formed from a set of physical things (i.e., devices,

actuators, sensors, etc.) that are able to interoperate in

an ambient way.

Because of the dynamicity of emerging and disap-

pearing devices, the overall structure of a smart envi-

ronment cannot be fully specified at design time.

However, the co-operating software subsystems that

∗

 Corresponding author.

create the overall system at any specific time need to

be designed and tested.

The biggest obstacles in establishing smart envi-

ronments are heterogeneity and complexity of com-

puting, communication, and software technologies.

These technologies more likely hinder rather than

promote the construction of innovative applications

based on evolving devices and systems and changing

user and business requirements. Dynamism is at the

core of smart environments, and therefore applica-

tions should be able to react and even anticipate

changes that will happen inside and outside of the

application execution platform [6]. Being reactive

and proactive requires that the application be aware

of the changes happening around it and that it be able

to reason based on available information about the

situation. The application is to be interoperable with

other applications, the platform, users and their sur-

roundings. Thus, solutions for interoperability are

required at different levels, such as connectivity, data,

the semantics of data, context, change of context, and

application behavior [32].

The main contribution of this paper is a reusable

adaptation framework for developing situation-based

Journal of Ambient Intelligence and Smart Environments 4 (2012) 491–516
DOI 10.3233/AIS-2012-0179
IOS Press

1876-1364/12/$27.50 © 2012 – IOS Press and the authors. All rights reserved

491

III/2 III/3

applications for smart environments. It is an exten-

sion to existing implementations of the interoperabil-

ity platform (IOP) that do not support self-

management features. The IOP is a solution for

achieving interoperability of information between

heterogeneous devices and systems in a smart space.

The IOP has been developed within the

SOFIA/ARTEMIS project
1

. Requirements of the IOP

are summarized in the IOP principles, which define

the style followed in architecting the IOP [32].

The main principles of the framework defined are

simplicity, self-containment, and self-adaptiveness.

Simplicity means that part of the framework com-

plies with the architectural pattern, the MAPE-K

(Monitor, Analyze, Plan, and Execute – Knowledge).

The MAPE part of the pattern is realized with soft-

ware agents. Self-containment means that each agent

has a well-defined objective, semantics and up-to-

date (meta) data necessary for achieving this objec-

tive. Thus, the K-part, or knowledge, is separated

from the MAPE agents. Self-adaptiveness guarantees

that the agent behaves as an intelligent entity as part

of the application, and thereby realizes the smartness

of the environments. The semantic models, or ontol-

ogies, guarantee interoperability beyond communica-

tion and interoperability of the information ex-

changed. They also guarantee interoperability of con-

text and its changes, interoperability of application

behavior and alignment of the concepts on which the

smart environment is based.

The framework is claimed to be generic; it can be

applied to any type of smart environment because it

solves the main problems of most physical environ-

ments: semantic, dynamic, behavioral, and conceptu-

al interoperability; and self-adaptiveness. The

framework is also generic in the sense that it is inde-

pendent of an application domain and architectural

style; it can be applied in component-based and in

service-based systems. The concept is open because

the legacy issues that do not support situation-based

behavior can operate with the things that have situa-

tion-based functionality. There is no fixed behavior

in the situation-based and self-adaptive applications.

The behavior emerges dynamically from the commu-

nication of intelligent things composed according to

the behavioral model and the rules defined based on

this model.

The main benefits of the proposed framework are:

i) a reusable architecture that provides an execution

platform for situation-based and self-adaptive appli-

cations; ii) reusable conceptual models for context,

1

 http://www.sofia-project.eu/

security, performance, and domain; and iii) a process

for defining behavioral models for applications and

configuring application behavior in the design and

instantiation phases, as well as at run time.

The structure of the paper is as follows: The next

section presents the related work. Section 3 introduc-

es the analyses of requirements and solutions. Sec-

tion 4 details the framework for self-adaptive and

situation-based application agents and the semantic

models they use for information processing. Sec-

tion 5 introduces the process to develop an applica-

tion with the adaptation framework and lessons

learned. Section 6 discusses the evaluation process,

the experiments, and the Seamless Usage of Multiple

Smart Spaces (SUM-SS) pilot carried out in the

SOFIA project. It also goes through the evolution

management of smart spaces and future work. Con-

clusions close the paper.

2. Related research

2.1. Adaptation frameworks

The defined framework relies on IOP-type infra-

structures, such as Smart-M3 [19]. It has features for

self-management of qualities that have not so far

been supported by IOP-implementations. The

framework takes care of quality requirements and

their changes during system’s operation. As stated in

[43], support for non-functional requirements is still

missing or immature in the existing software engi-

neering practices for developing the smart applica-

tions. In [60] representatives of mobile middleware

have been compared using context types, context

model, and intelligence as evaluation criteria. The

conclusion was that the approaches surveyed lack

support for heterogeneous environments, they do not

mention how to address evolution of ontology, run-

time or dynamic context is not considered, and not

much contextual knowledge is used to enhance

agents. Furthermore, existing approaches have weak

support for malfunction recovery and other self-

management features.

Two more recent context-aware and self-adaptive

solutions for networked devices that are closest to

our approach include MUSIC
2

 and Hydra
3

. They are

both EU projects that have already been concluded.

Both MUSIC and Hydra are solutions that are based

on Service-Oriented Architecture (SOA). However,

2

 http://ist-music.berlios.de/site/index.html

3

 http://www.hydramiddleware.eu/news.php

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment492

http://www.sofia-project.eu/
http://ist-music.berlios.de/site/index.html
http://www.hydramiddleware.eu/news.php

III/3

as self-management middleware only, Hydra uses

publish/subscribe-style communication.

MUSIC is also a component-based platform,

where adaptation is based on plug-ins. MUSIC espe-

cially supports mobile applications. Adaptation is

controlled by adaptation managers. One adaptation

manager is in charge of one adaptation domain which

consists of one master node and slave nodes. The

adaptation domain and bindings to the slave nodes

change dynamically depending on the movement of

the master node or changes in connectivity. Slaves

can participate in multiple adaptation domains. Fur-

thermore, non-MUSIC applications can be included

for providing and using services as long as they use

the same protocols for discovery, binding and com-

munication. Using services outside the adaptation

domain requires negotiation of Service Level

Agreements (SLA) with the provider.

Developing Hydra applications requires defining

functionality of the client and server devices, as well

as their self-management support. Adaptation deci-

sions are made by the self-management middleware

based on knowledge of clients and servers without

negotiation. Hydra-based devices include state ma-

chines that allow reporting of their state to other self-

management components. Furthermore, message

probes are used for the monitoring of live of compu-

ting nodes. The message probes also facilitate the

monitoring of Quality of Service (QoS). Support for

non-Hydra devices in applications is missing.

The MUSIC platform provides a library of sensors

that are able to detect violations in the dimensions of

the agreement. Furthermore, on the consumer side,

the consumer proxy is instrumented with appropriate

monitoring mechanisms according to the content of

the SLA contract. The service skeleton on the pro-

ducer side is instrumented with context sensors,

which are responsible for monitoring the agreement.

Hydra relies on Web Ontology Language-based

(OWL) ontologies in realizing plans. Behavior is

represented in Hydra as Semantic Web Rule Lan-

guage
4

 (SWRL) rules, which do not support updates

at run time. MUSIC uses ontologies only in design-

time and adaptation decisions are based on utility

functions. HYDRA defines a Device ontology that

includes Service, QoS, and Security ontologies. On-

tologies are application-agnostic and provided as part

of the middleware. They cover dynamically changing

information, such as device states. Thus, although

context information (i.e., device states) and QoS are

4

 http://www.w3.org/Submission/SWRL/

monitored, the domain independent ontologies for

context, security, and performance are not provided.

An adaptation framework that uses OWL-based

ontology is presented in [3]. Its ontology is domain-

specific and for dialoguing between user and a sys-

tem, such as an automotive dashboard and a digital

TV. The framework is dedicated to be used for adapt-

ing the interface according to the user-system interac-

tion. Therefore, it is not as widely usable as the pre-

sented adaptation framework.

2.2. Situation-based application adaptation

Smart space applications interact with end-users,

and therefore context is an essential part of these ap-

plications. Handling of the context is presented via

the evolution and adaptation management processes

which are of equal importance for the architecture of

smart environments. The evolution of context is han-

dled by the appropriate context ontology, which in-

cludes generic and relevant concepts and is expanda-

ble by domain and quality ontologies. The domain

means an application, such as managing lighting at

home, GuideMe navigation, intelligent wake-up or

smart building maintenance. Several studies have

been made on context ontologies, e.g., CoOL [55],

CONON [58], and SOUPA [5]. The common prob-

lem with their usage is that they are either domain

specific or include user authentication via policies.

According to the comparison [60], CoOL and

SOUPA do not support dynamic context. Therefore,

a generic approach was selected for defining context

ontology for smart environments. First, the levels of

context concepts were defined in [2] and used as a

starting point. Second, some parts from the upper

context conceptualization [52] were exploited. Third,

four dimensions were defined: physical, digital, sit-

uation, and user context, which were validated by

applying them to a simple demonstrator implementa-

tion [37]. Fourth, some concepts of the SOUPA on-

tology [5] were mapped to the appropriate context

levels. Finally, the concepts of each context level

were enhanced based on experiences in smart envi-

ronment application development. The recent version

of Context Ontology for Smart Spaces, CO4SS [38],

has six dimensions: physical, digital, situational, user,

social, and historical context.

The use of ontologies follows the style of the se-

mantic web; ontologies describe context information

and its associations and provide means for reasoning

and inference. RDF and OWL [36] are used for de-

scribing context information and context ontologies,

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 493

http://www.w3.org/Submission/SWRL/

III/4 III/5

The approach is based on OSGi [35] and uses the

Self-Management Pervasive Service (SeMaPS) on-

tologies, which consist of a set of context ontologies.

The approach can use dynamic context infor-

mation and static rules specified with SWRL. Dy-

namic rules are not supported and user, historical and

social concepts are not included. SeMaPS seems to

concentrate more on devices and their states and the

networking between them.

Our experience from demonstrator implementa-

tions convinced us that rules processed in smart

spaces are rather simple although their processing is

frequently required. SPARQL allows the rules pro-

cessing to be done on either the client side or the

server side. This reduces the amount of information

that has to be transferred between the client and the

SIB, since it is not necessary to transfer all the infor-

mation in the rules to the client side before executing

the rule. Therefore, SPARQL was selected to be used

as the rule description language. This was done most-

ly because it is the only standard-based approach.

A standard-based approach is assumed to give bet-

ter support for ontology evolution management.

However, a few open issues still exist: i) how to map

the context ontology with quality ontologies, and

ii) how to use the context-awareness micro-architec-

ture to manage qualities at run time.

2.4. Run-time quality adaptation

Self-adaptive software is a closed-loop system with a

feedback loop aiming to adjust itself to changes dur-

ing its operation [45]. In MAPE-K style [22] the con-

trol loop of self-adaptation is decomposed into moni-

toring, analyzing, planning and execution. Monitor-

ing means collecting the data needed for adaptation

from the system under interest or its environment.

Analysis is the phase where the collected data is

combined to form proper metrics, and also predict

future states. Planning is the control phase, where the

necessary action is decided upon. Planning can be an

aggregate of local and global level reasoning; the

local requirements have to be filled by individual

capabilities and the global requirements by the ser-

vice composition [29]. The planning phase may also

include negotiation.

Execution of the self-adaptive actions can occur on

two different levels [30]: i) the resource management

level performs application-neutral adaptation, and

ii) the service management level is responsible for

the application adaptation. Adaptation actions in-

clude changing values of parameters, changing the

structure of components (i.e., compositional adapta-

tion), and re-organization of the topology of the ap-

plication across multiple platforms and changing the

workflow or the functionalities provided, which leads

to behavioral adaptation [34,45].

The phases of the control loop use a common

knowledge of the system and its environment. The

knowledge can be represented using [28]: i) model-

ing languages, ii) interface languages, iii) application

interfaces and deployment descriptors, and iv) math-

ematical models. Moreover, semantic service de-

scriptions, including ontologies of service context,

functionality and quality capabilities, are especially

useful in open pervasive environments, as it is unrea-

sonable to assume that service developers will use

identical terms when describing services [29].

In this work, the knowledge is related to the quali-

ty of the information and ontologies are used for de-

fining it. Performance ontologies have been devel-

oped, for example, for grid workflows [57] and se-

mantic web applications [25]. However, the individ-

ual requirements of each application domain affect

the composition of the ontology so they were not

directly reusable in our case. QoSOnt [8] is a QoS

ontology for service-centric systems. QoSOnt com-

bines quality and services whereas the quality is

combined with information in the framework defined

in this paper.

Reliable run-time quality management requires

that there be a common understanding of what is

measured and how it is measured. In order to achieve

that, the software measurement ontology [17] has

been used both in the information security ontology

(ISMO) [14] and the runtime performance manage-

ment ontology (RPM) [44] as a basis.

The micro-architecture created for security adapta-

tion [13] contains separated parts for monitoring

changes in security requirements and for monitoring

the fulfillment of the required securities. In that mi-

cro-architecture, the usage of ontology was tightly

coupled inside the model. The enhanced micro-

architecture was developed, which follows the

MAPE-K style and where ontologies are separated

from the architecture to the other interoperability

level [15]. In this work, micro-architectures for per-

formance and security adaptation and related ontolo-

gies have been merged into a complete adaptation

framework.

Dynamic environment requires for flexible ap-

proach for making adaptation decisions. The use of

preference information allows for the behavior of

applications at choice points to be manipulated [18].

We adopted similar approach for managing individu-

al quality adaptation objectives. In case of conflicting

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 495

respectively. These descriptions are combined with

middleware or a framework for providing a complete

solution for context management.

The context-awareness micro-architecture [37] is

the solution for managing adaptation based on the

context in the smart environments. It consists of three

types of software agents: the context monitoring,

context reasoning, and context-based adaptation

agents. These agents share information via the se-

mantic database, i.e., the SIB described above. Mi-

cro-architecture is a set of patterns used together to

realize parts of a system or subsystem [1]. Micro-

architecture consists of software agents and is seen as

a building block for piecing together well-known,

cohesive portions of overall architecture.

The context-awareness micro-architecture has

been used i) to activate required functionality accord-

ing to the rules and existing situation(s) [37] and

ii) to map context and domain-specific ontologies

[39]. The rule-based reasoning is based on a set of

rules and a set of activation conditions for these rules.

In practice, the rules are elaborated if-then-else

statements that drive activation of behaviors, i.e.,

activation patterns. One of the rare solutions for rule-

based context reasoning is presented in [7]. Therefore,

the existing technologies were explored for imple-

menting behavior into software agents running on

smart spaces. These approaches allow treating behav-

ior descriptions as semantic data in their own right –

as data that can be stored into a database (e.g., an

SIB), queried, exchanged between agents, and so on.

The main purpose of using such declarative behavior

descriptions is to enable a greater level of dynamism

in smart environments with respect to devices, and

for the agents running on those devices to be able to

modify their behavior according to the context situa-

tion at hand. This allows the agents on mobile devic-

es to, for example, change the security mechanism

used or adjust processing power used when the bat-

tery is low and no critical applications are running.

Another example is to modify the behavior of the

application according to the place where the user is

using the device. Especially in the latter case, it is

reasonable for a software agent not to be pre-

programmed with all behaviors for all possible loca-

tions but rather access relevant rules from the local

smart space.

2.3. Rules description languages

In smart spaces, applications can be written by

many languages. Thus, the selected behavior descrip-

tion language shall be a generic solution that can be

applied with all application programming languages.

In the end, the use case and the needed functionality

determine what rule language to use; some are good

for simple cases and others for complex cases. Ta-

ble 1 presents a comparison of three approaches con-

sidered promising for smart spaces; namely, Smodels

[27,49], Recipes [23], and SPARQL [53]. SWRL is

left out of the comparison because it is not a W3C

standard as SPARQL is. Basically, all of the options

use rules that can be stored into the semantic data-

base, and the actual behavior modification triggers

(actions to be executed) can also be inserted into the

database. However, only Recipes are an RDF–triples-

based language. Smodels rules can only be stored in

the database as literal objects of triples. Given that

there might be a size limit on a triple’s object size,

the size or complexity of the rule that can be stored

into a semantic database implementation may be lim-

ited. Another option, of course, is to store as triples

only the URLs of external documents where the rules

are located. SPARQL, although a W3C standard lan-

guage for querying RDF, does not fully follow the

RDF-triple data model (its CONSTRUCT clause is

triples, its WHERE clause is mostly triples, with the

exception of special constructs like FILTER or UN-

ION, and the way as clauses are combined in a query

is not triples). Therefore, SPARQL queries as such

can only be recorded as literals. However, SPARQL

RDF-serializations exist and are used in practice. For

example, the most widely known is the SPIN

SPARQL Syntax
5

, which is a central element of the

SPIN framework.

An approach to improve the intelligence of perva-

sive middleware is presented in [60]. The authors

share the same vision of “intelligence” in which the

application needs to be supported to recognize

changes affecting it and adapt behavior accordingly.

5

 http://www.spinrdf.org/sp.html

Table 1

Comparison of rule languages

Rule

language

Smodels Recipes SPARQL

Reasoning

execution

Client Client Client/Server

Is a standard x

Supports

action-part

x x x/o

Storing rules

as

string literal

or RDF triples

RDF triples string literal or

RDF triples

Complexity

of rule

complex moderate easy or moderate

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment494

http://www.spinrdf.org/sp.html

III/5

The approach is based on OSGi [35] and uses the

Self-Management Pervasive Service (SeMaPS) on-

tologies, which consist of a set of context ontologies.

The approach can use dynamic context infor-

mation and static rules specified with SWRL. Dy-

namic rules are not supported and user, historical and

social concepts are not included. SeMaPS seems to

concentrate more on devices and their states and the

networking between them.

Our experience from demonstrator implementa-

tions convinced us that rules processed in smart

spaces are rather simple although their processing is

frequently required. SPARQL allows the rules pro-

cessing to be done on either the client side or the

server side. This reduces the amount of information

that has to be transferred between the client and the

SIB, since it is not necessary to transfer all the infor-

mation in the rules to the client side before executing

the rule. Therefore, SPARQL was selected to be used

as the rule description language. This was done most-

ly because it is the only standard-based approach.

A standard-based approach is assumed to give bet-

ter support for ontology evolution management.

However, a few open issues still exist: i) how to map

the context ontology with quality ontologies, and

ii) how to use the context-awareness micro-architec-

ture to manage qualities at run time.

2.4. Run-time quality adaptation

Self-adaptive software is a closed-loop system with a

feedback loop aiming to adjust itself to changes dur-

ing its operation [45]. In MAPE-K style [22] the con-

trol loop of self-adaptation is decomposed into moni-

toring, analyzing, planning and execution. Monitor-

ing means collecting the data needed for adaptation

from the system under interest or its environment.

Analysis is the phase where the collected data is

combined to form proper metrics, and also predict

future states. Planning is the control phase, where the

necessary action is decided upon. Planning can be an

aggregate of local and global level reasoning; the

local requirements have to be filled by individual

capabilities and the global requirements by the ser-

vice composition [29]. The planning phase may also

include negotiation.

Execution of the self-adaptive actions can occur on

two different levels [30]: i) the resource management

level performs application-neutral adaptation, and

ii) the service management level is responsible for

the application adaptation. Adaptation actions in-

clude changing values of parameters, changing the

structure of components (i.e., compositional adapta-

tion), and re-organization of the topology of the ap-

plication across multiple platforms and changing the

workflow or the functionalities provided, which leads

to behavioral adaptation [34,45].

The phases of the control loop use a common

knowledge of the system and its environment. The

knowledge can be represented using [28]: i) model-

ing languages, ii) interface languages, iii) application

interfaces and deployment descriptors, and iv) math-

ematical models. Moreover, semantic service de-

scriptions, including ontologies of service context,

functionality and quality capabilities, are especially

useful in open pervasive environments, as it is unrea-

sonable to assume that service developers will use

identical terms when describing services [29].

In this work, the knowledge is related to the quali-

ty of the information and ontologies are used for de-

fining it. Performance ontologies have been devel-

oped, for example, for grid workflows [57] and se-

mantic web applications [25]. However, the individ-

ual requirements of each application domain affect

the composition of the ontology so they were not

directly reusable in our case. QoSOnt [8] is a QoS

ontology for service-centric systems. QoSOnt com-

bines quality and services whereas the quality is

combined with information in the framework defined

in this paper.

Reliable run-time quality management requires

that there be a common understanding of what is

measured and how it is measured. In order to achieve

that, the software measurement ontology [17] has

been used both in the information security ontology

(ISMO) [14] and the runtime performance manage-

ment ontology (RPM) [44] as a basis.

The micro-architecture created for security adapta-

tion [13] contains separated parts for monitoring

changes in security requirements and for monitoring

the fulfillment of the required securities. In that mi-

cro-architecture, the usage of ontology was tightly

coupled inside the model. The enhanced micro-

architecture was developed, which follows the

MAPE-K style and where ontologies are separated

from the architecture to the other interoperability

level [15]. In this work, micro-architectures for per-

formance and security adaptation and related ontolo-

gies have been merged into a complete adaptation

framework.

Dynamic environment requires for flexible ap-

proach for making adaptation decisions. The use of

preference information allows for the behavior of

applications at choice points to be manipulated [18].

We adopted similar approach for managing individu-

al quality adaptation objectives. In case of conflicting

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 495

III/6 III/7

3.3. From requirements to principles

As previously mentioned, the requirements were

classified into quality requirements and functional

requirements. The quality requirements were related

to execution qualities: information security, availabil-

ity, performance, reliability, adaptability, and usabil-

ity; or evolution qualities like integrability and exten-

sibility. The functional requirements concerned

communication styles, and abilities to evolve, be dy-

namic, be proactive, be context-aware and be appli-

cable within heterogeneous environments.

As a conclusion of discussions carried out in sev-

eral workshops, the project partners involved in de-

velopment of the IOP agreed on its main objective: to

provide an infrastructure that assists users with add-

ed-value interoperable information about things ex-

isting in the user’s environment. Therefore, the IOP

reference model is to be defined at a high abstraction

level and it shall be simple and agnostic with respect

to i) the use-cases, ii) information and iii) the physi-

cal environment. These were expected to enable the

level of extensibility required to support multi-

domain and cross-domain applications. The expected

applications shall support situation- awareness, spon-

taneously start when required, and have the potential

for significant market penetration and socio-

economic impact. As a result, fourteen IOP principles

were distilled from the requirements (Table 2). As

can be seen, the quality and adaptability principles

Table 2

The IOP principles

IOP principle Definition

Shared

information

The IOP manages a shared information search domain called Smart Space (SS), which is accessible and understood by all

the authorized applications. This information is about the things existing in the environment or about the environment

itself. The information is represented in a uniform and use case-independent way. Information interoperability and

semantics are based on common ontologies that model information.

Simplicity The IOP deals with information. The IOP information level is use case agnostic.

Service An SS is a service, offered by a service platform and intended for the sharing of interoperable SS information. Each

application may interface to one or more SSs through a Smart Space Application Protocol (SSAP). Use case-specific

functions may be performed at the service level before joining the SS.

Agnostics The IOP is agnostic with respect to the adopted ontology, application programming language, service platform exposing

the SS, communication layer and hosting device/system.

Extensibility The IOP provides functionalities to insert and remove the information. IOP functionality may be extended with domain

ontologies and with information manipulation services. If these services become commonly usable, they are called “IOP

extensions.”

Evolvability The IOP should support the addition of new applications. This principle envisages that the IOP provides the means to

implement software that adapts to changes in SS without changing code.

Context Context management is an IOP extension, according to the extensibility principle. The IOP should enable the aggregation

of interoperable information for the benefit of application usability and IOP performance. As the information returned by

the IOP depends on the query and available information, the ontology is to define context semantics. Context may be

managed and used both at the information level and service level.

Notification Applications may subscribe to be alerted upon a context change.

Usability User interaction management may become an IOP extension, according to the extensibility principle. The ontology defines

the semantics of interaction events. The interaction between the users, their environment and Smart Space Application

(SSA) may be managed both at the information and service level.

Security &

trust

Security, privacy and trust management is an IOP extension, handled both at the service level and information level.

Appropriate ontologies define whether the IOP is required to respect privacy, enforce authentication, and access control

policies at finer granularity than SS itself, or if the shared information integrity, confidentiality, and trust need to be

provided.

Legacy Legacy devices and systems access and exchange information with the SS through a simple use case independent protocol

(SSAP). Such exchanged information is modeled by Domain Ontologies. Legacy devices may provide information to the

SS and subscribe to information from it.

Scalability The IOP should scale with respect to the number of users, devices, and resources available on each device, as well as the

amount of information stored in the SS, and the number of SSs.

Performance Performance monitoring is an IOP extension. Performance of IOP realizations and SSAs should be evaluated at the

development time and be measurable at run time. The criteria for run-time performance monitoring should be defined

through the performance metrics ontology.

Reliability &

availability

The reliability and availability of every IOP instance and of SSAs should be evaluated at development time and be

measurable at run time.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 497

needs, the final adaptation reasoning chooses the

configuration option that best fulfills all the quality

objectives.

