
Customer communication in distributed agile
software development

One of the key differences between so-called traditional
development approaches and agile methods is that agile software
development methods put significant emphasis on communication.
In agile development, communication is proposed to be conducted
in an informal face-to-face manner. This communication extends
beyond the development team, involving all project stakeholders
including the customers, whose role in agile development is
pivotal. Since their emergence, agile methods have been adopted
in distributed development environments at sites that can be
separated by significant geographic and temporal as well as
cultural distances.The focus of this thesis is to understand how
customer communication can be improved in distributed agile
software development.

The findings of this thesis have both theoretical and practical
implications. The first implication for research comprises the five
wastes of communication; lack of involvement, lack of shared
understanding, outdated information, restricted access to
information and scattered information. These wastes provide a
unique view to communication hindrances that are present in
distributed agile software development. The second theoretical
implication is that lack of trust between the distributed partners is
potentially the single most important obstacle to customer
communication. As a practical implication, this study provides a
toolbox that can be used in order to improve customer
communication in distributed agile software development. In this
work, the toolbox is first defined on the basis of existing literature
and then further complemented with the findings of the individual
case studies. The toolbox presents different communication
challenges and the solution proposals for them.

ISBN 978-951-38-8230-3 (Soft back ed.)
ISBN 978-951-38-8231-0 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)

V
T

T
 S

C
IE

N
C

E
 8

0
C

u
sto

m
e

r c
o

m
m

u
n

ic
a

tio
n

 in
 d

istrib
u

te
d

 a
g

ile
 so

ftw
a

re
...

•V
IS

IO
N

S•
SCIENCE•TEC

H
N

O
L

O
G

Y
•RESEARCHHIGHLI

G
H

T
S

Dissertation

80

Customer
communication in
distributed agile
software development

Mikko Korkala

VTT SCIENCE 80

Customer communication in
distributed agile software
development

Mikko Korkala

VTT Technical Research Centre of Finland Ltd

Thesis for the degree of Doctor of Philosophy to be presented with

due permission for public examination and criticism in IT116, at

University of Oulu, on the April 10th at 12:15.

ISBN 978-951-38-8230-3 (Soft back ed.)
ISBN 978-951-38-8231-0 (URL: http://www.vtt.fi/publications/index.jsp)

VTT Science 80

ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)

Copyright © VTT 2015

JULKAISIJA – UTGIVARE – PUBLISHER

Teknologian tutkimuskeskus VTT Oy
PL 1000 (Tekniikantie 4 A, Espoo)
02044 VTT
Puh. 020 722 111, faksi 020 722 7001

Teknologiska forskningscentralen VTT Ab
PB 1000 (Teknikvägen 4 A, Esbo)
FI-02044 VTT
Tfn +358 20 722 111, telefax +358 20 722 7001

VTT Technical Research Centre of Finland Ltd
P.O. Box 1000 (Tekniikantie 4 A, Espoo)
FI-02044 VTT, Finland
Tel. +358 20 722 111, fax +358 20 722 7001

Grano Oy, Kuopio 2015

http://www.vtt.fi/publications/index.jsp

3

Preface
The journey I began in 2004 has been travelled by taking small steps. Sometimes
very small steps. On occasion I stopped altogether for a while, lay down and
watched the clouds sail through the skies. While I was lying there, I thought about
just leaving everything behind, going home and doing something else with my life. I
was tired of dragging myself over a rugged terrain towards a seemingly unreachable
goal; a goal that I wasn’t even sure existed. But lying on your back can be pretty
boring so, time after time, I got up and thought about dragging myself just a little bit
further along the road and up to the next milepost. When I reached these markers I
felt the immense joy of discovery and feelings of accomplishment. It was these feel-
ings that kept me going and made me resist the urge to turn around. I also really,
really wanted to see what was there at the end of the road. Ultimately, my long
march has led me to this final milestone of writing these lines. It is here that this
journey ends, which makes me both happy and sad. Would I do this again, if given
the opportunity? Yes I would. What would I do differently if I were to do it all again?
Everything. You see, the world is full of exciting roads to travel and milestones to
reach and who knows what miracles your adventure will reveal. Adventures are
never easy, but one does not embark on adventures because they are easy, but
because they are hard. This alone makes it worthwhile to begin another one. How-
ever, this time I will ride a bicycle.

There are several people that I have worked with during this project who deserve
my sincere gratitude. First, I would like to thank my supervisor, Professor Samuli
Saukkonen from the Department of Information Processing Science, University of
Oulu, for his support during this work. I would also like to thank him for encouraging
me to take this path in the first place, back then when I was still working with my
Master’s thesis. I also owe a lot to Professor Pekka Abrahamsson, my other super-
visor. He has been my mentor and a source of inspiration throughout this effort. I
would also like to thank Professor Frank Maurer from University of Calgary, Canada
for the opportunity to work in his talented team from December 2010 to December
2011. This visit was an invaluable experience during which I learned a lot about how
to do research.

I am also very happy that I had two very distinguished scientists as the reviewers
of this thesis. Therefore, I would like to thank Professor Brian Fitzgerald from LERO
– The Irish Software Engineering Research Centre and Professor Tore Dybå from

4

SINTEF, Norway for their excellent feedback about my work. I also wish to thank all
the co-authors who have contributed to the articles.

I am also privileged since I have had so many talented and wonderful colleagues
during my career. Since you are so many, it would be impossible for me to remem-
ber to name you all in here. Therefore, I won’t do that and I know you will under-
stand. However, a very special thank you goes to VTT Oulu’s “Lunch Club” for all the
good and less good times we experienced together. My friends at VTT Espoo de-
serve a thank you as well. I am very proud that I was able to be a member of our
highly exclusive “Cucumber Club”. Wherever your lives take you, I wish you all the
very best!

Naturally, I would like to thank my mother, my brother and my sister for their sup-
port. My deepest gratitude goes to Minna, my long time companion, soul mate,
mother of our daughter Aino Sofie, and a friend. I thank you for all the years we have
had together and I cannot wait for all those wonderful things that we have in front of
us still to happen! I am also forever grateful for my daughter, since being a father is
in my world the single most precious blessing a man can ever have.

Perhaps the happiest person there was when I told about my decision to go for a
PhD was my father. Sadly, he is not here to see it happen.

I dedicate this work to my father.

Mikko Korkala.
Helsinki, Finland, 28th November 2014.

5

Academic dissertation
Supervisors Professor Samuli Saukkonen

University of Oulu
Department of Information Processing Science
P.O. Box 3000, 90014 University of Oulu, Finland

Professor Pekka Abrahamsson
Faculty of Computer Science
Free University of Bozen-Bolzano
Dominikanerplatz 3 – piazza Domenicani 3
39100 Bozen-Bolzano, Italy

Reviewers Professor Brian Fitzgerald
LERO – The Irish Software Engineering Research Centre
Tierney Building, University of Limerick
Ireland

Professor Tore Dybå
SINTEF ICT
Strindvägen 4
Trondheim, Norway

Opponent Professor Markku Tukiainen
School of Computing
Joensuu Campus
University of Eastern Finland
P.O.Box 111
FI-80101 Joensuu

6

List of publications
This thesis is based on the following original publications which are referred to in the
text as I–V. The publications are reproduced with kind permission from the publishers.

I Korkala, M. & Abrahamsson, P. 2004. Extreme Programming: Reassessing
the Requirements Management Process for an Offsite Customer. In: the
proceedings of the 11th European Conference on Software Process Im-
provement (EuroSPI 2004). November 10–12, 2004. Trondheim, Norway.
pp. 12–22.

II Korkala, M., Abrahamsson, P. & Kyllönen, P. 2006. A Case Study on the
Impact of Customer Communication on Defects in Agile Software Devel-
opment. In: the proceedings of AGILE 2006 Conference. July 23–28, 2006.
Minneapolis, MN, USA. pp. 76–88.

III Korkala, M. & Abrahamsson, P. 2007. Communication in Distributed Agile
Development: A Case Study. In: the Proceedings of the 33rd EUROMICRO
Conference on Software Engineering and Advanced Applications (EU-
ROMICRO 2007), August 28–31, 2007. Lübeck, Germany. pp. 203–210.

IV Korkala, M., Pikkarainen, M. & Conboy, K. 2010. Combining Agile and
Traditional: Customer Communication in Distributed Environment. In: Agility
Across Time and Space – Implementing Agile Methods in Global Software
Projects, eds. D. Šmite, N.B. Moe & P. J. Åkerfalk. Springer. pp. 201–216.

V Korkala, M. & Maurer, F. 2014. Waste Identification as the Means for Im-
proving Communication in Globally Distributed Agile Software Develop-
ment. Journal of Systems and Software. Volume 95, September 2014, pp.
122–140.

7

Author’s contributions
Paper I: The first author was responsible for planning the case, collecting and ana-
lysing the data and writing the paper. The second author provided comments about
the manuscript and supported the research process by providing feedback.

Paper II: The first author was responsible for planning the case, collecting and
analysing the data and writing the paper. The second author provided comments
about the manuscript and supported the research process by providing feedback.
The third author contributed to the case by collecting defect-related data from one of
the case projects.

Paper III: The first author was responsible for planning the case, collecting and
analysing the data and writing the paper. The second author provided comments
about the manuscript and supported the research process by providing feedback.

Paper IV: The first author was responsible for planning the case, analysing the
data and writing the paper. The second author was responsible for collecting the
data since the first author was not able to participate in this process. The data collec-
tion (i.e. the interview) was conducted in Ireland. The second author also provided
comments about the manuscript and supported the data analysis process. The third
author provided comments about the manuscript.

Paper V: The first author was responsible for planning the case, collecting and
analysing the data and writing the paper. The second author provided comments
about the manuscript and supported the research process by providing feedback
and helping to reflect on the findings during the study.

8

Contents
Preface ... 3

Academic dissertation ... 5

List of publications .. 6

Author’s contributions .. 7

List of abbreviations... 10

1. Introduction .. 11

1.1 Research questions .. 12
1.2 Scope of the research ... 13
1.3 Organization of the thesis.. 14

2. Background of the study.. 15

2.1 Software process, software process models and methods 15
2.2 From “code-and-fix” to iterative development ... 16
2.3 Agile software development .. 21

2.3.1 The origins of agile methods ... 25
2.3.2 The nature of agility .. 27
2.3.3 Commonalities and differences between traditional and agile

methods ... 29
2.3.4 Benefits and challenges of agile methods 32
2.3.5 Critique of agile methods .. 36

2.4 Distributed software development .. 40
2.4.1 Distributed agile software development ... 45

2.5 The current state and future of agile methods .. 50
2.6 Summary .. 52

3. Communication in software development ... 53

3.1 The aim of communication .. 53
3.2 The elements and actors of communication ... 53
3.3 Formal and informal communication .. 55
3.4 Communication in agile software development .. 56
3.5 The role of the customer in agile software development 60
3.6 The effectiveness of communication from the theoretical perspective 62

3.6.1 Media Richness Theory .. 63
3.6.2 Media Synchronicity Theory .. 64

3.7 Communication challenges and solution proposals in distributed
environments: a toolbox .. 67

9

3.8 Summary .. 72

4. Research design .. 73

4.1 Research approach .. 73
4.1.1 Action research .. 73
4.1.2 Case studies .. 74

4.2 Data collection .. 77
4.3 Data analysis .. 80

5. Research contributions .. 82

5.1 Paper I: Extreme Programming: Reassessing the Requirements
Management Process for an Offsite Customer ... 82

5.2 Paper II: A Case Study on the Impacts of Customer Communication on
Defects in Agile Software Development ... 83

5.3 Paper III: Communication in Distributed Agile Development:
A Case Study ... 83

5.4 Paper IV: Combining Agile and Traditional: Customer Communication in
Distributed Environment .. 84

5.5 Paper V: Waste Identification as the Means for Improving Communication
in Globally Distributed Agile Software Development 85

5.6 Summary of contributions.. 86

6. Discussion.. 89

6.1 Implications for research ... 89
6.1.1 Media Richness Theory and Media Synchronicity Theory............... 91

6.2 Implications for practice .. 93

7. Conclusions ... 97

7.1 Answers to research questions.. 97
7.1.1 Q1: Why is customer communication important in distributed agile

software development? ... 97
7.1.2 Q2: How is it possible to involve the customer in the development

process in distributed agile development in order to ensure
communication and feedback? .. 97

7.1.3 Q3: What are the means, practices and tools for improving
customer communication in distributed agile development? 98

7.1.4 RQ: How is it possible to improve customer communication in
distributed agile software development? .. 98

7.2 Trustworthiness and limitations of the study ... 99
7.3 Future research opportunities .. 102

References ... 104

Appendices
Papers I–V

Abstract

10

List of abbreviations
AR Action Research

ASD Adaptive Software Development

DSD Distributed Software Development

DSDM Dynamic Systems Development Method

DXP Distributed Extreme Programming

FDD Feature-Driven Development

GSD Global Software Development

IID Iterative and Incremental Development

ISD Information Systems Development

MRT Media Richness Theory

MST Media Synchronicity Theory

RUP Rational Unified Process

XP Extreme Programming

11

1. Introduction

In 1968 Edsker W. Dijkstra wrote an article titled “Go to statement considered
harmful” in which he criticized the use of the “go to” programming statement. Dijks-
tra claimed that the command increases the complexity of the program code and
makes it more difficult to comprehend and, hence, it should not be used (Dijkstra
1968). Since this early recommendation for improving software development, a
plethora of different development approaches have emerged. This evolution has
led to the emergence of agile development methods. Instead of trying to identify a
complete set of requirements before the project begins and to eliminate as much
change as early as possible, agile methods embrace change by accepting and
incorporating it instead of eliminating it. The conventional beliefs relating to the
ability to identify all the potential aspects, such as requirements and schedules, in
the beginning of a project have been criticised e.g. in (Ramasubbu & Balan 2009,
Larman & Basili 2003, Poppendieck & Poppendieck 2003); uncertainty can be
seen more as a rule than an exception, and understanding this rule is paramount
for companies if they want to succeed (De Meyer, Loch & Pich 2002).

Communication is important in software development despite the chosen de-
velopment approach (Saeki 1995, Beck 2000, Bostrom & Thomas 1983, Edstrom
1997), and its role is further emphasised in agile methods. Instead of relying on
communication through specifications, documentation and other impersonal arte-
facts, agile methods propose close collaboration between all those who are in-
volved in the development effort and encourage them to interact, preferably in a
face-to-face manner (Beck 2000). The customer is an integral part of an agile
team, responsible for steering the project in terms of its contents. The agile cus-
tomer is actively involved in the development process, providing the team with a
set of product requirements and supporting it in terms of providing feedback about
implemented features. This active steering aims towards implementing a product
that serves its intended goals in the best possible way. (Beck 2000) Agile software
development projects rely on deliberately vaguely defined requirements. For ex-
ample Paasivaara and Lassenius (2003) claimed that software projects developing
genuinely novel products face challenges regarding software requirements. In
projects such as these, collaborating parties cannot hope to receive clear product
specifications at the beginning of the effort (Paasivaara & Lassenius 2003).
Hence, close communication and collaboration is essential throughout the project,

12

since the participants are continuously trying to understand what to build at the
same time as they are developing the project. (Paasivaara & Lassenius 2003)

Developing software in a globally distributed fashion can be seen almost as a
business necessity for companies (Damian & Moitra 2006). Agile development
methods were developed to serve the needs of small collocated efforts that could
enjoy the benefits of having a constant customer presence available. The role of
the agile customer can be seen as quite demanding even without distribution, and
taking a distributed development approach in the context of agile development is
even discouraged (Šmite et al. 2010a). Distributed development creates a host of
challenges for the companies, and communication is one of them. Noll et al.
(2010) identified that temporal, geographical and cultural distances are the main
barriers hindering global software development, and that these barriers further
introduce challenges for effective communication. However, it can be difficult to
have active customer involvement and communication in distributed settings, and
these challenges also affect customer communication. In order to meet the chal-
lenges, several different solution proposals have been provided.

Attempts can be made to overcome the challenges resulting from geographical
distance by using various communication tools. In the context of agile develop-
ment, that emphasises interactive and informal communication, solutions such as
videoconferencing are proposed to be applied (Kircher et al. 2001, Sureshchandra
& Shrinivasavadhani 2008). Regarding temporal distance, overlapping work hours
can be utilized but this can be very consuming and may lead to overtime work
(Holmström et al. 2006a, Sarker & Sahay 2004, Conchúir et al. 2009). Applying
communication policies to reduce communication delays caused by temporal
distribution could help with this particular distance (Vax & Michaud 2008). Cultural
distance can be mitigated by involving people who understand all the languages
involved (Layman et al. 2006), by rotating people across the sites (Ebert & De
Neve 2001) and by using experienced domain experts able to make the issues
transparent (Summers 2008). Given the large number of challenges, the question
of improving customer communication in distributed agile software development
becomes relevant.

1.1 Research questions

This section presents the research questions of this thesis. The main research
question of this work is further elaborated by three additional sub-questions, each
targeting a specific area of interest that contributes to the main research problem.

For the purposes of this study, a clarification of the central terminology is nec-
essary. In this work, customer is defined as “the source of information and feed-
back for successful implementation of a software product”. This definition is de-
rived from (Pikkarainen et al. 2011). In addition, distributed software development
is defined as a development approach in which the stakeholders involved in a
development effort are separated by a geographical distance ranging between the
cross-town scenario (Prikladnicki et al. 2003) in which the stakeholders are dis-

13

tributed within a same city to the continental scenario (Prikladnicki et al. 2003) in
which the stakeholders are distributed across continents.

In order to identify the central aspects that are required for improving customer
communication in distributed agile software development, the main research ques-
tion of this work is formulated as follows:

RQ: How is it possible to improve customer communication in distributed
agile software development?

In order to provide the answer to this problem, the following sub-questions are
defined that approach the problem space from different perspectives.

Communication is important in every software development approach, but it is
especially emphasised in agile methods that emphasize face-to-face communica-
tion. Especially in distributed development, efforts to achieve such communication
can be very challenging, and hence the effects of not enjoying active customer
participation and therefore communication following the propositions made in agile
methods should be understood. Therefore, the first sub-question is defined as:

Q1: Why is customer communication important in distributed agile software devel-
opment?

The close collaboration between the stakeholders is emphasised in agile methods.
In distributed settings, achieving this close relationship can be challenging and
hence the mechanisms for involving the customer in the development process
need to be studied. Sub-question 2 aims to provide insights into this aspect.