3. From requirements to smart environment

architecture

3.1. Knowledge creation

When the interoperability platform (IOP) for the

smart environment started to develop, there was a

lack of understanding of the interoperability models,

appropriate architectural styles, and existing solu-

tions. Therefore, the following steps were carried out

for achieving the required knowledge on the software

technologies related to situation-based and self-

adaptive applications:

First, the existing interoperability models were

studied and the conclusion of six levels was reached

as described in Section 3.2.

Second, starting from the 56 application scenarios

defined for three types of smart environments, per-

sonal spaces, smart indoor environments and smart

cities, requirements were transformed from them and

classified into two categories: quality and functional

requirements (see Section 3.3).

Third, those requirements were carefully analyzed

and prioritized as the scenarios in the second step

according to the criteria: i) the maximum business

impact, and ii) the fast and low-risk realization crite-

ria. As a conclusion, the IOP principles were defined

based on the high-priority IOP requirements (16

quality requirements and 12 functional/non-

functional requirements), and used as a style while

architecting the IOP [32]. These two sets of require-

ments were also used for defining the evaluation cri-

teria for IOP instances. The evaluation results of the

different IOP implementations have been reported in

[51]. Due to limited space, only the IOP principles

(Table 2) are introduced in this paper.

3.2. Interoperability of smart environments

Interoperability models proposed or adopted in ex-

isting platforms vary depending on which interopera-

bility levels are considered, how interoperability is

conceived and the technical solution adopted. The

Connection, Communication, Consolidation, Collab-

oration Interoperability Framework (C4IF) [41] ex-

ploits the concepts of language theories, such as the

language form, syntax, meaning and use of symbols

and interpretation. C4IF maps the linguistic concepts

to the interoperability levels as follows:

• Connection interoperability is the ability to ex-

change signals and the channel used as an object

of integration without knowing anything about

content. Connection interoperability is a prereq-

uisite for any interaction between physical enti-

ties.

• Communication interoperability is the ability to

exchange data and use information as an object

of integration, i.e., format and syntax of data but

without knowing the context in which data is

used. Communication interoperability is provid-

ed by low level interaction capabilities of physi-

cal (hardware or software) entities.

• Consolidation interoperability is the ability to

understand data and its meaning and use infor-

mation as an object of integration but without

knowing how it is used. Consolidation is pro-

vided between software entities, e.g., compo-

nents and services by means of semantics, such

as metadata and service ontologies.

• Collaboration interoperability addresses an abil-

ity to act together and uses processes/tasks as an

object of integration. Collaboration interopera-

bility is achieved between tasks, processes, etc.

if these software entities are able to adapt their

behavior by taking into account not only the

context, but also other actors’ behaviors related

to the same collaborative activity.

The M3 (multi-vendor, multi-device, multi-

domain) is baseline architecture for the Smart-M3

architecture [19]. The M3 concept distinguishes three

interoperability levels: device, service and infor-

mation.

The interoperability levels were further elaborated

in order to match them better to the development of

smart environments and their applications. Figure 1

presents the results of this exploration. Basically, the

three first levels (from bottom to top) are quite simi-

lar to the levels of the C4IF and M3 models. Howev-

er, they have been named according their objectives

as follows: connection interoperability, communica-

tion interoperability and semantic interoperability.

The rest of this paper will focus on the two upper

levels: dynamic and behavioral interoperability and

the means for achieving them. Conceptual interoper-

ability is also supported by reference architecture, the

patterns and ontologies used for realizing the adapta-

tion management architecture. However, our earlier

works that concern styles, patterns, and the

knowledge-based software engineering methodology

[31,33], are also referenced.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment496

III/7

3.3. From requirements to principles

As previously mentioned, the requirements were

classified into quality requirements and functional

requirements. The quality requirements were related

to execution qualities: information security, availabil-

ity, performance, reliability, adaptability, and usabil-

ity; or evolution qualities like integrability and exten-

sibility. The functional requirements concerned

communication styles, and abilities to evolve, be dy-

namic, be proactive, be context-aware and be appli-

cable within heterogeneous environments.

As a conclusion of discussions carried out in sev-

eral workshops, the project partners involved in de-

velopment of the IOP agreed on its main objective: to

provide an infrastructure that assists users with add-

ed-value interoperable information about things ex-

isting in the user’s environment. Therefore, the IOP

reference model is to be defined at a high abstraction

level and it shall be simple and agnostic with respect

to i) the use-cases, ii) information and iii) the physi-

cal environment. These were expected to enable the

level of extensibility required to support multi-

domain and cross-domain applications. The expected

applications shall support situation- awareness, spon-

taneously start when required, and have the potential

for significant market penetration and socio-

economic impact. As a result, fourteen IOP principles

were distilled from the requirements (Table 2). As

can be seen, the quality and adaptability principles

Table 2

The IOP principles

IOP principle Definition

Shared

information

The IOP manages a shared information search domain called Smart Space (SS), which is accessible and understood by all

the authorized applications. This information is about the things existing in the environment or about the environment

itself. The information is represented in a uniform and use case-independent way. Information interoperability and

semantics are based on common ontologies that model information.

Simplicity The IOP deals with information. The IOP information level is use case agnostic.

Service An SS is a service, offered by a service platform and intended for the sharing of interoperable SS information. Each

application may interface to one or more SSs through a Smart Space Application Protocol (SSAP). Use case-specific

functions may be performed at the service level before joining the SS.

Agnostics The IOP is agnostic with respect to the adopted ontology, application programming language, service platform exposing

the SS, communication layer and hosting device/system.

Extensibility The IOP provides functionalities to insert and remove the information. IOP functionality may be extended with domain

ontologies and with information manipulation services. If these services become commonly usable, they are called “IOP

extensions.”

Evolvability The IOP should support the addition of new applications. This principle envisages that the IOP provides the means to

implement software that adapts to changes in SS without changing code.

Context Context management is an IOP extension, according to the extensibility principle. The IOP should enable the aggregation

of interoperable information for the benefit of application usability and IOP performance. As the information returned by

the IOP depends on the query and available information, the ontology is to define context semantics. Context may be

managed and used both at the information level and service level.

Notification Applications may subscribe to be alerted upon a context change.

Usability User interaction management may become an IOP extension, according to the extensibility principle. The ontology defines

the semantics of interaction events. The interaction between the users, their environment and Smart Space Application

(SSA) may be managed both at the information and service level.

Security &

trust

Security, privacy and trust management is an IOP extension, handled both at the service level and information level.

Appropriate ontologies define whether the IOP is required to respect privacy, enforce authentication, and access control

policies at finer granularity than SS itself, or if the shared information integrity, confidentiality, and trust need to be

provided.

Legacy Legacy devices and systems access and exchange information with the SS through a simple use case independent protocol

(SSAP). Such exchanged information is modeled by Domain Ontologies. Legacy devices may provide information to the

SS and subscribe to information from it.

Scalability The IOP should scale with respect to the number of users, devices, and resources available on each device, as well as the

amount of information stored in the SS, and the number of SSs.

Performance Performance monitoring is an IOP extension. Performance of IOP realizations and SSAs should be evaluated at the

development time and be measurable at run time. The criteria for run-time performance monitoring should be defined

through the performance metrics ontology.

Reliability &

availability

The reliability and availability of every IOP instance and of SSAs should be evaluated at development time and be

measurable at run time.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 497

III/8 III/9

on top of these existing interoperability solutions: the

evolution management solutions for context and be-

havior interoperability levels and the adaptation

management solutions that are totally missing from

the existing IOP solutions.

4. Adaptation framework for situation-based and

self-adaptive applications

4.1. Overview of the adaptation framework

An overview of the adaptation framework (left-

hand side) and the application development process

(right-hand side) is presented in Fig. 2. The frame-

work is mapped to the interoperability levels of smart

environments shown in Fig. 1.

The framework consists of three levels, which

provide conceptual interoperability, behavioral and

dynamic interoperability, and semantic interoperabil-

ity. Conceptual interoperability is achieved by the

knowledge, represented as ontologies. Context, per-

formance and security (instantiations of the MAPE-K

pattern) provide information to applications for han-

dling their behavior. The rules are the basis for the

dynamism to enable behavioral interoperability with

the platform used.

The application development process, based on the

adaptation framework, is divided into four steps, as

shown in Fig. 2. The process guides starting the sit-

uation-based application development by describing

the scenario with related behavior and the infor-

mation. The ontologies are used for identifying the

relevant information. The ontologies used are domain,

Run-time Performance Management (RPM), Infor-

mation Security Measuring Ontology (ISMO), and

Context-Ontology for Smart Spaces (CO4SS).

First, the application scenario with the related be-

havior is described by textual and graphical notations.

A standard way of describing an application scenario

by text and use cases is preferred. As a result, a set of

software agents are identified and collaboration be-

tween agents and users is described by a (set of) use

case(s). Second, the behavior is further described by

Message Sequence Chart (MSC) diagrams with rule

and ontology annotations. Third, the behavior de-

scription is transformed into SPARQL queries. This

is made by the developer by exploiting the MSC dia-

grams and the defined ontologies to create SPARQL

queries. Fourth, the developer handles the dynamicity

of the space by ensuring that the adapted intelligent

objects (see Fig. 8) publish their functionality and

allow for controlling them. In this step, the developer

also decides how many adaptation agents are used

Fig. 2. Overview of the adaptation framework and the application development process.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 499

were agreed to be produced as IOP extensions. These

extensions are the main contribution of this paper.

However, all these principles summarize the signifi-

cant requirements and specify the architectural style

the IOP has to follow.

3.4. Smart environment architectures

In [34,56], the authors survey the existing architec-

tural styles, frameworks, and approaches and their

ability to manage evolution and adaptation. The

framework used for the comparative analysis has two

main parts:

1. Evolution management that takes care of i) ar-

chitectural descriptions, i.e., models, ii) evalu-

ates the consistency of models and system in-

tegrity, iii) provides methods for realizing mod-

els, and iv) accepts changes and collects obser-

vations; and

2. Adaptation management that focuses on run-

time properties of the instantiated architecture.

The adaptation management architecture

i) monitors observations and evaluates meas-

urements, ii) changes the plan based on observa-

tions, iii) allocates changes to architectural as-

sets, and iv) accepts changes and collects obser-

vations.

Thus, these two management processes are cyclic

and share the last activity – accepting changes and

collecting observations.

However, their cycles are different: adaptation is

made at run time without user intervention but evolu-

tion is managed through models that are kept as static

as possible. In the architectures of smart environ-

ments, both adaptation and evolution are equally im-

portant, as evolution management is for providing

models that make smart space assets interoperable,

and the adaptation management has to provide the

means to fulfill functional and quality requirements

in the best possible way whatever the situation, i.e.,

tolerating changes in user requirements, changes in

physical environments, and changes in the internal

capabilities of the smart environment’s infrastructure.

Thus, interoperability depends on how well the evo-

lution management is handled, and the situation-

awareness of applications depends on how well the

situations are identified and how proactively adapta-

tion actions could be made. In the best case, the user

does not recognize the adaptation at all.

In IOP-type infrastructures information interoper-

ability is supported by the means of Semantic Infor-

mation Brokers (SIBs). SIB is a Resource Descrip-

tion Framework (RDF) [59] database to which soft-

ware agents (called knowledge processors, KPs) can

connect and exchange information through an XML-

based (eXtensible Markup Language) interaction

protocol called Smart Space Access Protocol (SSAP).

KPs communicate with the SIB through a Knowledge

Processor Interface (KPI). KPI provides the available

SSAP operations (join, leave, insert, remove, update,

query, subscribe, and unsubscribe) to be used when

communicating with different SIBs.

There are multiple different instantiations of the

SIBs for different purposes: Smart-M3 for resource

rich devices and systems without real-time require-

ments [48]; SOFIA Application Development Kit

(ADK) for simulation purposes with Java; and RDF

Information Base Solution (RIBS) [54] for resource

constraint devices with strict security and perfor-

mance requirements. KPs consume and produce RDF

triples from and into the SIB according to the ontolo-

gy used.

In this paper, communication protocols are as-

sumed to be able to manage connectivity and com-

munication interoperability, and that any of the reali-

zations of the IOP concept, named Smart-M3, SOFIA

ADK or RIBS, manage the information interoperabil-

ity that concerns information exchange (KPI, SSAP

and SIB) and interpretation of information semantics

according to the predefined RDF Schema. The sche-

ma used is described as ontology by the web ontolo-

gy language (OWL) and stored into the SIB. The

contribution of this paper is what has been developed

Fig. 1. Interoperability levels of smart environments.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment498

III/9

on top of these existing interoperability solutions: the

evolution management solutions for context and be-

havior interoperability levels and the adaptation

management solutions that are totally missing from

the existing IOP solutions.

4. Adaptation framework for situation-based and

self-adaptive applications

4.1. Overview of the adaptation framework

An overview of the adaptation framework (left-

hand side) and the application development process

(right-hand side) is presented in Fig. 2. The frame-

work is mapped to the interoperability levels of smart

environments shown in Fig. 1.

The framework consists of three levels, which

provide conceptual interoperability, behavioral and

dynamic interoperability, and semantic interoperabil-

ity. Conceptual interoperability is achieved by the

knowledge, represented as ontologies. Context, per-

formance and security (instantiations of the MAPE-K

pattern) provide information to applications for han-

dling their behavior. The rules are the basis for the

dynamism to enable behavioral interoperability with

the platform used.

The application development process, based on the

adaptation framework, is divided into four steps, as

shown in Fig. 2. The process guides starting the sit-

uation-based application development by describing

the scenario with related behavior and the infor-

mation. The ontologies are used for identifying the

relevant information. The ontologies used are domain,

Run-time Performance Management (RPM), Infor-

mation Security Measuring Ontology (ISMO), and

Context-Ontology for Smart Spaces (CO4SS).

First, the application scenario with the related be-

havior is described by textual and graphical notations.

A standard way of describing an application scenario

by text and use cases is preferred. As a result, a set of

software agents are identified and collaboration be-

tween agents and users is described by a (set of) use

case(s). Second, the behavior is further described by

Message Sequence Chart (MSC) diagrams with rule

and ontology annotations. Third, the behavior de-

scription is transformed into SPARQL queries. This

is made by the developer by exploiting the MSC dia-

grams and the defined ontologies to create SPARQL

queries. Fourth, the developer handles the dynamicity

of the space by ensuring that the adapted intelligent

objects (see Fig. 8) publish their functionality and

allow for controlling them. In this step, the developer

also decides how many adaptation agents are used

Fig. 2. Overview of the adaptation framework and the application development process.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 499

III/10 III/11

4.2. Static models

4.2.1. Context ontology

Context ontology for smart spaces, CO4SS, de-

fines the generic concepts related to smart spaces.

The context ontology is static in a sense that it is not

updated at run time but only at design-time. Thus, the

objective of the context ontology is to support the

evolution management of the smart environment: all

smart spaces and their applications ‘understand’ the

common language defined by the CO4SS. Thus, the

context ontology is used as a foundational ontology,

which application specific concepts are mapped. In

the adaptation framework, the CO4SS concepts are

also used together with the quality concepts. The

CO4SS needs two new properties, a Trigger and an

Assigner, for its Rule class due to the adaptation

framework and mapping with the performance con-

cepts, as introduced in Fig. 4. These new properties

are general by their nature. Relevant context infor-

mation for information security [13] is presented in

Fig. 5. Only the most relevant context concepts for

run-time security and performance management are

presented in Fig. 4. Despite the tuning, the CO4SS is

still general ontology to be used as a base ontology

when creating the semantics for the smart spaces.

Physical Context describes the information coming

from the physical and real things, such as sensors or a

mobile device. Preferences and the role (e.g., visitor,

worker, customer or owner) of the users are saved to

their smart spaces via devices. Physical Context also

represents real events, e.g., output coming from the

sensors or devices (as pictures, text messages, videos,

e-mails), location updates, failures or connections

made by objects that have arrived (or been added) to

the smart environment. These events relate to the

Situational Context. The adaptation in the smart

space application is mostly triggered by the events.

Digital Context consists of agents, features, and

rules, and the feature is respectively formed from

services and qualities. The rules define the situations,

i.e., the behavior of the (smart space) application.

User Context defines a person with roles, preferences,

and friends. Different kinds of activities can also be

represented, e.g., morning activities (showering,

breakfast, morning newspapers, etc.), travel activities

(work-related travel, holiday travel, etc.), and exer-

cise activities (jogging, the gym, different games,

etc.). These activities can be stored and used later on

to make reasoning according to different situations,

e.g., how long it usually takes to perform morning

activities.

Fig. 4. Adjusted CO4SS ontology.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 501

from the adaptation framework and how they are

deployed on the client and server sides.

The adaptation framework supports the evolution

of smart environments and provides reactive and/or

proactive behavior when the application context

changes. Evolution management is dealt with by a set

of static models, i.e., ontologies that define context,

quality (as performance and security) and domain-

related concepts and properties in a standardized way.

Thus, the environment is able to tolerate changes if

there is a common vocabulary that defines the se-

mantics of concepts, their properties and relation-

ships. With the common knowledge, i.e., standard

definitions of concepts and their meanings, it is pos-

sible to achieve stability in the dynamic systems.

Moreover, the clear scoping of ontologies makes it

possible to evolve these ontologies separately and

update the systems according to the newest set of

ontologies.

There are four kinds of ontologies that are re-

quired: context, performance, security, and domain

ontologies. The context ontology is for context-

building. The performance ontology is for defining

the objective, measures, and means for performance

monitoring and analyzing the measurement results

accurately and unambiguously. The security ontology

has similar targets as performance ontology but for

information security. The domain ontology is for

adapting the generic concepts of context, perfor-

mance, and security to the concepts of the application

domain. Thus, the domain ontology is only changed

when the adaptation framework is applied to a new

application domain.

The adaptation framework exploits the architectur-

al patterns – e.g., a monitor, adapter, interpreter and

reasoner – for providing a multi-domain architectural

solution, the reference model for run-time quality

management. Thus, the architecture of the adaptation

framework exploits reusable models on two levels:

on the ontological level and in the reference architec-

ture that is adapted to different smart environments

by changing the domain-specific concepts to other

ones. Therefore, the mapping of the context, security

and performance ontologies to the domain ontology

needs to be made in a generic way that could be ap-

plied in any context where situation-based and self-

adaptive applications are needed.

Another set of ontologies, i.e., rule ontologies, is

required for changing behavior of the smart space

and its applications at run time. Behavioral changes

are made by analysis models and adaptation algo-

rithms that are defined as a set of rules or rule ontol-

ogy. The application framework introduced in this

paper is a logical architecture (see Fig. 3) and its

realization in a smart space may embody a set of con-

text-building elements as well as the adaptation ele-

ments.

In the following sections, the elements of the adap-

tation framework are introduced in more detail. First,

the static models, i.e., ontologies, are introduced.

Second, the elements of the adaptation framework

that exploit the defined knowledge representations

are introduced: context building, quality management

and adaptation. Third, the dynamic models used for

achieving situation-based behavior for applications

are explained.

Fig. 3. The adaptation framework for situation-based and self-adaptive applications.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment500

III/11

4.2. Static models

4.2.1. Context ontology

Context ontology for smart spaces, CO4SS, de-

fines the generic concepts related to smart spaces.

The context ontology is static in a sense that it is not

updated at run time but only at design-time. Thus, the

objective of the context ontology is to support the

evolution management of the smart environment: all

smart spaces and their applications ‘understand’ the

common language defined by the CO4SS. Thus, the

context ontology is used as a foundational ontology,

which application specific concepts are mapped. In

the adaptation framework, the CO4SS concepts are

also used together with the quality concepts. The

CO4SS needs two new properties, a Trigger and an

Assigner, for its Rule class due to the adaptation

framework and mapping with the performance con-

cepts, as introduced in Fig. 4. These new properties

are general by their nature. Relevant context infor-

mation for information security [13] is presented in

Fig. 5. Only the most relevant context concepts for

run-time security and performance management are

presented in Fig. 4. Despite the tuning, the CO4SS is

still general ontology to be used as a base ontology

when creating the semantics for the smart spaces.

Physical Context describes the information coming

from the physical and real things, such as sensors or a

mobile device. Preferences and the role (e.g., visitor,

worker, customer or owner) of the users are saved to

their smart spaces via devices. Physical Context also

represents real events, e.g., output coming from the

sensors or devices (as pictures, text messages, videos,

e-mails), location updates, failures or connections

made by objects that have arrived (or been added) to

the smart environment. These events relate to the

Situational Context. The adaptation in the smart

space application is mostly triggered by the events.

Digital Context consists of agents, features, and

rules, and the feature is respectively formed from

services and qualities. The rules define the situations,

i.e., the behavior of the (smart space) application.

User Context defines a person with roles, preferences,

and friends. Different kinds of activities can also be

represented, e.g., morning activities (showering,

breakfast, morning newspapers, etc.), travel activities

(work-related travel, holiday travel, etc.), and exer-

cise activities (jogging, the gym, different games,

etc.). These activities can be stored and used later on

to make reasoning according to different situations,

e.g., how long it usually takes to perform morning

activities.

Fig. 4. Adjusted CO4SS ontology.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 501

III/12 III/13

and instantiates it through example measures. Figure

5 introduces the most relevant context needed from

CO4SS for run-time security management. The

rounded rectangles present the information needed

for security adaptation. The dashed lines connect the

abstract information to the relevant CO4SS concepts.

4.2.3. Domain ontology

Domain ontology, such as that illustrated in Fig. 7,

describes the application-specific concepts, proper-

ties and relationships. The domain ontology concepts

are to be mapped with the CO4SS, ISMO, and RPM

ontologies. The mapping is done by comparing the

domain concepts between the context, security and

performance concepts to find commonalities or same

concepts. The use case dictates what kind of mapping

has to be done between these ontologies.

A situation-based agent was developed for super-

vising the maintenance scenario of a building [39].

The maintenance scenario starts when, for example, a

sensor detects water on the floor. The smart mainte-

nance system with the ontology is legacy software

that was enhanced with new features, consisting of

the Context Selector and Context Monitor. In order to

perform context-aware supervision, the context and

maintenance ontologies are aligned to get the new

feature to be interoperable with the legacy (smart

maintenance) system. After alignment, a shared con-

text, i.e., a graph, is in place to supervise the progress

of the maintenance scenario. The smart maintenance

ontology is used herein for detecting faults, schedul-

ing interventions and supervising tasks of mainte-

nance people.

A new way for bounding the context information

relevant for the context monitoring agent in question

was introduced [39]. The context is selected with a

GUI (Graphical User Interface), called Context Se-

lector [16]. The Context Selector uses the context

ontology (CO4SS) by reading its concepts from the

file that is in the OWL [36] format. Thereafter, the

Context Selector maps the main context concepts to

the corresponding smart maintenance concepts. The

Context Selector saves the selected context to the

semantic database, such as RIBS [54], from which

the Context Monitor is able to reach the context it

needs to follow.

4.2.4. Ontology mapping

The concept-level mapping between the CO4SS

and RPM ontologies revealed that they have only one

concept with a similar name. That was the Agent

class, but with different properties. In this kind of

case the mapping is seen to require performance us-

ing an OWL property (i.e., owl:equivalentClass) to

introduce these Agent-classes as equivalent but not

necessarily the same concepts. Another OWL proper-

ty, owl:sameAs, is for linking an individual to an

individual. The relevant context concepts have been

previously recognized for security monitoring pur-

poses [13]. Therefore, the concept level mapping

between CO4SS and ISMO were no longer necessary

to perform.

Domain ontologies are seen as ‘configuration

models’ for the CO4SS, ISMO, and RPM ontologies

that are generic and applicable for any application

domain. For example, agents and information in the

RPM ontology are super classes to the domain-

specific agents and information. In practice, the map-

ping will be handled by the dynamic models, i.e.,

configuration parameters, analysis models, and adap-

tation rules, and the interpreters developed for this

purpose.

4.3. Knowledge execution elements

Next, the elements of the adaptation framework

are introduced. The execution elements are intro-

duced with the GuideMe navigation service in Fig. 8.

GuideMe consists of intelligent objects that are lega-

cy adapters or traditional agents that do not use the

adaptation framework: SIBSearch, WebSearch, Nav-

igator, and CarParkService. The Context building

Fig. 7. An example of domain ontology.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 503

Situational Context is i) influenced by events com-

ing from physical things, ii) affected by the prefer-

ences of the users and social groups, and iii) defined

by the rules. Thus, the rules guide the recognition of

situations.

4.2.2. Quality ontologies

The RPM ontology defines the concepts that are

required for managing performance at run time. It

combines the smart space concepts such as agent and

information to performance concepts such as quality

attribute and measure. In IOP infrastructure, applica-

tions are composed dynamically of independent

agents. Thus, the quality objectives of the applica-

tions also depend on the situation. Consequently, the

adaptation framework requires addition of a new

class – Rating (see Fig. 6). In case of multiple op-

tions for an information producer service, perfor-

mance reasoning identifies the relative preference of

each option and by that allows separation of concerns

for management of individual qualities.

Information Security Measuring Ontology, ISMO,

measures information security and provides a solid

way to present security measures for software de-

signers and adaptable applications [14]. The ISMO

combines existing measuring and security ontologies

Fig. 5. Context information for security.

Fig. 6. The refined RPM ontology.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment502

III/13

and instantiates it through example measures. Figure

5 introduces the most relevant context needed from

CO4SS for run-time security management. The

rounded rectangles present the information needed

for security adaptation. The dashed lines connect the

abstract information to the relevant CO4SS concepts.