Q2: How is it possible to involve the customer in the development process in dis-
tributed agile development in order to ensure communication and feedback?

Agile methods focus on constant improvement of the development process. In
order to follow this principle, it should be understood what means, practices and
tools are required to improve customer communication so that it provides the
necessary information in order to complete the development project successfully.
In order to understand this aspect, the final sub-question is posed as follows:

Q3: What are the means, practices and tools for improving customer communica-
tion in distributed agile development?

1.2 Scope of the research

Agile methods have entered the world of distributed development, which appears
to be a very important development approach for companies. Therefore, distribut-
ed development context is one of the aspects of this thesis. Considering the im-
portance of the customer in agile development and the challenges it faces due to

14

distribution, customer involvement is one of the viewpoints taken in this study.
Another central aspect of agile development is constant improvement of the de-
velopment process (Agile Manifesto 2001). Whereas there are existing recom-
mendations about how to ensure and improve communication in distributed agile
software development, due to the importance of constant reflection in agile meth-
ods this aspect is included in this work. Figure 1 describes the scope of the study,
which is further illustrated in the intersection of the three aspects of this thesis.
The scope appears as the darkened section of the figure.

Figure 1. The scope of the thesis.

Figure 1. The scope of the thesis.

1.3 Organization of the thesis

The rest of this work consists of the following sections. Section 2 focuses on the
theoretical background of the study, discussing terminology and providing a brief
history of method development ranging from ad hoc methods to agile methods. In
addition, Section 2 discusses agile software development in general and in distrib-
uted contexts in more detail.

Section 3 introduces the aim of communication, the elements and actors in-
volved in it, the differences between formal and informal communication, commu-
nication in agile software development and the role of the customer in agile soft-
ware development. In addition, challenges and their solution proposals identified in
the previous literature are discussed and the efficiencies of communication media
are examined from theoretical perspectives. Section 4 describes the research
design, and section 5 presents the individual contributions of the research articles
and summarizes the results. In Section 6, the key implications of this work for both
theory and practice are discussed. Section 7 concludes the work. The original
articles are included at the end of this work.

15

2. Background of the study

The aim of this section is to provide an overview of the main topics of the study. At
first the terms software process, software process models and the distinction be-
tween methods and methodologies are discussed. Section 2.2 explores the history
of software development methods, and agile software development methods are
discussed in Section 2.3. Section 2.4 discusses distributed software development
in general, with particular reference to distributed agile software development. In
addition, the current state and the future of agile development methods are dis-
cussed. Finally, Section 2.6 provides a summary of the topics discussed in this
section.

2.1 Software process, software process models and
methods

According to Humphrey (1995, p.4), software process can be defined as “the se-
quence of steps required to develop or maintain software”. In addition, software
processes aim towards providing the “technical and management framework for
applying methods, tools and people to the software task (Humphrey 1995, p.5).
Further, Sommerville (1996, p. 269) claimed that software process “consists of the
activities and associated information that are required to develop a software sys-
tem”. Boehm (1988, p. 61) stated that “the primary functions of a software process
model are to determine the order of the stages involved in software development
and evolution and to establish the transition criteria for progressing from one stage
to the next”. Software process models thus provide guidelines considering the
order in which the major tasks of a project should be carried out and address the
following questions as defined by Boehm (1988):

1) What is done next and 2) for how long it will be done.

Software development methodologies on the other hand focus on how to navigate
through these stages and how to present different phase products (Boehm 1988).
However, Conboy (2009) pointed out the vague definitions of both method and
methodology. In his study, Conboy (2009, p.329) reached the following definition
of a method in the context of Information Systems Development (ISD): “An ISD

16

method encompasses the complete range of practices involved in the process of
designing, building, implementing, and maintaining an information system, how
these activities are accomplished and managed, the sequence and frequency of
these activities, as well as the values and goals of all of the above”. However,
Conboy (2009) claimed that over the years the notion of a method more as an
idea and an enactment has been accepted in the field of ISD. Conboy (2009) used
the term “method” while discussing agility and agile approaches and a similar
interpretation is also adopted in this thesis.

2.2 From “code-and-fix” to iterative development

In this section, the history of software development process models is described
briefly. In addition, traditional software development is described in more detail. In
this dissertation, traditional software development is synonymous with plan-driven
development. Plan-driven software development is a software development ap-
proach in which the software is developed following specific processes, commenc-
ing with the stage of gathering requirements and ending with the final code
(Boehm & Turner 2003b).

According to Avison and Fitzgerald (2003) the computer applications of the
1960s and 1970s were implemented without formalized or explicit development
approaches and the emphasis was on programming and solving technical prob-
lems. Boehm (1988), referred to this approach as the “code-and- fix” approach,
which had two steps; the code was written and the problems were then fixed. The
problems related to this approach led to recognizing the needs for improving the
development process, suggesting that separate design, requirements identification
and as well as test and evolution planning phases along with other tasks related to
preparation were needed prior to coding (Boehm 1988). Boehm’s (1988) brief
discussion continues with a stagewise model. In his work, Boehm (1988) referred
to the development of the SAGE system, which had led to recognising certain
problems and to the development of the stagewise model in order to address
these issues as early as 1956. Benington (1983) categorized these problems as
follows: 1) Computer operation, 2) Program or system reliability, 3) Supporting
programs and 4) Documentation. According to Benington (1983, p.299), the prob-
lems emerged from the size of the computer programs; they “were too large for
one person to grasp entirely”. In order to tackle these problems, Benington (1983,
p.306) suggested that the software should be implemented in successive stages
as follows: operational plan, operational specifications, program specifications,
coding specifications, coding, parameter testing, assembly testing, shakedown
and evaluation.

Traditional plan-driven software development methods are described as docu-
ment-driven, code-driven and traditional methods (Boehm 1988). Plan-driven
software development is an engineering approach in which the software is devel-
oped following specific processes, commencing with the stage of gathering re-
quirements and ending with the final code (Boehm & Turner 2003b). There are

17

several methodological approaches and models describing how to develop soft-
ware in a plan-driven fashion (Boehm & Turner 2003b).

In this work, plan-driven methods are referred to as traditional methods. These
traditional methods approach software development from the viewpoint that sys-
tems are fully predictable and specifiable and that they can be built through careful
and extensive planning (Nerur et al. 2005). One of the most well-known traditional
approaches is the Waterfall model introduced by Royce (1970). As Boehm ex-
plained in (1988), the Waterfall model introduced two major enhancements to the
stagewise model; 1) the introduction of feedback loops between stages and the
guideline to limit the loops to successive stages in order to minimize costly rework
resulting from feedback across several stages, and 2) a piloting approach in which
the first version is a pilot version of the software and the second one is the final
product, which should be implemented based on the feedback from the pilot ver-
sion. The software is thus built twice and the first result simulates the final product.
(Royce 1970). The Waterfall model is depicted based on (Royce 1970) in Figure 2.

Figure 2. The Waterfall model as depicted by Royce (1970).

Even though there are hints of iterativity, feedback and adaptivity present in the
Waterfall model, the iterative step based on feedback has been lost in most de-
scriptions of the model. The Waterfall model is often misunderstood as a single-

18

pass approach, to which the approach devolved with its strict sequence of re-
quirements analysis, design, and development phases (Larman & Basili 2003).
Nevertheless, the Waterfall approach has helped to resolve many of the previously
encountered difficulties in software projects and it has established itself as the
basis of most industrial and governmental software acquisition standards (Boehm
1988). According to Boehm and Turner (2003b) the strength of traditional plan-
driven methods lies in the comparability and repeatability that standardization
brings.

However, even with refinements and revisions, such as extensions supporting
incremental development and evolutionary change, the Waterfall model has en-
countered several fundamental difficulties. Boehm (1988) stated that the primary
source of difficulties of the Waterfall model has been its emphasis on using highly
detailed documentation as the completion criteria for early design and require-
ments phases. For example, document-driven standards have resulted in many
projects writing elaborate specifications of user interfaces and decision-support
functions that are understood poorly, which in turn have resulted in defective de-
signs and the development of large amounts of unusable program code. (Boehm
1988) Benington (1983, p.301) endorsed this opinion by stating that aiming for a
precise understanding of what the software needs to do before a single line of
code is produced “can be terribly misleading and dangerous”.

In order to further support the drawbacks of the Waterfall approach, Larman
and Basili (2003) referred to the Standish Group’s 1998 report “CHAOS: Charting
the Seas of Information Technology”, which charted 23 000 development projects
in order to identify the failure factors. Larman and Basili (2003) concluded that
according to the report, the top reasons for project failure were related to Waterfall
practices. In addition, for example Avison and Fitzgerald (2003) discussed the
caveats of the Waterfall approach, stating that it had problems related to e.g.
meeting the real business needs, user satisfaction and with modelling processes
that are unstable due to changes both in the market and in the business. Further,
Parnas and Clements (1986) stated that the development approaches that can be
classified as top-down approaches result from a desire to have a systematic and
rational way of designing software. Further, they listed the following reasons why
design processes that are claimed to be rational and systematic will remain as
idealizations.

1. In most cases the users of the system do not know what they want
from it and cannot explain what they know.

2. Even though the requirements are known there are still many other
facts that need to be known while designing software. Some of the de-
tails will reveal themselves only during the implementation process
and this learning process may invalidate the design.

19

3. Although all the relevant facts are known prior to development, hu-
mans are unable to fully master the plethora of details that need con-
sideration while designing and building a correct system.

4. Even if all the needed details could be mastered, external factors will
cause changes in all but trivial projects.

5. Human errors are inevitable no matter how well the relevant facts are
collected and organized and how rational the design process is.

6. Some preconceived ideas are tested in the project despite the fact that
they are not derived from the requirements by a rational process, but
emerge from other sources.

7. For economic reasons, the use of software developed for some other
project is often encouraged, or the software being implemented is en-
couraged to be shared with another ongoing project. The resulting
software is often a compromise, and does not represent the ideal soft-
ware for both projects.

For these reasons, Parnas and Clements (1986) claimed that creating an error-
free design from requirements in a rational fashion is unrealistic. In fact, Parnas
and Clements (1986) presented a strong critique of publications reporting a ration-
al design process being applied in even small program developments. They
claimed that the results had been “polished” to describe the process in the way
that the author would have liked it to go instead of reporting what actually hap-
pened. Parnas and Clements (1986, p.252) introduced a concept of “faking the
rational design process”, which suggests that if a rational process cannot be fol-
lowed, it can still be followed as closely as possible if the documentation that
would have resulted from following the ideal process is written. Parnas and Clem-
ents (1986), in fact, promoted this “faking” process in terms of communication,
since this rationalized documentation provides the reader with what he needs and
results in a product that can be understood, reused and maintained.

Despite the challenges and the criticism, the Waterfall model is still widely used
in the industry and has its benefits, such as predictability and focus on detailed
planning of both the architecture and the structure of the software, which are both
essential attributes when dealing with large systems (Petersen et al. 2009). Fur-
ther, Petersen et al. claimed in (2009) that many of the reported problems related
to the Waterfall model are based on experiences and beliefs instead of empirical
findings. To address this knowledge gap, they conducted a case study concluding,
perhaps contradictory to their claim of the benefits of the Waterfall model, that the

20

issues identified in the literature were found in their work and that the Waterfall
model is not suitable for large-scale development (Petersen et al. 2009).

Boehm (1988) continued his discussion of the evolution of software develop-
ment approaches with Evolutionary Development Model, which is a concept intro-
duced by Gilb (1981). In this approach, development consists of increments of
working software that expand as a result of the experiences gained from its func-
tionality. However, according to Gilb (1981), the main idea behind the approach is
to speed up development by releasing these increments of the system at an early
stage. For example Royce (1990) discussed the benefits of the evolutionary ap-
proach by stating that it provides a systematic way of identifying quality problems
early in the development. However, evolutionary development is not free from
problems. According to Boehm, (1988) it was difficult to distinguish the evolution-
ary model from the code-and-fix approach and the model expects, often unrealisti-
cally, that the flexibility of the user’s operational system will adapt to unplanned
evolutionary paths. In these cases, the stages are often pursued in the wrong
order. In order to provide an example, Boehm (1988) stated that a significant
amount of code, which is hard to change, is written before taking long-range archi-
tectural and usage considerations into account.

The Transform model followed the evolutionary approach. The transform model
is described in (Balzer et al. 1983) and presents an iterative development ap-
proach taking into account product adjustment based on changing needs. In addi-
tion, this model has a strong focus on end user involvement in the process. In this
approach, the changes are made in the specifications themselves by the end user.
This approach should drastically simplify the maintenance problem. “The mainte-
nance problem” discussed by Balzer et al. (1983) is twofold. First, it results from
the lack of technology to manage the often undocumented, informal and labour-
intensive activities that constitute software development processes. The second
aspect is the fact that maintenance is made at the source code level, in which the
important information is dispersed. This latter problem makes the software difficult
to understand. (Balzer et al. 1983). As the difficulties associated with the trans-
form model arise from its emphasis on automation, Boehm (1988) proposed that
the model is suitable for small applications in limited application areas, and that it
suffers from difficulties similar to those associated with the evolutionary approach.
As an example of the latter, Boehm (1988) claimed that similarly to the evolution-
ary approach, the transformation model expects that the flexibility of the user’s
operational system will adapt to unplanned evolutionary paths.

The Spiral model (Boehm 1988) is an iterative and incremental development
approach. Each cycle of the spiral has typically the following steps:

1. Identification of 1) objectives for the proportion of the product to be elabo-
rated, 2) alternatives for implementing this proportion and 3) the con-
straints related to application of these alternatives, such as costs and
schedule.

21

2. Evaluation of alternatives related to constraints and objectives. In addi-
tion, this step identifies those areas that are uncertain and may represent
a risk to the project. These risks are further identified and resolved.

3. Development of the features and their verification.

4. Planning of the next phase of the product.

Reviewing the results of the cycle plays an important role in the Spiral model. This
review includes all the products implemented during the cycle, including the plans
for the next one. This review includes the relevant stakeholders that are con-
cerned with the product. The major objective of the review is to ensure mutual
commitment of all stakeholders considering the approach for the next phase.

In addition, the Spiral model is a risk-driven development approach. Each de-
velopment cycle begins with risk analysis. The Spiral model is not rigid in the
selection of different development approaches, since based on the risks, any mix
of different development approaches (e.g. prototyping and simulation) can be
applied for achieving the goal of the given cycle. (Boehm 1988). There are down-
sides related to this approach. For example Wolff (1989) reported such findings
from a study focusing on the implementation of a management information sys-
tem. Whereas the study reported generally positive results concerning the Spiral
model, it was also reported that passing the long term objectives and plans from
cycle to cycle should be defined more clearly, along with their integration with the
shorter term plans and objectives (Wolff 1989). In addition, Wolff (1989) saw the
different activities of the cycles, such as defining the objectives and identifying
risks, as planning activities and continued that there is a need to define more
clearly how any planning carried out following the model relates to the model itself,
since the model can be seen as a “skeleton plan” for the project itself.

The evolution of software process models has moved towards more and more
change-driven approaches to software development. As a culmination of this trend
towards change-driven models, agile development was introduced in the late
1990s. Agile software development will be discussed in the next section.

2.3 Agile software development

According to Åkerfalk and Fitzgerald (2006), despite decades of software devel-
opment, many of the characteristics of the “software crisis” are still prevalent in the
industry. The defined symptoms of this phenomenon are exceeded budgets and
schedules along with poor quality of the end product (Glass 2006). As stated in
(Ågerfalk & Fitzgerald 2006), agile methods have been proposed as a paradigm
that potentially addresses these problems by promoting flexibility, teamwork, inno-
vation and communication. Further, Turk et al. (2005) claimed that agile methods
emerged primarily to support the development of high quality software meeting the

22

customers’ needs in a timely and economical manner. These reasons are now
almost a decade old, and perhaps something has changed in why agile methods
are being adopted by companies. A company named VersionOne1 conducts an-
nual surveys of agile development. In their latest 7th annual survey2 with a total of
4048 respondents from companies having a median of 100 employees, the top
five most important reasons for adopting agile developments methods were as
follows: accelerated time to market was the most important reason, with 30% of
respondents claiming it to be very important. The second most important aspect
was managing changing priorities with a score of 29%, followed by better align-
ment of business and IT (23%). The fourth most important factor was to increase
productivity (18%), while the fifth reason, improved quality, gathered 17% of the
“highest importance” votes. However, reducing costs, which is one of the key
“original” targets of agile development methods, gained a share of only 10%.

Abrahamsson et al. (2002) stated that it is widely acknowledged that the start-
ing point for various different agile methods was the emergence of Extreme Pro-
gramming (XP) (Beck 2000, Beck 1999) in 1999, although according to Larman
and Basili (2003) the Dynamic Systems Development Method (DSDM) published
in 1997 (Stapleton 1997) was the first method that can be claimed as agile. Since
the late 1990s several agile methods have surfaced, XP and Scrum (Schwaber &
Beedle 2002, Schwaber 2004) being perhaps the most well-known of them. Meth-
ods such as Adaptive Software Development (ASD) (Highsmith 2000), Dynamic
Systems Development Model (DSDM) (Stapleton 1997), Feature Driven Develop-
ment (FDD) (Palmer & Felsing 2001) and Lean Software Development (Poppend-
ieck & Poppendieck 2003, Poppendieck & Poppendieck 2007) have also emerged.

According to Conboy (2009), agile methods have been received well in the field
of Information Systems Development (ISD) and there is strong anecdotal evidence
suggesting that both the awareness and the use of these methods are highly
prevalent in the field of ISD. A study conducted by Forrester Research in 2010,
reported in (West et al. 2010), provides support for this claim by showing that agile
development has joined the mainstream of software development methods, with
45% of organizations using a development approach that can be labelled as agile.
However, the claims of agile being a mainstream development approach have
been criticized. For example Stavru (2014) analysed nine different studies of the
use of agile methods and concluded that only one of them could be considered as
a scientific contribution, whereas the others lacked sufficient reporting and hence
had low trustworthiness. The majority of the studies were from the companies
providing tools for agile development and agile consulting, that could have vested
interests in conducting the studies and may not follow rigorous scientific methods
while conducting them. This suggestion is in line with Rodríguez et al. (2012), who
similarly claimed that the majority of the studies are conducted by companies
rather than academics.

1 http://www.versionone.com/
2 http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf

http://www.versionone.com/
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf

23

The core of agile methods is condensed into a set of four different values de-
fined in the Manifesto for Agile Software Development (Agile Manifesto 2001). The
values are described in Figure 3. Agile methods emphasise the factors on the left
but, however, do not neglect the ones on the right hand side.