4.2.3. Domain ontology

Domain ontology, such as that illustrated in Fig. 7,

describes the application-specific concepts, proper-

ties and relationships. The domain ontology concepts

are to be mapped with the CO4SS, ISMO, and RPM

ontologies. The mapping is done by comparing the

domain concepts between the context, security and

performance concepts to find commonalities or same

concepts. The use case dictates what kind of mapping

has to be done between these ontologies.

A situation-based agent was developed for super-

vising the maintenance scenario of a building [39].

The maintenance scenario starts when, for example, a

sensor detects water on the floor. The smart mainte-

nance system with the ontology is legacy software

that was enhanced with new features, consisting of

the Context Selector and Context Monitor. In order to

perform context-aware supervision, the context and

maintenance ontologies are aligned to get the new

feature to be interoperable with the legacy (smart

maintenance) system. After alignment, a shared con-

text, i.e., a graph, is in place to supervise the progress

of the maintenance scenario. The smart maintenance

ontology is used herein for detecting faults, schedul-

ing interventions and supervising tasks of mainte-

nance people.

A new way for bounding the context information

relevant for the context monitoring agent in question

was introduced [39]. The context is selected with a

GUI (Graphical User Interface), called Context Se-

lector [16]. The Context Selector uses the context

ontology (CO4SS) by reading its concepts from the

file that is in the OWL [36] format. Thereafter, the

Context Selector maps the main context concepts to

the corresponding smart maintenance concepts. The

Context Selector saves the selected context to the

semantic database, such as RIBS [54], from which

the Context Monitor is able to reach the context it

needs to follow.

4.2.4. Ontology mapping

The concept-level mapping between the CO4SS

and RPM ontologies revealed that they have only one

concept with a similar name. That was the Agent

class, but with different properties. In this kind of

case the mapping is seen to require performance us-

ing an OWL property (i.e., owl:equivalentClass) to

introduce these Agent-classes as equivalent but not

necessarily the same concepts. Another OWL proper-

ty, owl:sameAs, is for linking an individual to an

individual. The relevant context concepts have been

previously recognized for security monitoring pur-

poses [13]. Therefore, the concept level mapping

between CO4SS and ISMO were no longer necessary

to perform.

Domain ontologies are seen as ‘configuration

models’ for the CO4SS, ISMO, and RPM ontologies

that are generic and applicable for any application

domain. For example, agents and information in the

RPM ontology are super classes to the domain-

specific agents and information. In practice, the map-

ping will be handled by the dynamic models, i.e.,

configuration parameters, analysis models, and adap-

tation rules, and the interpreters developed for this

purpose.

4.3. Knowledge execution elements

Next, the elements of the adaptation framework

are introduced. The execution elements are intro-

duced with the GuideMe navigation service in Fig. 8.

GuideMe consists of intelligent objects that are lega-

cy adapters or traditional agents that do not use the

adaptation framework: SIBSearch, WebSearch, Nav-

igator, and CarParkService. The Context building

Fig. 7. An example of domain ontology.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 503

III/14 III/15

of the application framework. The quality manage-

ment uses the filtered context when it is necessary.

4.3.4. Quality measurement

Quality measurement provides the measured quali-

ty that defines the current status of the quality of in-

telligent objects. What measurements are produced

depends on the requirements, user preferences, and

availability of means for measurement. Performance

measurements are related to the time behavior and

resource utilization of intelligent objects. Security

measures observe security-related attributes in the

environment and in the intelligent objects. These

attributes describe the used security mechanisms and

protocols, and in addition, threats from the environ-

ment. Measures can be used as base measures or they

can be further processed to derived measures, such as

statistical measures. Measuring results are separated

from reasoning so that one measure can be utilized in

different types of reasoning.

4.3.5. Quality prediction

Quality prediction uses the measurement history in

order to forecast the future status of the system and

its environment. The predicted quality can be used

instead of measured quality to ensure continuously

acceptable behavior.

4.3.6. Quality reasoning

Quality reasoning rates the adaptation options and

gives the information regarding quality preferences

to the adaptation reasoning. Reasoning is performed

the first time quality (performance and security, es-

pecially in this paper) management is started and

after that when the context of quality management

changes or the violation analyzer informs that the

particular quality is no longer at an acceptable level.

Reasoning is based on the analysis models. The

required quality denotes the requirements of the intel-

ligent object that is using the services or information

of other objects. The advertised quality is informed

by the intelligent object that is producing information

or services. Advertised quality can be based on

measured values, but it can also be fixed already at

development time.

4.3.7. Violation analyzer

The violation analyzer notifies of violations of the

requirements. The notifications trigger quality rea-

soning. The violation analyzer monitors the require-

ments and compares them to the advertised, meas-

ured, or predicted qualities, depending on the situa-

tion. Changes in any of those may result in that quali-

ty (performance and/or security) is no longer at an

acceptable level.

4.3.8. Adaptation reasoning

Adaptation reasoning makes the decision regard-

ing which adaptation option to select based on the

situation context, quality options, and the related ad-

aptation rules. Adaptation reasoning unifies the rea-

soning activities from the context-awareness micro-

architecture and run-time performance and security

management. The output of the adaptation reasoning

is the decision for the adaptation.

4.3.9. Adaptation execution

Adaptation execution follows the decision made

by the adaptation reasoning and supervises the actual

adaptation actions that are needed. The adaptation

execution may require knowledge of the platform and

the environment in order to be able to perform the

required adaptation in a robust manner. An adapted

object, i.e., the part of software adaptation that is the

target of adaptation, is the result of this activity.

4.4. Dynamic models

The behavior of the situation-based and self-

adaptive applications cannot be fixed at design-time.

Hence, there is a need for the dynamic models to

manage adaptations. The dynamic models are a set of

rules or parameters to configure the behavior of the

applications in the instantiation phase and/or at run

time. A set of rules can be assigned to a specific

agent (execution element) and when the rules are

changed, the agents automatically start to use the new

rules. Rules processing is done on the semantic data-

base side as the agents make SPARQL queries or are

notified based on their needs. The usage of notifica-

tions assumes that the SIB supports a publish-

subscribe mechanism. In the subscribe case, the re-

sult of a rule triggered is returned to the agent in hand.

The agent can then decide what to do with the result

or simply mediate the result to the target database, if

needed.

The rule-based dynamic models are further distin-

guished to analysis models and adaptation rules. The

analysis models are used to produce information that

can be used to check if the quality requirements are

fulfilled. The adaptation rules are used to define what

to do in order to fulfill the set quality requirements.

Next, the three dynamic models are presented: the

analysis models, the adaptation rules, and configura-

tion parameters.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 505

element includes agents for context monitoring

(CMonitor), context filtering (CFilter), and context

reasoning (CReasoner).

The Quality management element has agents for

measuring, predicting, reasoning or planning, and

analyzing. GuideMe has LatencyMeasurer,

PerformanceReasoner (PReasoner), SecurityPlanner,

and Analyzer agents. Thus, own agents are instantiat-

ed for each quality. The Adaptation element has

agents for adaptation reasoning (AReasoner) and

adaptation execution (AExecutor). The use of these

elements in the GuideMe application is presented in

Section 5.

4.3.1. Context monitoring

Context monitoring is configured to collect certain

information that is relevant from the viewpoint of the

used context, e.g., for security monitoring or energy

consumption. It shares the monitored content via the

semantic database, such as SIB. The configuration is

herein given by the ontology as a set of RDF triples

or by a SPARQL query. The configuration stored as

an RDF-graph (or string literal in the case of

SPARQL query) in the SIB scopes the context to be

monitored. The configuration can be given in design

time, at run time or when the context monitoring

agent is instantiated, i.e., in the startup phase.

4.3.2. Context reasoning

Context reasoning is used for interpreting the rules,

which can be set during the design phase or they can

be given at run time or when the context reasoning is

activated. Thus, the context reasoning is configurable.

The output of context reasoning is used either for

defining context for quality management purposes or

for adaptation.

The context reasoning exploits the information

monitored by the context monitoring. In addition, the

context reasoning can use other information from the

semantic database. Usage of the information depends

on the rules. The other information can be current or

historical data. The current information can be, for

example, user preferences related to the performance

of the application. Naturally, the historical data is

collected to the SIB beforehand. For example, in a

smart home, historical data may include all typical

activities and habits of the family members on work-

ing days and free days. This kind of historical data is

essential to be able to proactively process the context

of the future, and not only the context of the present

moment. The context reasoning can exploit any ex-

ternal historical data that is relevant and available to

it. Thus, reusability of existing information is taken

into account in the context reasoning.

4.3.3. Context filtering

Context filtering is intended to be used for tuning

the inferred context according to the filtering parame-

ters, e.g., the user’s privacy filter or the membership

of a social community allows a wider visibility to

certain information. The context filtering and context

reasoning work alike: both are configurable. Thus,

the filtered context is a specialized view of the in-

ferred context and can be used in some instantiations

Fig. 8. Use of execution elements of the Adaptation Framework in GuideMe.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment504

III/15

of the application framework. The quality manage-

ment uses the filtered context when it is necessary.

4.3.4. Quality measurement

Quality measurement provides the measured quali-

ty that defines the current status of the quality of in-

telligent objects. What measurements are produced

depends on the requirements, user preferences, and

availability of means for measurement. Performance

measurements are related to the time behavior and

resource utilization of intelligent objects. Security

measures observe security-related attributes in the

environment and in the intelligent objects. These

attributes describe the used security mechanisms and

protocols, and in addition, threats from the environ-

ment. Measures can be used as base measures or they

can be further processed to derived measures, such as

statistical measures. Measuring results are separated

from reasoning so that one measure can be utilized in

different types of reasoning.

4.3.5. Quality prediction

Quality prediction uses the measurement history in

order to forecast the future status of the system and

its environment. The predicted quality can be used

instead of measured quality to ensure continuously

acceptable behavior.

4.3.6. Quality reasoning

Quality reasoning rates the adaptation options and

gives the information regarding quality preferences

to the adaptation reasoning. Reasoning is performed

the first time quality (performance and security, es-

pecially in this paper) management is started and

after that when the context of quality management

changes or the violation analyzer informs that the

particular quality is no longer at an acceptable level.

Reasoning is based on the analysis models. The

required quality denotes the requirements of the intel-

ligent object that is using the services or information

of other objects. The advertised quality is informed

by the intelligent object that is producing information

or services. Advertised quality can be based on

measured values, but it can also be fixed already at

development time.

4.3.7. Violation analyzer

The violation analyzer notifies of violations of the

requirements. The notifications trigger quality rea-

soning. The violation analyzer monitors the require-

ments and compares them to the advertised, meas-

ured, or predicted qualities, depending on the situa-

tion. Changes in any of those may result in that quali-

ty (performance and/or security) is no longer at an

acceptable level.

4.3.8. Adaptation reasoning

Adaptation reasoning makes the decision regard-

ing which adaptation option to select based on the

situation context, quality options, and the related ad-

aptation rules. Adaptation reasoning unifies the rea-

soning activities from the context-awareness micro-

architecture and run-time performance and security

management. The output of the adaptation reasoning

is the decision for the adaptation.

4.3.9. Adaptation execution

Adaptation execution follows the decision made

by the adaptation reasoning and supervises the actual

adaptation actions that are needed. The adaptation

execution may require knowledge of the platform and

the environment in order to be able to perform the

required adaptation in a robust manner. An adapted

object, i.e., the part of software adaptation that is the

target of adaptation, is the result of this activity.

4.4. Dynamic models

The behavior of the situation-based and self-

adaptive applications cannot be fixed at design-time.

Hence, there is a need for the dynamic models to

manage adaptations. The dynamic models are a set of

rules or parameters to configure the behavior of the

applications in the instantiation phase and/or at run

time. A set of rules can be assigned to a specific

agent (execution element) and when the rules are

changed, the agents automatically start to use the new

rules. Rules processing is done on the semantic data-

base side as the agents make SPARQL queries or are

notified based on their needs. The usage of notifica-

tions assumes that the SIB supports a publish-

subscribe mechanism. In the subscribe case, the re-

sult of a rule triggered is returned to the agent in hand.

The agent can then decide what to do with the result

or simply mediate the result to the target database, if

needed.

The rule-based dynamic models are further distin-

guished to analysis models and adaptation rules. The

analysis models are used to produce information that

can be used to check if the quality requirements are

fulfilled. The adaptation rules are used to define what

to do in order to fulfill the set quality requirements.

Next, the three dynamic models are presented: the

analysis models, the adaptation rules, and configura-

tion parameters.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 505

III/16 III/17

vider’s quality decreases, the rating of the services is

updated by the quality management and the service

used is changed by the adaptation reasoning.

The personal SIB, as context storage, is located in

the user’s mobile phone (Nokia N9), which also

functions as a navigational device and includes the

necessary execution elements for context building,

quality management, and adaptation. The city SIB

uses RIBS [54] as the semantic information broker

and runs on an Ubuntu Linux computer. See the illus-

tration in Fig. 9.

The GuideMe specific agents, i.e., intelligent ob-

jects, are static and developed according to the do-

main ontology. They are depicted in Fig. 8:

SIBSearch, WebSearch, Navigator (Personal Space),

and CarParkService (Smart City Space). The static

agents do not exploit the adaptation framework ex-

plained in this paper. The adaptation framework

based agents are dynamic and are presented inside

the adaptation framework’s execution elements in

Fig. 8. All the agents are coded using Python and Qt

C++/QML programming language. The same func-

tionality can also be made with other programming

languages, e.g., Java, C, C#.

5.2. Adaptation activities

The key to enable changes in dynamic behavior is

the ontology published by the domain agents (intelli-

gent objects). The ontology provides a static guide-

line to be used when designing the dynamic behavior.

The domain agent publishes all the properties and

functionalities in their ontology and thereby allows

the adaptation element to control them. The domain

agent may restrict the access to its information or its

control in the used smart space, and in such case au-

thentication of the adaptation elements are required.

The adaptation element executes the rules and

makes a decision based on the context and quality

management information whether to make an adapta-

tion or not. The adaptation uses the quality manage-

ment’s attributes to decide whether this adaptation

can be made or not.

By default, the adaptation updates the information

to the smart space it is connected to. Therefore, the

designer of the actual rules must take this into ac-

count and deploy the adaptation into the right smart

space. Of course, context information can be added

to the rule and update the resulting command into

another space, as was described earlier in the context

monitoring agent.

Run-time security management is used to manage

user authentication in the personal space, i.e., in the

smart phone. Authenticated users can also receive

more information about an accident if one occurs on

the current route and the user has access rights to that

information. The security management deals with

authentication and access control actions autono-

mously in this example case. Therefore, the security

agents (monitor, analyzer, and planner) are not pre-

sent in the annotated sequence diagram, Fig. 10. This

simplifies the scenario figure. If security-related ac-

tions require interaction with other agents, then they

have to be presented in the scenario naturally.

Run-time performance management is used for se-

lecting the service that provides better performance.

In this case, the age of the information was used as

the measurable quality attribute. The web page in-

formation is updated at regular intervals, thus it has a

fixed maximum value for the age. In case of smart

space access, the information is transferred from city

smart space to the personal space and age is related

to the delay of that transfer.

5.3. Application development steps

The following sections describe the application

development with the GuideMe according to the

steps described in Fig. 2.

5.3.1. Describe application scenario

After creating short textual description of the ap-

plication and possible a contextual drawing, such as

Fig. 9, start to work with ontologies. First, the appli-

cation developer has to familiarize herself with the

available ontologies, create a new one for her appli-

cation domain or enhance the existing ones. When all

the relevant concepts are available in the ontologies,

she starts to sketch the scenarios and related rules.

For the illustration she uses Message Sequence

Charts (MSCs) as they are typically used in require-

ment elicitation and functional specifications. The

actors in MSCs are SIB(s), the relevant agents from

the adaptation framework, and intelligent objects

needed for the application.

The MSCs are used to describe both the agent’s

functionality and the desired behavior in the form of

rules, or either one in detail. If the agent has some

static parts, it is better to include the rules as one se-

quence in the chart than to create a single MSC for

the rule. In addition, there can be fully dynamic

agents, such as the context-reasoning agent, whose

actions are controlled by the dynamically changing

rules.

The implementation of the rules will be easier and

faster, when MSCs are created based on the existing

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 507

4.4.1. Analysis models

Analysis models are reusable assets that are de-

fined as part of software measurement ontology [17]

and applied to different quality attributes such as

security and performance. An analysis model is used,

for example, when an indicator, such as a password

type, is calculated to be used in the password strength.

The analysis model is a statement described as a set

of rules. These kinds of statements are very close to

the natural English language, and because of that

they are easy to use and update without extensive

knowledge of programming. The use of a natural

language helps in concentrating on the content of the

models, i.e., the use of domain knowledge without

knowing how to model knowledge. The analysis

models are used for analyzing the status of the quali-

ty properties and processing temporary results for

decision-making. The analysis model can be thought

of as if-then-else statements. In the adaptation

framework, the analysis models are instantiated as

standard SPARQL queries.

4.4.2. Adaptation rules

The functionality of the situation-based and self-

adaptive application is adjusted according to the ad-

aptation rules, the context, and the measured or pre-

dicted qualities. The adaptation rules may include a

set of options, limitations, and intelligence for

tradeoff decision-making. The adaptation rules are

elaborated previously as if-then-else statements in

i) the situation-based and self-adaptive application

development, and ii) in the run-time performance and

security management. Within the adaptation frame-

work the rules are implemented as standard SPARQL

queries. These rules are used by context reasoning,

quality reasoning, and adaptation reasoning.

4.4.3. Configuration parameters

The configuration parameters are used to configure

the monitoring activities of the context monitoring,

and are defined by the application designer. The con-

figuration parameters can be updated at run time be-

cause the parameters follow the ontologies used. The

configuration parameters can be given by the ontolo-

gy, i.e., a set of triples to match, or by a SPARQL

query if the monitored data is more complicated. The

idea is that the context monitoring recognizes the

current status of the context information and reports

this to the semantic database. Later on, the reported

information can be used in decision-making and fil-

tering activities.

5. Situation-based and self-adaptive application

development

The solution, proposed in this paper, is used to

create the GuideMe application that demonstrates

usage of the adaptation framework and how the

framework helps in the application development.

GuideMe uses an external service that produces car

park information
6

 available in the city that the car is

approaching (Fig. 9) and enhances the overall navi-

gator operation with this information and the context

information from both the user’s personal space and

the city space.

5.1. The case study – GuideMe

The GuideMe uses Smart City services to enhance

normal navigational service used in the car. When the

user is located in the car the GuideMe automatically

fetches the meeting place from the user’s personal

space and selects the closest parking space available.

The car park information, the address of the car park

and availability of free parking space at the car park,

is available either on a web page or in a city smart

space (a city SIB). The navigator receives that infor-

mation from the personal smart space (a personal

SIB).

The closest parking space is reasoned according to

the context information received from the car park

information service (i.e., vacancy, car park location,

freshness of the information). When the service pro-

6

 Car park information in the city of Oulu: http://www.

oulunliikenne.fi/autoilu/pysakointi

Fig. 9. Setup of GuideMe.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment506

http://www

III/17

vider’s quality decreases, the rating of the services is

updated by the quality management and the service

used is changed by the adaptation reasoning.

The personal SIB, as context storage, is located in

the user’s mobile phone (Nokia N9), which also

functions as a navigational device and includes the

necessary execution elements for context building,

quality management, and adaptation. The city SIB

uses RIBS [54] as the semantic information broker

and runs on an Ubuntu Linux computer. See the illus-

tration in Fig. 9.

The GuideMe specific agents, i.e., intelligent ob-

jects, are static and developed according to the do-

main ontology. They are depicted in Fig. 8:

SIBSearch, WebSearch, Navigator (Personal Space),

and CarParkService (Smart City Space). The static

agents do not exploit the adaptation framework ex-

plained in this paper. The adaptation framework

based agents are dynamic and are presented inside

the adaptation framework’s execution elements in

Fig. 8. All the agents are coded using Python and Qt

C++/QML programming language. The same func-

tionality can also be made with other programming

languages, e.g., Java, C, C#.

5.2. Adaptation activities

The key to enable changes in dynamic behavior is

the ontology published by the domain agents (intelli-

gent objects). The ontology provides a static guide-

line to be used when designing the dynamic behavior.

The domain agent publishes all the properties and

functionalities in their ontology and thereby allows

the adaptation element to control them. The domain

agent may restrict the access to its information or its

control in the used smart space, and in such case au-

thentication of the adaptation elements are required.

The adaptation element executes the rules and

makes a decision based on the context and quality

management information whether to make an adapta-

tion or not. The adaptation uses the quality manage-

ment’s attributes to decide whether this adaptation

can be made or not.

By default, the adaptation updates the information

to the smart space it is connected to. Therefore, the

designer of the actual rules must take this into ac-

count and deploy the adaptation into the right smart

space. Of course, context information can be added

to the rule and update the resulting command into

another space, as was described earlier in the context

monitoring agent.

Run-time security management is used to manage

user authentication in the personal space, i.e., in the

smart phone. Authenticated users can also receive

more information about an accident if one occurs on

the current route and the user has access rights to that

information. The security management deals with

authentication and access control actions autono-

mously in this example case. Therefore, the security

agents (monitor, analyzer, and planner) are not pre-

sent in the annotated sequence diagram, Fig. 10. This

simplifies the scenario figure. If security-related ac-

tions require interaction with other agents, then they

have to be presented in the scenario naturally.

Run-time performance management is used for se-

lecting the service that provides better performance.

In this case, the age of the information was used as

the measurable quality attribute. The web page in-

formation is updated at regular intervals, thus it has a

fixed maximum value for the age. In case of smart

space access, the information is transferred from city

smart space to the personal space and age is related

to the delay of that transfer.

5.3. Application development steps

The following sections describe the application

development with the GuideMe according to the

steps described in Fig. 2.

5.3.1. Describe application scenario

After creating short textual description of the ap-

plication and possible a contextual drawing, such as

Fig. 9, start to work with ontologies. First, the appli-

cation developer has to familiarize herself with the

available ontologies, create a new one for her appli-

cation domain or enhance the existing ones. When all

the relevant concepts are available in the ontologies,

she starts to sketch the scenarios and related rules.

For the illustration she uses Message Sequence

Charts (MSCs) as they are typically used in require-

ment elicitation and functional specifications. The

actors in MSCs are SIB(s), the relevant agents from

the adaptation framework, and intelligent objects

needed for the application.

The MSCs are used to describe both the agent’s

functionality and the desired behavior in the form of

rules, or either one in detail. If the agent has some

static parts, it is better to include the rules as one se-

quence in the chart than to create a single MSC for

the rule. In addition, there can be fully dynamic

agents, such as the context-reasoning agent, whose

actions are controlled by the dynamically changing

rules.

The implementation of the rules will be easier and

faster, when MSCs are created based on the existing

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 507

III/18 III/19

satisfactory level and WebSearch is activated again.

PMeasurer calculates a value for any information that

has properties for creation and transfer time, as

shown in PerformanceMeasurerRule1. This finer-

grained MSC has a more detailed sequence descrip-

tion and it annotates the ontologies used and concepts

in the rules, so that the developer can quickly check

the correct classes and properties that the rules use.

This is specifically useful if the developer does not

have previous experience using the specific ontology.

Therefore, describe sub-scenarios in more detail, so

that the developer can drill down to more detail when

needed.

AdaptationRule2 shows the default way for the

agent to make a SPARQL subscription from the rule.

PerformanceRule1 exemplifies how the agent is trig-

gered to query and the trigger is a set of triples, such

as ViolationIndication. The agents subscribe to the

given triples or triple patterns according to the in-

structions in the SIB.

5.3.3. Transform behavior descriptions to rule

language

Next, the developer extracts the rules to the

SPARQL queries following the SPARQL features

provided by the SIB. This is done by hand, but could

be automated if the MSCs contain all relevant infor-

mation required for the rules.

MonitorRule1, PerformanceMeasurerRule1, and

AdaptationRule2 were selected from the MSCs in

Figs 10 and 11 to present how the behavior is trans-

formed into the SPARQL queries, and to illustrate

three types of rules used in monitoring, reasoning,

and adaptation. Figure 12a) shows MonitorRule1

(Event Trigger), which starts the navigation: If the

car’s Bluetooth is discovered, inform that the user is

in the car. The context ontology (CO4SS) and do-

main ontology need to be consulted to find the cor-

rect concepts to be used in the rule in order to com-

pare the Bluetooth identification description (ID) to

the one that is assigned to the user.

Figure 12b) shows the PerformanceMeasurer-

Rule1 (Calculator) which is used by the PMeasurer

agent to measure the latency of the service. This

SPARQL query takes all data elements that have a

creation time and a transfer time, makes an arithmetic

calculation with these values, and returns the results.

This rule will be re-run whenever some property of

the information changes. Therefore, this rule might

be a rather heavy resource user. The effect of the rule

can be decreased by adding a FILTER operation to

the rule. With the FILTER operation the focus can be

set to a specific agent or a specific type of infor-

mation.

Figure 12c) shows the SPARQL queries associated

with AdaptationRule2 (Context Adaptation), which

makes a selection between SIBSearch and

WebSearch agents according to the given quality

preferences and the user preferences. The developer

looks at the ontologies associated with this rule: per-

formance ontology (RPM), context ontology

(CO4SS), and domain ontology. From the domain

ontology the developer finds out that the provider

agents have a preference property which shows the

preferences for this agent. In addition, the domain

ontology states who has assigned the preference,

such as the user or the quality management.

This AdaptationRule2 requires more than one

SPARQL query to cover all the necessary functional-

ities. The first rule activates the correct provider

agent according to the preferred assigner. The as-

signer can be, for example, the user or quality agent,

and is deduced by another rule or defined in the on-

tology. The second rule, on the other hand, deac-

tivates the rest of the provider agents. These adapta-

tion rules are the most difficult rules to implement,

since the developer needs to know how the different

execution elements are controlled and possible use

concepts from all of the ontologies used to create

these rules.

5.3.4. Implement dynamic behavior of intelligent

applications

In the last step, the developer codes the agents us-

ing Java, C, C#, Python or Qt C++/QML and uses the

appropriate KPI library to access SIB(s). She also

chooses the relevant SIB implementation that meets

her needs. More details, such as performance results,

Fig. 11. Changing the information provider according to the con-

text.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 509

ontologies, since the developer does not have to look

for them first. The components defined in the MSCs,

i.e., SIBs and agents, must be defined clearly, be-

cause the agents can communicate with multiple

smart spaces and different smart spaces store infor-

mation from different sources. After this step, the

developer has MSC(s) sketched with actors and can

go deeper into the behavior as follows.

5.3.2. Annotate behavior descriptions

In behavior descriptions, the developer follows the

guidelines:

• First, present the behavior as analysis models

and adaptation rules. The analysis models are

either English sentences or if-then-else state-

ments. The adaptation rules are usually given

as if-then-else statements.

• Second, describe the basic query and insert

actions between the agents and SIBs so that

these executions comply with the actions de-

scribed in the rules part. This way the devel-

oper transforming the analysis models into

SPARQL queries can check the relevant on-

tology concepts and target SIBs.

Figure 10 provides an overview of GuideMe sce-

narios as one MSC. It shows the necessary rules for

the different agents. The benefit of showing multiple

scenarios in one MSC is that the whole situation of

an application can be comprehended at once. The

downside is that accurate information, such as the

ontology concepts used by the rules, cannot be pro-

vided. It is assumed that all the needed information,

e.g., Bluetooths discovered and SIBs are available in

the SIB used. The context monitor (CMonitor) has a

few rules, from which MonitorRule1 is the one that

actually starts this scenario by informing that the user

is in the car (i.e., an event). The various context mon-

itors can use rules and be dynamic or monitor some-

thing according to the ontology drill-down and there-

by be static in a sense. Different types of monitors

are discussed and presented in [24]. The

AdaptationReasoner (AReasoner) agent has two dif-

ferent adaptation rules assigned to it. Adaptation-

Rule2 decides which service provider (triggered by

AnalysisRule1) is used according to the results pro-

vided by the PerformanceReasoner (PReasoner) and

user preferences.

The MSC in Fig. 11 shows how the adaptation

framework handles a situation in which the citySIB is

available but the citySIB’s performance is not at a

Fig. 10. Overview of GuideMe scenarios as an MSC.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment508

III/19

satisfactory level and WebSearch is activated again.

PMeasurer calculates a value for any information that

has properties for creation and transfer time, as

shown in PerformanceMeasurerRule1. This finer-

grained MSC has a more detailed sequence descrip-

tion and it annotates the ontologies used and concepts

in the rules, so that the developer can quickly check

the correct classes and properties that the rules use.

This is specifically useful if the developer does not

have previous experience using the specific ontology.

Therefore, describe sub-scenarios in more detail, so

that the developer can drill down to more detail when

needed.

AdaptationRule2 shows the default way for the

agent to make a SPARQL subscription from the rule.

PerformanceRule1 exemplifies how the agent is trig-

gered to query and the trigger is a set of triples, such

as ViolationIndication. The agents subscribe to the

given triples or triple patterns according to the in-

structions in the SIB.

5.3.3. Transform behavior descriptions to rule

language

Next, the developer extracts the rules to the

SPARQL queries following the SPARQL features

provided by the SIB. This is done by hand, but could

be automated if the MSCs contain all relevant infor-

mation required for the rules.

MonitorRule1, PerformanceMeasurerRule1, and

AdaptationRule2 were selected from the MSCs in

Figs 10 and 11 to present how the behavior is trans-

formed into the SPARQL queries, and to illustrate

three types of rules used in monitoring, reasoning,

and adaptation. Figure 12a) shows MonitorRule1

(Event Trigger), which starts the navigation: If the

car’s Bluetooth is discovered, inform that the user is

in the car. The context ontology (CO4SS) and do-

main ontology need to be consulted to find the cor-

rect concepts to be used in the rule in order to com-

pare the Bluetooth identification description (ID) to

the one that is assigned to the user.

Figure 12b) shows the PerformanceMeasurer-

Rule1 (Calculator) which is used by the PMeasurer

agent to measure the latency of the service. This

SPARQL query takes all data elements that have a

creation time and a transfer time, makes an arithmetic

calculation with these values, and returns the results.

This rule will be re-run whenever some property of

the information changes. Therefore, this rule might

be a rather heavy resource user. The effect of the rule

can be decreased by adding a FILTER operation to

the rule. With the FILTER operation the focus can be

set to a specific agent or a specific type of infor-

mation.

Figure 12c) shows the SPARQL queries associated

with AdaptationRule2 (Context Adaptation), which

makes a selection between SIBSearch and

WebSearch agents according to the given quality

preferences and the user preferences. The developer

looks at the ontologies associated with this rule: per-

formance ontology (RPM), context ontology

(CO4SS), and domain ontology. From the domain

ontology the developer finds out that the provider

agents have a preference property which shows the

preferences for this agent. In addition, the domain

ontology states who has assigned the preference,

such as the user or the quality management.

This AdaptationRule2 requires more than one

SPARQL query to cover all the necessary functional-

ities. The first rule activates the correct provider

agent according to the preferred assigner. The as-

signer can be, for example, the user or quality agent,

and is deduced by another rule or defined in the on-

tology. The second rule, on the other hand, deac-

tivates the rest of the provider agents. These adapta-

tion rules are the most difficult rules to implement,

since the developer needs to know how the different

execution elements are controlled and possible use

concepts from all of the ontologies used to create

these rules.

5.3.4. Implement dynamic behavior of intelligent

applications

In the last step, the developer codes the agents us-

ing Java, C, C#, Python or Qt C++/QML and uses the

appropriate KPI library to access SIB(s). She also

chooses the relevant SIB implementation that meets

her needs. More details, such as performance results,

Fig. 11. Changing the information provider according to the con-

text.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 509

III/20 III/21

SPARQL queries and adaptations, is the one who

should have the most experience, since it combines

the earlier development.

5.4.1. Ontologies

In this case study the developer making the adapta-

tion rules did not have prior experience in the per-

formance ontology, and therefore had to rely on the

information provided in the MSCs and look for de-

tailed information from the performance (RPM) on-

tology. The required information was quite easily

fetched from the RPM ontology, but some specifics

regarding usage of the ontology had to be requested

from the RPM ontology developer.

In addition, if the ontologies used are developed

parallel to the actual applications, then the changes in

ontology might break the SPARQL queries or cause

unexpected behavior. Of course, the problem is the

same in all ontology-driven development.

5.4.2. Transform behavior descriptions to rule

language

It is important to follow the correct concepts from

the ontologies used to form the rules so that

SPARQL queries can be created without having to

contemplate the concepts used. The correctness of

concepts is even more important if the SPARQL que-

ries are done by someone other than the developer of

the MSCs, which is a common case.

The most error-prone phase in application devel-

opment is the creation of the SPARQL queries and

their management, due to dynamicity of the rules and

the cross-effects they can have. Therefore, the devel-

oper has to check that the ontology concepts used are

correct and that the created SPARQL query is valid.

The developer can create the resulting SPARQL que-

ry in an iterative way, so that testing the correctness

is easier. The developer may perform the necessary

verification and validation (V&V) activities accord-

ing to the inputs and outputs with testing agents,

which can insert the needed input values and con-

sume the resulting information.

5.4.3. Results of the case study

The case study implementation showed that the

adaptation framework helps in the application devel-

opment of situation-based smart space applications.

The main benefit is that it provides a framework that

the developer can exploit in creating dynamic appli-

cations that are context-aware and proactively moni-

tor and reason the situation in smart spaces. The

framework takes care of handling the rules and al-

lows the behavior to be changed at run time if re-

quired.

The SPARQL queries used in implementing the

actual dynamism and reasoning were found to be

useful in context and security monitoring, reasoning,

and adaptation. For performance, it was also easy for

monitoring, but for reasoning and adaptation the

complexity of the performance-related rules was dif-

ficult to manage with SPARQL queries. Note that

SPARQL extensions were not yet used.

6. Discussion

In this section, the impact of the proposed adapta-

tion framework to the software development is ex-

plored. The presented adaptation framework has been

developed and experimented incrementally during

the three years in the SOFIA project. Firstly, the

evaluation of the adaptation framework is described.

Secondly, the summary of experiments is presented.

Then, the SUM-SS pilot with the evaluation results is

introduced. Thereafter, the evolution of dynamic sys-

tems is discussed. Finally, the topics identified for

further study are summarized.

6.1. Evaluation steps of the adaptation framework

The IOP principles (cf., Table 2) have guided the

work for the framework presented and they have

been used as evaluation criteria. The work is also

done as guided in the eight lessons dedicated for in-

frastructure software that supports construction or

operation of other software [9]. Next, the work relat-

ed to these eight lessons is introduced.

Lesson 1. Prioritize core infrastructure features – The

fourteen IOP principles are available.

Lesson 2. First, build prototypes that express the core

objectives of the infrastructure – this is the approach

the SOFIA project had while proceeding toward this

adaptation framework. A greenhouse demo was made

in the 1st year and that demo was based on existing

assets. Thus, the implementation effort was mini-

mized. The greenhouse demo is presented with more

detail in [10] and videoed in [47].

Lesson 3. Any test application built to demonstrate

infrastructure must also satisfy the criteria of usabil-

ity and usefulness – run-time security, performance

management, and context-awareness were demon-

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 511

from the different SIB implementations are available

in [51].

As described earlier, the GuideMe is implemented

by Python and Qt C++/QML and it uses RIBS [54].

In fact, the SPARQL subscribe feature of RIBS is

used to process all the rules (Option #1). That is, the

agents make subscriptions according to the rules al-

located to them. This reduces communication over-

head but adds processing overhead to the RIBS side.

This is acceptable, since the subscriptions, i.e., rules,

are executed only when something affecting them is

changed in the database. Option #2, which can be

used in special cases, is to give the rule execution

control to the agent. This can be achieved by chang-

ing the SPARQL subscriptions to normal queries that

the agents make when something changes. Option #3

is to instantiate a local RIBS, make the SPARQL

subscriptions to that RIBS, and update all the rele-

vant information to the local RIBS.

The benefit of using CONSTRUCT instead of IN-

SERT, for example, is that the resulting fact can be

checked before actually making the adaptation it is

going to fire. For example, the adaptation element

can check all the necessary qualities before actually

executing the command. In addition, one can include

privacy and user preferences into the reasoning pro-

cess.

5.4. Lessons learned in application development

The benefit of using the adaptation framework is

that the developer does not have to manually code the

adaptation actions inside the agents but can instead

define and implement this behavior with rules, i.e.,

SPARQL queries. Therefore, the dynamic agents,

execution elements, and static agents are tested and

verified before their usage, and the only variable

parts are the GUI (if needed) and the SPARQL que-

ries. This saves time in the application development

and enables the developer to focus on the actual logic

of the application and overall user experience.

Although application development with the adap-

tation framework is quite easy (One does not need to

code applications with traditional programming lan-

guages if not desired), the developer has to have a

broad knowledge of SPARQL queries and the ontol-

ogies used in order to be able to make application

efficiently. If the application development process is

divided between different developers, then the devel-

oper responsible for the last part, i.e., making

Fig. 12. a)–c) Differences in the rules.

PREFIX : < http://www.SOFIA.net/Context#>

PREFIX d: <http://www.SOFIA.net/Domain#>

PREFIX rdf:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

CONSTRUCT {

 :user :location :car .

} WHERE{

 ?endpoint rdf:type d:Bluetooth .

 ?endpoint d:hasID ?id .

 :user d:hasCarBluetoothID ?bluetoothID .

 FILTER(?id = ?bluetoothID) .

}

a) SPARQL query of MonitorRule1

PREFIX : <http://www.SOFIA.net/Performance#>

PREFIX c: <http://www.SOFIA.net/Context#>

PREFIX rdf:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Activate the correct service

CONSTRUCT {

 ?activeAgent :hasStatus "Active" .

 } WHERE{

c:AdaptationRule2 c:preferAssigner ?a .

?activeAgent rdf:type :Agent ;

 :hasRating ?rating .

?rating :assignedBy ?a .

?rating :hasValue ?x .

FILTER(?x = 1) .

}

Deactivate other services

CONSTRUCT {

?activeAgent :hasStatus "InActive" .

 } WHERE{

c:AdaptationRule2 c:preferAssigner ?a .

 ?activeAgent rdf:type :Agent ;

 :hasRating ?rating .

 ?rating :assignedBy ?a .

 ?rating :hasValue ?x .

 FILTER(?x < 1) .

}

c) SPARQL queries of AdaptationRule2

PREFIX : < http://www.SOFIA.net/Performance#>

CONSTRUCT {

?info :measuredValue ?value .

} WHERE{

?info:hasCreationTime ?creationTime .

?info:hasTransferTime ?transferTime .

BIND(?transferTime - ?creationTime AS ?value)

}

b) SPARQL query of PerformanceMeasurerRule1

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment510

http://www.SOFIA.net/Context#
http://www.SOFIA.net/Domain#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.SOFIA.net/Performance#
http://www.SOFIA.net/Context#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.SOFIA.net/Performance#

III/21

SPARQL queries and adaptations, is the one who

should have the most experience, since it combines

the earlier development.

5.4.1. Ontologies

In this case study the developer making the adapta-

tion rules did not have prior experience in the per-

formance ontology, and therefore had to rely on the

information provided in the MSCs and look for de-

tailed information from the performance (RPM) on-

tology. The required information was quite easily

fetched from the RPM ontology, but some specifics

regarding usage of the ontology had to be requested

from the RPM ontology developer.

In addition, if the ontologies used are developed

parallel to the actual applications, then the changes in

ontology might break the SPARQL queries or cause

unexpected behavior. Of course, the problem is the

same in all ontology-driven development.

5.4.2. Transform behavior descriptions to rule

language

It is important to follow the correct concepts from

the ontologies used to form the rules so that

SPARQL queries can be created without having to

contemplate the concepts used. The correctness of

concepts is even more important if the SPARQL que-

ries are done by someone other than the developer of

the MSCs, which is a common case.

The most error-prone phase in application devel-

opment is the creation of the SPARQL queries and

their management, due to dynamicity of the rules and

the cross-effects they can have. Therefore, the devel-

oper has to check that the ontology concepts used are

correct and that the created SPARQL query is valid.

The developer can create the resulting SPARQL que-

ry in an iterative way, so that testing the correctness

is easier. The developer may perform the necessary

verification and validation (V&V) activities accord-

ing to the inputs and outputs with testing agents,

which can insert the needed input values and con-

sume the resulting information.

5.4.3. Results of the case study

The case study implementation showed that the

adaptation framework helps in the application devel-

opment of situation-based smart space applications.

The main benefit is that it provides a framework that

the developer can exploit in creating dynamic appli-

cations that are context-aware and proactively moni-

tor and reason the situation in smart spaces. The

framework takes care of handling the rules and al-

lows the behavior to be changed at run time if re-

quired.

The SPARQL queries used in implementing the

actual dynamism and reasoning were found to be

useful in context and security monitoring, reasoning,

and adaptation. For performance, it was also easy for

monitoring, but for reasoning and adaptation the

complexity of the performance-related rules was dif-

ficult to manage with SPARQL queries. Note that

SPARQL extensions were not yet used.

6. Discussion

In this section, the impact of the proposed adapta-

tion framework to the software development is ex-

plored. The presented adaptation framework has been

developed and experimented incrementally during

the three years in the SOFIA project. Firstly, the

evaluation of the adaptation framework is described.

Secondly, the summary of experiments is presented.

Then, the SUM-SS pilot with the evaluation results is

introduced. Thereafter, the evolution of dynamic sys-

tems is discussed. Finally, the topics identified for

further study are summarized.

6.1. Evaluation steps of the adaptation framework

The IOP principles (cf., Table 2) have guided the

work for the framework presented and they have

been used as evaluation criteria. The work is also

done as guided in the eight lessons dedicated for in-

frastructure software that supports construction or

operation of other software [9]. Next, the work relat-

ed to these eight lessons is introduced.

Lesson 1. Prioritize core infrastructure features – The

fourteen IOP principles are available.

Lesson 2. First, build prototypes that express the core

objectives of the infrastructure – this is the approach

the SOFIA project had while proceeding toward this

adaptation framework. A greenhouse demo was made

in the 1st year and that demo was based on existing

assets. Thus, the implementation effort was mini-

mized. The greenhouse demo is presented with more

detail in [10] and videoed in [47].

Lesson 3. Any test application built to demonstrate

infrastructure must also satisfy the criteria of usabil-

ity and usefulness – run-time security, performance

management, and context-awareness were demon-

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 511

III/22 III/23

6.4. Future work

At the moment, the adaptation takes into account

who has assigned a rule for it to execute, and there-

fore pays attention to users’ security. The security

features, such as user authentication and access con-

trol, do exist for enabling rule execution according to

user permissions. In the future, more quality attrib-

utes such as reliability will be added to this adapta-

tion framework. Support for the trade-off between

different quality attributes will be also added. Further

investigation is needed to find out how complicated

analysis models can be used without effects on the

overall performance of the situation-based and self-

adaptive application.

The creation of dynamic models, the analysis

models, and the adaptation rules are laborious work.

A tool for this will be developed. A testing tool is

also planned to be developed for being able to find

the collision between the rules and quality attributes

so that the circular effects can be hindered.

To ease the development of performance-related

rules it is intended to implement some specific exten-

sion functions for the SPARQL 1.1 reasoning engine

Table 3

Demonstrations with specific validation focus

Case Description of the case

Smart Greenhouse demo [10]

Smart Greenhouse video [47]

The demo illustrated: i) how different devices communicate and semantically understand the

information exchanged, ii) how changed quality requirements are dynamically fulfilled by

context-based self-adaptation, and iii) how the smart space evolves and extends incrementally

without modification to the existing devices.

Fictitious scenario of an emergency

scenario in a smart city; feasibility

of the context ontology [40]

The context-awareness concept, predecessor of the CAMA, was validated against a fictitious

scenario. The predecessor of the CO4SS was analyzed to be sure of its quality as a context

specification to fulfill the requirements [42] set for the context definition.

Cross-domain (personal space and

person’s smart home) scenario to

wake the person up [37]

The context-awareness agents were created based on the CAMA with design-time configuration

(Within the adaptation framework it is also possible to do the configuration at run time). The

required functionality was activated according to the rules and existing situation(s). The rules

and ontology were configured with a Smart Modeller Tool [20,21].

Lighting scenario [38] The CO4SS was used at development time to add the necessary functionality for both the

personal and home space context-awareness agents. The CO4SS was expandable with domain

specific parts that were created to control the lighting in the home.

Maintenance process of a smart

building [39]

To map context and domain-specific ontologies, i.e., the CO4SS and the existing maintenance

ontology were aligned to share context to supervise the progress of the maintenance scenario.

The Context Monitor agent showed to be reusable and reconfigurable at run time.

Risk-based security adaptation in a

greenhouse [10,11]

The greenhouse with a shopping area constitutes a public smart space. In the smart space,

threats increase risk levels and security mechanisms decrease risks. Hence, the monitoring

concentrates on recognizing threats. In this case confidentiality and integrity security attributes

are considered. Furthermore, user authentication is performed by means of gait information

stored via acceleration sensors inside the mobile phone.

Adaptive user authentication [14] The first case that utilizes knowledge from the ISMO. It adapts user authentication by

monitoring authentication related measures: password length, age, variation of characters, and

session duration. Important information is available only when an acceptable authentication

level is reached. User re-authentication is requested when the session duration is long.

Adaptive user authentication [54].

This is related work from our colleagues

and done also in the SOFIA project.

Change protection access control policies according to the user’s role or popularity of

information. The popularity is a measure that indicates how many readers or how many authors

an RDF resource has. These adaptation cases were simulated with the Smodels logic solver.

Adding new knowledge into the

ISMO [12]

The paper and related case example shows how easily knowledge in the ISMO can be extended.

Moreover, design steps to develop adaptable security were presented.

Adaptation based on measured

performance at run time [44]

Foundational work to the run-time performance management of information-broker based

adaptive applications. The experiment with adaptation based on resource requirements is done

in the smart greenhouse demo [10].

Reusable agent for smart

environments [24]

A reusable design for monitor managers and monitors is introduced and validated in a smart

space laboratory case. This work illustrates how reusable agents can be designed and

implemented, i.e., how to apply for reuse and with reuse practices in the development of smart

environments.

Smart door video [46] The home smart space contains both private and public areas.

The smart space enforces different access controls for local and remote usage, and uses

contextual information (criticality of actions).

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 513

strated in separated demos in the 2nd

year. All are

useful on their own. Experiments on context-

awareness are reported in [37–39]. The run-time per-

formance management is shown in [10,44]. The run-

time security management is exemplified, for exam-

ple, in [10,14,15].

Lesson 4. Initial proof-of-concept applications should

be lightweight – during the 3rd year the SUM-SS

pilot [50] was developed in three increments. The

pilot was partially tested in different con-

texts/audiences and with different users.

Lesson 5. Be clear about what your test-application

prototypes will tell you about your infrastructure –

security and context-awareness were merged first at

the conceptual level [13]. This convinced us of the

potential for implementation. The way of doing so

seemed to be fine in principle but refinements were

needed. Therefore, the new framework is presented

in this paper.

Lesson 6. Do not confuse the design and testing of

the experimental infrastructure with the provision of

an infrastructure for experimental application devel-

opers – the work was kept within a core research

group (6 persons).

Lesson 7. Define a limited scope for test-applications

and permissible uses of infrastructure – This was

done by delivering a part of our SUM-SS pilot infra-

structure to be integrated with the Smart Maintenance

pilot [50]. The SUM-SS pilot was tested by local and

remote end-users, of whom 80% were not involved in

the SOFIA project in any form (see Fig. 14).

Lesson 8. There is no point in faking components and

data if you intend to test for user experience benefits

– the SUM-SS pilot [50] was complex enough for

evaluation purpose and valuable feedback was also

received from end-users with open questions. How-

ever, their presentation is beyond the scope of this

paper due to space limitations.

6.2. The summary of experiments before the pilot

When comparing our work related to the eight les-

sons above, some of our published results are refer-

enced. Table 3 summarizes the experiments per-

formed and knowledge achieved from the demonstra-

tions and the SUM-SS pilot. Links to the video

demonstrations are also provided.

6.3. The SUM-SS pilot

The SUM-SS [50] pilot integrates the aforemen-

tioned separate demonstrations. Thus, the GuideMe

application, used as an example application in this

paper, is also part of it. The objective of the SUM-SS

[50] pilot is to demonstrate seamless usage of multi-

ple smart spaces, including a personal space, a smart

home, smart office, and smart city. The first three

spaces collaborate with the services provided in a

cloud through the Cam4Home Open Platform [4].

The setup of the SUM-SS is illustrated in Fig. 13.

The SUM-SS pilot was evaluated by 28 end-users.

Three evaluations were done during exhibitions at the

ARTEMIS Technology Conference 2011 in Bologna

and at the ARTEMIS/ITEA2 Co-Summit 2011 in

Helsinki. The rest of the evaluations were performed

in our demonstration environment, the Innovation

Kitchen, at VTT Oulu’s premises. As mentioned

above, most of the evaluators (80%) were not in-

volved in the SOFIA project in any form.

The estimated time for each evaluation effort was

fixed at a maximum of two hours. The evaluations

were made in nine groups and each group had 2–4

evaluators at the same time in the same place. The

number of evaluators in a group was fixed so that

they could test the features at the same time without

any waiting periods. The evaluators were asked to fill

the Web questionnaire after the evaluation and during

the same day. Thus, the evaluation results and prima-

ry reactions to the smart space applications they had

tested could be kept objective. As justification, part

of the evaluation results is depicted in Fig. 14. The

factors illustrated are:

1. All capabilities the user expects are supported.

2. A feeling of being in control is provided.

3. The user’s task is assisted and made easier.

4. It is simple to use and easy to learn.

5. The experience is effortless and seamless.

6. It is easy to recover whenever a mistake is

made.

7. It is effective in helping the user to complete

the tasks.