Figure 3. The agile values defined in the Agile Manifesto (2001).

In addition to the values, the Agile Manifesto (2001) defined 12 principles that
should be embedded into any practices of the development approach considered
as agile. Laanti et al. (2013) also discussed the areas emphasized by these prin-
ciples. The principles and the areas they emphasize are described in Table 1.

Table 1. The 12 principles of agile development and what they emphasise accord-
ing to (Laanti et al. 2013).

Number Description Emphasis on
1 Our highest priority is to satisfy the

customer through early and continu-
ous delivery of valuable software.

Continuous and early delivery,
value, customer satisfaction.

2 Welcome changing requirements,
even late in development. Agile
processes harness change for the
customer’s competitive advantage.

Competitiveness, adaptability,
customer benefit.

3 Deliver working software frequently,
from a couple of weeks to a couple
of months, with a preference for the
shorter timescale.

Frequent deliveries.

4 Business people and developers
must work together daily throughout
the project.

Collaboration.

24

5 Build projects around motivated
individuals. Give them the environ-
ment and support they need and
trust them to get the job done.

Good environment, motivated
individuals, support and trust.

6 The most efficient and effective
method of conveying information to
and within a development team is
face-to-face conversation.

Communication, efficiency

7 Working software is the primary
measure of progress.

Measure progress via delivera-
bles.

8 Agile processes promote sustainable
development. The sponsors, devel-
opers, and users should be able to
maintain a constant pace indefinitely.

People, sustainability.

9 Continuous attention to technical
excellence and good design en-
hances agility.

Technical excellence.

10 Simplicity- the art of maximizing the
amount of work not done- is essential.

Optimize work, simplicity.

11 The best architectures, require-
ments, and designs emerge from
self-organizing teams.

Self-organization.

12 At regular intervals, the team reflects
on how to become more effective,
then tunes and adjusts its behaviour
accordingly.

Built-in improvement of behav-
iour and efficiency.

Turk et al. (2005) stated that the Agile Manifesto is the condensed definition of
goals and values of agile software development and that it is further detailed
through these abovementioned principles. These principles on their behalf can be
seen as a set of rules and policies that the processes claiming to be agile should
support (Turk et al. 2005). However, the Agile Manifesto has been criticised by
Conboy and Fitzgerald (2004), who perceived that it is insufficiently anchored to
theoretical concepts.

Agile development has evolved from the personal experiences and collective
wisdom of thought leaders and consultants from the field rather than from aca-
demia (Dingsøyr et al. 2012). After 10 years of defining the agile manifesto, the
following success factors for agile projects were identified3:

1. Demand technical excellence. This is an essential factor and should be
demanded by the management, the business itself and the development
teams.

3 These factors are not scientifically evaluated, but are presented in
http://msdn.microsoft.com/en-us/library/hh350860(v=vs.100).aspx#intro

http://msdn.microsoft.com/en-us/library/hh350860

25

2. Promote individual change and lead organizational change. Agile
methods promote response to change, which should be followed at the
organization level and which should react to changing customer needs.

3. Organize knowledge and improve education. There is a large body of
knowledge related to teams and productivity that might remain unknown
to most managers and many developers. This information is encapsulat-
ed in agile practices, which should be supported by management and
taught in universities educating software professionals.

4. Maximize value creation across the entire process. Everyone in the
organization needs to be trained and educated on how to optimize per-
formance throughout the value stream. This enables the values and prin-
ciples stated in the Agile Manifesto to become fully realized.

According to Laanti et al. (2013), these targets lack much of the original emphasis
defined in the twelve agile principles. What is left without mention are customer
satisfaction or benefit, motivated individuals, competitiveness, environment, sup-
port and trust, collaboration and communication, emphasis on people, simplicity,
sustainability and self-organization.

2.3.1 The origins of agile methods

According to a systematic review conducted by Dybå and Dingsøyr in 2008 (Dybå
& Dingsøyr 2008), the majority of the included studies approached agile develop-
ment as completely new concept. However, Merisalo-Rantanen et al. (2005, p. 55)
labelled XP in their study as a “new bag of old tricks”, indicating that some of the
key ideas behind agile methods are significantly older. Larman and Basili (2003)
reported the recollections of Gerald M. Weinberg considering the use of incremen-
tal development already in 1957. Further, Larman and Basili (2003) stated that
many examples of Iterative and Incremental Development (IID) come from the
1970s and 1980s, which they saw as the most active and yet the least known era
in the history of IID. However, the iterative approach appears not to be the only
agile element introduced or proposed before the emergence of agile methods
themselves. Larman and Basili (2003) discussed the NASA´s early 1960s project
Mercury, in which not only an iterative approach was taken, but also the practice
of “Test-first”, in which tests were planned and written before each iteration, was
applied. This practice is used in Extreme Programming (Beck 2000), which
emerged almost four decades later.

Further, Gladden (1982) provided three propositions for software development
that can be seen as having similarities to agile approaches. The first, “system
objectives are more important than system requirements” translates according to
Abbas et al. (2008) to the agile idea of having an overall understanding of the
system instead of having a detailed set of requirements which will change during

26

the project. Perhaps contradictorily, Gladden (1982) stated that the main reason
behind any “software fiasco” lies within a non-existent, incomplete, vague or poorly
thought out set of requirements. This first proposition is also related to the shorter
planning horizon promoted in agile methods, e.g. (Beck 2000, Schwaber & Beedle
2002). As Gladden (1982) claimed, objectives of the system could be set for a
shorter period of time and when they are set, they are less subject to change.
Further, if objectives will change this means that the system to be implemented is
no longer the same as anticipated and the need for a new system needs to be
examined. Concentrating on system objectives instead of requirements can, ac-
cording to Gladden (1982, p. 37), “go a long way to prevent a system from “evolv-
ing” into one that the user does not want or need”.

The second proposition, “a physical object conveys more information than a
written specification”, translates according to Abbas et al. (2008) directly to the
agile value of Working software over comprehensive documentation. Gladden
(1982) promoted the use of mock-ups early in the project and the rationale of this
second proposition can be condensed in Gladden’s (1982) statement that the
system itself is the best means to convey the meaning of a system and the best
mechanism for solidifying its concepts. Similar suggestions considering the use of
prototypes were given e.g. by McCracken and Jackson in (1982). They suggested
that a prototype should be built early in the development process and that this
prototype should respond to the early feedback of the user. A series of prototypes
or modifications to the first prototype will lead to the final product itself in a gradual
fashion. (McCracken & Jackson 1982)

The third proposition, “system objectives and physical demonstrations will result
in a successful product” amalgamates the other propositions and aims towards a
product that satisfies the customer’s needs and performs the expected functionali-
ties. This last proposition aims towards providing the customer what is expected
by focusing on system objectives and demonstrations. A similar customer-oriented
approach with a focus on short term planning and early demonstrations is also
present in the agile methods, e.g. (Beck 2000, Schwaber & Beedle 2002).

In 1982 McCracken and Jackson (1982) discussed the need to involve the end-
customer in all phases of software development processes, not just in require-
ments specification alone. McCracken and Jackson (1982, p.32) suggested that
“development proceeds step-by-step with the user, as insight into the user’s own
environment and needs is accumulated”. This viewpoint is similar to the agile
proposition of active customer involvement throughout the development project
(Beck 2000). In addition, they suggested that the “inevitable” nature of changes
should be taken into account in system development methods due to the fact that
the “user, and his or her needs and environment, change during the process”
(McCracken & Jackson 1982, p.31). Agile methods on their behalf recognize the
possibility of changes during the project and even embrace them (Beck 2000).

27

2.3.2 The nature of agility

Despite the defined values and principles of agile software development, existing
literature shows that the nature of what agility itself is seems to be vague. For
example, van Oosterhout et al. (2006) stated that despite the work conducted in
the field of agility, there is still a lack of consensus on its definition. In a similar
vein, Conboy (2009) stated that the concept of agility in the field of Information
Systems Development (ISD) is confused. For example, Conboy (2009, p. 330)
claimed that “agility as a concept is highly multifaceted and has been used by
many different people to refer to very different phenomena.” Conboy (2009, p.330)
sees this disparate nature of the different agile methods as challenging and illus-
trates his point by describing XP as a method providing “prescriptive operational
instructions for developers”, whereas Scrum resembles more project management
methods than an ISD method. Lean Software Development (Poppendieck & Pop-
pendieck 2003, Poppendieck & Poppendieck 2007) for its part can be best de-
scribed as a set of philosophical guidelines (Conboy 2009). In fact, Conboy (2009)
suggested that the lack of conceptual foundation regarding agility presents signifi-
cant problems for practice in the field of ISD. For example, different agile methods
provide completely opposite advice, which makes it difficult and confusing for
teams to achieve agility (Conboy 2009).

In fact, the confusion related to agile has been noted previously. In 2005, Bör-
jesson and Mathiassen (2005) pointed out the need for elaboration and further
development of agile methods from both software developers and researchers in
their study related to Software Process Improvement. Furthermore, Conboy and
Fitzgerald (2007) pointed out the lack of cohesion and rigour in the usage of the
concepts of agility. For example, they reported that there are multiple definitions
and that researchers often use different terms to refer to the same concepts or use
the same term to refer to different concepts. This same problem was discussed
later by Conboy in (2009). Qumer and Henderson-Sellers (2008) also shared the
perception of the vague nature of agile development. They stated that there is little
evidence indicating to what extent different “so-called agile methods” meet the
agility criteria envisioned in the Agile Manifesto (2001). Sarker and Sarker (2009)
agreed with Conboy (2009) regarding the multifaceted nature of agile and further
proposed that agility should be seen from the perspectives of resource agility,
process agility and linkage agility in the context of distributed development. In this
work, resource agility has its basis in the teams’ access to relevant technological
and human resources. Process agility for its part relates to the agility originating in
the systems development method that guides the teams, including its work prac-
tices that enable collaboration across time zones. Finally, linkage agility refers to
the nature of relationships within the distributed development and with stakehold-
ers relevant to the project. This aspect also includes cultural and communicative
elements. (Sarker & Sarker 2009) Abrahamsson et al. (2009) summarized the
vague nature of agile concepts by arguing that each organization using agile
methods needs to define what agility means to them in their context. In a similar

28

vein, Mahanti (2006) stated that there is no universally applicable agile method
and they must be tailored to integrate with the existing processes.

Indeed, there appear to be several definitions of agility. For example, Kettunen
(2009) explored the concept of agility and identified 17 different definitions that
had emerged in the course of 13 years (1995–2008). In addition, Kettunen (2009)
discussed several areas of agility indicating that agility is not a concept limited to
software development alone. Kettunen (2009) identified the following areas of
agility in his work: Strategic agility, business agility, enterprise agility, agile organi-
zation, agile workforce, IT agility, agile manufacturing and agile supply chains. In
the following, some of the definitions of agility in the context of software develop-
ment are discussed in order to illustrate the multifaceted nature of this concept.

For example, Erickson et al. (2005, p. 89) provided a definition for agility by
stating: “at its core, agility means to strip away as much of the heaviness, com-
monly associated with traditional software-development methods, as possible to
promote quick response to changing environments, changes in user requirements,
accelerated project deadlines, and the like”. Some authors have approached agili-
ty from a philosophical perspective. For example, Williams and Cockburn (2003)
condensed agility as being “about feedback and change”, whereas Highsmith and
Cockburn (2001) emphasized the “soft” aspects by claiming that the central idea
behind agility is to recognise that people are the primary drivers of project success
together with an intense focus on manoeuvrability and effectiveness. Other defini-
tions emphasize that the core of agility is a set of light but sufficient rules for the
project, people and communication as Cockburn did in (2002). In their study,
Qumer and Henderson-Sellers (2006, p. 505) defined agility as “a persistent be-
haviour or ability of a sensitive entity that exhibits flexibility to accommodate ex-
pected or unexpected changes rapidly, follows the shortest time span, uses eco-
nomical, simple and quality instruments in a dynamic environment and applies
updated prior knowledge and experience to learn from the internal and external
environment.” Conboy for his part arrived at a definition of agility in iterative fash-
ion and by adjusting his definition based on the existing literature in (2009). His
final definition of agility was as follows: “the continual readiness of an ISD method
to rapidly or inherently create change, proactively or reactively embrace change,
and learn from change while contributing to perceived customer value (economy,
quality, and simplicity), through its collective components and relationships with its
environment.” (Conboy 2009, p. 340).

Considering the plethora of different definitions of agile software development
and agility, Laanti et al. (2013) discussed in their work focusing on the subject that
what is understood as “agile” has evolved over time, and that due to the abstract
nature of the concept “agile software development” it will probably take more time
before it is fully understood. Their final conclusion on the matter was that different
people mean different things when discussing agile software development and
agility in general. (Laanti et al. 2013)

29

2.3.3 Commonalities and differences between traditional and agile
methods

Although there are varying opinions concerning what actually constitutes agility,
several authors have identified characteristics that are common to all agile meth-
ods. Table 2 presents the common characteristics of agile methods based on the
literature.

Table 2. The characteristics of agile methods.

Characteristic Description References
Incremental Software is implemented in

small increments.
(Boehm & Turner 2003b,
Abrahamsson et al. 2002,
Abbas et al. 2008)

Iterative Software is implemented in
short development itera-
tions.

(Boehm & Turner 2003b,
Abrahamsson et al. 2002,
Abbas et al. 2008)

Co-operative All the involved parties work
closely together and com-
municate actively.

(Boehm & Turner 2003b,
Abrahamsson et al. 2002)

Straightforward The method itself is easy to
follow and to modify. The
method is well documented.
Principles, work structures
and processes are reor-
ganized during the project
rather than being predeter-
mined at an early stage.

(Boehm & Turner 2003b,
Abrahamsson et al. 2002)

Adaptive Changes can be made even
at the last moment.

(Abrahamsson et al. 2002,
Abbas et al. 2008)

Self-organizing Teams determine the best
way to conduct the required
work.

(Boehm & Turner 2003b)

People oriented People are the primary
drivers of success.

(Abbas et al. 2008, High-
smith & Cockburn 2001)

As suggested by these attributes, agile methods are based on the fundamental
assumption that adaptive and high quality software can be implemented incremen-
tally by small development teams driven by the principles of continuous design
improvement and testing based on rapid feedback and change. (Nerur et al.
2005). On the other hand, traditional methods approach software development
efforts through more rigid characteristics. According to Nerur et al. (2005), the
fundamental assumptions of software development when following traditional
methods are that systems are fully specifiable and predictable, and that they can
be constructed by meticulous and extensive planning. The customers’ role in tradi-

30

tional methods is important and customer interaction is conducted on an as needed
basis using formal communication focusing on contractual matters. (Boehm &
Turner 2003b, Nerur et al. 2005) By contrast, in agile methods the customer’s role is
critical and customer interaction is driven by focused increments and communication
is informal in agile development (Boehm & Turner 2003b, Nerur et al. 2005).

Despite the abovementioned differences, there are commonalities between tra-
ditional and agile methods in how they implement certain software engineering
principles. For example Jian and Eberlein (2009) identified principles which they
labelled as fundamental in software engineering based on the existing literature
and analysed, again based on the literature, how both traditional and agile meth-
ods fulfil these principles. The analysis included from the traditional side the Wa-
terfall, the Spiral model and the Cleanroom approach (Prowell et al. 1999). The
agile methods included were XP, Scrum, DSDM and FDD. Table 3 presents a
summary of the analysis conducted in (Jiang & Eberlein 2009).

Table 3. How various software engineering principles are implemented in tradi-
tional and agile methods (Jiang & Eberlein 2009).

Software engineering
principle

Examples of traditional
software engineering
practices

Examples of agile soft-
ware development prac-
tices

Invest in problem under-
standing

Identify requirements and
functions (Cleanroom)

Requirements specification
development (Waterfall)

Determination of require-
ments (Spiral model)

Product backlog (Scrum)

Sprint backlog (Scrum)

User story card (XP)

Inspect code Peer review of individual
work (Cleanroom)

Code should be reviewed by
a party not involved in
writing the original code
(Waterfall)

Pair programming (XP)

Inspections (FDD)

Involve the customers Maintain customer involve-
ment in specification and
certification (Waterfall)

Designers must communi-
cate with interface design-
ers, with management and
the customers (Waterfall)

Active user involvement
and stakeholder collabora-
tion (DSDM)

On-site customer (XP)

31

Risk management
Identify and manage un-
certainty

Determination of plans
(Spiral model)

Identification and resolution
of risks during the entire
software development
process (Spiral model)

Rapid revision of incremen-
tal plans for new require-
ments and response to
schedule and budget
changes (Cleanroom)

Regular build schedule
(FDD)

Planning game (XP)

Iterative and incremental
development

Incremental development
cycle (Cleanroom)

Iterative and incremental
development (Spiral model)

Iterative and incremental
development. Scrum,
DSDM and XP mentioned
explicitly in (Jiang & Eber-
lein 2009). According to
(Boehm & Turner 2003b,
Abrahamsson et al. 2002,
Abbas et al. 2008) all agile
methods are iterative and
incremental.

Use better and fewer
people
People are the key to
success

Testing and development
are carried out by small
teams (Cleanroom)

Empowering teams
(DSDM)

Establish a software pro-
cess that provides flexibility

Team frequently reviews
and discusses design strat-
egies (Cleanroom)

Daily scrums (Scrum)

Open workspace (XP)

Reporting/visibility of
results (FDD)

Change is inherent to
software; plan for it and
manage it

Requirements management
(Spiral model)

Baselined requirements
(DSDM)

Maintain disciplined prod-
uct control

Configuration management
(Spiral model)

Configuration manage-
ment (FDD)

Manage quality throughout
the life-cycle as formally as
possible

Team strives for design
simplification (Cleanroom)

Simple design (XP)

Produce software in a
stepwise fashion.

Stepwise system integration
process (Cleanroom)

Continuous integration
(XP)

Integrated testing (DSDM)

32

Based on the above, agile and traditional methods both fulfil the same develop-
ment principles but approach development from different angles. Whereas tradi-
tional methods approach project development from a strict and rigid perspective,
agile methods provide development organization more freedom to achieve the
intended target of the project, namely a product that meets the customers’ needs.
Furthermore, the comparison presented in Table 3 suggests that the ideas behind
agile methods are hardly unique.