8. The user is able to work with it efficiently.

9. It helps the user to save time.

10. The user feels comfortable using it.

As can be seen, the end-users (the evaluators) were

well satisfied with the functional capabilities of the

SUM-SS pilot. Factors related to users’ experiences

(2, 4, 9 and 10) are especially high (over 3/max scale

4). This can be seen as a strong indicator of the right

research direction and results received so far.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment512

III/23

6.4. Future work

At the moment, the adaptation takes into account

who has assigned a rule for it to execute, and there-

fore pays attention to users’ security. The security

features, such as user authentication and access con-

trol, do exist for enabling rule execution according to

user permissions. In the future, more quality attrib-

utes such as reliability will be added to this adapta-

tion framework. Support for the trade-off between

different quality attributes will be also added. Further

investigation is needed to find out how complicated

analysis models can be used without effects on the

overall performance of the situation-based and self-

adaptive application.

The creation of dynamic models, the analysis

models, and the adaptation rules are laborious work.

A tool for this will be developed. A testing tool is

also planned to be developed for being able to find

the collision between the rules and quality attributes

so that the circular effects can be hindered.

To ease the development of performance-related

rules it is intended to implement some specific exten-

sion functions for the SPARQL 1.1 reasoning engine

Table 3

Demonstrations with specific validation focus

Case Description of the case

Smart Greenhouse demo [10]

Smart Greenhouse video [47]

The demo illustrated: i) how different devices communicate and semantically understand the

information exchanged, ii) how changed quality requirements are dynamically fulfilled by

context-based self-adaptation, and iii) how the smart space evolves and extends incrementally

without modification to the existing devices.

Fictitious scenario of an emergency

scenario in a smart city; feasibility

of the context ontology [40]

The context-awareness concept, predecessor of the CAMA, was validated against a fictitious

scenario. The predecessor of the CO4SS was analyzed to be sure of its quality as a context

specification to fulfill the requirements [42] set for the context definition.

Cross-domain (personal space and

person’s smart home) scenario to

wake the person up [37]

The context-awareness agents were created based on the CAMA with design-time configuration

(Within the adaptation framework it is also possible to do the configuration at run time). The

required functionality was activated according to the rules and existing situation(s). The rules

and ontology were configured with a Smart Modeller Tool [20,21].

Lighting scenario [38] The CO4SS was used at development time to add the necessary functionality for both the

personal and home space context-awareness agents. The CO4SS was expandable with domain

specific parts that were created to control the lighting in the home.

Maintenance process of a smart

building [39]

To map context and domain-specific ontologies, i.e., the CO4SS and the existing maintenance

ontology were aligned to share context to supervise the progress of the maintenance scenario.

The Context Monitor agent showed to be reusable and reconfigurable at run time.

Risk-based security adaptation in a

greenhouse [10,11]

The greenhouse with a shopping area constitutes a public smart space. In the smart space,

threats increase risk levels and security mechanisms decrease risks. Hence, the monitoring

concentrates on recognizing threats. In this case confidentiality and integrity security attributes

are considered. Furthermore, user authentication is performed by means of gait information

stored via acceleration sensors inside the mobile phone.

Adaptive user authentication [14] The first case that utilizes knowledge from the ISMO. It adapts user authentication by

monitoring authentication related measures: password length, age, variation of characters, and

session duration. Important information is available only when an acceptable authentication

level is reached. User re-authentication is requested when the session duration is long.

Adaptive user authentication [54].

This is related work from our colleagues

and done also in the SOFIA project.

Change protection access control policies according to the user’s role or popularity of

information. The popularity is a measure that indicates how many readers or how many authors

an RDF resource has. These adaptation cases were simulated with the Smodels logic solver.

Adding new knowledge into the

ISMO [12]

The paper and related case example shows how easily knowledge in the ISMO can be extended.

Moreover, design steps to develop adaptable security were presented.

Adaptation based on measured

performance at run time [44]

Foundational work to the run-time performance management of information-broker based

adaptive applications. The experiment with adaptation based on resource requirements is done

in the smart greenhouse demo [10].

Reusable agent for smart

environments [24]

A reusable design for monitor managers and monitors is introduced and validated in a smart

space laboratory case. This work illustrates how reusable agents can be designed and

implemented, i.e., how to apply for reuse and with reuse practices in the development of smart

environments.

Smart door video [46] The home smart space contains both private and public areas.

The smart space enforces different access controls for local and remote usage, and uses

contextual information (criticality of actions).

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 513

III/24 III/25

References

[1] D. Alur, J. Crupi and D. Malks, Core J2EE Patterns: Best

Practices and Design Strategies, Sun Microsystems Press,

2nd edn, 2003.

[2] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska,

D. Niclas, A. Ranganathan and D. Riboni, A survey of con-

text modelling and reasoning techniques, Pervasive Mob.

Comput. 6(2) (April 2010), 161–180.

[3] M. Bezold and W. Minker, A framework for adapting inter-

active systems to user behavior, Journal of Ambient Intelli-

gence and Smart Environments 2(4) (April 2010), 369–387,

IOS Press.

[4] Cam4Home Project, www.cam4home-itea.org, June 2012.

[5] H. Chen, H.T. Finin and A. Joshi, The SOUPA Ontology for

Pervasive Computing, Whitestein Series in Software Agent

Technologies, Springer, 2005.

[6] D.J. Cook and S.K. Das, How smart are our environments?

An updated look at the state of the art, Pervasive Mob.

Comput. 3(2) (March 2007), 53–73.

[7] L. Daniele, P. Dockhorn Costa and L. Ferreira Pires, To-

wards a rule-based approach for context-aware applications,

in: Dependable and Adaptable Networks and Services,

A. Pras and M. van Sinderen, eds, EUNICE 2007, Vol. 4606,

Springer-Verlag, Berlin and Heidelberg, 2007, pp. 33–43.

[8] G. Dobson, R. Lock and I. Sommerville, QoSOnt: A Qos

ontology for service-centric systems, in: Proc. of the 31
st

EUROMICRO Conference on Software Engineering and

Advanced Applications, IEEE Computer Society, 2005,

pp. 80–87.

[9] W.K. Edwards, V. Bellotti, A.K. Dey and M.W. Newman,

Stuck in the middle: The challenges of user-centered design

and evaluation for infrastructure, Paper/Short Talks: Issues

in Software Development, CHI 2003: New Horizons 5(1)

(2003), 297–304.

[10] A. Evesti, M. Eteläperä, J. Kiljander, J. Kuusijärvi,

A.Purhonen and S. Stenudd, Semantic information interop-

erability in smart spaces, in: Proc. of the 8
th

 Int. Conference

on Mobile and Ubiquitous Multimedia (MUM’09), ACM In-

ternational Conference Proceedings Series, 2009, pp. 158–

159.

[11] A. Evesti and E. Ovaska, Ontology-based security adapta-

tion at run-time, in: Proc. of the 4
th

 IEEE International Con-

ference on Self-Adaptive and Self-Organizing Systems

(SASO), IEEE Computer Society Washington, DC, USA,

2010, pp. 204–212.

[12] A. Evesti and E. Ovaska, Design time reliability predictions

for supporting runtime security measuring and adaptation,

in: Proc. of the 3
rd

 Int. Conference on Emerging Network In-

telligence (EMERGING’11), IARIA, 2011, pp. 94–99.

[13] A. Evesti and S. Pantsar-Syväniemi, Towards micro archi-

tecture for security adaptation, in: Proc. of the 4
th

 European

Conference on Software Architecture, ECSA 2010 Work-

shops: 1
st

 Int. Workshop on Measurability of Security in

Software Architectures (MeSSA 2010), ACM, New York,

NY, USA, 2010, pp. 181–188.

[14] A. Evesti, R. Savola, E. Ovaska and J. Kuusijärvi, The de-

sign, instantiation, and usage of information security meas-

uring ontology, in: Proc. of the 2
nd

 Int. Conference on Mod-

els and Ontology-based Design of Protocols, Architectures

and Services (MOPAS 2011), IARIA, 2011, pp. 1–9.

[15] A. Evesti, J. Suomalainen and E. Ovaska, Reusable security

adaptation approach for smart spaces, Pervasive and Mobile

Computing, submitted.

[16] S. Ferrari, Gestione Del Contesto Su Architettura Smart M3,

Tesi di Laurea in Calcolatori Elettronici L-A (Sessione III,

Anno Accademico 2009/10), University of Bologna, Italy,

2011.

[17] F. Garcia, F. Ruiz, C. Calero, M.F. Bertoa, A. Vallecillo,

B. Mora and M. Piattini, Effective use of ontologies in soft-

ware measurement, Knowl. Eng. Rev. 24(1) (March 2009),

23–40.

[18] K. Henricksen, J. Indulska and A. Rakotonirainy, Using

context and preferences to implement self-adapting perva-

sive computing applications, Software Pract. Exper. 36(11–

12) (September 2006), 1307–1330.

[19] J. Honkola, H. Laine, R. Brown and O. Tyrkkö, Smart-M3

interoperability platform, in: Proc. of the 1
st

 Int. Workshop

Semantic Interoperability for Smart Spaces (SISS 2010) in

IEEE Symposium on Computers and Communications (ISCC

2010), IEEE Computer Society, 2010, pp. 1041–1046.

[20] A. Katasonov, Enabling non-programmers to develop smart

environment applications, in: Proc. of the 1
st

 Int. Workshop

Semantic Interoperability for Smart Spaces (SISS 2010) in

IEEE Symposium on Computers and Communications (ISCC

2010), IEEE Computer Society, 2010, pp. 1059–1064.

[21] A. Katasonov and M. Palviainen, Towards ontology-driven

development of applications for smart environments, in:

Proc. of the 8
th

 PERCOM Workshops, IEEE Press, 2010,

pp. 696–701.

[22] J.O. Kephart and D.M. Chess, The vision of autonomic

computing, Computer 36(1) (January 2003), 41–50.

[23] A. Kosek, A. Syed and J. Kerridgey, RDF recipes for con-

text-aware interoperability in pervasive systems, in: Proc. of

the 1
st

 Int. Workshop Semantic Interoperability for Smart

Spaces (SISS 2010) in IEEE Symposium on Computers and

Communications (ISCC 2010), IEEE Computer Society,

2010, pp. 1004–1009.

[24] J. Kuusijärvi and S. Stenudd, Developing reusable

knowledge processors in smart environments, in: Proc. of

the 11
th

 IEEE/IPSJ International Symposium on Applications

and the Internet (SAINT2011), the 2
nd

 Int. Workshop on Se-

mantic Interoperability for Smart Space (SISS 2011), IEEE

Computer Society, pp. 286–291.

[25] I. Lera, C. Juiz and R. Puigjaner, Performance-related ontol-

ogies and semantic web applications for on-line performance

assessment of intelligent systems, Science of Computer Pro-

gramming 61(1) (June 2006), 27–37.

[26] H.H. Lund, T. Klibo and C. Jessen, Playware technology for

physically activating play, Artificial Life Robotics 9(4)

(2005), 165–174.

[27] V. Luukkala and I. Niemelä, Enhancing a smart space with

answer set programming, in: Semantic Web Rules, M. Dean,

J. Hall, A. Rotolo, and S. Tabet, eds, RuleML 2010,

Vol. 6403, Springer-Verlag, Berlin and Heidelberg, 2010,

pp. 89–103.

[28] M.A. De Miguel and M.T. Higuera, Runtime management

of quality specification for QoS-aware components, in: Proc.

of the 30
th

 EUROMICRO Conference, IEEE Computer Soci-

ety Washington, DC, USA, 2004, pp. 84–91.

[29] S.B. Mokhtar, N. Georgantas and V. Issarny, COCOA:

COnversation-based service COmposition in pervAsive

computing environments with QoS support, Journal of Sys-

tems and Software 12(80) (December 2007), 1941–1955.

[30] K. Nahrstedt, D. Xu, D. Wichadakul and B. Li, QoS-aware

middleware for ubiquitous and heterogeneous environments,

IEEE Communications Magazine 39(11) (November 2001),

140–148.

[31] E. Niemelä, J. Kalaoja and P. Lago, Toward an architectural

knowledge base for wireless service engineering, IEEE

Transactions on Software Engineering 31(5) (May 2005),

361–379.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 515

used (implemented as part of RIBS). This is required

because performance rules are by nature more com-

plicated, due to the inherent complexity of the calcu-

lations in comparison with the context-related rules.

7. Conclusions

This paper introduced an adaptation framework for

the situation-based and self-adaptive applications of

smart environments. The framework has a flexible

and reusable architecture based on a set of micro-

architectures that follow the MAPE-K pattern. The

evolution of the framework is based on generic on-

tologies for context, security, and performance man-

agement. The execution of the framework is support-

ed by the dynamic models for performing run-time

reasoning and adaptation. The framework maximizes

reuse due to: i) the separation of generic and domain

knowledge, ii) the standardized way of modeling

knowledge and rules, and iii) all ontologies or parts

of them can be connected to the situation-based ap-

plication via the rules.

The presented application framework is intended

for an application developer who is i) creating an

application scenario, and ii) transforming the scenar-

io to annotated sequence diagrams with the help of

the ontologies and related rules. Thereafter, the ap-

plication developer iii) transforms the rule definitions

to the SPARQL queries.

Our approach was exemplified through creation of

the GuideMe application, which exploits context,

security, and performance information for adapting

the service according to the quality requirements and

the context of the user, as well the smart environ-

ment, without bothering the end-user. The imple-

mented GuideMe is able to identify situations and

adapt itself accordingly.

Validation of the adaptation framework was made

incrementally: Eight evaluation steps were performed

resulting in twelve demonstrations and a cross-

domain pilot that integrates smart environments with

cloud services and provides seamless usage of situa-

tion-based and self-adaptive applications for users of

personal spaces, smart homes, smart offices, and

smart cities.

Fig. 13. Setup for the SUM-SS.

Fig. 14. Maturity of functional capabilities of the pilot.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment514

III/25

References

[1] D. Alur, J. Crupi and D. Malks, Core J2EE Patterns: Best

Practices and Design Strategies, Sun Microsystems Press,

2nd edn, 2003.

[2] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska,

D. Niclas, A. Ranganathan and D. Riboni, A survey of con-

text modelling and reasoning techniques, Pervasive Mob.

Comput. 6(2) (April 2010), 161–180.

[3] M. Bezold and W. Minker, A framework for adapting inter-

active systems to user behavior, Journal of Ambient Intelli-

gence and Smart Environments 2(4) (April 2010), 369–387,

IOS Press.

[4] Cam4Home Project, www.cam4home-itea.org, June 2012.

[5] H. Chen, H.T. Finin and A. Joshi, The SOUPA Ontology for

Pervasive Computing, Whitestein Series in Software Agent

Technologies, Springer, 2005.

[6] D.J. Cook and S.K. Das, How smart are our environments?

An updated look at the state of the art, Pervasive Mob.

Comput. 3(2) (March 2007), 53–73.

[7] L. Daniele, P. Dockhorn Costa and L. Ferreira Pires, To-

wards a rule-based approach for context-aware applications,

in: Dependable and Adaptable Networks and Services,

A. Pras and M. van Sinderen, eds, EUNICE 2007, Vol. 4606,

Springer-Verlag, Berlin and Heidelberg, 2007, pp. 33–43.

[8] G. Dobson, R. Lock and I. Sommerville, QoSOnt: A Qos

ontology for service-centric systems, in: Proc. of the 31
st

EUROMICRO Conference on Software Engineering and

Advanced Applications, IEEE Computer Society, 2005,

pp. 80–87.

[9] W.K. Edwards, V. Bellotti, A.K. Dey and M.W. Newman,

Stuck in the middle: The challenges of user-centered design

and evaluation for infrastructure, Paper/Short Talks: Issues

in Software Development, CHI 2003: New Horizons 5(1)

(2003), 297–304.

[10] A. Evesti, M. Eteläperä, J. Kiljander, J. Kuusijärvi,

A.Purhonen and S. Stenudd, Semantic information interop-

erability in smart spaces, in: Proc. of the 8
th

 Int. Conference

on Mobile and Ubiquitous Multimedia (MUM’09), ACM In-

ternational Conference Proceedings Series, 2009, pp. 158–

159.

[11] A. Evesti and E. Ovaska, Ontology-based security adapta-

tion at run-time, in: Proc. of the 4
th

 IEEE International Con-

ference on Self-Adaptive and Self-Organizing Systems

(SASO), IEEE Computer Society Washington, DC, USA,

2010, pp. 204–212.

[12] A. Evesti and E. Ovaska, Design time reliability predictions

for supporting runtime security measuring and adaptation,

in: Proc. of the 3
rd

 Int. Conference on Emerging Network In-

telligence (EMERGING’11), IARIA, 2011, pp. 94–99.

[13] A. Evesti and S. Pantsar-Syväniemi, Towards micro archi-

tecture for security adaptation, in: Proc. of the 4
th

 European

Conference on Software Architecture, ECSA 2010 Work-

shops: 1
st

 Int. Workshop on Measurability of Security in

Software Architectures (MeSSA 2010), ACM, New York,

NY, USA, 2010, pp. 181–188.

[14] A. Evesti, R. Savola, E. Ovaska and J. Kuusijärvi, The de-

sign, instantiation, and usage of information security meas-

uring ontology, in: Proc. of the 2
nd

 Int. Conference on Mod-

els and Ontology-based Design of Protocols, Architectures

and Services (MOPAS 2011), IARIA, 2011, pp. 1–9.

[15] A. Evesti, J. Suomalainen and E. Ovaska, Reusable security

adaptation approach for smart spaces, Pervasive and Mobile

Computing, submitted.

[16] S. Ferrari, Gestione Del Contesto Su Architettura Smart M3,

Tesi di Laurea in Calcolatori Elettronici L-A (Sessione III,

Anno Accademico 2009/10), University of Bologna, Italy,

2011.

[17] F. Garcia, F. Ruiz, C. Calero, M.F. Bertoa, A. Vallecillo,

B. Mora and M. Piattini, Effective use of ontologies in soft-

ware measurement, Knowl. Eng. Rev. 24(1) (March 2009),

23–40.

[18] K. Henricksen, J. Indulska and A. Rakotonirainy, Using

context and preferences to implement self-adapting perva-

sive computing applications, Software Pract. Exper. 36(11–

12) (September 2006), 1307–1330.

[19] J. Honkola, H. Laine, R. Brown and O. Tyrkkö, Smart-M3

interoperability platform, in: Proc. of the 1
st

 Int. Workshop

Semantic Interoperability for Smart Spaces (SISS 2010) in

IEEE Symposium on Computers and Communications (ISCC

2010), IEEE Computer Society, 2010, pp. 1041–1046.

[20] A. Katasonov, Enabling non-programmers to develop smart

environment applications, in: Proc. of the 1
st

 Int. Workshop

Semantic Interoperability for Smart Spaces (SISS 2010) in

IEEE Symposium on Computers and Communications (ISCC

2010), IEEE Computer Society, 2010, pp. 1059–1064.

[21] A. Katasonov and M. Palviainen, Towards ontology-driven

development of applications for smart environments, in:

Proc. of the 8
th

 PERCOM Workshops, IEEE Press, 2010,

pp. 696–701.

[22] J.O. Kephart and D.M. Chess, The vision of autonomic

computing, Computer 36(1) (January 2003), 41–50.

[23] A. Kosek, A. Syed and J. Kerridgey, RDF recipes for con-

text-aware interoperability in pervasive systems, in: Proc. of

the 1
st

 Int. Workshop Semantic Interoperability for Smart

Spaces (SISS 2010) in IEEE Symposium on Computers and

Communications (ISCC 2010), IEEE Computer Society,

2010, pp. 1004–1009.

[24] J. Kuusijärvi and S. Stenudd, Developing reusable

knowledge processors in smart environments, in: Proc. of

the 11
th

 IEEE/IPSJ International Symposium on Applications

and the Internet (SAINT2011), the 2
nd

 Int. Workshop on Se-

mantic Interoperability for Smart Space (SISS 2011), IEEE

Computer Society, pp. 286–291.

[25] I. Lera, C. Juiz and R. Puigjaner, Performance-related ontol-

ogies and semantic web applications for on-line performance

assessment of intelligent systems, Science of Computer Pro-

gramming 61(1) (June 2006), 27–37.

[26] H.H. Lund, T. Klibo and C. Jessen, Playware technology for

physically activating play, Artificial Life Robotics 9(4)

(2005), 165–174.

[27] V. Luukkala and I. Niemelä, Enhancing a smart space with

answer set programming, in: Semantic Web Rules, M. Dean,

J. Hall, A. Rotolo, and S. Tabet, eds, RuleML 2010,

Vol. 6403, Springer-Verlag, Berlin and Heidelberg, 2010,

pp. 89–103.

[28] M.A. De Miguel and M.T. Higuera, Runtime management

of quality specification for QoS-aware components, in: Proc.

of the 30
th

 EUROMICRO Conference, IEEE Computer Soci-

ety Washington, DC, USA, 2004, pp. 84–91.

[29] S.B. Mokhtar, N. Georgantas and V. Issarny, COCOA:

COnversation-based service COmposition in pervAsive

computing environments with QoS support, Journal of Sys-

tems and Software 12(80) (December 2007), 1941–1955.

[30] K. Nahrstedt, D. Xu, D. Wichadakul and B. Li, QoS-aware

middleware for ubiquitous and heterogeneous environments,

IEEE Communications Magazine 39(11) (November 2001),

140–148.

[31] E. Niemelä, J. Kalaoja and P. Lago, Toward an architectural

knowledge base for wireless service engineering, IEEE

Transactions on Software Engineering 31(5) (May 2005),

361–379.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment 515

http://www.cam4home-itea.org

III/26 1

[32] E. Ovaska, T. Salmon Cinotti and A. Toninelli, Design prin-

ciples and practices of interoperable smart spaces, in: Ad-

vanced Design Approaches to Emerging Software Systems:

Principles, Methodology and Tools, X. Liu and Y. Li, eds,

IGI Global, 2012, pp. 18–47.

[33] E. Ovaska, A. Evesti, K. Henttonen, M. Palviainen and

P. Aho, Knowledge based quality-driven architecture design

and evaluation, Information and Software Technology, 52(6)

(June 2010), 577–601.

[34] P. Oreizy, N. Medvidovic and R.N. Taylor, Runtime soft-

ware adaptation: Frameworks, approaches and styles, in:

Proc. of the 30
th

 International Conference on Software En-

gineering, ICSE 2008, ACM, New York, NY, USA, 2008,

pp. 899–909.

[35] OSGi Alliance, OSGi Platform – Service Compendium,

Technical Report Release 4, Version 4.1, OSGi, 2007.

[36] OWL, Web ontology language, www.w3.org/2004/OWL,

June 2012.

[37] S. Pantsar-Syväniemi, J. Kuusijärvi and E. Ovaska, Context-

awareness micro-architecture for smart spaces, in: Advanced

in Grid and Pervasive Computing, J. Riekki, M. Ylianttila

and M. Guo, eds, GPC 2011, Vol. 6646, Springer-Verlag,

Berlin and Heidelberg, 2011, pp. 148–157.

[38] S. Pantsar-Syväniemi, J. Kuusijärvi and E. Ovaska, Support-

ing situation-awareness in smart spaces, in: Grid and Perva-

sive Computing Workshops, M. Rautiainen, T. Korhonen, E.

Mutafungwa, E. Ovaska, A. Katasonov, A. Evesti, H. Ailisto,

A. Quigley, J. Häkkilä, N. Milic-Frayling and J. Riekki, eds,

Vol. 7096, Springer-Verlag, Berlin and Heidelberg, 2012,

pp. 14–23.

[39] S. Pantsar-Syväniemi, E. Ovaska, S. Ferrari, T. Salmon

Cinotti, G. Zamagni, L. Roffia, S. Mattarozzi and

V. Nannini, Case study: Context-aware supervision of a

smart maintenance process, in: Proc of the 11
th

 IEEE/IPSJ

Int. Symposium on Applications and the Internet

(SAINT2011), the 2
nd

 Int. Workshop on Semantic Interoper-

ability for Smart Space (SISS 2011), IEEE Computer Society,

2011, pp. 309–314.

[40] S. Pantsar-Syväniemi, K. Simula and E. Ovaska, Context-

awareness in smart spaces, in: Proc. of the 1
st

 Int. Workshop

Semantic Interoperability for Smart Spaces (SISS 2010) in

IEEE Symposium on Computers and Communications (ISCC

2010), IEEE Computer Society, 2010, pp. 1023–1028.

[41] V. Peristeras and K. Tarabanis, The connection, communica-

tion, consolidation, collaboration interoperability framework

(C4IF) for information systems interoperability, IBIS – In-

teroperability in Business Information Systems 1(1) (March

2006), 61–72.

[42] D. Preuveneers and Y. Berbers, Internet of things: A con-

text-awareness perspective, in: The Internet of Things: From

RFID to the Next Generation Pervasive Networked Systems,

L. Yan et al., eds, Auerbach Publications, 2008, pp. 287–307.

[43] D. Preuveneers and P. Novais, A survey of software engi-

neering practices for the development of smart applications

in Ambient Intelligence, Journal of Ambient Intelligence and

Smart Environments 4(3) (June 2012), 149–162, IOS Press.

[44] A. Purhonen and S. Stenudd, Runtime performance man-

agement of information broker-based adaptive applications,

in: Software Architecture, I. Crnkovic, V. Gruhn and

M. Book, eds, ECSA 2011, Vol. 6903, Springer-Verlag,

Berlin and Heidelberg, 2011, pp. 203–206.

[45] M. Salehie and L. Tahvildari, Self-adaptive software: Land-

scape and research challenges, ACM Transactions on Auton-

omous and Adaptive Systems 4(2) (May 2009), Article No.

14.

[46] Smart door video, www.youtube.com/watch?v=

anRW0y2r1Q0, June 2012.

[47] Smart Greenhouse video, www.youtube.com/watch?v=

EU9alk9t7dA, June 2012.

[48] Smart-M3 open source project, sourceforge.net/projects/

smart-m3, June 2012.

[49] Smodels, www.tcs.hut.fi/Software/smodels/, June 2012.

[50] SOFIA pilots, includes SUM-SS and smart maintenance pi-

lot descriptions, www.sofia-community.org/files/brochures_

and_presentations/SOFIA_Pilots_&_Community_Brochure.

pdf, June 2012.

[51] SOFIA reference implementations and their evaluation re-

sults, www.sofia-community.org/files/D5.42_Reference_

Implementation_of_the_Interoperability_Platform.pdf, June

2012.

[52] A. Soylu, P. De Causmaecker and P. Desmet, Context and

adaptivity in pervasive computing environments: Links with

software engineering and ontological engineering, J. of

Software 4(9) (November 2009), 992–1013.

[53] SPARQL query language for RDF, W3C recommendation,

www.w3.org/TR/rdf-sparql-query/, June 2012.

[54] J. Suomalainen, P. Hyttinen and P. Tarvainen, Secure infor-

mation sharing between heterogeneous embedded devices,

in: Proc. of the 4
th

 European Conference on Software Archi-

tecture, ECSA 2010 workshops: 1
st

 Int. Workshop on Meas-

urability of Security in Software Architectures (MeSSA

2010), ACM, New York, NY, USA, 2010, pp. 205–212.

[55] T. Strang, C. Linnhoff-Popien and K. Frank, CoOL: A con-

text ontology language to enable contextual interoperability,

in: Distributed Applications and Interoperable Systems,

J.-B. Stefani, I. Demeure and D. Hagimont, eds, DAIS 2003,

Vol. 2893, Springer-Verlag, 2003, pp. 236–247.

[56] R.N. Taylor, N. Medvidovic and P. Oreizy, Architectural

styles for runtime software adaptation, in: Software Archi-

tecture, 2009 & European Conference on Software Architec-

ture, WICSA/ECSA 2009, Joint Working IEEE/IFIP Confer-

ence on, September 2009, pp. 171–180.

[57] H. Truong, S. Dustdar and T. Fahringer, Performance met-

rics and ontologies for grid workflows, Future Gener.

Comput. Syst. 23(6) (July 2007), 760–772.

[58] X.H. Wang, D.Q. Zhang, T. Gu and H.K. Pung, Ontology

based context modeling and reasoning using OWL, in: Proc.

of the 2
nd

 IEEE Annual Conference on Pervasive Computing

and Communications Workshops, IEEE Computer Society

Washington, DC, USA, 2004, pp. 18–22.

[59] W3C, RDF Vocabulary description language, RDF-Schema,

www.w3.org/TR/rdf-schema/#ch_domain, June 2012.

[60] W. Zhang, K.M. Hansen and T. Kunz, Enhancing intelli-

gence and dependability of a product line enabled pervasive

middleware, Pervasive Mob. Comput. 6(2) (April 2010),

198–217.

S. Pantsar-Syväniemi et al. / Situation-based and self-adaptive applications for the smart environment516

http://www.w3.org/2004/OWL
http://www.youtube.com/watch?v=
http://www.youtube.com/watch?v=
http://www.tcs.hut.fi/Software/smodels/
http://www.sofia-community.org/files/brochures_
http://www.sofia-community.org/files/D5.42_Reference_
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-schema/#ch_domain

IV/4 1

to clearly separate the application logic from generic support fa-
cilities, thus increasing interoperability and reusability. Third,
application developers interested in very simple applications, not
requiring any advanced context support, can still prototype their
applications by working on a very simple reference model. This is
especially relevant in the first project phase, in order to rapidly
build up a large community of SOFIA developers using SOFIA
platform but also to promote its widespread exploitation, e.g., via
low-cost and simple SS applications. Finally, let us note that rea-
soning KPs can be easily integrated in SOFIA architecture be-
cause of the adoption of RDF, which is compatible with several
existing reasoners and ontology libraries, such as Jena
(http://jena.sourceforge.net) or Sesame (http://www.openrdf.org).
Therefore, they are self-contained middleware components whose
reasoning logic can be updated whenever needed.

Figure 2. Supporting context-awareness in the smart space

5. RELATED WORK
Context is a complex notion with many definitions in the litera-
ture: most of them share the concept of context as the set of in-
formation relevant to the considered application, user, or envi-
ronment [2, 7]. Our approach differs from existing ones: instead
of providing a list of possible context types, it defines a criterion
to verify if some information can be considered context for a spe-
cific application. Semantic technologies have been applied to
support context-awareness in several emerging pervasive comput-
ing application platforms, including [9-11] and many others. Most
systems exploit semantic techniques to represent and reason about
context and adapt service/application behavior accordingly.
SOFIA approach is different since it combines the semantic repre-
sentation of (context) knowledge with an information-based inter-
operability model. SOFIA data model is inspired by the shared
semantic-based memory presented in [12], which however does
not specifically address the issue of device/technology heteroge-
neity in pervasive environments. A more similar work to ours is
presented in [13], which proposes a semantic distributed reposi-
tory for the discovery and composition of information processing
services. As in SOFIA, semantic technologies are here exploited
to achieve information interoperability between data providers
and consumers; however, the proposal specifically focuses on
service input/output modeling for workflow composition, while
SOFIA semantic model supports any SS application.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we illustrated i) the concept of SOFIA architecture
and IOP, ii) the primary challenges in the design of SS applica-
tions, and iii) how to support SS context awareness. Our primary
target is to provide effective solutions to create SSs by enabling

cross-application, cross-vendor, and cross-domain interoperabil-
ity. The encouraging results we have already obtained within
SOFIA are stimulating our further research work, currently di-
rected mainly on dealing with information security and energy
efficiency. In addition, we are extensively evaluating the perform-
ance of our solution based on context-specific support KPs to
practically verify their compliance with the challenging SOFIA
requirements in terms of scalability and quality management.

7. ACKNOWLEDGMENTS
Work funded by Tekes, VTT, MIUR, and the European Commis-
sion, in the framework of the ARTEMIS JU SP3 SOFIA project.

8. REFERENCES
[1] Smirnov, A. V., et al., 2008. Efficient Distributed Informa-

tion Management in Smart Spaces, In Proc. of ICDIM 2008
(London, UK, November 13 – 16, 2008). IEEE Computer
Society, USA, 483–488.

[2] Hong, J., Suh, E., and Kim, S. 2009. Context-aware systems:
A literature review and classification. Expert Syst. Appl. 36,
4 (May 2009), 8509-8502.

[3] Chary, R., et al. 2006. Sensor-based Power Management for
mobile devices. In Proc. of ISCC 2006 (Pula-Cagliari, Italy,
June26-28, 2006). IEEE Computer Society, USA. 263-269.

[4] Lappeteläinen, A., et al. 2008. Networked systems, services
and information - The ultimate digital convergence. In Proc.
of NoTA 2008 (Helsinki, Finland, Jun 11, 2008). 1-7.

[5] Evesti, A., Ovaska, E., and Savola, R., 2009. From Security
Modelling to Run-time Security Monitoring. In Proc. of
SECMDA 2009 (Enschede, NL, Jun 24, 2009). CTIT, En-
schede, NL, 33–41.

[6] Bellavista, P., et al. 2003. Context-aware Middleware for
Resource Management in the Wireless Internet. IEEE T.
Software Eng. 29, 12 (Dec. 2003), 1086–1099.

[7] Truong, H., and Dustdar, S. 2009. A Survey on Context-
aware Web Service Systems. Int. J. of Web Information Sys-
tems. 5, 1 (2009), 5-31.

[8] Lee, U., et al. 2006. Mobeyes: Smart Mobs for Urban Moni-
toring withVehicular Sensor Network. IEEE Wirel. Com-
mun. 13, 5 (Oct. 2006). 52-57.

[9] Chen, H., et al. 2004 Intelligent Agents Meet the Semantic
Web in Smart Spaces. IEEE Internet Computing 8(6): 69-79
(2004)

[10] Lassila, O. and Khushraj, D. 2005. Contextualizing applica-
tions via semantic middleware. In Proc. of Mobiquitous 2005
(San Diego, CA, USA, 17-21 Jul 2005). IEEE Computer So-
ciety, 183-191.

[11] Wang, X., et al. 2004. Semantic space: An infrastructure for
smart spaces. IEEE Pervas. Comput., 3(3). 32-39.

[12] Khushraj, D., Lassila, O., and Finin, T., 2004. sTuples: Se-
mantic Tuple Spaces, In Proc. of Mobiquitous 2004 (Boston,
MA, USA, Aug 22-26 2004).

[13] Bouillet E, et al., 2008. Semantic Models for Ad-Hoc Inter-
actions in Mobile, Ubiquitous Environments. In Proc. of
ICSC 2008 (Santa Clara, CA, USA, Aug 4-7, 2008).

PUBLICATION V

Context-awareness in smart
spaces

In: Computers and Communications (ISCC),
2010 IEEE Symposium, 22–25 June 2010.

Pp. 1023–1028.
Copyright 2010 IEEE.

Reprinted with permission from the publisher.

V/1

V/1

Context-Awareness in Smart Spaces

Susanna Pantsar-Syvaniemi

Software Architectures and
Platforms, VTT

Oulu, Finland

Kirsti Simula

Services, Connect
Nokia

Oulu, Finland

EilaOvaska

Software Architectures and
Platforms, VTT

Oulu, Finland
e-mail: e-mail: Susanna.Pantsar e-mail:

Abstract-Any of our living environments can form a smart
space that provides services and applications for the users
according to their situations, the computing and
communication facilities of the environment and the
surroundings of the user. The ability to take into account the
context of the user, and the digital and physical environment
makes a space smart This paper introduces a set of new
capabilities that are required for achieving context-awareness
in smart spaces. First, sensor data from the environment is
acquired and aggregated. Second, the context data is
interpreted and represented and possibly enhanced with
external information. Thereafter, context reasoning is possible.
Finally, situation based context reasoning is made by
application agents that exploit domain ontologies for tuning
context information to the situation in hand. The use of the
introduced context-awareness concept is exemplified by an
emergency scenario of a smart city.

Keywords: ontology, context awareness, smaf1 space

I. INTRODUCTION

People's every day life can be enriched by smart spaces
that are able to exploit pervasive computing environments
embedded into our surroundings. These environments
heavily rely on a multitude of sensors and sensor networks
that produce a large amount of data to be analyzed and
reacted by the user or/and the systems/devices of the space.
[1] Smart spaces may have a large amount of different kinds
of systems, devices, and sensors that interact with each
others in different way; communication may be periodic or
ad-hoc over wired and/or wireless networks. Computers also
differ in their computing capabilities, such as CPU,
processing power, amount of memory and an operating
system. Moreover, the internal state of the systems, devices
and communication channels is changing during applications
operation. This changing state of the execution environment
forms the first dimension of context.

User preferences and needs drive the second dimension
of context data. User preferences define the user related
configuration parameters for applications. What, by whom
and how these parameters are changed, is predefined. These
configuration parameters can be changed, when user's needs
are changing. The change is made by the user itself or by an
intelligent agent that observes that user's desire has changed.
In the latter case, the intelligence is realized by, e.g. a
reinforcement learning service. Challenges of this kind of
service include time-dependency of actions and possibly

978-1-4244-7755-5/101$26.00 ©201 0 IEEE

infinite time horizon. Actions available in the same state can
be different in different steps of time. In real-world
applications, action-state spaces can also be overwhelmingly
huge, and therefore, in practice some probabilistic
component, which estimates the expected utility of selected
action, is needed. Reinforcement learning can be applied to
proactively adapting the execution platform for stress peaks
caused by users, overwhelming data or/and increased attacks
[2].

The third dimension of context is derived from the
gathered information about who else can use or is using the
space. The content of this dimension depends on which kind
of a smart space the context awareness is to be realised. A
personal space has to deal information with high privacy. A
smart city is intended for offering information services for
different types of users, e.g. citizens, tourists, professional
users in ordinary and emergency situations. Thus, the role of
the space user has a heavy influence on what and how
information/service is to be provided. Therefore, this context
dimension is very much related to the quality requirements
set for the (information) service and its delivery. Typically,
they cover the execution qualities, such as security, safety,
reliability, availability and performance. Thus, context
awareness is needed, not only for adapting according to
resources and preferences but also for managing, perhaps
conflicting, quality demands and quality of service
agreements the smart space users agree with smart space
providers.

The first two dimensions of context data are quite well
covered in the literature but the third dimension, the derived
context data, is not well defined nor well understood. Thus,
our aim is to shed light, especially, on that issue. Due to our
interest, i.e. context based quality management at run-time,
we approach the question through conceptualization of the
elements of the physical, digital and situational context data.
The main contributions of this paper are 1) the introduction
of a novel context ontology that exploits some parts from
SOUP A [3] and the upper context conceptualization
presented in [4]; 2) a concept of context-awareness that takes
care of context monitoring, context reasoning and context
based adaptation; 3) an example scenario used for validating
the proposed context-awareness concept within the Smart
M3 architecture [5].

The structure of the paper is as follows. Section 2
presents the background. Section 3 introduces our context
ontology and the mechanisms created for handling context

1023

V/2 V/3

information at three abstraction levels. Thereafter, section 4
illustrates how these mechanisms are app lied in the
emergency scenario happened in Smart City. Conclusion and
future work close the paper.

II. BACKGROUND

There is a well known definition for context: 'Context is
any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between the user and
application, including the user and applications
themselves.'[6]

Bettini et al. [7] defme three context dimensions;
physical context, computational context, and user context.
These context dimensions are similar to ours. A context
specification is considered a kind of interoperability that sets
the following requirements for context definition [8]:

• Context specification must have comprehensive
domain coverage and terminology.

• Context specification must be expressive and
without semantic ambiguity.

• Context specification shall be processed without
complexity.

• Context specification shall be evolvable.
These requirements will be kept as evaluation criteria for

the context ontology to be proposed in this paper.
In [7], three approaches of context modeling and

reasoning have been analyzed; an object-role based model, a
spatial model; and an ontology-based model:

• The strength of the object-role based approach is its
support for various stages of the software
engineering process. However, its weakness is a
'flat' information model, i.e. all context types are
represented as atomic facts.

• The spatial context models are well suited for
context-aware applications that are mainly location
based, like many mobile applications. The main
consideration of the spatial context model is the
choice of the underlying location model. Relational
location models are easier to build up than
geographic location models because they offer
simple mapping to map data and GPS sensor data.
The drawback is the effort the special context model
takes to gather and keep up to date the location data
of the context information.

• Ontological models of context provide clear
advantage both in terms of heterogeneity and
interoperability. User-friendly graphical tools make
the design of ontological context models viable to
developers that are not particularly familiar with
description logics. However, there is very little
support for modeling temporal aspects in ontologies.
The main problem is that reasoning with e.g. OWL
DL poses serious performance issues.

In spite of the weaknesses of OWL (Web Ontology
Language) we selected it for describing the context ontology
due to its support for interoperability and heterogeneity, both
important for evolvable ontology.

978-1-4244-7755-5/101$26.00 ©201 0 IEEE

Kapitsaki et al. [9] classify context-aware service
engineering into two classes; language based approaches and
model-driven approaches. Language based approaches such
as context-oriented programming and aspect-oriented
programming follow the separation of concerns; applications
are kept context-free and context is handled as a first-class
entity of the programming language while separate
constructs are used to inject context-related behavior into the
adaptable skeleton. Context-aware aspects programming is
one step further; the aspects are driven by context, i.e. a
particular aspect may or may not be executed depending on
the context of use [10]. Due to the fact that Unified
Modeling Language (UML) is the most widely accepted
modeling language, also several model-driven approaches
have emerged [9], [11]. Typically, these approaches
introduce a metal-model enriched with context related
artifacts, in order to support context-aware service
engineering.

III. CONTEXT AWARENESS CONCEPT

Our context awareness concept consists of novel context
ontology and agents for context monitoring, reasoning and
context-based adaptation. The concept is based on the
semantic context information triangle presented by Bettini et
al. in Figure 2 [7]. Our context awareness concept is also
based on the context-aware middleware architecture of smart
spaces introduced in [12]. The context-aware middleware
extends the interoperability platform (lOP) so that beside of
the context storage, retrieval and distribution via semantic
information brokers (Sills) there are enhanced functionalities
available fur context specification, acquisition, monitoring,
pre-processing, aggregation, reasoning and context-based
filtering and context-aware adaptation.

A. Context ontology
As stated in [4], it is not possible to predefine all the

dimensions of context, but an application has still to be able
to modify its behaviors with respect to this piece of
information and its relation with other context dimensions,
and thereby improve user experience or behavior of other
applications. Adaptability should not be understood as a one
to-one relation between user and application, but in
pervasive computing settings it should be considered as a
relation between the application and other elements of the
settings (e.g. devices, physical environment, users etc.) [4].

The physical context of environment as such can be
meaningless for applications. The context reasoning and
interpretation is used to provide the context data in a format
that the applications understand it. This means that the low
level context information abstracted by creating a new level
that gets the sensor perceptions as input and generates or
triggers system actions. This higher-level context
information is often referred as a situational context.
Adaptations in context-aware applications are then caused by
the change of situations (i.e., a change of a context value
triggers adaptation if the context update changes the
situation) [7].

The context infurmation (from the physical context of
environment to the digital and situation context) needs to be

1024

V/3

presented in a machine understandable format, often also in a
human understandable format. We have created our novel
context ontology using OWL by importing some parts from
the SOUPA [3] and by adding own domain related classes.
The main classes of the context ontology (user, digital
environment and physical environment) follow the definition
given in [4]. Our context ontology, presented in Figure 1,
takes account the different levels of semantic context
interpretation and abstraction presented in [7]. The first level,
the physical context of environment, detects individual
actions like 'Set status as Normal'. The second level, the
digital context of environment, fuses the individual output of
the first layer. The output of the second layer is a group of
situations like 'Accident nearby'. The third level fuses the
individual output of the second level and describes the
relationships between situations.

In addition, our context ontology, relevant for the smart
spaces, has three dimensions: physical, digital and human.
These context dimensions are located in Figure 1 to that level

--------------------------------- ---------I

IsPartO! hasState ,---,

,--------------

, ,

, , , ,
com�sedO!

(isPartOfl-------i , , , , , ,

they mostly "belong" even if the dimensions can spread out
to all three levels. The human dimension is illustrated as user
context in the third level even some parts of that dimension
like 'the role of smart space user' is relevant in the second
level. Our context specific agents are illustrated in Figure 1,
in the corresponding interpretation and abstraction levels.

Beliefs of the agent represent the informational state of
the agent. The beliefS are usually low level context
information and thereby placed in the first level, physical
context of environment, where the low level context
information is gathered and processed. Desires represent the
motivational state of the agent and thereby placed in the
second level, digital context of environment. Intends
represent the deliberative state of the agent, to which the
agent has to some extent committed. The intends are in the
third level, situation context, where the agent sets the
situation in the environment. The agent has the same
meaning as a knowledge processor in [5], [12].

Agent

Desires

Context reasoning
agent

Situation
context

Digital context of
environment

: r----------�a�---------
Environment :

: I
______ -----has-------

I
i : � - - - - - - - -has-----

I : i I

I..--·has---I I I : I

I I I i :

B

Figure 1. A snapshot of the context ontology

978-1-4244-7755-5/101$26_00 ©201 0 IEEE

Physical context of
environment

1025

V/4 V/5

B. Context monitoring

A context monitoring agent is used by a smart space
application to follow up its scope of the context information.
In start-up phase, the used scope is set at design time by the
application developer. At run-time the scope can be changed
by the application that is in charge or has created this context
monitoring agent. The scope is a set of infurmation, e.g. a
threshold of battery level, to be followed up by the context
monitoring. Thus, the context monitoring agent subscribes to
the relevant infurmation located in SIB and gets notifications
when information changes. Instead of the subscription, the
context monitoring agent can be "polling" the information by
querying it from the SIB in certain time period or querying
one at a time. The context monitoring agent does not need to
be located in the same computing environment than the
application since the derived context can be mediated via
SIB by using a suitable communication channel between the
SIB and the context monitoring agent and between the SIB
and the application. The context monitoring is used for
measuring current contexts relevant for the smart space
application. It is also capable to analyze the validity and
quality of context information it receives as a result from the
SIB based on the subscriptions or the queries.

C. Context reasoning

A context reasoning agent is used by a smart space
application to reason based on the context information
received. The context reasoning agent is divided to the
analyzing and reasoning parts when reasoning is complex,
e.g. for reasoning context based on a set of measured quality
attributes and their relationships. The basis for reasoning
comes from the requirements set. The requirements can be
set on design time or they can be given by the
user/application on the activation time. Thus, the context
reasoning agent, i.e. its controlling rules, is configurable. In
the smart space we can have many variations of the context
reasoning, e.g. one context reasoning agent for managing one
quality attribute. Reasoning agents may use additional
context information, e.g. Global Time, Location Based
System and Geographical Information System, to enhance
the context data of the digital environment with external
context data of the space. To reason over (manage) all
context reasoning agents, e.g. a set of quality attribute
specific reasoning agents, in the smart space we need to have
a facility - like a context based adaptation agent.

D. Context based adaptation

A context based adaptation agent is used for adapting the
smart space applications based on 1) the current context or 2)
both the current and the history context. The current context
is a snapshot of the smart space at issue, i.e. a situation as
described in [l3] and in [7]. The context based adaptation
agent needs strategies that can be expressed by a means of
high-level directives, such as policies and adaptation
algorithms that might include a learning part when proactive
behavior is needed. In simple cases, adaptation can be
processed as part of reasoning agents. However, the agents
have to be modular so that reasoning, learning and adaptation
algorithms can be changed at run time.

978-1-4244-7755-5/101$26.00 ©2010 IEEE

IV. VALIDATION

A. Scenario Description

"Susanna is usually driving by her smart car to her
working place. This morning she sees on the display of her
car that there is emergency situation in the city on her
direction of travel. From the map view she can check the
location of the emergency- it is on the main bridge on the
highway. She follows the instructions given by navigator to
use another way to pass the jammed side of the highway. "

The emergency is noticed by smart city authority
system(s) based on the contextual information gathered and
interpreted. The physical, environmental devices, e.g.
cameras located in and near by the bridge, provide
information in real time. By utilizing, e.g. the status
information of the radio network and permits given by
Susanna, the authority with the help of the mobile network
operator can provide her the notification before she starts her
daily trip to the working place. In the case of emergency the
authorities would like to inform people who are 1) already in
emergency area, 2) approaching to the emergency area, or 3)
starting their daily trip via the emergency area.

In this fictitious scenario we can identify the
abovementioned context levels with dimensions (physical,
digital, and human). The environmental devices in the city,
e.g. cameras in the highway, are providing the bottom level
context information based on the ontology for the physical
context of environment. The information about the
emergency can be reused fur different purposes, e.g. to guide
rescue forces and to guide peop Ie. Thus, that information is
modeled by using the ontology for the digital context of the
environment. The ontology for the situation context is
utilized when Susanna is infurmed about the emergency
while she is starting her daily trip to the workplace.

B. Feasibility of the context ontology

As stated before we use the following criteria for
analyzing the quality of the context ontology:

• Coverage and terminology: common concepts and
properties of context data are covered. Terminology
is defined based on the up to date terminology
defined by literature and enhanced with history
context and quality of context.

• Expressive and unambiguous specification; the
ontology includes three dimensions: physical, digital
and human. Environment context is enhanced with
time, location, quality, history and relationships.
OWL was used as representation language because it
is expressive and widely adopted in context and
ontology modeling.

• Uncomplicated processing; the context specification
created with OWL is both machine and human
readable and thereby easy to process. The rules,
created fur our Smart City scenario, were easy to
form based on our context ontology.

• Evolvability; the context specification seems to be
easy to extend when using OWL based ontologies.
This will be studied in future research activities.

1026

V/5

However, the real benefit of using ontology for context
information in smart spaces, which lies in the interoperability
of different devices, will not become effective before there is
a widely-accepted standard context ontology.

C. Use of context specific agents

We have concentrated on design time context scoping in
the current context, i.e. in the situations. The physical
context in our context awareness concept correlates with a
core ontology in the extended lOP [14]. The core ontology
models environmental context that is common and relevant
for all kinds of smart space applications; personal, indoor,
city (outdoor). The core ontology models the external state of
the smart space application. The digital context of
environment is new context area and it relates with the
internal state of the smart space application. In the extended
lOP the digital context of environment approximates with a
domain specific ontology. The domain means a type of the
smart space in question: personal, indoor or city. The
situation context in our context awareness concept
corresponds with the application view of domain specific
ontology in the extended lOP.