Traditional and agile methods are not mutually exclusive. Instead, they can be
combined in order to achieve the best possible development approach. Boehm &
Turner (2003b) proposed using risk analysis as a tool for balancing agility with the
discipline provided by traditional approaches. This can help to identify the most
suitable approach for the project, which in turn increases the probability of suc-
cess. Boehm and Turner (2003b) promoted the idea of combining agile and tradi-
tional approaches based on their claim that both agility and discipline are required
for sustainable, successful software development. In a similar vein, Turk et al.
(2005) suggested that in order to use agile processes appropriately it is necessary
to have an understanding of the situations in which agile processes are, or are not,
applicable. Ramesh et al. (2006) also discussed balancing agility with more disci-
pline regarding the five key challenges which they identified. These challenges
were as follows: 1) Communication need vs. communication impedance, 2) Fixed
vs. evolving quality requirements, 3) People- vs. process-oriented control, 4) For-
mal vs. informal agreement and 5) Lack of team cohesion. The last of these chal-
lenges is related to improving team cohesion in globally distributed development,
but considering the first four issues it is suggested that the balance between the
elements (e.g. fixed vs. evolving quality requirements) should be sought in globally
distributed agile development.

The needs that drive both small and large organizations to adopt agility have
been discussed e.g. by Lindvall et al. (2004). According to these authors, tradi-
tional software development methods are seen as too bureaucratic, cumbersome
and inflexible, in addition to the pressure to produce more at lower cost. These are
some of the factors that have led companies to seek alternative ways of working in
form of agile methods. Furthermore, Lindvall et al. (2004) summarized that prob-
lems related to inefficient management of projects with unspecified requirements,
to gaining deeper understanding of end users’ real needs, and the problem of
specifications being outdated by the time they are finalized are also seen among
the driving forces towards agility. Furthermore, rapid changes in the requirements
and in the market and in technology necessitate a more flexible process that is
capable of adapting to changing requirements (Lindvall et al. 2004).

2.3.4 Benefits and challenges of agile methods

Since the inception of agile methods, a significant amount of work has been con-
ducted about their stated benefits. For example Dybå and Dingsøyr (2008) cited
studies which reported benefits from the areas of handling defects, learning in pair

33

programming, estimation, customer collaboration, improved focus on current work
for the engineers and thinking ahead for managers. Laanti et al. (2011) studied the
benefits of agile methods at Nokia Oy and concluded that most of their 1000 re-
spondents experienced higher work satisfaction, increased feeling of effective-
ness, increases in quality, transparency, happiness and autonomy, and earlier
defect detention. Petersen and Wohlin (2009) also studied the advantages of agile
methods in their work conducted at Ericsson AB. They identified benefits and
mapped them against the already known positive findings that were discussed in
the State-of-the-Art section of their work. They concluded that the more precise
and easily estimated requirements stemming from small scope encountered in
their study were in line with previous findings. In addition, early feedback resulting
from frequent deliveries, reduced need for documentation due to increased direct
communication, reductions in the amount of rework and increased transparency of
responsibilities aiming towards higher quality were also experienced as benefits
supporting previous work. (Petersen & Wohlin 2009) They also found additional
benefits. The volatility of requirements was low due to prioritization and their lim-
ited scope, and the work that was started was always completed. (Petersen &
Wohlin 2009) In 2008, Salo and Abrahamsson (2008) conducted a survey within
35 individual projects from 13 organizations located in eight countries. They fo-
cused on studying the use and usefulness of XP and Scrum in the embedded
software development organizations. The results indicated that 54% of the re-
spondents mentioned that they applied XP practices either systematically, most of
the time or at least sometimes. The most commonly applied XP practices were (1)
open office space, (2) coding standards, (3) 40 h week, (4) continuous integration
and (5) collective code ownership. The on-site customer practice was applied
either systematically or most of the time in 24% of the studied projects, whereas
the use of this practice was either “rarely” or “never” in 42% of the projects.

Considering the practices, nearly 90% of those who applied XP practices saw
them in a positive light (extremely useful, very useful or useful) and the most ap-
preciated practices were Collective Code Ownership, 40 hour week, Coding
Standards and Simple Design. Negative findings (not useful or harmful) were also
identified within 5.8% of responses and the least appreciated practices among
those who applied them were Pair Programming (20% negative responses), Test
Driven Development (12%) and On-Site Customer with 11% negative responses.
(Salo & Abrahamsson 2008)

Considering Scrum, applying the practices of Scrum was either systematically,
mostly or sometimes used by 27% of the respondents, Product Backlog being the
most favoured practice with 24% of the respondents applying it either systemati-
cally or most of the time. Despite the lower adoption rate of Scrum practices com-
pared to XP, 77% of the responses of Scrum’s usefulness were positive whereas
11% were related to negative experiences. (Salo & Abrahamsson 2008) More
recent findings from the industry presented in VersionOne’s 7th annual survey on
the state of agile from 2013, referenced earlier in this work, indicates that Scrum is
the most widely adopted agile method in the industry, with a 54% share. This
survey indicated that the top five agile practices applied were Daily Standups,

34

Iteration Planning, Unit Testing, Retrospectives and Release Planning. In addition,
the top five benefits gained from using agile methods were:

1. Increased ability to manage changing priorities.

2. Increased productivity.

3. Improved project visibility.

4. Improved team morale.

5. Enhanced software quality.

Agile methods also pose challenges. For example Mahanti (2006) discussed the
issues encountered at personal levels. These issues include resistance to and fear
of change, and closed-minded attitudes causing people automatically to reject and
even deliberately to spread false information about agile methods. In addition, the
misunderstanding that agile and traditional approaches cannot be combined, and
that if an agile method is adopted it must be adopted at once in its entirety, can be
problematical. A long history of working with documentation- heavy sequential
approaches was identified as a challenge, as well as outdated skills and
knowledge in the context of new development approaches. Since agile methods
promote self-organization and cross-functionality of the team members, highly
specialized skills in narrow areas of expertise can create challenges in the agile
environment. (Mahanti 2006) One of the challenges specifically identified in upper
management is reluctance to surrender the feeling of control resulting from tradi-
tional development artefacts, such as Gantt-charts. In addition, upper manage-
ment may be troubled if product commitments can be made in agile environment.
One central challenge is also that upper management fears that agile projects will
go on forever. Tracking progress in the agile environment may cause doubts in
upper management, along with the impact of agile adoption into other groups of an
organization. (Cohn & Ford 2003)

A major challenge seems to lie in changing the whole organization, as opposed
to the particular development team in question (Nerur et al. 2005, Grossman et al.
2004). According to Grossman et al. (2004) the challenge is to adapt and reconcile
both the agile and corporate culture processes and methods without compromis-
ing either of them. This process is easier if there is a significant buy-in from all the
stakeholders. Nerur et al. (2005) specified that organizations should carefully
assess their readiness for agile methods and continued that organizational forms
and cultures supporting innovation are friendlier environments for adopting agile
methods than organizations built around formalization and bureaucracy. This is an
important viewpoint considering that bureaucratic organizations have been identi-
fied as difficult environments for agile projects to succeed (Berger 2007).

35

From the industry’s side the five most significant challenges4 in further adopting
agile methods were related to the ability to change organizational culture (52% of
the respondents), general resistance towards change (41%), trying to integrate
agile elements into non-agile framework (35%), availability of personnel with suit-
able skills and both customer collaboration and project complexity (26%).

Originally, agile methods were developed in the context of small collocated in-
dependent teams with constant access to customers. Applying agile development
in large scale development has been found to be problematic. Boehm (2002)
claimed that agile methods work well if future architectural concerns do not need
to be taken into account, requirements are not defined upfront and are highly
subject to change, committed customers are readily available, project organization
is kept small and involves skilful personnel, and the domain is non-safety critical.
Otherwise, in more complex environments and larger projects Boehm suggested
applying more plan-driven approaches. (Boehm 2002)

Lindvall et al. (2004) stated that within large organizations projects need to in-
teract with the rest of the organization and follow its overall rules, standard pro-
cesses and quality systems. Furthermore, the software being developed can be a
part of a larger system developed together with other teams, and the work con-
ducted by the teams should integrate smoothly. In order to overcome these hur-
dles, organizations need to better define the interfaces between the organization
and the agile teams. Along similar lines, Kettunen and Laanti (2008) concluded
that in order for companies to benefit from agile development, a more holistic
approach needs to be taken. For example, reactiveness to changes just when they
arise is not enough since the impacts of these changes need to be considered in
the wider contexts, such as e.g. product lines. (Kettunen & Laanti 2008)

Tailoring agile methods to meet the needs of the environment can be seen as a
strategy for getting the most out of them. Further, according to (Rizwan Jameel
Qureshi 2012) there appears to be a contradiction between traditional and agile
development approaches. Traditional methods appear not to fulfil the software
industry’s need for rapid development without compromising quality. On the other
hand, agile methods cannot be delivered in medium-size and large development
efforts as such, due to inadequate documentation, lack of risk management and
lack of focus in the architectural aspects. (Rizwan Jameel Qureshi 2012)

In 2002, Bowers et al. (2002) described how XP was tailored for the needs of
an effort making changes to large mission critical software. The results were ex-
amined via selected XP practices and provided some evidence that agile methods
can be applied in life-critical system development. Cao et al. (2004) presented
agile practices which they considered suitable in complex large scale develop-
ment. Kähkönen (2004) approached scaling agile from the perspective of devel-
opment teams. In this study, Kähkönen argued that agile development methods do
not take into account issues spanning over several development teams and pro-
posed regular workshops involving people from different parts of the organization

4 http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf

http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf

36

resolving these issues. Large organizations using agile methods should hence
have overlapping communities of teams. (Kähkönen 2004)

Whereas these studies focused on tailoring individual practices and elements of
agile methods, Fitzgerald et al. (2006) described how XP and Scrum were merged
to support development at Intel Shannon in Ireland. The study indicated that by
moving away from the textbook versions of named approaches through careful
evaluation of the elements of agile methods, adjusting them based on confirmed
needs and even discarding those seen as unnecessary can create positive out-
comes. Similarly, (Rizwan Jameel Qureshi 2012) presented an extended version
of the XP method with distinct phases for project planning, analysis and risk man-
agement, design and development and testing in order for XP to overcome the
deficiencies of the method in large and medium-sized projects.

2.3.5 Critique of agile methods

Agile methods have also been criticized. For example, Turk et al. (2005) found
limitations in agile methods that they inferred from assumptions underlying the
principles5 of the methods (Agile Manifesto 2001). In their work, Turk et al. (2005,
p.7) defined assumptions as “premises or beliefs that are taken for granted and
are not expected to be proven”.

According to Turk et al. (2005) agile methods have limited support for distribut-
ed development environments due to assumptions related to close customer in-
teraction, collocated development teams, the ability to communicate face-to-face
and the counter-productive nature of creating extensive documentation and mod-
els of the developed software. These limitations stem from geographical and tem-
poral distances that can be significant in distributed environments. These distanc-
es and the challenges they pose, along with identified solutions for mitigating
them, are discussed later in this work. Agile methods also have limited support for
subcontracting, since subcontracting often requires precise contracts stipulating
what is expected from a subcontractor (Turk et al. 2005). Because of this, the
assumptions related to close customer interaction, collocated teams, face-to-face
communication, reliance on tacit knowledge and continuously evolving require-
ments may not hold. As a solution, Turk et al. (2005) proposed that companies
either increase the amount of documentation or require subcontractors to co-
locate with them.

The third limitation encountered was limited support for development involving
large teams. Agile methods are targeted towards small to medium-sized teams, to
which the “management-in-the-small” approach can be applied in terms of coordi-
nation, control and communication. Large teams can often have many sub-teams
of specialists and are often dispersed across different locations. Hence, the as-
sumptions of close customer involvement, collocated teams, face-to-face commu-
nication and reliance on tacit knowledge do not hold. Considering large teams,
more traditional software engineering practices related to documentation, change

5 http://agilemanifesto.org/principles.html

http://agilemanifesto.org/principles.html

37

control and architecture-centric development are more appropriate. (Turk et al.
2005) Further, agile methods have limited support for building reusable artefacts.
If the amount of documentation is minimized, determining when and where a par-
ticular artefact could be reused is challenging. Furthermore the nature of agile
methods, being focused on solving a particular problem rather than creating gen-
eralizable solutions, causes limitations. Continuous redesign (refactoring) is also
difficult when not creating application-specific artefacts. This decreases the oppor-
tunities for customer feedback and hence improvements in design and quality are
reduced. Therefore, the assumptions related to minimized amount of necessary
documentation, restricting evaluation of software artefacts to frequent informal
meetings, reviews and code testing, not targeting towards generalizable solutions
and continuous refactoring might not hold. Addressing this limitation requires more
rigid procedures related to, for example, documentation.

Agile methods also provide limited support for developing safety critical soft-
ware, since assumptions related to reliance on tacit knowledge, continuous refac-
toring and relying on informal quality assurance techniques may not be valid.
Again more formal procedures should be applied and more formal specifications
created. Finally, there is limited support for developing extensive, complex soft-
ware in which assumptions related to tacit knowledge instead of detailed commu-
nication, informal quality assurance, developing software within short iterations,
and refactoring may not be valid. (Turk et al. 2005). In order to address this limita-
tion, Turk et al. (2005) postulated that the use of the Model Driven Architecture
approach, for example, could be useful. Fitzgerald et al. (2013) also addressed the
issue of scaling agile methods to safety critical systems in regulated environments,
such as the automotive, aviation and financial industries that have to comply with
formal standards, guidelines, directives and regulations. In their work, Fitzgerald et
al. (2013) described how an agile approach was successfully implemented in such
environments. In particular, they paid particular attention to the concepts of con-
tinuous compliance and living traceability. The first refers to the practice of con-
ducting independent quality assurance audits at the end of each Sprint and the
latter refers to complete transparency of the development process at any given
time. (Fitzgerald et al. 2013)

A study conducted by Petersen and Wohlin (2009) aimed towards identifying
both advantages and issues in agile development. They conducted a case study
within Ericsson AB, which is a large multinational company focusing on telecom-
munication solutions. They studied three sub-system projects that were part of a
large-scale agile development project. The findings were extracted from a total of
33 individual interviews. For the purpose of the study they conducted a state-of-
the-art study on both advantages and issues of agile development. Table 4 sum-
marizes their findings related to encountered issues. In addition, it is indicated
whether a particular finding confirms an earlier identified issue or whether it is
completely new.

38

Table 4. Summary of issues encountered in agile development and their descrip-
tions based on Petersen and Wohlin (2009).

Issue Description
Testing lead times and mainte-
nance

Latest system version cycle times may extend lead-
time for package deliveries if a software package is
rejected by testing due to quality issues or if it is not
ready. In such cases, the package has to wait for the
next cycle before it can be integrated.

Secondly, more frequent releases increase mainte-
nance efforts. This occurs when there are multiple
different versions of the product on the market which
need to be supported and test environments for
these versions have to be recreated.

This issue confirms the earlier finding that realizing
continuous testing requires significant effort, since
creating an integrated test environment is difficult for
different platforms and system dependencies.

Management overheads and
coordination

Results from a large number of teams requiring
extensive coordination and communication.

This issue confirms the earlier finding that agile
methods do not scale well and are difficult to scale.

Little focus on architecture Dependencies that are rooted in implementation
details are difficult to identify and are not covered in
the plan. What makes this particularly challenging is
that projects implementing different packages have
no control over other packages being developed,
which prevents early identification of dependencies.

This finding confirms the earlier finding of architec-
tural design not having adequate focus in agile
development, which leads to bad design decisions.

Requirements prioritization and
handover

Complex decision making processes involving sev-
eral people that must be involved in these processes
causes requirements processing to take a lot of time.
Consequently, complex decision-making processes
affect teams which have to wait for the requirements
in order to create a product backlog. Getting the
requirements priority list right is challenging since the
list itself must be agile in order to reflect changing
customer needs.

This finding was not discussed in the literature sur-
vey by Petersen and Wohlin (2009).

Test coverage reduction Test coverage reduces within projects due to lack of
independent testing.

This finding was not discussed in the literature sur-
vey by Petersen and Wohlin (2009).

39

Increased configuration man-
agement effort

Configuration management must coordinate a signif-
icant number of internal releases. The number of
baselines is high.

This finding was not discussed in the literature sur-
vey by Petersen and Wohlin (2009).

In addition to the abovementioned, issues related to a high level of documentation
and product integration put focus mainly on programming the system’s configura-
tion environment. According to Petersen and Wohlin (2009) these findings are
more related to the context of the case organization and, therefore, their generali-
zation is limited. The literature which Petersen and Wohlin (2009) studied identi-
fied issues that were not encountered in their study. These issues are as follows:

 Pair programming is seen as inefficient and exhaustive.

 Pair programming is not applicable if one of the partners is much more
experienced than the other. This result is derived from the perspective of
students.

 Team members need to be very highly qualified in order for an agile pro-
ject to succeed.

 Communication within a team works well but inter-team communication is
not effective.

 Empowerment of people makes managers initially afraid and requires
sufficient training for managers.

 Technical issues are raised too early from the management point of view,
since implementation starts very early.

 The role of an on-site customer is very demanding, which creates stress.
The role of an on-site customer is discussed in more detail later in this
work.

Petersen and Wohlin (2009) postulated the inconsistence between previously
found issues and the issues which they encountered. According to them one rea-
son for this may have been that the previously conducted work was not explicitly
targeted towards issue identification. Another possible explanation is that large-

40

scale agile projects are difficult to implement due to increased complexity in terms
of number of the projects, product size and people. In addition to the abovemen-
tioned critique, a study conducted by Solinski and Petersen (2014) summarized
very high professional skill level demands, in a similar vein with Petersen and
Wohlin (2009), as one of the most significant limitations of agile methods. The
other two main limitations were the lack of suitability for specific product domains
and scalability of agile methods. Similar findings were made earlier by Turk et al.
(2005), and Petersen and Wohlin (2009) also identified the issue of scalability of
agile methods, as Boehm also did in (2002).

The critique of agile methods involves both aspects related to agile methods in
general and specific practices. In addition to the abovementioned practices, Test
Driven Development, for example, has received criticism. For example Siniaalto
and Abrahamsson (2008) concluded that the stated benefits of Test Driven Devel-
opment are not self-evident and automatic. They found that in some cases Test
Driven Development can lead to a more complex software structure that is difficult
to change. Siniaalto and Abrahamsson (2008) concluded that the question of
whether Test Driven Development ultimately improves software design, as it
should, remains unanswered. Another study by Siniaalto and Abrahamsson (2007)
concluded that, at least in situations in which developers are inexperienced, Test
Driven Development does not always produce a highly cohesive program code, as
it should according to the literature. Although it is not postulated by Siniaalto and
Abrahamsson (2007), high expectations set for professional skills in agile devel-
opment might contribute to this finding. Jokela and Abrahamsson (2004) criticised
XP from the perspective of usability, claiming that XP pays almost no attention to
usability aspects of software products, apart from certain actions that can be re-
garded as implicit usability evaluations. By these actions Jokela and Abrahamsson
(2004) referred to the verification of software increments against design require-
ments and usability feedback. Instead, they concluded that the responsibility
regarding usability is a responsibility of the customer. However, this does not
automatically lead to poor usability. In this case, good usability is more or less a
coincident, depending entirely on the intuitions of the customer and the designers
involved in the development process. Further, if the customer is not interested in
usability issues or does not understand them, usability aspects would then be
based on the interests of the design team. Usability engineering would increase
efforts and result in tasks that are not requested by the customer, which could in
turn result in usability engineering not taking off. On the other hand, if the custom-
er is knowledgeable about usability aspects this could change the role of the de-
sign team dramatically. (Jokela & Abrahamsson 2004)

2.4 Distributed software development

Developing software in a distributed fashion began in the early 1990s (Herbsleb &
Moitra 2001) and at an increasing pace this phenomenon is becoming almost a
business necessity for companies, e.g. (Damian & Moitra 2006). Reasons for

41

taking this approach result from reaping the benefits from a more affordable and
skilful global workforce, potential 24 hour development and matured technical
infrastructure that enables collaboration across geographical distances (Ebert &
De Neve 2001, Herbsleb & Moitra 2001, Komi-Sirviö & Tihinen 2005, Gorton &
Motwani 1996, Battin et al. 2001). Distributed Software Development (DSD) can
be a phenomenon of global scale, when it is often labelled in the literature as
Globally Distributed Development (GSD). GSD is characterised by involving
stakeholders from different national and organizational cultures and time zones.
(Damian 2002). Implementation of tasks at different stages of the software’s
lifecycle may also be separated and individually implemented at geographically
dispersed locations using information and communication technologies as the
means of coordinating the development efforts (Sahay 2003)

Distributed development can also be something that happens in a much nar-
rower context. According to Prikladnicki et al. (2003), distribution can range from
adjacent buildings to other continents. They proposed a model that includes this
aspect, presented in Figure 4.

Figure 4. DSD distribution levels as presented in (Prikladnicki et al. 2003).

The model consists of groups of actors working with each other within different
scenarios. The Project Team involves everyone from development, including de-
velopers, testers, business-oriented personnel, etc. Customers are the person or
organization that requested the project and Users represent people responsible for
providing e.g. requirements. The scenarios include same physical location in
which the actors work within the same location. A Cross town scenario occurs
when the actors are distributed within the same city and in the no time shift sce-
nario they are located within the same country. A Continental scenario indicates
that the actors are located on the same continent and finally, in a global scenario
the actors are dispersed across continents. These distances apply to particular

42

actors, e.g. Users, as well as groups of actors. As an example, the distance be-
tween Customers and Users can follow a continental scenario when at the same
time the distance between Project team members is global. (Prikladnicki et al.
2003). This approach therefore takes into account both DSD and GSD scenarios.

O’Conchúir et al. (2006) stated that the assumed benefits of GSD have not
been extensively analysed. Based on the literature, they identified in (Conchúir et
al. 2009) six claimed benefits and found that none of them were fully realized. The
assumed benefits of the “follow the sun” development were not realized. Software
was not developed in the follow the sun approach, but testing activities sometimes
followed this approach. In addition, the claimed benefit that the diverse back-
grounds of people from different sites increases innovativeness and enables shar-
ing best practices was found to be a myth. Instead, people with lower wages were
seen as a threat and information was not shared to them more than was required
to get the job done. The four only partially realised benefits along with their de-
scriptions are presented in Table 5.

Table 5. The partially realised benefits of GSD according to (Conchúir et al. 2009).

Assumed benefit Description of findings
Reduced development costs The differences in salary levels can be as much

as eight-fold between different countries. These
savings can be eroded by increasing complexities
in coordination and in ramping up the compe-
tence levels of other sites. Control and communi-
cation overheads are significant. (O'Conchuir et
al. 2006)

Cross-site modularization of work Modularized work can be conducted inde-
pendently and can reduce the need for communi-
cation between sites. If there is too much inde-
pendence and lack of communication, integrating
the modules later can be problematical. (O'Con-
chuir et al. 2006)

Access to skilled labour Accessing a large pool of competent staff is
possible. However, in some countries the rapid
increase of jobs in software development has led
to high attrition rates within companies. Signifi-
cant issues in communication may arise. (O'Con-
chuir et al. 2006)

Closer proximity to customer and
market

Locating development efforts closer to the target
market provides better access to customers and
the local market conditions. However, this ap-
proach introduces cultural challenges that need to
be solved. (O'Conchuir et al. 2006)

43

As can be seen from Table 5, these partially realised benefits can also create
challenges. This suggests that the assumed benefits are either myths or can po-
tentially create such challenges that outsourcing is terminated or not even consid-
ered. As an example, Sutherland et al. (2009) reported that the cost savings are
not always as expected and as a result, outsourcing efforts can be permanently
terminated. The high attrition rates up to 30–50% annually can also lead to deci-
sions of not outsourcing work to distributed partners. (Sutherland et al. 2007)

According to Šmite et al. (2010c) the field of GSD is still immature, focusing
more on challenges of GSD instead of, in particular, empirically evaluated solu-
tions, and there is no standard recipe for successful GSD efforts. In addition, in the
systematic review which they conducted (Šmite et al. 2010c), there are only a few
clear stories of both success and failure from which one can learn. Šmite et al.
contemplated the reasons behind this finding and suggested that GSD is itself so
complex that identifying the exact reasons behind failure and success is very
difficult. Further, the definition of success or failure was dependent on what was
analysed in the works included in the systematic review. For example, a success
story refers to an overall success of the project whereas a successful practice can
be a reference to something that was successful despite the overall failure of the
project. Šmite et al. (2010c) also applied this same reasoning when failures were
discussed and concluded that the lack of clear reasons behind especially failures
may be ambiguous due to the company image; sharing stories of failure may af-
fect how they are perceived by the public.

Whereas Šmite et al. (2010c) discussed the elusive nature of reasons behind
success and failure, the work focusing on challenges in distributed development
has identified many of them. For example, the systematic review conducted by
Jiménez et al. (2009) identified these hindrances:

1. Communication. A large amount of communication is required between
the stakeholders involved in the development effort. Much information is
transferred through various tools in various formats and without following
communication standards, hence leading to misunderstandings and in-
creased response times. These drawbacks in conjunction with large and
changing personnel networks and complex infrastructure negatively af-
fect communication frequency and quality, hence decreasing productivity.

2. Group awareness. Feelings of indifference and isolation have a negative
effect on the productivity of the members of distributed teams.

3. Software configuration management. Source code control can be
problematic in distributed environments. Issues with synchronization and
coordination become increasingly complex as the degree of distribution
within the team grows.

4. Knowledge management. Knowledge management can be challenging
in distributed environments. Hence, effective information sharing systems

44

need to be in place in order for the experiences, decisions and skills of
the team members and their predecessors to be effectively accumulated.

5. Coordination. In distributed development coordination is more challeng-
ing due to problems resulting from communication, lack of awareness
and the complexity of the organization itself. These challenges affect how
the work needs to be managed and structured.

6. Collaboration. By its nature, software development is a collaborative ac-
tivity requiring cooperation between various different stakeholders. Dis-
tributed development can make this collaboration difficult and hence tools
supporting work over geographically distributed sites are required.

7. Project and process management. Distributed environments make task
assignments, scheduling and cost estimation more challenging. This re-
sults from volatile requirements, changing specifications, lack of informal
communication and cultural diversity.

8. Process support. Distributed environments often involve a wide network
of autonomous, heterogeneous and distributed models. These should
support coordination and cooperation of the teams and offer an automat-
ed support to distributed project management. Problems related to tools
also appear within this context.

9. Quality and measurement. The quality of the processes which distribut-
ed projects apply has a significant impact on the product quality. In dis-
tributed efforts, the impacts of issues encountered can be magnified and
it is more difficult to recover from the problems than in the case of collo-
cated projects.

10. Risk management. Distribution creates additional challenges in risk
management in the form of coordination issues, problem resolution,
knowledge sharing, risk identification and evolving requirements.

In addition, da Silva et al. (2010) conducted a systematic review of the challenges,
best practices, models and tools in DSD project management. They found alto-
gether 30 challenge categories and according to the number of studies reporting
challenges in identified categories, the TOP 5 challenges affecting DSD project
management appear to be the following:

1. Effective communication with 34 references.

2. Cultural differences with 31 references.

3. Coordination with 23 references.

45

4. Time zone differences with 13 references.

5. Trust with 13 references.

Thirteen occurrences were also found related to asymmetry in processes, poli-
cies and standards as well as to physical distance.

Based on the findings considering the challenges, communication-related is-
sues appear to be the most common obstacles hindering distributed development.
Perhaps as an attempt to answer the many challenges of distributed development,
companies are reconsidering the ways of distributing development work. In this
context, the terms “farshoring” and “nearshoring” should be discussed.

The phenomenon behind engaging globally distributed development is often la-
belled “offshoring”. According to Niederman et al. (2006), offshoring is about dis-
tributing the work to people outside the borders of the host country. Jiménez et al.
(2009) added that offshoring also includes the cost factor, namely cheaper human
resources. The term is also associated with distance and is often connected with
offshoring the development work to India, in particular. Due to significant distance
between the host countries, such as the US (US-India relationships being the most
reported according to (Jalali & Wohlin 2012), this relationship is also referred to as
“farshoring”. This distance is divided into three main categories by Noll et al.
(2010), who stated that geographical, temporal and cultural distances are the main
factors hindering global software development. In addition to the abovementioned,
Noll et al. (2010) identified on the basis of existing literature that language barriers,
issues with trust and fear of losing jobs, and problems with managing the distribut-
ed efforts, just to mention a few, all play their role in GDS. Due to the challenges
encountered in offshoring, “nearshoring” has been of interest more recently. This
term refers to an approach in which the jobs are transferred to countries closer
within geographical, temporal and cultural distances. (Jiménez et al. 2009) In this
relationship, lower wages are still a driving force and the customer expects to gain
benefits from one or more of the factors related to proximity (i.e. distance). These
factors are temporal, cultural, linguistic, political, historical, economic and geo-
graphic proximities.

2.4.1 Distributed agile software development

Agile development methods have also been adopted to distributed settings. Ac-
cording to (Shrivastava & Date 2010), agile development and distributed develop-
ment are both strong trends resulting from increased demands for faster and
cheaper implementation of high quality products. Therefore, applying agile meth-
ods is a necessity for many organizations. (Shrivastava & Date 2010). According
to Holmström et al. (2006b), it is a common view that agile methods are not appli-
cable in globally distributed development environments. Agile methods were de-
signed to work in collocated contexts, and following the tenets of agile develop-
ment can be difficult in distributed environments. For example, the strong empha-

46

sis on informal, preferably face-to-face communication can be very difficult to
achieve while working in a distributed fashion. (Ramesh et al. 2006).

Very soon after the inception of agile methods, studies considering their ap-
plicability in distributed environments began to emerge. In 2001, Kircher et al.
(2001) concluded in their work focusing on XP that some practices of agile meth-
ods can be applied as such in distributed development, without a co-located team.
Out of 12 XP practices, planning game, pair-programming, continuous integration
and on-site customer were dependent on stakeholder collocation, which they saw
as the key factor hindering the application of XP to distributed development. Small
releases, metaphor, simple design, testing, refactoring, collective code ownership,
40-hour week, and coding standards were labelled as suitable for distributed envi-
ronments. Kircher et al. (2001) proposed Distributed XP (DXP), which promotes
the use of interactive communication tools to enable the use of collocation-
dependent practices. In a similar vein, Maurer 2002) discussed an interactive tool
MILOS that supports collaboration, coordination and communication of distributed
teams using XP. Braithwaite and Joyce (2005) also discussed DXP and defined a
set of practices enabling distribution in the thematic areas they identified. These
areas are people, communication and code. The practices for the people theme
involve maintaining a “single team identity” across all the sites involved, making all
team members empowered to make decisions and equal in skills and numbers,
using local representatives at remote sites to interpret the communications,
demonstrating the idea of the “single team identity” and transferring domain
knowledge between sites. Team members should also be rotated between sites in
order to build trust between distributed partners. Under the communication theme,
remote stand-ups and multiple communication tools should be used in order to
enable DXP. Using a wiki as a shared location for asynchronous communication is
also promoted. The code theme involves using a single shared code base to work
with and in order to avoid integration issues, acceptance and/or functional tests
that state the intention to work in a particular area should be published to other
participants. This makes the intended code changes visible to others. More recent
approaches for applying agile methods in distributed settings have been presented
e.g. by del Nuevo et al. (2011). They proposed a method called scRumUP, which
is a hybrid method for distributed development combining elements from both
Scrum and Rational Unified Process (RUP) (Kruchten 2004).

The application of Scrum in distributed settings has also been under investiga-
tion. Although both are labelled as agile methods, XP focuses on implementation
practices and Scrum on project management level aspects. Scrum is therefore an
agile project development framework that does not take any programming level
practices into account. Similarly to XP, challenges in applying Scrum in agile GSD
have been identified. Hossain et al. (2009) conducted a systematic literature re-
view of the field and identified seven different categories of the findings. Problems
with the lack of synchronous communication were considered as one of the most
important challenges encountered by projects following Scrum in globally distrib-
uted environments. In fact, it appears that most of the challenges identified by
Hossain et al. (2009) are related to communication. The analysed studies indicat-

47

ed issues with poor technical infrastructure. For example, the findings of
Paasivaara et al. (2008b) suggest that the lack of an appropriate technical infra-
structure can prevent the use of videoconferencing between remote sites. Issues
related to collaboration tools for remote partners were also widely reported. Hoss-
ain et al. (2009) concluded that despite its limitations, Scrum can be applied in
distributed projects with multiple teams and extensive personnel. Scrum can also
be applied when there are no overlapping work times between remote sites.
Based on the available evidence Hossain et al. (2009) also concluded that Scrum
practices need to be modified or extended in order to provide support for teams
operating in globally distributed contexts. These practices and policies to be ex-
tended and modified revolve around collaboration between personnel. Additional
local meetings, strict communication policies, attendance of key personnel in all
distributed meetings and reducing the numbers of meetings are approaches that
could be adopted in globally distributed agile development. In addition, multiple
communication channels should be used. (Hossain et al. 2009) However, there
are challenges which emerge from cultural differences and from both geographical
and temporal distances. These can have negative impacts on collaboration, coor-
dination and communication, that were identified as the key challenge areas of the
study (Hossain et al. 2009). Further, there appear to be certain contextual factors
that may limit the use of Scrum practices, for example the use of Scrum in safety
critical systems development is limited. (Hossain et al. 2009) The lack of rigorous
planning and formal evaluation techniques has limited the use of agile methods in
the context of safety critical systems (Wolff 2012). In order to address this prob-
lem, e.g. Wolff (2012) presented a theoretical approach derived from industrial
experience of applying Scrum in large mission critical systems in the domain of
military aircraft self-defence systems. In this approach, the tasks implemented
within iterations include both conventional tasks with no or very little uncertainty
that can be implemented immediately and tasks related to investigation of formal
specification tasks. These tasks are focused on modelling and validation of high
risk system properties before they are implemented in the forthcoming iterations.
The results of the iterations are hence twofold: both working software and working
models to describe high risk properties are produced. (Wolff 2012)

As Ågerfalk et al. (2009) suggested, many of the difficulties, such as increased
complexity in communication, cooperation, coordination, control and culture, as
well as the tools and technology, are the same when discussing challenges in
global software development and agile methods.

On the other hand, it has been found that there are certain elements in agile
development that can help with challenges related to distributed environments. For
example, Paasivaara et al. (2008b) identified the following benefits which Scrum
provides for globally distributed efforts.

1. Improved communication. More structured, more open communication.

2. Increased trust. Remote sites are able to conduct demanding tasks.
Monitoring progress through more frequent communication.

48

3. Improved motivation. Swift clarifications of questions, access to rele-
vant people at the right time, common goals and values.

4. Better quality.

It is also recommended that adopting agile development in distributed settings
should be conducted gradually. For example, Sureshchandra and Shirini-
vasavadhani (2008) proposed that the transition process should begin with a more
rigid approach in which the core site driving the development has control over the
project. As the project progresses and experience and comfort levels increase,
remote sites are given more responsibility over their work and the work process
itself becomes less formal and increasingly collaborative, involving e.g. joint meet-
ings and overlapping work hours. Similarly to the ideas of balancing agility and
discipline presented in (Boehm & Turner 2003b, Ramesh et al. 2006), Lee et al.
(2006) suggested that in globally distributed projects, agile methods must be ad-
justed and modified so that more rigour and discipline should be introduced to the
process, since without these software development can become inefficient and
chaotic in global contexts. However, Estler et al. (2012) conducted a case study
involving 66 distributed industrial projects which they classified either as either
plan-driven or agile. Perhaps counterintuitively to the suggestions made about
balancing agility and discipline, their findings indicated that both agile and plan-
driven approaches can be equally effective, or ineffective, in globally distributed
contexts. Therefore, the choice of method does not matter.

Šmite et al. (2010b) stated that combining agile methods and distributed devel-
opment is of immense interest in the industry. Despite this popularity, understand-
ing of the viability and the limitations of agile methods in distributed software pro-
jects is still limited, and how agile methods will play out in this seemingly incom-
patible environment remains an open question. Similarly, the results of the study
made by Stankovic et al. (2013) suggest that defining the success factors of dis-
tributed agile development projects is an elusive target.

Šmite et al. however gave some advice in (Šmite et al. 2010a). The compo-
nents of this advice are as follows:

1. Meet face-to-face, co-locate for a while, exchange team members and
avoid distribution if possible.

2. Patience and stamina are needed.

3. Provide communication infrastructure and tools that support rich and in-
tense interpersonal communication.

4. Pay attention to how people are supported and give careful consideration
to distribution.

49

5. Make people enthusiastic and don’t follow the method religiously. In-
stead, adopt and adjust as is justified and explain why.

6. Enable teams to deliver overall functionality by establishing location-
independent teams.

7. Seek true customer involvement, overcome unavailability of the customer
and maintain continuous connectivity with the customer.