Figure 2 presents the layers of our context awareness
concept on the left hand side and the counterparts of the
extended lOP are on the right hand side. The context agents
are extracted from the Smart City scenario presented above.
A Trigger agent is an example of the context based
adaptation. The trigger activates the smart car to propose
alternative road when the emergency has happened and
Susanna is starting her daily trip via the jammed highway.
The black arrow, 'New route suggested', in the Figure 2
illustrates the activation of Trigger. Agents in the second
(middle) level are an Integrator and a Location estimator and
they are variations from the context reasoning agent. They
utilize the information provided by first level agents that are

Digital

Context

'Everything is OK'

Situation

Context

'Set status as Normal'

interested in a certain context, e.g. a camera view or radio
coverage. The outputs, illustrated with black arrows in the
Figure 2, form the relevant view of the context information
to the application managing emergencies. This view is a
scope of an application. The scope can be defined at design
time or run time.

Based on this validation we see that our context specific
agents for monitoring, reasoning and adaptation fulfilled the
requirement to achieve the context-awareness in the smart
space.

V. CONCLUSION

In this paper, we introduced 1) the novel context
ontology, 2) the concept of context-awareness that takes care
of context monitoring, context reasoning and context based
adaptation, and 3) the Smart City scenario for validating the
proposed concept within the extended lOP, i.e. enhanced
Smart-M3 architecture. Our context ontology highlights the
derived context through the three context dimensions and
levels. We used our novel context ontology successfully for
designing the presented Smart City scenario. The validation
showed that by using the context aware concept the context
awareness is achieved in the smart space.

In the future, we will concentrate on implementing the
abovementioned smart city scenario to proof our context
awareness concept. We will proceed our work with the
application view of the domain specific ontology to give
evidence that it is reachable by a generic agent or a
primitive used by the smart (space) applications. We will
also work towards 1) the separation of concerns between the
context model and service architecture model and 2)
standardized context ontology to enhance the different kinds
of systems, devices, and sensors to be interoperable in the
smart spaces.

'New route suggested'

nearby'

Application View of

Domain Specific

Ontology

Domain Specific

Ontology;

Smart City

'Emergency case'
Core

Ontology
Device for Monitoring

Radio Coverage

Figure 2. Context agents in the Smart City scenario

978-1-4244-7755-5/101$26.00 ©201 0 IEEE 1027

V/6 1

ACKNOWLEDGMENT

This work has been carried out in SOFIA/Artemis JU
SP3/10017 and the Smash project. SOFIA is funded by
Tekes - the Finnish Funding Agency for Technology and
Innovation, VTT and European Commission. Smash is
funded by VIT.

REFERENCES

[1] S. Hadim, N. Mohamed. "Middleware for wireless sensor
networks: A survey. Communication System Software and
Middleware", Proc. 1st International Conference on
Comsware, 2006. pp. 1-7.

[2] V. Kononen. Multiagent reinforcement learning in Markov
games: asymmetric and symmetric approaches. Doctoral
thesis, Helsinki University of Technology, Dissertations in
Computer and Information Science, Report D8, 2004, Espoo,
Finland.

[3] H. Chen, T. Finin, A. Joshi. The SOUPA Ontology for
Pervasive Computing. Whitestein Series in Software Agent
Technologies, Springer. 2005.

[4] A, Soylu, P. De Cau smaecker I , P. Desmet: Context and
Adaptivity in Pervasive Computing Environments: Links with
Software Engineering and Ontological Engineering,
JOURNAL OF SOFTWARE, VOL. 4, NO. 9, NOVEMBER
2009, pp.992 - 10\3.

[5] Smart-M3, Feb. 20 I 0:
m3/

[6] A. K. Dey, G. D. Abowd, "Towards a better understanding of
context and context-awareness", Technical Report GIT -GVU-
99-22, Georgia Institute of Technology, College of
Computing, 1999.

978-1-4244-7755-5/101$26.00 ©201 0 IEEE

[7] C. Bettini, ,0. Brdiczka, K. Henricksen, J. Indulska, D.
Niclas, A. Ranganathan, D. Riboni. "A survey of context
modelling and reasoning techniques". Pervasive Mobile
Computing (2009), Doi: 10.10 I6/j. pmcj.2009 .06.002.

[8] D. Preuveneers, Y. Berbers. "Internet of Things: A Context
Awareness Perspective". The Internet of Things: From RFID
to the Next Generation Pervasive Networked Systems. L. Yan
et al. (eds.) CRC Press. pp. 287-307.

[9] G. Kapitsak� G. Prezerakos, N. Tselikas, I. Venieris.
"Context-aware service engineering: A survey". The Journal
of Systems and Software. 82 (2009), pp. 1885-1297.

[10] E. Tanter, J. Noye. A versatile kernel for multi-language
AOP. Proc. of the ACM SIGPLAN/SIGSOFT Conference on
Generative Programming and Component Engineering,
LNCS, Springer Verlag, pp 173-188.

[11] A. Achillelos, K. Yang, N. Georgalas. Context modelling and
a context-aware framework for pervasive service creation: A
model-driven approach". Pervasive and Mobile Computing
(2009). Doi: 10.IOI6/j.pmcj.2009.07.014

[12] A. Toninelli, S. Pantsar-Syvaniemi, P. Bellavista, E. Ovaska
Supporting Context Awareness in Smart Environments: a
Scalable Approach to Information Interoperability. Proc. of
the International Workshop on Middleware for Pervasive
Mobile and Embedded Computing, SESSION: Short papers,
Article No: 5, ACM, [F[P, USENIX (2009).

134

[\3] A. K. Dey, A., Newberger. Support for Context-Aware
Intelligibility and Control. CHI 2009, Programming Tools and
Architectures, 7th April 2009, Boston, MA, USA.

[14] SOFIA project deliverable D5.2I: Interoperable Service
Architecture, 2010.

1028

VIII/9

PUBLICATION IX

Case Study: Context-aware
supervision of a smart
maintenance process

In: 2011 IEEE/IPSJ International Symposium on
Applications and the Internet, 18–21 July 2011.

Pp. 309–314.
Copyright 2012 IEEE.

Reprinted with permission from the publisher.

IX/1

Case Study: Context-aware Supervision of a Smart Maintenance Process

Susanna Pantsar-Syväniemi,
Eila Ovaska

VTT Technical Research Centre of
Finland

Oulu, Finland
{susanna.pantsar-syvaniemi,

eila.ovaska}@vtt.fi

Susanna Ferrari, Tullio Salmon
Cinotti, Guido Zamagni

ARCES, University of Bologna
Bologna, Italy

susanna.ferrari2@studio.unibo.it,
{tsalmon,

gzamagni}@arces.unibo.it

Luca Roffia, Sandra Mattarozzi,
Valerio Nannini

CCC
Bologna, Italy

lroffia@arces.unibo.it
{s.mattarozzi,

v.nannini}@bo.icie.it

Abstract—The “smartness” of applications is heavily based on
their ability to use context information for behaving in a way
that perfectly matches the situation in which the application is
being used and running. However, achieving situation-based
behavior is not straightforward; the situation has to be
identified; the functionality that provides the best fit (not
always the optimal one) has to be selected from a set of options;
and the smart environment has to be configured so that the
primary goal can be achieved. This paper introduces an
advanced solution for context monitoring and context sharing
among software agents; a graphical user interface for defining
the scope of context for the application(s) in hand; the
matchmaking of ontologies for defining the reasoning rules to
be used; and a rule graph as a means of configuring an
application’s behavior in a way that it is aligned with the goal
of the smart environment. The concept has been implemented
as part of the maintenance process of a smart building. It is
still a challenge to achieve a context that can dynamically
update and, above all, expand itself.

Keywords—adaptation; run-time; context-awareness; micro-
architecture; smart environment

I. INTRODUCTION
An environment becomes “smart” when its physical and

logical features are available in a digital format for end-user
services. In such an environment, information
interoperability is a primary requirement. The current trend
tends to solve this interoperability requirement with a shared
information space, where knowledge about the environment
is kept up-to-date and shared with the subscribed and
authorized users of the space. Even events activated by the
end-user services or applications are shared. Thus, the
exchange of information and events through the smart space
is beneficial to smart space users only if the provider and
consumer of the information or events have a mutual
understanding of their meanings. That understanding relies
on a shared knowledge, represented as an ontology or set of
ontologies.

It is still challenging to design and implement
dynamically evolvable and interoperable software for
pervasive and smart environments. The ongoing SOFIA
project [1] aims to provide an open innovation platform
(OIP) including middleware, methods and tools to create
smart environments. This paper presents work done within
the SOFIA project, where we have utilized the Smart-M3 [2]

solution for smart space implementation. The Smart-M3
provides a backbone approach to creating a smart
environment. The key enabler is called an SIB (Semantic
Information Broker), which is based upon the idea of making
statements in the form of subject-predicate-object
expressions. These expressions are known as triples in the
Resource Description Framework (RDF). The RDF [3] is a
directed, labeled graph data format for representing
information on the Web.

In this work we report on the utilization of the context-
awareness micro-architecture [4] to design and implement a
Context Monitor agent for supervising the phases of a
building maintenance process. The Context Monitor
enhances the already envisaged smart building maintenance
process [5, 6]. Furthermore, we introduce a new way for
bounding the context information relevant for the context
monitoring agent in question. The context is selected with a
GUI (Graphical User Interface), called Context Selector. The
Context Selector utilizes the context ontology and the
application ontology when it creates the selection boxes for a
user to select the relevant context to be monitored. Thus, the
Context Selector is a general graphical configuring module
for selecting the context by which the maintenance person
can define the limits of information usage for smart space
applications. Any piece of data, at a given time, can be a
context for a given smart space application [7]. Hence, the
Context Monitor is a novel solution because it is context-
(and Smart-M3) based and it is reconfigurable.

The structure of the paper is as follows. Section 2
presents the background. Section 3 introduces our case,
where the Context Monitor supervises the smart maintenance
of a building. Thereafter, Section 4 goes through the
implementation of the Context Selector and Context Monitor
and Section 5 discusses the case study. The Conclusion and
future work close the paper.

II. BACKGROUND
Ontological models have well-known advantages

regarding support for interoperability and heterogeneity [8].
Furthermore, they support the representation of complex
relationships and dependencies between context data. Thus,
the ontological models are well suited to the recognition of
high-level context abstractions. A situation is the mostly
used term for referring to high-level context abstractions.
Adaptations in context-aware applications are caused by

2011 IEEE/IPSJ International Symposium on Applications and the Internet

978-0-7695-4423-6/11 $26.00 © 2011 IEEE
DOI 10.1109/SAINT.2011.59

309

2011 IEEE/IPSJ International Symposium on Applications and the Internet

978-0-7695-4423-6/11 $26.00 © 2011 IEEE
DOI 10.1109/SAINT.2011.59

309

IX/1

Case Study: Context-aware Supervision of a Smart Maintenance Process

Susanna Pantsar-Syväniemi,
Eila Ovaska

VTT Technical Research Centre of
Finland

Oulu, Finland
{susanna.pantsar-syvaniemi,

eila.ovaska}@vtt.fi

Susanna Ferrari, Tullio Salmon
Cinotti, Guido Zamagni

ARCES, University of Bologna
Bologna, Italy

susanna.ferrari2@studio.unibo.it,
{tsalmon,

gzamagni}@arces.unibo.it

Luca Roffia, Sandra Mattarozzi,
Valerio Nannini

CCC
Bologna, Italy

lroffia@arces.unibo.it
{s.mattarozzi,

v.nannini}@bo.icie.it

Abstract—The “smartness” of applications is heavily based on
their ability to use context information for behaving in a way
that perfectly matches the situation in which the application is
being used and running. However, achieving situation-based
behavior is not straightforward; the situation has to be
identified; the functionality that provides the best fit (not
always the optimal one) has to be selected from a set of options;
and the smart environment has to be configured so that the
primary goal can be achieved. This paper introduces an
advanced solution for context monitoring and context sharing
among software agents; a graphical user interface for defining
the scope of context for the application(s) in hand; the
matchmaking of ontologies for defining the reasoning rules to
be used; and a rule graph as a means of configuring an
application’s behavior in a way that it is aligned with the goal
of the smart environment. The concept has been implemented
as part of the maintenance process of a smart building. It is
still a challenge to achieve a context that can dynamically
update and, above all, expand itself.

Keywords—adaptation; run-time; context-awareness; micro-
architecture; smart environment

I. INTRODUCTION
An environment becomes “smart” when its physical and

logical features are available in a digital format for end-user
services. In such an environment, information
interoperability is a primary requirement. The current trend
tends to solve this interoperability requirement with a shared
information space, where knowledge about the environment
is kept up-to-date and shared with the subscribed and
authorized users of the space. Even events activated by the
end-user services or applications are shared. Thus, the
exchange of information and events through the smart space
is beneficial to smart space users only if the provider and
consumer of the information or events have a mutual
understanding of their meanings. That understanding relies
on a shared knowledge, represented as an ontology or set of
ontologies.

It is still challenging to design and implement
dynamically evolvable and interoperable software for
pervasive and smart environments. The ongoing SOFIA
project [1] aims to provide an open innovation platform
(OIP) including middleware, methods and tools to create
smart environments. This paper presents work done within
the SOFIA project, where we have utilized the Smart-M3 [2]

solution for smart space implementation. The Smart-M3
provides a backbone approach to creating a smart
environment. The key enabler is called an SIB (Semantic
Information Broker), which is based upon the idea of making
statements in the form of subject-predicate-object
expressions. These expressions are known as triples in the
Resource Description Framework (RDF). The RDF [3] is a
directed, labeled graph data format for representing
information on the Web.

In this work we report on the utilization of the context-
awareness micro-architecture [4] to design and implement a
Context Monitor agent for supervising the phases of a
building maintenance process. The Context Monitor
enhances the already envisaged smart building maintenance
process [5, 6]. Furthermore, we introduce a new way for
bounding the context information relevant for the context
monitoring agent in question. The context is selected with a
GUI (Graphical User Interface), called Context Selector. The
Context Selector utilizes the context ontology and the
application ontology when it creates the selection boxes for a
user to select the relevant context to be monitored. Thus, the
Context Selector is a general graphical configuring module
for selecting the context by which the maintenance person
can define the limits of information usage for smart space
applications. Any piece of data, at a given time, can be a
context for a given smart space application [7]. Hence, the
Context Monitor is a novel solution because it is context-
(and Smart-M3) based and it is reconfigurable.

The structure of the paper is as follows. Section 2
presents the background. Section 3 introduces our case,
where the Context Monitor supervises the smart maintenance
of a building. Thereafter, Section 4 goes through the
implementation of the Context Selector and Context Monitor
and Section 5 discusses the case study. The Conclusion and
future work close the paper.

II. BACKGROUND
Ontological models have well-known advantages

regarding support for interoperability and heterogeneity [8].
Furthermore, they support the representation of complex
relationships and dependencies between context data. Thus,
the ontological models are well suited to the recognition of
high-level context abstractions. A situation is the mostly
used term for referring to high-level context abstractions.
Adaptations in context-aware applications are caused by

2011 IEEE/IPSJ International Symposium on Applications and the Internet

978-0-7695-4423-6/11 $26.00 © 2011 IEEE
DOI 10.1109/SAINT.2011.59

309

2011 IEEE/IPSJ International Symposium on Applications and the Internet

978-0-7695-4423-6/11 $26.00 © 2011 IEEE
DOI 10.1109/SAINT.2011.59

309

mailto:susanna.ferrari2@studio.unibo.it
mailto:lroffia@arces.unibo.it

IX/2 IX/3

TABLE I. ALIGNMENT OF CONCEPTS

Maintenance concepts Context concepts with
relations

Person; tenant and
maintenance operator

User Context – has Person

Fault Physical Environment
Context – has Event

Corrective Intervention Physical Environment
Context – has Event

Building Room Digital Environment
Context - has Feature

The starting and stopping of an intervention, as well the

corrective intervention itself are information from “the
digital context of environment” level. The fault is an
indication relating to the physical context of the
environment. The fault in the building is mostly noticed by
the sensors, but it can also be notified by users. The room
belongs to “the digital context of environment” level.

Context Monitor

Select Context

Smart Maintenance

Visualization Tool

SIB

Context
Selector

Figure 3. The context of context-aware supervision

The Context Selector formulates the context based on the
selections made by a user who knows what he/she wants to
monitor. The context is then saved to the SIB. Then, the
Context Monitor continues its work with the context.

B. Context Monitoring (and reasoning)
The Context Monitor subscribes to all information

showed by the context. It receives notifications from each
context change stored to the SIB. The Context Monitor
follows the sequence of the maintenance scenario according
to the requirements defined for it. The maintenance scenario
has many phases and each of them is triggered by a change
in the context. For this case study, we chose the following
phases as they are the main ones from the viewpoint of the
supervision:

□ Phase 0: A fault has been detected at time T0. The
Context Monitor starts to wait for the notification
“Intervention scheduled”. That notification should occur
within a specified time, ∆T0. The notification “Stop
intervention” is expected within a pre-defined time,
∆Tmax. An alert should be generated if that notification
does not occur within ∆Tsecure.

□ Phase 1: The maintenance company has set a scheduled
time of the intervention, Tx (at time T1). The
maintenance operator should accept to do the
intervention within a pre-defined time, ∆T1.

□ Phase 2: One of the maintenance operators has accepted
to carry out the intervention.

□ Phase 3: The maintenance operator has started the
intervention on-site.

□ Phase 4: The maintenance operator has successfully
completed the intervention and the supervision process
is terminated.

Based on knowledge about the ongoing phase and the

notifications received from the SIB, the Context Monitor
updates the progress of the supervision to the SIB. The
Context Monitor inserts “phase passed” if the scenario is
going ahead as defined. If the progress is delayed, then the
Context Monitor updates the SIB with an alert to be notified
to the maintenance company, that in turn has its own tool for
visualizing the progress of the maintenance operation and the
alerts.

The Context Monitor operates according to its
requirements, where the requirements express the behavior
in each phase. The behavioral rules depend on time and on
the current phase and they are in the following form:

if context change detected then {
if expected context-change has occurred, then

{Start or stop timers @ T
Update SIB with phase passed}
Else update SIB with an alert
}
if timer has elapsed then update SIB with an alert

As shown in Table II, for each phase the timers that
need to be activated or deactivated, are specified, e.g. in P0
Timer1, Timer2, Timer3 are activated while in P4 Timer2 and
Timer3 are deactivated. The time used for each timer is based
on the time at which a phase is detected, e.g. T0 for phase P0,
and with a delay, e.g. ∆Tmax related to a specific fault. Some
of the faults have to be closed within 24 h, while other faults
can have more relaxed or restricted constraints. If a timer
expires, or an unexpected context change occurs, the Context
Monitor updates the SIB with an alert, e.g. “Start of the
intervention delayed” or “Unexpected event”.

311311

changes in situations, i.e. a change in a context value triggers
adaptation if the context update changes the situation. [8]

Situation-aware applications have benefited from the
usage of ontologies [9]. As above-mentioned, we will
enhance the existing smart building maintenance approach
[5] with the context based agent, Context Monitor, which is
able to supervise the phases of the building maintenance. The
Context Monitor will be an instance of the context
monitoring agent that is one of the dynamic agents of the
context-awareness micro-architecture [4]. The context-
awareness micro-architecture consists of three types of
agents: the context-monitoring, the context-reasoning and the
context-based adaptation agents. Fig. 1 shows, using
numbered connections, the execution order of the context-
awareness agents. Firstly, the context monitoring agent
provides information to the semantic database (SIB) to be
used by the context reasoning agent. Lastly, the context-
based adaptation is notified by the information upgraded by
the context-reasoning agent.

Figure 1. The logical structure of the context-awareness micro-

architecture [4]

The context-awareness micro-architecture also has the
context ontology which has three main concepts that define
the context of the smart environment: the physical-
environment context, the digital-environment context and the
user context [10]. Following this, we split the user context
into two parts according to the interest of the information
user; the situational context which is the interest of the
application and the user context which merely defines the
user intents and preferences [4].

The main concepts of the context ontology are organized
according to three levels of abstraction (i.e. context levels)
that belong to the corresponding context levels: the physical
context of the environment, the digital context of the
environment, and the situation context. The physical context
contains raw data about the physical environment. The
digital context information is a fusion of physical raw data
and other state information of the software services
combined with some specific reasoning algorithms or rules.
The situational context is a set of information derived from
physical and digital context information for the application
purpose. The user context is (as noted before) relates to the
person’s interests, intents and activities, not the information
of the space itself. The context-awareness agents are
illustrated in the corresponding interpretation and abstraction
levels in Fig.2.

Figure 2. Context-awareness agents on the corresponding context levels

[10]

The next section will introduce our solution for scoping
the context based on the context ontology and creating a
context (i.e. a graph) by mapping the context ontology
concepts with the maintenance concepts. Then, this context
is used for context-based monitoring and simple reasoning
based on the monitoring and behavioral rules.

III. CASE STUDY: CONTEXT-AWARE SUPERVISION OF
SMART MAINTENANCE

The goal for the case is to build a smart, context-based
agent for supervising the maintenance scenario of a building.
The maintenance scenario starts when, e.g., a sensor detects
water on the floor. Each fault has its own supervisor. As
mentioned above, the smart maintenance system with the
maintenance ontology is the legacy software that is enhanced
with new features, consisting of the Context Selector and
Context Monitor. In order to perform context-aware
supervision, we aligned the context and maintenance
ontologies to get the new feature to be interoperable with the
legacy (smart maintenance) system. After alignment, we had
a shared context, i.e. graph, to supervise the progress of the
maintenance scenario. Lastly, the progress of the supervision
workflow was visualized. A promising tool for that purpose
is the Interactive Quality Visualization (IQVis) tool [11]
because it supports run-time visualization. The IQVis tool is
already used for illustrating how the run-time properties of a
smart space change over time [12].

A. Relation to the context ontology and Context Selector
The context to be monitored is defined via a graphical

user interface (GUI) of the Context Selector as shown in Fig.
3. The Context Selector reads context concepts from the
context ontology file that is in the OWL (Web Ontology
Language) [13] format. Then, the Context Selector maps the
main context concepts to the corresponding maintenance
concepts. The mapping of the concepts is illustrated in Table
I.

310310

IX/3

TABLE I. ALIGNMENT OF CONCEPTS

Maintenance concepts Context concepts with
relations

Person; tenant and
maintenance operator

User Context – has Person

Fault Physical Environment
Context – has Event

Corrective Intervention Physical Environment
Context – has Event

Building Room Digital Environment
Context - has Feature

The starting and stopping of an intervention, as well the

corrective intervention itself are information from “the
digital context of environment” level. The fault is an
indication relating to the physical context of the
environment. The fault in the building is mostly noticed by
the sensors, but it can also be notified by users. The room
belongs to “the digital context of environment” level.

Context Monitor

Select Context

Smart Maintenance

Visualization Tool

SIB

Context
Selector

Figure 3. The context of context-aware supervision

The Context Selector formulates the context based on the
selections made by a user who knows what he/she wants to
monitor. The context is then saved to the SIB. Then, the
Context Monitor continues its work with the context.

B. Context Monitoring (and reasoning)
The Context Monitor subscribes to all information

showed by the context. It receives notifications from each
context change stored to the SIB. The Context Monitor
follows the sequence of the maintenance scenario according
to the requirements defined for it. The maintenance scenario
has many phases and each of them is triggered by a change
in the context. For this case study, we chose the following
phases as they are the main ones from the viewpoint of the
supervision:

□ Phase 0: A fault has been detected at time T0. The
Context Monitor starts to wait for the notification
“Intervention scheduled”. That notification should occur
within a specified time, ∆T0. The notification “Stop
intervention” is expected within a pre-defined time,
∆Tmax. An alert should be generated if that notification
does not occur within ∆Tsecure.

□ Phase 1: The maintenance company has set a scheduled
time of the intervention, Tx (at time T1). The
maintenance operator should accept to do the
intervention within a pre-defined time, ∆T1.

□ Phase 2: One of the maintenance operators has accepted
to carry out the intervention.

□ Phase 3: The maintenance operator has started the
intervention on-site.

□ Phase 4: The maintenance operator has successfully
completed the intervention and the supervision process
is terminated.

Based on knowledge about the ongoing phase and the

notifications received from the SIB, the Context Monitor
updates the progress of the supervision to the SIB. The
Context Monitor inserts “phase passed” if the scenario is
going ahead as defined. If the progress is delayed, then the
Context Monitor updates the SIB with an alert to be notified
to the maintenance company, that in turn has its own tool for
visualizing the progress of the maintenance operation and the
alerts.

The Context Monitor operates according to its
requirements, where the requirements express the behavior
in each phase. The behavioral rules depend on time and on
the current phase and they are in the following form:

if context change detected then {
if expected context-change has occurred, then

{Start or stop timers @ T
Update SIB with phase passed}
Else update SIB with an alert
}
if timer has elapsed then update SIB with an alert

As shown in Table II, for each phase the timers that
need to be activated or deactivated, are specified, e.g. in P0
Timer1, Timer2, Timer3 are activated while in P4 Timer2 and
Timer3 are deactivated. The time used for each timer is based
on the time at which a phase is detected, e.g. T0 for phase P0,
and with a delay, e.g. ∆Tmax related to a specific fault. Some
of the faults have to be closed within 24 h, while other faults
can have more relaxed or restricted constraints. If a timer
expires, or an unexpected context change occurs, the Context
Monitor updates the SIB with an alert, e.g. “Start of the
intervention delayed” or “Unexpected event”.

311311

IX/4 IX/5

The context as a graph is saved to the SIB to be used by
the Context Monitor that is the instance of the context
monitoring agent. The Context Monitor subscribes to all the
selected instances of the context arguments and their
attributes as exemplified in Fig. 6. We were able to make
selections based on the instances because the Smart
Maintenance Ontology was mirroring the content from the
SIB. The Context Monitor receives notifications from the
SIB according to the subscriptions it has made. The
subscriptions and notifications are mechanisms available in
the Smart-M3 platform [2].

The context is semi-automatic and is created from
information instances, as we did in this case. By semi-
automatic context we mean that the context is not
automatically updated when a new kind of a sensor is added
to the maintained building if the sensor type is not one of the
instances available in the smart-maintenance ontology.

The Context Selector and the Context Monitor were
written in C# in the framework .NET 4.0 and they used C#
libraries to access the SIB. All these components, including
the SIB, were running on Ubuntu 9.04. The Context Selector
used dotNetRDF library [14] to read the owl-files.

V. DISCUSSIONS
This case study convinced us of the usefulness of

context-awareness micro-architecture. The Context Monitor
is a reusable and reconfigurable software agent that is
updated at run-time by application-specific parameters
represented as a context graph. The Context Monitor and the
Context Selector were implemented in this case with the
Smart-M3 platform-based SIB (semantic database) but they
can be implemented with other RDF-based platforms as well.

The Context Monitor, instantiated from the context-
aware micro-architecture, has many advantageous
characteristics:

- It is a reusable solution, i.e. it can be applied to
different application domains and platforms;

- It follows a separation-of-concerns principle; a
solution defined on the model level, i.e. an
application model, a context model and a platform
model;

- It is independent from the implementation
languages;

- It is a scalable solution i.e. it can be instantiated
several times for different monitoring purposes
within one application if needed

- Its behavior is configurable using the rules.

The mechanism of the Context Selector to scope the

situational context (the view of the interesting context
information) is a successful solution. The novelty of the
Context Selector comes from the ability to work with the
ontology files and still to be able to formulate the
configuration of the context. The challenging task was to
map the context ontology with the smart maintenance
ontology because they did not share the same concepts. This
is because the maintenance ontology was a legacy one and
developed from the building domain viewpoint at a time
when there was no suitable context ontology available. The

mapping between these two different ontologies is more
straightforward when they use the same context ontology.

The context can be also created based on classes, not
only from instances (in Fig. 6, for example, the context is
based on a fault instance). The selection between classes or
instances is a consequence of the used application ontology
and the decision for the content of that ontology can be made
on a need basis. With class-based selection, the context is
automatically updated each time a new instance is created
from the selected class, but then the context cannot be as full
of properties as it is with instance-based context. This is due
to the fact that the Context Monitor is not able to make
subscriptions to the properties of the class because the
properties are not transformed in the context (graph).

The rules in the Context Monitor were hard coded this
time but we are working towards a reusable agent for context
reasoning that can be dynamically updated via the SIB
(semantic interface).

VI. CONCLUSIONS AND FUTURE WORK
Due to the dynamism of smart environments, the

software agents’ behavior needs to be flexible and adaptable
in a situation-based manner. This means that the situation is
to be identified and analyzed, and the actions to be taken are
to be reasoned and finally executed according to the common
‘requirements and constraints’ set for the smart environment.
Commonalities can be described as ontological models.
However, the commonality also changes, i.e. the
commonality of today is not necessarily the commonality of
tomorrow. Thus, ontology matchmaking is required.

In this paper, a novel concept on context-awareness
architecture was demonstrated in a smart maintenance
scenario by implementing a context-aware supervision
feature. A generic context-monitoring agent, Context
Monitor, was used for collecting the context information
stored for the shared use of agents into an SIB. An
independent application (Context Selector), with a graphical
user interface, was implemented for defining the scope of the
context for the application in hand and mapping the selected
context to the application-specific data collected to the same
shared repository. The context graph, defined as a result of
the mapping activity, was used for configuring the context-
monitoring agent, Context Monitor.

To achieve a context that can dynamically update and,
above all, expand itself is a challenging task. With instance-
based ontology that kind of context is not possible, however,
it is possible with class-based ontology, but the context is
limited to the amount of the properties it has. We are
working on class-based ontology to achieve a dynamic
context that updates and expands (evolves) itself at run-time.
The context is a basis for context monitoring, context
reasoning and context-based adaptation. We are also
working to get dynamic rules beside the context to the SIB.
In addition, we will also consider social aspects to be taken
into account in the context ontology.

313313

TABLE II. BEHAVIORAL RULES FOR CONTEXT MONITORING

Rules on phase detection
P0 Start timer TR1 @ T0 + ∆T0

Start timer TR2 @ T0 + ∆Tmax
Start timer TR3 @ T0 + ∆Tsecure

Update to the SIB: “Phase passed, Fault
detected”

Wait for the notification: “Intervention
scheduled”

P1 Stop timer TR1
Start timer TR4 @ T1 + ∆T1
Start timer TR5 @ Tx + ∆Tx

Update to the SIB: “Phase passed, Intervention
scheduled”

Wait for the notification: “Intervention
accepted”

P2 Stop timer TR4
Update to the SIB: “Phase passed, Intervention

accepted”
Wait for the notification: “Start intervention”

P3 Stop timer TR5
Update to the SIB: “Phase passed, Start

intervention”
Wait for the notification: “Stop intervention”

P4 Stop timer TR2
Stop timer TR3

Update to the SIB: “Phase passed, Stop of
intervention”

Rules on timer expiration
TR1 Alert: “Scheduling of intervention delayed”
TR2 Alert: “End of intervention delayed”
TR3 Alert: “Warning: close to the available

maximum time”
TR4 Alert: “Intervention acceptance delayed”
TR5 Alert: “Start of intervention delayed”

The ultimate aim is to be able to provide the rules via the

Context Selector to the SIB, from which they are used as
configuration parameters by the Context Monitor or by the
separate context-reasoning agent. As a proof of the concept
related to the context-awareness architectures and its Context
Monitor, the rules are hard coded in this case study.

IV. IMPLEMENTATION
The Context Selector uses the context ontology as a

starting point because the context ontology is a general one
and can be directly aligned with the application-specific
ontology if they share the same main concepts or classes.
Fig. 4 shows the view of the Context Selector when the end
user starts to select the context for monitoring.

Figure 4. View to select the main context from the context ontology

In this case the maintenance ontology does not share the
same main (or core) concepts with the context ontology so
we aligned the smart maintenance ontology with the context
ontology by hard coding the associations. The hard coding is
done by the mapping table as shown in Fig. 5. The KP
(knowledge processor) is a term used in the Smart-M3
platform for the piece of software (or agent) that produces or
consumes the information from the SIB. The KP can also
both consume and produce information.

Figure 5. The KPs and SIB in the implementation

For the mapping we used the following definitions: a
context attribute and a context argument. Based on these
definitions we formulated the context as is exemplified in
Fig. 6. Thus, the context arguments and attributes form the
context to be monitored.

Figure 6. Example of instance-based ontology mapping

PhysicalContext ContextAttribute

Fault rdf:Property

Fault_003 HasFaultSymptom

PhysicalContext_001 ContextAttribute_001

rdf:type rdf:type

rdf:type rdf:type

hasContext

Attribute

hasContext Argument isRelatedTo hasValue

Context
Ontology

Smart
Maintenance

OntologyHasFaultSymptom

AnomalousWaterPresence

312312

IX/5

The context as a graph is saved to the SIB to be used by
the Context Monitor that is the instance of the context
monitoring agent. The Context Monitor subscribes to all the
selected instances of the context arguments and their
attributes as exemplified in Fig. 6. We were able to make
selections based on the instances because the Smart
Maintenance Ontology was mirroring the content from the
SIB. The Context Monitor receives notifications from the
SIB according to the subscriptions it has made. The
subscriptions and notifications are mechanisms available in
the Smart-M3 platform [2].

The context is semi-automatic and is created from
information instances, as we did in this case. By semi-
automatic context we mean that the context is not
automatically updated when a new kind of a sensor is added
to the maintained building if the sensor type is not one of the
instances available in the smart-maintenance ontology.

The Context Selector and the Context Monitor were
written in C# in the framework .NET 4.0 and they used C#
libraries to access the SIB. All these components, including
the SIB, were running on Ubuntu 9.04. The Context Selector
used dotNetRDF library [14] to read the owl-files.

V. DISCUSSIONS
This case study convinced us of the usefulness of

context-awareness micro-architecture. The Context Monitor
is a reusable and reconfigurable software agent that is
updated at run-time by application-specific parameters
represented as a context graph. The Context Monitor and the
Context Selector were implemented in this case with the
Smart-M3 platform-based SIB (semantic database) but they
can be implemented with other RDF-based platforms as well.

The Context Monitor, instantiated from the context-
aware micro-architecture, has many advantageous
characteristics:

- It is a reusable solution, i.e. it can be applied to
different application domains and platforms;

- It follows a separation-of-concerns principle; a
solution defined on the model level, i.e. an
application model, a context model and a platform
model;

- It is independent from the implementation
languages;

- It is a scalable solution i.e. it can be instantiated
several times for different monitoring purposes
within one application if needed

- Its behavior is configurable using the rules.

The mechanism of the Context Selector to scope the

situational context (the view of the interesting context
information) is a successful solution. The novelty of the
Context Selector comes from the ability to work with the
ontology files and still to be able to formulate the
configuration of the context. The challenging task was to
map the context ontology with the smart maintenance
ontology because they did not share the same concepts. This
is because the maintenance ontology was a legacy one and
developed from the building domain viewpoint at a time
when there was no suitable context ontology available. The

mapping between these two different ontologies is more
straightforward when they use the same context ontology.

The context can be also created based on classes, not
only from instances (in Fig. 6, for example, the context is
based on a fault instance). The selection between classes or
instances is a consequence of the used application ontology
and the decision for the content of that ontology can be made
on a need basis. With class-based selection, the context is
automatically updated each time a new instance is created
from the selected class, but then the context cannot be as full
of properties as it is with instance-based context. This is due
to the fact that the Context Monitor is not able to make
subscriptions to the properties of the class because the
properties are not transformed in the context (graph).

The rules in the Context Monitor were hard coded this
time but we are working towards a reusable agent for context
reasoning that can be dynamically updated via the SIB
(semantic interface).

VI. CONCLUSIONS AND FUTURE WORK
Due to the dynamism of smart environments, the

software agents’ behavior needs to be flexible and adaptable
in a situation-based manner. This means that the situation is
to be identified and analyzed, and the actions to be taken are
to be reasoned and finally executed according to the common
‘requirements and constraints’ set for the smart environment.
Commonalities can be described as ontological models.
However, the commonality also changes, i.e. the
commonality of today is not necessarily the commonality of
tomorrow. Thus, ontology matchmaking is required.

In this paper, a novel concept on context-awareness
architecture was demonstrated in a smart maintenance
scenario by implementing a context-aware supervision
feature. A generic context-monitoring agent, Context
Monitor, was used for collecting the context information
stored for the shared use of agents into an SIB. An
independent application (Context Selector), with a graphical
user interface, was implemented for defining the scope of the
context for the application in hand and mapping the selected
context to the application-specific data collected to the same
shared repository. The context graph, defined as a result of
the mapping activity, was used for configuring the context-
monitoring agent, Context Monitor.

To achieve a context that can dynamically update and,
above all, expand itself is a challenging task. With instance-
based ontology that kind of context is not possible, however,
it is possible with class-based ontology, but the context is
limited to the amount of the properties it has. We are
working on class-based ontology to achieve a dynamic
context that updates and expands (evolves) itself at run-time.
The context is a basis for context monitoring, context
reasoning and context-based adaptation. We are also
working to get dynamic rules beside the context to the SIB.
In addition, we will also consider social aspects to be taken
into account in the context ontology.

313313

IX/6 PB

ACKNOWLEDGMENT
This work has been carried out in the SOFIA/Artemis JU

SP3/10017 project. SOFIA is funded by Tekes – the Finnish
Funding Agency for Technology and Innovation, VTT,
MIUR – Italian Ministry for Education and Research, and
the European Commission.

REFERENCES
[1] SOFIA project, http://www.sofia-project.eu/
[2] Smart-M3, http://sourceforge.net/projects/smart-m3/
[3] Resource description framework, http://www.w3.org/RDF/
[4] S. Pantsar-Syväniemi, J. Kuusijärvi, and E. Ovaska, ”Context-

awareness Micro-Architecture for Smart Spaces”, Proc. 6th Int.
Conference on Grid and Pervasive Computing (GPC 2011), May 11-
13, 2011, Oulu, Finland, in press.

[5] D. Manzaroli, L. Roffia, T. Salmon Cinotti, E. Ovaska, P. Azzoni, V,
Nannini and S. Mattarozzi, “Smart-M3 and OSGi: The
Interoperability Platform”, Proc. IEEE Symp. 1st Int. Workshop
Semantic Interoperability for Smart Spaces (SISS 2010), IEEE Press,
2010, pp. 1053-1058, doi: 10.1109/ISCC.2010.5546633.

[6] A. D’Elia, L. Roffia, G. Zamagni, F. Vergari, A. Toninelli, and P.
Bellavista, “Smart applications for the maintenance of large
buildings: How to achieve ontology-based interoperability at the
information level”, Proc. IEEE Symp. 1st Int. Workshop Semantic
Interoperability for Smart Spaces (SISS 2010), IEEE Press, 2010, pp.
1077-1082, doi: 10.1109/ISCC.2010.5546633.

[7] A. Toninelli, S. Pantsar-Syväniemi, P. Bellavista, and E. Ovaska,
“Supporting Context Awareness in Smart Environments: a Scalable
Approach to Information Interoperability”, Proc. Int. Workshop
Middleware for Pervasive Mobile and Embedded Computing (M-
MPAC 2010), session: short papers, Article No: 5. ACM, IFIP,
USENIX, 2009, doi: 10.1145/1657127.1657134.

[8] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A.
Ranganathan, and D. Riboni, “A survey of context modelling and
reasoning techniques,” Pervasive and Mobile Computing, vol. 6, Apr.
2010, pp. 161-180, doi:10.1016/j.pmcj.2009.06.002.

[9] N. Baumgartner, W. Retschitzegger, and W. Schwinger, “A Software
Architecture for Ontology Driven Situation Awareness”, Proc. ACM
Symp. Applied Computing (SAC’08), ACM, New York, 2008, pp.
2326-2330 , doi: 10.1145/1363686.1364237.

[10] S. Pantsar-Syväniemi, K. Simula, and E. Ovaska, ”Context-
Awareness in Smart Spaces”. Proc. IEEE Symp. 1st Int. Workshop
Semantic Interoperability for Smart Spaces (SISS 2010), IEEE Press,
2010, pp. 1023-1028, doi: 10.1109/ISCC.2010.5546630.

[11] J. Kuusijärvi, “Interactive Visualization of Quality Variability at Run-
time,” University of Oulu, Department of Electrical and Information
Engineering, Master’s Thesis, 86 p, 2010.

[12] J. Kuusijärvi, A.Evesti, and E. Ovaska.“Visualizing Structure and
Quality Properties of Smart Spaces”. Proc. IEEE Symp. 1st Int.
Workshop Semantic Interoperability for Smart Spaces (SISS 2010),
IEEE Press, 2010, pp. 1023-1028, doi: 10.1109/ISCC.2010.5546630.

[13] Web ontology language, http://www.w3.org/2004/OWL/
[14] An Open Source C#.Net Library for RDF, http://www.dotnetrdf.org/

314314

http://www.sofia-project.eu/
http://sourceforge.net/projects/smart-m3/
http://www.w3.org/RDF/
http://www.w3.org/2004/OWL/
http://www.dotnetrdf.org/

Series title and number
VTT Science 37

Title Reusable, semantic, and context-aware
micro-architecture
Approach to managing interoperability and dynamics
in smart spaces

Author(s) Susanna Pantsar-Syväniemi

Abstract The amount of shared information has increased a great deal in ubiquitous sys-
tems, where the previously isolated devices and appliances have become part of
the system and are producing or consuming the information. The ubiquitous sys-
tem, or the smart environment, lacks an approach that supports scalability and
enables semantic interoperability. It is challenging to provide a dynamic behavior at
the run time without human intervention. A number of dedicated solutions have
been developed for the ubiquitous environment because of its complexity. The
dedicated solutions are usually non reusable.

An approach is needed that i) is reusable as such or partly, ii) provides the se-
mantic interoperability, iii) enables dynamic and behavioral interoperability between
the receiver and sender of the information at run time, and iv) is scalable by being
modular, and decoupled.

This thesis proposes a novel approach to managing interoperability and dynam-
ics in smart spaces. The approach includes a Context-Aware Micro-Architecture
(CAMA), and a Context Ontology for Smart Spaces (CO4SS). This approach is
independent of implementation languages and communication techniques. CAMA,
as an architectural pattern, is usable without its semantic support, CO4SS. In the
literature, it is the first approach that fulfills the requirements that are set for a
context data distribution system.

The power in CAMA relies on the usage of the standard and web-based tech-
niques, in the separation-of-concerns principle, and in the enhanced control loop,
MAPE-K. The latter has four parts, Monitor; Analyze; Plan; Execute that share
Knowledge. CAMA is highly dynamic, which is due to the run-time updatable rules.
The creation of the rules is laborious, as they are written into text boxes of Mes-
sage Sequence Charts. This will be improved when new tools are developed for
the rule creation. Additional research is needed to validate the scalability of the
approach with a “Big data”. CO4SS can be widened with the domain-specific and
quality ontologies. It supports the evolution management of the smart space: all
smart spaces and their applications ‘understand’ the common language that is
defined by it. CO4SS has the potential to be a de facto ontology for the context-
aware, i.e., intelligent applications.

ISBN, ISSN ISBN 978-951-38-8009-5 (Soft back ed.)
ISBN 978-951-38-8010-1 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)

Date August 2013

Language English, Finnish abstract

Pages 72 p. + app 122 p.

Key words Ontology, software architecture, embedded, ubiquitous system, design pattern

Publisher VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland, Tel. 020 722 111

http://www.vtt.fi/publications/index.jsp

Julkaisun sarja ja numero
VTT Science 37

Nimeke Uudelleenkäytettävä, semanttinen ja
kontekstitietoinen pienoisarkkitehtuuri
Menetelmä yhteentoimivuuden ja dynamiikan
hallintaan älykkäissä tiloissa

Tekijä(t) Susanna Pantsar-Syväniemi

Tiivistelmä Kaikkialla läsnä oleva, ns. Ubi-järjestelmä, sisältää paljon yhteistä tietoa, jonka
määrä kasvaa, kun ennen erillään toimineet laitteet tulevat osaksi järjestelmää.
Ubi-järjestelmä, tai älykäs tila, tarvitsee uusia menetelmiä, jotka tukevat järjestel-
män skaalautuvuutta sekä mahdollistavat semanttisen yhteentoimivuuden eri
laitteiden ja applikaatioiden välillä. Tällainen järjestelmä on dynaaminen, ja on
haasteellista saada sitä tukevaa automaattista toimintaa toimimaan reaaliajassa.
Ubi-järjestelmä on myös monimutkainen, ja siksi olemassa olevat järjestelmät
ovat olleet hyvin erikoistuneita, eivät uudelleenkäytettäviä.

Tarvitaan siis ratkaisumalli, joka i) on uudelleenkäytettävä sellaisenaan tai
osittain, ii) tarjoaa semanttisen yhteentoimivuuden, iii) mahdollistaa dynaamisen
ja yhteentoimivan toiminnan reaaliajassa tiedon lähettäjän ja vastaanottajan
välillä ja iv) on skaalautuva. Väitöstyössä on kehitetty uusi menetelmä yhteentoi-
mivuuden ja dynamiikan hallintaan älykkäissä tiloissa. Menetelmässä on konteks-
titietoinen mikroarkkitehtuuri (CAMA) sekä kontekstiontologia (CO4SS). Ne ovat
riippumattomia toteutuskielistä ja kommunikointiteknologioista. CAMA on arkki-
tehtuurimalli, ja se on käytettävissä ilman semanttista tukeaan eli kontekstiontolo-
giaa, CO4SS. Menetelmä on kirjallisuudessa ensimmäinen, joka täyttää konteks-
titiedon jakelujärjestelmän vaatimukset.

Mikroarkkitehtuurin vahvuus on siinä, että se käyttää sekä standardoituja että
web-pohjaisia tekniikoita. Arkkitehtuuri pitää kontekstinhallinnan erillään muusta
ohjelmistosta ja hyödyntää parannettua MAPE-K mallia, jonka neljä osaa – moni-
torointi (M), analysointi (A), suunnittelu (P) ja toteutus (E) – hyödyntävät tietämys-
tä (K). Reaaliaikaisesti päivitettävät säännöt tekevät kehitetystä mikroarkkitehtuu-
rista hyvin dynaamisen. Sääntöjen luonti on työlästä, koska säännöt kuvataan
tekstilaatikkoina toimintajärjestyskuviin. Tämä paranee tulevaisuudessa, kunhan
uusia työkaluja sääntöjen kuvaamiseen saadaan kehitettyä. Menetelmän skaa-
lautuvuutta suurien datamäärien kanssa on vielä tarpeen tutkia lisää. Konteks-
tiontologia on laajennettavissa niin sovellusalue- kuin laatuontologioilla. Se tukee
älytilojen evoluutiota tarjoamalla yleisen kielen, jota kaikki älytilat ja niihin liittyvät
ohjelmistot ymmärtävät. Ontologialla on edellytyksiä kehittyä ns. de
to -kontekstiontologiaksi, kun luodaan kontekstitietoisia eli älykkäitä ohjelmistoja.

ISBN, ISSN ISBN 978-951-38-8009-5 (nid.)
ISBN 978-951-38-8010-1 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN-L 2242-119X
ISSN 2242-119X (painettu)
ISSN 2242-1203 (verkkojulkaisu)

Julkaisuaika Elokuu 2013

Kieli Englanti, suomen kielinen tiivistelmä

Sivumäärä 72 s. + liitt. 122 s.

Avainsanat Ontology, software architecture, embedded, ubiquitous system, design pattern

Julkaisija VTT
PL 1000, 02044 VTT, Puh. 020 722 111

http://www.vtt.fi/publications/index.jsp

V
T

T
 S

C
IE

N
C

E
 3

7

R
e

u
sa

b
le

, se
m

a
n

tic
, a

n
d

 c
o

n
te

x
t-a

w
a
re

 m
ic

ro
-a

rc
h

ite
c
tu

re
. A

p
p

ro
a
c
h

 to
...ISBN 978-951-38-8009-5 (Soft back ed.)

ISBN 978-951-38-8010-1 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)

Reusable, semantic, and context-aware micro-
architecture
Approach to managing interoperability and dynamics in
smart spaces

This thesis proposes a novel approach to managing interoperability and
dynamics in smart spaces. The approach i) is reusable as such or partly,
ii) provides the semantic interoperability, iii) enables dynamic and
behavioral interoperability between the receiver and sender of the
information at run time, and iv) is scalable by being modular, and
decoupled.

The developed approach includes a Context-Aware Micro-Architecture
(CAMA), and a Context Ontology for Smart Spaces (CO4SS). This
approach is independent of implementation languages and
communication techniques. CAMA, as an architectural pattern, is
usable without its semantic support, CO4SS.

The power in CAMA relies on the usage of the standard and web-based
techniques, in the separation-of-concerns principle, and in the enhanced
control loop, MAPE-K. The latter has four parts, Monitor; Analyze; Plan;
Execute that share Knowledge. CAMA is highly dynamic, which is due
to the run-time updatable rules. The creation of the rules is laborious,
as they are written into text boxes of Message Sequence Charts. This
will be improved when new tools are developed for the rule creation.
Additional research is needed to validate the scalability of the approach
with a “Big data”. CO4SS can be widened with the domain-specific and
quality ontologies. It supports the evolution management of the smart
space: all smart spaces and their applications ‘understand’ the common
language that is defined by it. CO4SS has the potential to be a de facto
ontology for the context-aware, i.e., intelligent applications.

	Abstract
	Tiivistelmä
	Preface
	Academic dissertation
	List of publications
	Author’s contributions
	Contents
	List of abbreviations
	1. Introduction
	1.1 Information – the basis for the cooperation
	1.2 Software for intelligent applications
	1.3 Problem statement
	1.4 Goals and scope
	1.5 Research approach and method
	1.6 Summary of the publications and overview of the thesis

	2. Background
	2.1 Software architecture and reuse-based softwaredevelopment
	2.2 Architectural patterns and principles
	2.3 Context-awareness and situation-awareness
	2.4 Ontological context model

	3. Reusable, semantic, and context-awareapproach
	3.1 Reusability
	3.2 Context-awareness concept
	3.3 Context-Aware Micro-Architecture
	3.4 Context Ontology for Smart Spaces
	3.5 Contributions vs. related work

	4. Validating the context-aware microarchitecture
	4.1 Context monitoring for run-time security management
	4.2 Context-aware behavior in the smart home
	4.3 Context-based adaptation in smart building maintenance
	4.4 Adaptation framework

	5. Discussion and conclusions
	5.1 The manifesto of autonomic computing and the information levels
	5.2 Architecture-based adaptation and adaptation frameworks
	5.3 Practical implications and limitations
	5.4 Theoretical implications
	5.5 Employment in the other areas
	5.6 Recommendations for future work

	6. Summary
	References