8. Ensure the team members’ availability to collaborate with each other
without major temporal delays.

Considering the success factors of agile projects in general, Chow and Cao (2008)
conducted a study of the critical success factors in agile development projects.
They studied potential success factors in terms of Quality (delivering a good work-
ing product), Scope (meeting all the customer requirements), Timeliness (deliver-
ing on time) and Cost (delivering within estimated cost and effort). The results
suggested that the following factors were considered as critically contributing to
the success of an agile project in the terms of the abovementioned success attrib-
utes. These factors along with their success attributes are as follows.

a) Correct delivery strategy in terms of Scope, Timeliness and Cost
b) Agile software engineering techniques in terms of Quality and Scope
c) High team capability in terms of Timeliness and Cost

Despite the widely recognized role of communication as a factor contributing to the
success of development projects, it was not identified as a critical factor contrib-
uting to success. However, Chow and Cao (2008) claimed that strong customer
involvement in terms of a good customer relationship, strong customer commit-
ment and presence and the customer having full authority plays an important role
considering the dimension of Scope. Despite these results, the factors contributing
to the success of agile projects appear to be elusive. This elusiveness stems from
the fact that the findings reported in (Chow and Cao 2008) reflect a relatively im-
mature state of agile methods. Chow and Cao (2008) postulated that when agile
methods become more widely used, it is possible that critical success factors will
also change. In addition, the survey does not state whether the agile projects
analysed were collocated or distributed. Further, most of the analysed projects
(58.7%) involved small teams of up to 10 people. This suggests that most of the
data was obtained from small-sized agile efforts.

In 2013, Stankovic et al. (2013) based their work on the study of Chow and Cao
(2008) and concluded that customer involvement was not seen as a success fac-
tor at all. Whereas Chow and Cao (2008) identified customer involvement as being
important in terms of Scope, this study did not confirm this conclusion. In this
particular study, most of the people involved were working in distributed environ-
ments. Stankovic et al. (2013) used the same set of success factors as Chow and

50

Cao (2008) and concluded that the nature of the project should be limited to non-
life-critical efforts, which contributed to success in terms of Timeliness and Cost. In
terms of Cost, limiting the use of agile methods to projects with dynamic and ac-
celerated schedules can be considered as potentially critical success factor. None
of the success factors was confirmed by both studies. This inconsistence with the
results of the previous study (Chow and Cao 2008) led Stankovic et al. (2013) to a
postulation that when assessing the success of an agile project different methods
while modelling the success, or different success factors against which project is
analysed, should be considered. Further, these results appear to confirm the claim
of Chow and Cao (2008) that success factors are elusive and have evolved as
agile methods have matured.

2.5 The current state and future of agile methods
According to Dingsøyr et al. (2012) 1551 research papers on agile software devel-
opment were published between the years 2001 and 2010. Their analysis also
indicated that the number of annual publications was steadily increasing until
2009, after which a rather steep decline in the number of publications occurred.
The trends of agile literature (total amount, numbers of conference papers and
journals) are depicted in Figure 5.

Figure 56. Publications on agile software development ranging from 2001 to 2010,
indicating the total number of publications (top curve), the number of conference
papers (middle) and journal articles (below) as presented in (Dingsøyr et al. 2012).

Dingsøyr et al. (2012) speculated that the reason behind the steep decline in the
number of total and conference publications stems from excluding the 2010 Agile
conference from the ISI Web of Science database which they used as the source

6 Reprinted from Journal of Systems and Software, Vol 85, issue 6, Dingsøyr, T., Nerur, S.,
Balijepally, V. & Moe, N.B., A decade of agile methodologies: Towards explaining agile
software development, pp. 1213–1221. Copyright (2012), with permission from Elsevier.

51

for collection of publication data. The number of journal articles has increased,
which Dingsøyr et al. (2012) interpreted as an indication of a maturing field of
study. In addition, this research has been conducted in 63 countries in all conti-
nents, making agile research a truly global phenomenon, despite the fact that the
majority of the studies emerge from the US, Canada and Western Europe. Despite
the increasing maturity of the studies, Dingsøyr et al. (2012) called for more atten-
tion to theoretical underpinnings of agile methods. According to these authors,
theory-driven research should help to separate true innovations from remixes and
reinvention of old approaches, and therefore help to adopt innovations faster in the
future.

Considering agile methods specifically in the context of GSD, a study conduct-
ed by Hanssen et al. (2011) concluded that both globalization and “agilization” are
stable trends among the software companies. However, they recognized that there
is still a strong need for further studies. Similarly, Jalali and Wohlin (2012) sug-
gested that there are not a sufficient number of studies analysing the challenges of
applying agile methods in GSD. Issues are documented from both fields but their
combination is not well documented. They concluded that there is a need for fur-
ther studies in the challenges and benefits of combining GSD and agile methods.
“Customising” of agile methods and selective use of agile practices to fit the situa-
tions in which they were adopted should therefore lead to determining how much
change should be “allowed” for these methods to remain agile in the GSD context.
(Jalali & Wohlin 2012).

Agile methods themselves are evolving. For example, applying the concepts of
Lean Software Development to agile methods appears to be a phenomenon of
interest. Wang et al. (2012) studied the application of lean approaches in agile
software development. Wang et al. (2012) labelled such approaches as “Leagile”
software development. Their study concluded that there are different ways of
applying lean concepts, practices and principles in agile development to serve
different purposes. Wang et al. (2012) emphasised that there is no universally
applicable single solution for taking this approach. Instead, independent organiza-
tions should reflect their own project objectives, development contexts and con-
straints before taking this approach. However, the means to effectively tailor these
approaches to suit the needs of an organization in the context in which it operates
is a challenge that should be studied further. (Wang et al. 2012).

Considering the discussion above, it appears that agile methods and their ap-
plications and extensions are both in transition and in the process of maturing. It
also appears that the implementations of agile methods vary considerably which is
indicated by their adaptation to different situations and contexts. Perhaps the
realisations of the ideas behind agile methods are as unique as the projects and
organizations applying them. The findings of Hansson et al. (2006) might support
this postulation. Their study indicated that companies deploy different processes
depending on the type of software being developed, and depending on the cus-
tomer and the size of the project and the company itself. The companies appear to
be eminently capable of combining traditional and agile practices according to the
needs at hand. (Hansson et al. 2006)

52

2.6 Summary

Since the inception of agile methods they have gained significant interest. Perhaps
due to this and because of the development of several different agile approaches,
there are several definitions that approach agility from various perspectives. The
concepts behind agile methods are not new, and there are commonalities between
agile methods themselves and also between agile and more traditional develop-
ment approaches, in addition to the differences stemming from their different phi-
losophies in approaching software development. Both scientifically validated and
practical industrial results suggest that there are benefits resulting from adopting
agile methods. Similarly, there are challenges that appear to focus around organi-
zational factors, such as organizational culture, change resistance towards agile
and mismatches between non-agile and agile development approaches. It has
also been noted that the original idea of having small collocated teams working
closely with the customers does not work well in larger scale settings. One possi-
ble solution that could answer this challenge would be to tailor agile methods
according to environmental needs and to find a balance between agile methods
that provide responsiveness and traditional methods that introduce the discipline
that supports large-scale development efforts.

Although there are several claimed benefits in developing software in a globally
distributed fashion, these benefits still appear to be more promises and they are
only partially realised. However, there are still significant challenges and it appears
that GSD is such a complex phenomenon, involving many aspects, that to identify
the exact reasons for failure and success in such efforts is very difficult. Whereas
these challenges are also present in agile GSD efforts, adopting agile practices
appears to provide benefits in GSD. However, there is evidence that the selection
of a development approach, be it agile or traditional, does not contribute to the
success, or failure, of a GSD project. Adopting agile methods in GSD is increas-
ingly popular and it appears that the viability and the limitations of agile methods
are still a poorly understood subject; how they will work in GSD environments
remains an open question.

From the scientific perspective, agile methods have attracted significant interest
since their emergence and the literature from this field is maturing. There is an
emerging trend suggesting that combining the tenets of Lean Software Develop-
ment with agile methods is the next step in the evolution of agile methods. Soft-
ware development methods have come a long way since their emergence and
they continue to evolve and embrace the changes around them.

53

3. Communication in software development

This section discusses communication in software development in general and in
the context of agile software development. The elements and actors involved in
communication are briefly discussed, as well as the distinctions between formal
and informal communication. Communication in agile software development in
particular is also discussed, and a description of the role of the customer in agile
software development is presented. The discussions in this section also involve
communication in distributed environments and its challenges and related solution
proposals, and the effectiveness of communication from theoretical perspectives.
Finally, a summary of the chapter is provided.

3.1 The aim of communication

Rogers (1986, p.199) defined communication as “a process in which participants
create and share information with one another in order to reach a mutual under-
standing”. Whereas this definition refers to communication between individuals,
communication between organizations is more about coping with environmental
uncertainty (Goldhaber 1993). Similarly, Daft and Lengel (1986) claimed that or-
ganizations process information in order to decrease both equivocality and uncer-
tainty. Equivocality means that information has multiple interpretations which are
possibly conflicting (Dennis & Valacich 1999), whereas uncertainty refers to lack of
information (Daft & Weick 1984). Considering these definitions, the aim of com-
munication is to share information in order to achieve a mutual understanding by
reducing uncertainty and equivocality.

3.2 The elements and actors of communication

One of the most prominent studies of the elements involved in communication was
presented by Shannon in (1948). In this presentation, a communication system is
described as presented in Figure 6.

54

Figure 6. The elements of communication as presented in (Shannon 1948).

According to this model, communication begins with an information source which
produces a message or a sequence of messages for the system or person for
which the message is intended. A transmitter operates on the message in order to
produce a signal that can be transmitted over the selected communication chan-
nel, which is the medium used for conveying the message. The Receiver decodes
the message from the signal for the use of the Destination. Communication can be
hindered by Noise.

Software development organizations involve several stakeholders that are con-
tributing to development efforts. For example Pikkarainen et al. (2008) defined
actors within software development organizations based on the existing literature
(Boehm 2003, Malone & Crowston 1994, Leon 1995). In his work, Boehm (2003)
identified users, acquirers, developers, managers, designers and maintainers as
stakeholders in software development projects. In addition, Boehm (2003) identi-
fied sales people and other fulfilment personnel as additional success-critical
stakeholders necessarily involved in the development process and the system
definition. Leon (1995) also identified stakeholders affecting the development
work. These stakeholders include support staff in the organization, such as quality
engineers ensuring the quality of the product, and development teams whose work
has interfaces with other development teams. Further, Malone and Crowston
(1994) identified customers, individual programmers or groups of programmers
and managers as actors in information sharing and coordination in their work
related to coordination theory. The actors summarized by Pikkarainen et al. (2008)
based on the abovementioned literature are as follows:

1. Software Development Team. Consists of developers and includes a
team leader responsible for conveying project-related information to other
stakeholders.

2. Management. Responsible for organization-wide strategic decisions.

55

3. Customers. Originally, Pikkarainen et al. (2008) specified customer rep-
resentation in their work as External Customers. They were characterised
as “receivers of the developed products” (Pikkarainen et al. 2008, p.311)
such as sales people who sell the product, actual customers buying the
product or people using the product. However, e.g. Koch (2005) distin-
guished between internal and external customers. Internal customers be-
long to the same organization, i.e. the customer can be another division
or a group of people within the organization implementing the software.

4. Enterprise Staff. This refers to technical staff in the company who affect
and are involved in projects or who will maintain the developed product in
the future.

5. The Support Group. This refers to a group of stakeholders from different
parts of the company and who are responsible for supporting the project.
For example, architects or quality engineers belong to this category.

3.3 Formal and informal communication

Communication can be divided into formal and informal communication. Formal
communication was defined by Kraut and Streeter (1995) as communication that
takes place through structured meetings, writing and through other communication
channels that are impersonal and relatively non-interactive. In addition, formal
communication channels are prescribed and determined by job functions or organ-
isational hierarchy (Goldhaber 1993). Formal communication channels, such as
inspections, specifications and structured meetings are useful for routine coordina-
tion activities. (Kraut & Streeter 1995)

Informal communication has been characterised as a peer-oriented, interactive
and personal process taking place outside official reporting structures and often
without management’s knowledge (Kraut & Streeter 1995, Herbsleb & Grinter
1999). In addition, informal communication enables higher flexibility in dealing with
ambiguous or uncertain topics, decisions and tasks. Further, informal communica-
tion plays a particularly important role e.g. in learning the organization’s culture
and in forming relationships (Fish et al. 1992). Informal communication also helps
with filling in the missing details and rapidly correcting mistakes related to a partic-
ular topic (Herbsleb & Grinter 1999). Physical proximity has a pivotal role when
considering informal communication. Kraut et al. (1988) studied the impact of
physical proximity of researchers on the frequency of informal communication
between them. Their findings indicated that physical proximity was strongly related
to frequency of communication, manifesting itself as a radical decrease of informal
communication when the workspaces were not adjacent. Further, physical prox-
imity has an impact on the quality of communication, which improves when R&D
personnel are located closer together. However, the amount of communication did

56

not increase in the study reported in (Moenaert & Caeldries 1996). Informal com-
munication, such as hallway conversations, workshops and telephone calls, is
needed when facing uncertainty or unanticipated problems, which are typical oc-
currences in software development. In addition, the need for informal communica-
tion increases significantly as complexity and size of the software increases.
(Kraut & Streeter 1995)

3.4 Communication in agile software development

By its nature, software development is usually work characterised as collaborative,
complex and cooperative, involving a multitude of skills, roles and knowledge. The
claim made by Šmite (2006) about communication being an integral part of any
relationship has been backed up by several authors, stating that effective commu-
nication is one of the most essential attributes contributing to the success of any
development effort, e.g. (Saeki 1995, Beck 2000, Bostrom & Thomas 1983,
Edstrom 1997). Communication also has a pivotal role in almost all collaboration
processes and practices (Paasivaara & Lassenius 2003). Communication is gen-
erally a time-consuming activity. According to Perry et al. (1994), a significant
proportion of the developers’ time is spent interacting with other people, predomi-
nantly through interpersonal communication.

Communication is by no means an easy task. In order to achieve an effective
level of communication, the participants need to share common experience about
the subject being communicated so that they can compensate for the gaps in
communication. However, it should be accepted that the topics being communi-
cated cannot always be fully understood by the participants (Cockburn 2002).
These breakdowns, which appear to be a commonplace phenomenon (Curtis et
al. 1988), can have dire consequences. According to Counsell et al. (2005), poor
communication often results in severe overruns in budget and schedule as well as
inadequately defined requirements.

In traditional, plan-driven development methods communication is formal and
relies on explicitly documented information (Boehm & Turner 2003b, Nerur et al.
2005). Furthermore, a characteristic of communication in plan-driven software
development is that the communication tends to be unidirectional, passing from
one entity to another rather than between them. Items such as progress reports
and process descriptions are examples of communication artefacts that are almost
always communicated one-way. (Boehm & Turner 2003a)

Agile methods take a different approach to communication between the stake-
holders, with emphasis on informal, preferably face-to-face communication and
high reliance on tacit knowledge. In agile development, this informal communica-
tion is achieved by integrating all the necessary stakeholders closely together.
Beck proposed in the context of XP that all the project participants should be col-
located in the same shared workspace in order to achieve effective communica-
tion (Beck 1999). This includes the customer, who is seen as an integral part of
the team; direct communication between the customer and the rest of the team

57

mitigates misunderstandings and establishes trust between the two parties. (Sillitti
et al. 2005)

Pikkarainen et al. (2008) studied the effects of agile practices on communica-
tion. Their study approached communication internally among the project leaders
and developers and externally in the interface between the developers and other
stakeholders. The analysed agile practices were from XP (Beck 2000) and Scrum
(Schwaber & Beedle 2002). Considering the impact of agile practices studied by
Pikkarainen et al. (2008) in the field of communication, both beneficial and disad-
vantageous findings emerged. The findings that improved internal communication
are summarized in Table 6.

Table 6. Benefits of agile practices in internal communication (Pikkarainen et al.
2008).

Internal communication
Agile practice Findings
Open office space The need for documentation may decrease since

everyone in the project has knowledge of the
common goals and their status.

Daily meetings Daily meetings are a good mechanism to keep the
developers and the project leader and, in some
cases, the customers aware of the status of the
project.

Story/task board (information
radiator)

Information about the status of the project was
available at the wall and this allowed everyone to
see the status at one glance.

Iteration planning sessions The whole team was aware of the project plans
and the goals of the next iteration. The use of user
stories brought the customers closer to the devel-
opment and helped reveal the essential require-
ments.

Iteration retrospectives/reflection
workshops

An efficient practice for improving and deploying
agile practices.

Pair programming An efficient mechanism for conducting code re-
views. However, seen also as a difficult practise in
daily use. This latter viewpoint was from a case in
which pair programming was an optional practice.

Continuous integration Efficient practice for communicating the current
status of the project to the people conducting
testing. This made testing activities easier.

58

Based on these findings, agile practices improved communication from multiple
perspectives. Agile practices improved awareness of the project as a whole, its
status and common goals, and helped to identify the core requirements of the
project and to identify programming errors. Further, communication during retro-
spective sessions helped to improve the work in general. In addition, the need for
documentation may decrease. Agile methods do not exclude explicit documenta-
tion altogether, although documentation produced in agile projects should be
guided by the emphasis on a minimum essential amount (Boehm & Turner
2003a). Similarly, plan-driven methods do not exclude interpersonal communica-
tion, which is used as a tool for ensuring consistent shared understanding on the
semantics and intents of the documentation. (Boehm & Turner 2003a). Further,
Bakalova and Daneva (2011) described a traditional plan-driven project applying
customer-intensive communication practices: workshops at the beginning of the
project, follow-up workshops during weekly scheduled sessions and frequent
meetings also following a scheduled plan. In this case, the communication was
active and informal although it was planned and scheduled in advance rather than
being spontaneous. (Bakalova & Daneva 2011).

Considering external communication, Pikkarainen et al. (2008) identified the fol-
lowing benefits that are summarized in Table 7.

Table 7. Benefits of agile practices in external communication (Pikkarainen et al.
2008).

External communication
Agile practice Findings
Iteration planning A systematic way of sharing information between

stakeholders. Improved visibility to short term focus
of the project.

Iteration reviews A systematic way of sharing information between
stakeholders. Improved visibility to short term
goal/focus of the project.

These practices helped to provide a better understanding of the shorter term goals
and focus of the project, since planning and review meetings were conducted
regularly at short time intervals. In addition to these benefits, Iteration review prac-
tice also helped to understand the product requirements and features.

In addition to benefits, the findings also indicated “hurdles” in agile practices
that hindered communication both internally and externally. Table 8 presents the
hurdles that were encountered in internal communication.

59

Table 8. Hindrances of agile practices in internal communication (Pikkarainen et
al. 2008).

Internal communication
Agile practice Findings
Open office space Noisy environment creates difficulties to focus on

the work.
Product backlog Hindered overall focus of the project. The backlog

included a significant number of requirements, and
requirements were added to the backlog without
proper analysis. In addition, changes in require-
ments occurred constantly.

Product backlog and iteration
planning

Large numbers of requirements were difficult to
manage and iteration planning sessions were too
short to manage the number of features.

The large number of requirements that were introduced during the project and that
were changing affected the longer term focus of the project in a negative way. In
addition, the time to manage the requirements in planning sessions was too short.
Considering the challenges of Open office space practice, similar findings were
reported e.g. by Teasley et al. (2002) They studied physical collocation of devel-
opers and customers and applied a “war room” approach which was essentially
the same as the shared workspace in agile development. The war room was con-
sidered too noisy and developers felt that their work was too closely monitored
and that they lacked privacy. Some felt that working in a collocated environment
required more concentration. (Teasley et al. 2002) It should be noted that although
the study was not focused on agile software development, the development ap-
proach contained several agile elements, such as time-boxing and prioritisation,
introduced e.g. in Scrum (Schwaber & Beedle 2002, Schwaber 2004). Hence,
Open office space can both improve and hinder communication in agile software
development. However, Open office space was generally evaluated as a positive
practice in the study by Pikkarainen et al. (2008).

Table 9 presents the hindrance of agile practices on communication between
developers and other project stakeholders, i.e. in external communication. These
stakeholder groups are described in Section 3.2 of this work.

60

Table 9. Hindrances of agile practices in communication between developers and
other stakeholders (Pikkarainen et al. 2008).

External communication
Stakeholder group Findings
Enterprise staff Conflicting expectations concerning information

sharing. Developers wanted to share information in
an interpersonal manner, whereas Enterprise staff
expected formal documentation. The principles and
the ideology of agile methods were not understood
by the Enterprise staff.

Support group Agile practices did not provide sufficient information
in order to conduct testing. The quality engineers
responsible for testing expected documentation that
would have provided adequate design information.
Testing was also difficult because the feature im-
plementation took until the last day of an iteration
and the overall testing needed to be completed one
day after the end of an iteration.

External customers Difficulties in backlog management resulted in
requirements that could not be understood by the
developers. The short time allocated for planning
sessions was insufficient to clarify uncertainties.
This suggests that time-boxed meetings are not a
suitable approach when the complexity of a system
increases. The addition of new requirements with-
out proper analysis led to difficulties in backlog
management. Daily meetings were seen as too
time consuming.

Management Although anyone from the development team could
participate in management level meetings, the
management felt that the project leader would be
the key person with whom to share information.

The study concluded that all the analysed agile practices helped to improve com-
munication, but also indicated that the practices of XP and Scrum do not provide
sufficient communication mechanisms in extended environments involving several
stakeholder groups and development teams (Pikkarainen et al. 2008).

3.5 The role of the customer in agile software development

The customer’s role in agile development projects is essential and hence creates
specific requirements for the customer. In a workshop conducted in 2001 during

61

the XP2001 conference, van Deursen (2001) listed the following responsibilities
for a customer working in XP projects:

1. To understand the customer wishes, maintain regular contact with the
end-users and balance their potentially conflicting interests.

2. To talk with the developers, clarify feature requests when needed and
understand some of the technical concerns which the developers may
encounter.

3. To specify functional tests for user stories and to verify that the tests run
correctly.

4. To participate in the iteration planning and release sessions.

5. To maintain good contact with management, explain progress and to jus-
tify the time spent with the developers.

Boehm (2002) listed customer attributes that are essential for the success of the
project. These qualities: committed, representative, knowledgeable, collaborative
and empowered, are also valid for customers involved in agile development pro-
jects. Further, Boehm stated that the agile methods reach their full potential when
customers with the abovementioned qualities work in a dedicated mode with the
developers and when the tacit knowledge which these customers possess is suffi-
cient for the full span of the application (Boehm 2002).

Considering the benefits of close customer collaboration, instant feedback from
the customer when it is needed comes naturally from physical collocation. In addi-
tion Hanssen and Fægri (2006) conducted a longitudinal case study in which they
identified certain benefits stemming from close customer collaboration. They no-
ticed that this close relationship significantly increased the motivation of the devel-
opers and also their confidence, since the other stakeholders assisted in prioritiz-
ing project goals. Furthermore, the direct collaboration with users increased both
the quality of communication and understanding of the real business problems.
(Hanssen & Fægri 2006)

However, the role of the onsite customer with constant availability to developers
as defined in (Beck 2000) has been identified as challenging. The role is demand-
ing, requiring a strong ability to resolve issues fast (Koskela & Abrahamsson
2004). Martin et al. (2004) studied three projects using XP and concluded that the
customers were experiencing stress and worked long hours in order to fulfil the
responsibilities of the role. This resulted in a need for making the on-site custom-
er’s role more sustainable. Murru et al. for their part claimed in (2003, p. 42) that
“XP’s most problematic feature is the amount of on-site customer involvement it
requires”. In addition, the close collaboration itself can create challenges. Hanssen
and Fægri (2006) claimed that although strong cooperation is undertaken with a
small selection of customers, this reduces the capabilities to capture the needs of
other non-appointed customers. This calls for a careful assessment of who should

62

be the stakeholders with whom collaboration is initiated in order to take the full set
of relevant aspects, such as quality drivers, into account while developing the
software product. (Hanssen & Fægri 2006)

Sometimes it is not possible for the organizations to utilize the benefits of in-
stant feedback and steering of the work provided by an agile on-site customer.
According to Grisham and Perry (2005), only a few XP projects have been able to
implement this practice to the full. Further, the practice has been only partially
realized through having knowledgeable managers or engineers assuming the role
of the customer either part-time or full-time if the customer has been unavailable.
In some cases, customers can be simply too valuable for their employers, or the
developers and the customers can be too remote from each other to work as was
anticipated by XP (Jeffries et al. 2001). Sometimes the customers may even be
unwilling to participate actively in the development process (Farell et al. 2002).
This practice was later replaced with Real Customer Involvement (Beck & Andres
2004), which promotes less active customer participation, for example weekly
meetings, instead of constant availability.

Communication with the customers (and other stakeholders) can be conducted
via direct or indirect communication links, as explained by Keil and Carmel in
(1995). Direct contact (i.e. direct communication link) between e.g. customers and
developers is preferable compared to an indirect link, due to decreased filtering of
information or information distortion. Considering information distortion, according
to Melnik and Maurer (2004) the information distorts and mutates during passage
through a chain of people. The more there are people in the chain, the greater is
the possibility of mutation and distortion. Direct links are seen as beneficial espe-
cially in situations in which there are high levels of ambiguity, such as in communi-
cating system requirements, for example (Keil & Carmel 1995). When communica-
tion is conducted via indirect links, customers and developers, for example, do not
communicate directly with each other but the communication is conducted via
surrogates or intermediates. Customer surrogates are stakeholders that are not
real customers but are treated as such for the purposes of feedback and require-
ments gathering. Intermediates for their part are stakeholders that are situated
between the developers and the customers. (Keil & Carmel 1995). Using interme-
diates (proxy customers) can create additional challenges, since using proxy cus-
tomers in detailing the requirements instead of the real customers can often lead
to misunderstandings, and further to features that are not implemented as ex-
pected by the customer (Therrien 2008).

3.6 The effectiveness of communication from the theoretical
perspective

Agile methods prefer face-to-face communication since this is seen as the most
efficient way of communication. However, exploring the efficiency of communica-
tion media deserves more attention. In the following, the efficiency of communica-
tion media is discussed through two different communication theories that were

63

used in the original publications. These theories are Media Richness Theory
(MRT) and Media Synchronicity Theory (MST).

3.6.1 Media Richness Theory

Media Richness Theory appears to be the most prominent communication theory
and it suggests that a media’s ability to convey information should be aligned with
the needs of the task for the best possible performance. Further, this suggests that
certain media are better suited to conveying uncertain or ambiguous information
(Daft & Lengel 1986, Daft et al. 1987). In the case of uncertainty, obtaining more
information is proposed whereas ambiguity requires exchanging subjective views,
further definition of the problem and resolutions of disagreements in order to
achieve mutual understanding of the topic being communicated. (Daft et al. 1987).
Considering the suitability of communication media for different tasks, ambiguous
ones should be managed through rich channels whereas less rich media are ef-
fective for processing well understood messages and standard data (Daft & Len-
gel 1986). The richness of a communication media is defined by four variables:

1. Feedback. Instant feedback enables rapid correction of errors and ask-
ing questions.

2. Multiple cues. Different cues such as the tone of voice and body lan-
guage can be a part of the message.

3. Language variety. Refers to the ability to use different languages, for
example numerical data that is capable of conveying precise information
and natural language that can deliver a broader set of ideas.

4. Personal focus. Personal feelings infused in the message can result in
more effective conveyance of the message.

MRT’s suggestion is that the richest communication channel is capable of provid-
ing instant feedback, can transmit multiple cues, has high language variety and is
capable of transmitting emotional contents with the message. Media capable of
supporting rich communication should be used if information is ambiguous,
whereas less rich channels are suitable for conveying well understood messages
(Daft & Lengel 1986).

Selecting an appropriate communication media is also affected by the type of
communication, that can be either routine or non-routine (Lengel & Daft 1988).
The characteristics of non-routine communication are high levels of ambiguity,
time pressure and the element of surprise, which makes this type of communica-
tion prone to misunderstandings. Often non-routine communication lacks a com-
mon frame of reference (i.e. shared understanding) between the communicating
participants since the abovementioned characteristics are typified by novel events.

64

Rich exchange of information (e.g. face-to-face communication) helps to build the
shared understanding.

Routine communication for its part is simple, straightforward and logical and
lacks the element of surprise. In addition, a common frame of reference has been
previously established. For this kind of communication it is beneficial to use media
low in richness (Lengel & Daft 1988).

In summary, face-to-face communication, which is a rich communication media,
should be a suitable way to communicate topics with high ambiguity. As an exam-
ple of this, agile requirements are deliberately left vague and open for further dis-
cussion when their implementation becomes timely. Face-to-face communication
does not however appear to be the best possible media for communicating unam-
biguous information. Considering the emphasis on face-to-face communication in
agile development, MRT does not fully support the claim that face-to-face is al-
ways the most efficient way of sharing information.

3.6.2 Media Synchronicity Theory

Media Synchronicity Theory is an extension of MRT aiming towards prediction of
communication performance and examining communication media capabilities in
various contexts (Dennis et al. 2008). MST approaches communication through
two essential processes, conveyance and convergence.

Conveyance is about transmission of sufficient new information to enable the
receiver to form and revise an understanding of the content of the information.
Conveyance is time consuming and if it is defective, incorrect conclusions will be
reached. Convergence on the other hand aims towards shared understanding of
the meaning of information and the participants involved in the convergence pro-
cess need to mutually agree whether or not this mutual understanding has been
achieved or can be achieved. Convergence typically involves rapid transmission of
smaller amounts of information (e.g. details related to a particular matter) than
conveyance and hence requires less individual information processing than con-
veyance. If convergence is defective, shared understanding of the topic is missing
and the participants are unable to move forward with the subject. In order for an
individual to perform conveyance or convergence processes, two individual pro-
cesses must be engaged. The first is information transmission, which includes the
preparation of information for transmission, transmission of information through a
medium and receiving it from a medium. The second process is information pro-
cessing, which consists of understanding the meaning of information and integrat-
ing this information into a mental model. In information transmission, the focus is
on individuals whereas in information processing it lies within individuals. Both the
abovementioned processes are required in convergence and conveyance pro-
cesses in different proportions. (Dennis et al. 2008)

These processes benefit to different degrees from synchronicity, which is de-
fined as “the ability to support individuals working together at the same time follow-
ing a shared pattern of coordinated behaviour” (Dennis et al. 2008, p.576). The
definition does not dictate that the participants should be present at the same

65

physical location as soon they have the tools that enable them to collaborate in
real time with the topic at hand and have a shared focus on the matter. Media
synchronicity means the capabilities of media to help in achieving synchronicity
between the participants. Synchronicity is not always easily achieved. Synchro-
nous communication is necessary for synchronicity, but it is not necessarily suffi-
cient for it since participants can lack a shared focus during communication. In
fact, it is possible to use email in synchronous fashion, even though it is less suit-
ed for this purpose compared to e.g. telephone communication or instant messag-
ing. (Dennis et al. 2008)

According to MST, using media with lower synchronicity should increase per-
formance for conveyance processes, whereas convergence processes benefit
from using media with higher synchronicity (Dennis et al. 2008). Similarly to MRT,
MST defines a set of capabilities that different media are able to fulfil to different
extents. These capabilities are described in Table 10.

Table 10. The capabilities of media along with their descriptions as described in
(Dennis et al. 2008).

Media capability Description
Transmission velocity:
The speed at which the message can be
delivered to its recipients through a medi-
um.

High transmission velocity improves
shared focus between message senders
and receivers. This will positively affect the
media’s capability of supporting synchro-
nicity. High transmission velocity supports
convergence.

Parallelism:
The extent to which the medium can sup-
port the transmission of signals from multi-
ple senders simultaneously.

High parallelism lowers shared focus
between message senders and receivers.
This has a negative impact on a media’s
capability to support synchronicity. This
supports conveyance.

Symbol sets:
The number of ways that information is
allowed to be encoded for communication
by media.

a) Media that are able to transmit more
natural symbol sets, such as physical,
visual, and verbal cues have a better
support for synchronicity and therefore
convergence than media with less natural
symbol sets. The latter are more suitable
for conveyance.
b) Using a media that has a symbol set
with better suitability to the content of the
message will improve information trans-
mission and processing, and therefore will
have a better support for synchronicity and
for convergence.

66

Rehearsability:
The extent to which the media allows the
sender to fine tune or rehearse an intend-
ed message while it is being encoded,
before sending.

High rehearsability lowers the shared
focus between message senders and
receivers. This will impact negatively on
how media is capable of supporting syn-
chronicity. High rehearsability is beneficial
in conveyance.

Reprocessability:
The extent to which a message can be
reprocessed or re-examined by the media
during encoding, either after the communi-
cation event has passed or within its con-
text. Reprocessabiiity is especially im-
portant for transmission of large volumes
of information and complex or new infor-
mation.

High reprocessability lowers the shared
focus between message senders and
receivers and has a negative impact on a
media’s ability to support synchronicity.
High reprocessability supports convey-
ance.

Each media supports these attributes to different extents and it is the combination
of these characteristics that determines whether a particular media is capable of
supporting synchronicity. Table 11 presents the capabilities of communication
media to support synchronicity as discussed in (Dennis et al. 2008).

Table 11. The ability of different media to support synchronicity as described in
(Dennis et al. 2008).

Communication media Ability to support synchronicity
Face-to-face High
Video conference High
Teleconference Medium
Synchronous instant messaging Medium
Email and asynchronous electronic commu-
nication

Low

Voice mail Low
Fax Low
Documents Low

As can be seen, synchronous media are more suitable for convergence than less
synchronous media. Agile methods explicitly emphasise the use of media support-
ing synchronicity and it is claimed that these media, especially face-to-face, are
the most efficient means of communication. However, according to MST this
should be reconsidered.

MST does not indicate that face-to-face is the most efficient means of commu-
nication. MST in fact states that there is no single media that would be inherently
better than any other, and in order to complete tasks successfully both convey-
ance and convergence processes are needed. Different media serve these pro-
cesses to different extents and hence it is proposed that these media are used

67

either simultaneously or in succession. Furthermore the context in which the me-
dia is used affects its suitability for particular communication situations. This suita-
bility is affected by the communication processes, and individuals themselves
engaged in communication in the given social context also have an effect. (Dennis
et al. 2008) A claim made by Robert and Dennis (2005) provides insights consid-
ering the efficiency of face-to-face communication in agile development. They
claimed that complex messages are unlikely to be elaborated using high social
presence media (i.e. interactive media with high support for synchronicity). This
postulation suggests that face-to-face might not be a suitable media for communi-
cating complex information that is not mutually understood by the participants. In
addition, in order to achieve this mutual understanding a media capable of sup-
porting conveyance should be used in order for the recipients to create their indi-
vidual understanding on the matter, and the missing details and misunderstand-
ings could then later be converged through an appropriate media.

MST also includes Appropriation Factors which indicate that the need for using
different media is dynamic and evolves over time. Appropriation Factors influence
how the media is used by people and propose that when the familiarity between
communicating participants increases both as a result of familiarity with the tasks
they are working with and the communication media used, the need for high syn-
chronicity media is reduced. (Dennis et al. 2008).

3.7 Communication challenges and solution proposals in
distributed environments: a toolbox

The importance of informal communication is paramount in globally distributed
environments. The role of informal communication is critical in rapid dissemination
of knowledge, especially when unforeseen events and changes occur. Global
distribution has negative impacts on informal communication, and when changes
or issues are raised through formal channels this often results in surprises and
prevents access to the rationales behind the issues, thus increasing the time
needed to get in touch with the relevant stakeholders who have information about
the situation. (Bruegge et al. 2006)

Whereas agile methods rely on tacit, interpersonal and informal communication,
Lee et al. (2006) emphasized the importance of formal and codified knowledge.
They stated that the role of detailed, comprehensive documentation and explicit
codified knowledge is essential in global contexts due to difficulties in communica-
tion and sharing of tacit knowledge. In global contexts, formal communication is
also important due to the fact that it is often more effective than informal commu-
nication, which suffers from the negative impacts of language barriers and cultural
differences. (Lee et al. 2006)

Communication in distributed environments can be challenging. The barriers re-
lated to geographical, temporal and cultural distances (Noll et al. 2010) are identi-
fied as the key obstacles to successful communication in globally distributed con-

68

texts. Further, according to Holmström et al. (2006b), what makes communication
in such environments so challenging is the combination of these distances.

Geographical distance makes face-to-face communication difficult and hinders
informal communication and idea sharing (Conchúir et al. 2009, Ågerfalk & Fitz-
gerald 2006, Ågerfalk 2004). Temporal distance for its part reduces opportunities
for synchronous communication due to the lack of overlapping working hours
(Ågerfalk & Fitzgerald 2006). This may lead to delayed feedback due to delays in
responses and increases the time for resolving problems at hand (Ågerfalk 2004,
Boland & Fitzgerald 2004). If overlapping work hours are arranged, this may lead
to unconventional communication hours, which is consuming (Holmström et al.
2006a, Sarker & Sahay 2004, Conchúir et al. 2009). Cultural distance can in-
crease misunderstandings in communication (Holmström et al. 2006a, Conchúir et
al. 2009, Summers 2008, Ågerfalk & Fitzgerald 2006, MacGregor et al. 2005).
Disagreements and negative issues are also not necessary willingly expressed
due cultural inhibitions. (Lee & Yong 2010, Drummond & Francis 2008). In addi-
tion, language barriers have a negative effect on communication (Layman et al.
2006, Uy & Ioannou 2008, Kajko-Mattsson et al. 2010).

In addition to geographical, cultural and temporal distances, other factors can
also have a negative impact on communication between the distributed partners.
A lack of face-to-face communication and direct communication hinders the build-
ing of trust between distributed partners (Conchúir et al. 2009, Therrien 2008, Lee
& Yong 2010) and the often proposed solution of using communication tools for
mitigating the challenges resulting from distance can become a challenge in itself.
Issues with communication tools appear to be a common phenomenon in distrib-
uted development (Therrien 2008, Ågerfalk 2004, Paasivaara et al. 2008a, Wil-
liams & Stout 2008). A lack of active customer involvement, which is crucial in
agile development, may also result in a lack of direction of the project. This is
particularly troublesome if teams are lacking knowledge considering the domain
(Williams & Stout 2008).

Proposals for tackling the abovementioned communication challenges have
been provided in the literature discussing distributed software development, both
in general and in agile software development. Figure 7 presents the challenges
identified in the literature together with solution proposals. Figure 7 hence pre-
sents a “toolbox” that can be utilized in order to tackle communication-related
challenges. Solution proposals are discussed in more detail.

69

Figure 7. Toolbox for mitigating communication challenges in distributed agile
software development.

70

The solution proposals for geographical challenges are focused on communication
tools. This challenge can be mitigated by using synchronous communication tools,
such as videoconferencing (Kircher et al. 2001, Sureshchandra & Shrini-
vasavadhani 2008), whiteboard software (Layman et al. 2006), Web conferencing
tools (Danait 2005) and Instant Messaging tools (Danait 2005). In addition to syn-
chronous tools, asynchronous media can also be used for mitigating geographical
distance (Bannerman et al. 2012). Issues related to communication tools can be
eased by appropriate investments in tools and communication infrastructure.
(Ebert & De Neve 2001, Therrien 2008, Kussmaul et al. 2004)

Communication theories can also assist in selecting appropriate media for effi-
cient communication and hence mitigate the challenges experienced in distributed
agile software development projects. MRT proposes that rich media, such as face-
to-face, are an efficient mechanism for communicating ambiguous topics, and that
uncertain matter should be communicated via less rich media. MST suggests that
communication media should be selected based on the communication needs, i.e.
whether conveyance or convergence is needed in communication. Further, this
need evolves over time when communicating participants become more familiar
with the each other, their work and the communication media (Dennis et al. 2008).
However, the existing solution proposals for communication in distributed envi-
ronments appear to emphasize the use of rich communication channels that sup-
port synchronicity. From the perspective of MRT this would be appropriate in the
context of agile methods but considering MST this approach would not necessarily
provide the most efficient means of communication in the context of ambiguous
matters. Hence, the recommendations for using communication media appear to
be somewhat contradictory from the perspectives of the selected communication
theories.

For temporal distance, the mitigation solutions are related to applying different
practices. Working hours should be synchronized in order to create overlapping
time (Bannerman et al. 2012). Since this might lead to unconventional work times,
overlapping hours should be kept sustainable (Therrien 2008). In addition, policies
concerning participation in meetings can help to keep the work effort sustainable.
It has been suggested that the need for meetings requiring all the stakeholders
should be minimized (Bannerman et al. 2012) and only key project members
should participate in early morning or late evening distributed meetings, rather
than the whole team (Williams & Stout 2008). Strict communication policies to
reduce communication delays caused by distribution can be applied. For example,
emails should be replied to within 12 business hours. (Vax & Michaud 2008)

Tackling cultural distance involves relying on experienced people. For example,
experienced domain experts should communicate with distributed teams daily.
This should mitigate communication risks emerging from cultural differences by
keeping the potential problems transparent. (Summers 2008) Layman et al. (2006)
recommend that if project management and development are separated, a role
with the purpose of working closely with both development and management
should be established. Ideally, the person entrusted with this role should speak all
the languages involved in the project in order to deal with the language barriers. In

71

order to increase the awareness of cultural diversity and how to cope with it, man-
agers should be rotated across cultures and locations. (Ebert & De Neve 2001)
Further, regular visits from key stakeholders such as senior developers, managers
and business analysts from the customer organization can help the customer
organization understand the cultural aspects of the remote site (Sureshchandra &
Shrinivasavadhani 2008).

Visits also help with establishing trust between distributed partners (Therrien
2008), since in order to maintain and strengthen trust it is important that members
of the teams socialize, and face-to-face communication helps with socialization.
(Moe & Šmite 2008). Teams that are experiencing low trust need frequent and
predictable communication if trust is to grow (Moe & Šmite 2008). However, too
much communication can cause a decline in trust since team members can expe-
rience that they are being monitored (Järvenpää et al. 2004). Further, Moe and
Šmite (2008), proposed recommendations related to communication for improving
trust in distributed environments. These recommendations are derived from the
existing literature reported in the study and from the findings of the study itself
(Moe & Šmite 2008). These practices are investments in several face-to-face
meetings similar to the visits recommended by Therrien (2008), communicating
expectations early and establishing rules for conflict handling, ensuring that the
team possesses the necessary language skills and competence in order to im-
prove communication and using an adaptive and flexible development method
using frequent communication in order to coordinate the work by constant feed-
back. In this approach, the balance between agility and rigour should be taken into
account. Investments should also be made in groupware and team intranet in
order to enable efficient communication and compensate for the lack of face-to-
face communication. Hence, communication tools and infrastructure can be used
to improve trust. (Moe & Šmite 2008). This latter finding is similar to the recom-
mendation for investing in proper communication tools and infrastructure (Ebert &
De Neve 2001, Therrien 2008, Kussmaul et al. 2004).

Agile practices themselves also help to mitigate cultural challenges. The Scrum
meetings (planning, review, daily scrums, retrospectives) themselves enforce the
common work practices on the participants. The meetings also serve as frequent
check-points for ensuring that collaboration is maintained and shared understand-
ing remains throughout the project. These meetings should be recorded for later
review. (Bannerman et al. 2012). In addition, on the basis of the findings of Lee et
al. (2006), formal and detailed documentation can help coping with cultural dis-
tance and language barriers.

In order to ensure crucial customer involvement and, hence, active customer
communication the customer should be identified before the project begins. This
customer contact person must be able to make conclusive decisions concerning
the project’s scope and functionality, must have a vested interest in the project
and needs to be readily available. (Layman et al. 2006).

72

3.8 Summary

Informal and preferably face-to-face communication has been promoted in agile
development as the most efficient communication mechanism. However, in global-
ly distributed endeavours face-to-face interactions can be extremely difficult due to
geographical distance, which in turn can be significant. In order to follow the agile
tenet of interactive communication, tools that enable it have been proposed to
solve the problem. From the theoretical perspective (Dennis et al. 2008), interac-
tive (i.e. high synchronicity) communication is an appropriate way of exchanging
information when all the communicating participants have a shared understanding
of the topic. For example, agreeing on small details can be conducted via interac-
tive communication channels.

However, if the information is new and complex and the participants do not
share a common understanding of its meaning, interactive communication may not
be the best option. In such situations, the theoretical proposition is to use media
with lesser synchronicity, such as documentation, to convey the information. After
the participants have developed their individual understanding on the information it
can be converged (potential misunderstandings corrected) using high synchronici-
ty communication media. This suggests that the role of documentation is important
even in agile development. In the context of globally distributed agile efforts the
role of communication is even more pivotal when considering the suggestions
made by Lee et al. (2006).

From the perspective of MRT, face-to-face (i.e. high synchronicity medium)
would be a suitable way to communicate ambiguous non-routine topics. This is
more in line with the agile methods’ recommendation of face-to-face communica-
tion that was suggested by MST. Hence, the selection of a communication tool to
best serve the purpose based on these theories is contradictory.

The literature survey concerning the challenges conducted for this thesis identi-
fied six different challenge areas that can represent a threat to customer commu-
nication. These challenge areas include temporal, geographical and cultural dis-
tances between distributed partners and issues with lack of trust, communication
media and lack of customer involvement. Practices for mitigating their effects have
been proposed in the existing literature.

73

4. Research design

This section discusses the research approaches taken in this study, data collec-
tion mechanisms and the data analysis methods applied in the case projects con-
tributing to this dissertation.

4.1 Research approach

This section discusses the research methods and approaches taken in this study.
Action research, different philosophical stances that can be taken during case
studies and other classifications are also presented.

4.1.1 Action research

During the first case project Action Research (AR) (Susman & Evered 1978) was
applied. According to Cunningham (1997, p. 403), the purpose of AR is to “devel-
op concepts which help to facilitate the process of change”, and theory “emerges
in the process of changing”. According to Davison et al. (2004), AR’s application
focuses on solving organizational problems and at the same time providing contri-
butions to knowledge. According to (Easterbrook et al. 2008) most empirical
methods aim towards observing the world as it exists, whereas action researchers
have an explicit purpose of improving the current situation by deliberate interven-
tion.

AR is an iterative process that includes the following steps: diagnosing, action
planning, action taking, evaluation, and specifying learning (Susman & Evered
1978). In the diagnosing phase the problem is identified or defined and Action
planning focuses on considering the means and alternative courses of actions that
could solve the particular problem. In the Action taking phase, the course of action
is selected. The consequences of actions are evaluated in the evaluation phase
and the general findings are identified during specifying learning. The process is
then repeated.

According to Baskerville (1999), AR is not a single, monolithic research method
but instead refers to a class of research approaches. Lau (1999) identified three
other streams of AR in addition to traditional AR. In Participatory Action Research,
the practitioners are involved in the study both as subjects and co-researchers. In

74

addition, the practitioners “solve problems themselves by setting their own re-
search agenda, collecting and analyzing the data, and controlling overuse of the
findings.” (Lau 1999, p. 150). Action Science puts emphasis on studying the “par-
ticipants’ behaviours as theories-in-use versus their beliefs as espoused theories”
(Lau 1999, p. 150). Action Learning (Lau 1999) advocates programmed instruc-
tions, group participation, spontaneous questioning, real actions and learning in
different organizational and social contexts.

4.1.2 Case studies

The research during this work was conducted as a series of case studies. Case
studies have proved to be useful in situations in which the target is to understand
a contemporary phenomenon in complex, real world settings, especially when the
boundaries between the context and the phenomenon are not clear. (Yin 2003,
Eisenhardt 1989) Research in software engineering has a result-oriented and
pragmatic view of research methods rather than a philosophical view (Seaman
2002). However, case studies can be categorized on the basis of the philosophical
stance taken in the study. An interpretive approach was specifically taken while
conducting the study reported in paper V. In the other papers, philosophical ap-
proaches were not explicitly adopted.

Positivistic studies measure variables, seek evidence for formal propositions,
draw inferences from a sample to a stated population and test hypotheses. Posi-
tivistic studies assume that a priori fixed relationships within the phenomena exist,
and structured instrumentation is typically used to investigate these phenomena
and to serve as an attempt to increase predictive understanding of phenomena by
testing theories. (Orlikowski & Baroudi 1991). Critical studies aim towards social
critique and towards identifying the alienating and restrictive current conditions
and making them visible (Klein & Myers 1999). Pragmatism acknowledges that all
knowledge is incomplete and approximate and that its value depends on the
methods used to obtain the knowledge (Menand 1997). According to Easterbrook
et al. (2008), pragmatists approach the judgement of knowledge on the basis of
how useful it is in solving practical problems, i.e. “truth is whatever works at the
time” (Easterbrook et al. 2008, p. 292). In addition, truth is relative to the observer,
since what is perceived useful by one person might not be useful to another. In
order to overcome criticism, the importance of consensus is emphasised: rational
discussion uncovers the truth. Easterbrook et al. (2008) also claimed that pragma-
tism is less dogmatic than the other stances, since all research methodologies
should be free to be used in order to study a particular research problem.

Interpretative studies aim to understand phenomena through how the partici-
pants interpret their context (Orlikowski & Baroudi 1991). Further, generalization
is not sought and Orlikowski and Baroudi (1991, p. 5) labelled interpretive case
studies as those in which the intent of the research is to “increase understanding
of the phenomenon within cultural and contextual situations; where the phenome-
non of interest was examined in its natural setting and from the perspective of the

75

participants; and where researchers did not impose their outsiders' a priori under-
standing on the situation”.

Klein and Myers (1999) provided guidelines on how to conduct interpretive case
studies. These principles along with their description and application in this study
are described in Table 12. Whereas Klein and Myers (1999) did not advocate arbi-
trary use of just some of the principles while ignoring the others, they stated that the
principles are not mandatory rules of conduct, but that discretion should be exer-
cised in deciding “whether, how, and which of the principles should be applied
and appropriated in any given research project.” Klein and Myers (1999, p. 71).

Table 12. The principles for conducting interpretive case studies and their descrip-
tions based on (Klein & Myers 1999) and how these principles were applied in the
research paper V.

Principle Description Applied in the case
reported in paper V.

1. The fundamental princi-
ple of the hermeneutic
circle

Understanding is gained by
iterating between the inter-
dependent meaning of parts
and the whole that they
form.

The data was obtained in
iterative fashion using
various data sources
during the period when the
case was conducted. The
data was iteratively ana-
lysed and used to steer the
research further, if that
was considered relevant.

2. Contextualization The subject matter should be
set in its social and historical
context so that it can be seen
how the current situation
under investigation emerged.
Interpretive research argues
that organizations are not
static and that relationships
between organizations,
people and technology are
constantly changing.

Customer communication
in this study was a non-
static, changing phenom-
enon. Whereas there
were defined sessions for
customer communication,
informal customer com-
munication occurred
spontaneously.

3. Interaction Facts should be produced
as a part and parcel of the
social interaction between
the researchers and partici-
pants.

The facts were produced
during interactions be-
tween the author of the
paper and the participants
of the study.

4. Dialogical reasoning Sensitivity is required to
possible contradictions
between the actual findings
and theoretical preconcep-
tions guiding the research

No contradictions were
identified.

76

design.
5. Abstraction and general-
isation

Details revealed by the data
interpretation should be
related to theoretical general
concepts through applica-
tion of principles one and
two.

Principles one and two
were applied in this study
as described. Further, the
data was reflected against
the propositions of the
selected communication
theory (MST)

6. Multiple interpretations The researcher should
examine the influences that
the social context has on the
actions under study. Multiple
viewpoints along with the
reasons for them should be
sought out and documented.

The context in which the
participants operated was
taken into account. Partic-
ipants’ viewpoints were
documented and com-
pared.

7. Suspicion Requires sensitivity to pos-
sible "biases” and systemat-
ic "distortions” in the narra-
tives collected from the
participants.

Critical approach in the
data analysis was applied.
The possibility that the
participants’ viewpoints
could be biased was
recognized during the
data collection.

Studies can also be classified by their intended goals. For example Robson (2002)
classified case studies as follows:

Exploratory case studies aim towards understanding what is happening,
seeking new insights and generating hypotheses and ideas for future re-
search.
Descriptive case studies portray a particular phenomenon or situation.
Explanatory case studies seek an explanation of a problem or a situation,
mostly but not necessarily in the form of causal relationships.
Improving case studies try to improve some aspect of the phenomenon
being studied.

In order to conduct a study, the unit of analysis needs to be defined. The unit of
analysis can be an individual person, a group of people, a product or a policy or a
particular role in the organisation, to mention just a few. (Runeson & Höst 2009).
In this study, the unit of analysis was a either a single or multiple software devel-
opment project, depending on the intentions of the study.

Table 13 summarises the case studies. The table presents the number of units
of analysis, the approach taken in the study in terms of epistemological stance or
the goal of the study and the levels of distribution within the projects.

77

Table 13. The description of case studies reported in individual research papers.

Paper Unit of analy-
sis

Study approach Distribution in the
case projects

I One agile
software
development
project.

Improving study. The presented pro-
cess was improved from its previous
version based on the empirical findings.

One collocated
agile software
development
project.

II Four agile
software
development
projects.

Explanatory study. The aim of the study
was to explain what happens to the
software quality at different levels of
customer involvement and, hence,
communication.

Two collocated
agile development
projects.
Two projects with
two distributed
development
teams. Customers
located with one of
the teams.

III Two agile
software
development
projects

Improving study. The aim of the study
was to describe the use of existing
communication practices and to further
increase knowledge about their use. In
addition, a new recommendation
emerged.

Each project had
two distributed
development
teams. Customers
were located with
one of the teams.

IV One agile
software
development
project.

Exploratory study. The aim of the study
was to analyse customer communica-
tion in a situation in which both tradi-
tional and agile methods were used. In
order to answer to the challenges, a set
of new recommendations emerged.

Two different
globally distributed
teams. The cus-
tomer was located
with one of the
teams.

V One agile
software
development
project.

An interpretive stance was explicitly
taken. The case was exploratory, since
the aim was to understand and mitigate
communication challenges through the
concept of waste and, hence, to seek
new insights.

Three different
globally distributed
teams. The cus-
tomer was located
with one of the
teams.

4.2 Data collection

According to Lethbridge et al. (2005) it is important to obtain reliable and accurate
information about the phenomenon that is being studied. Surveys and interviews
are the most straightforward data collection instruments (Lethbridge et al. 2005),

78

but in order to improve the validity of the study, several data collection methods
should applied as proposed e.g. in (Eisenhardt 1989, Yin 1994, Stake 1995).
Lethbridge et al. (2005) divided data collection techniques into three categories
that were defined based on the human contact they require. First degree tech-
niques require direct access to participants, whereas second degree techniques
require access to the participants’ work environment while they are working, but
do not require direct access to the participants themselves. Third degree tech-
niques require access to work artefacts only. The second and third degrees differ
from each other in that the second degree requires data acquisition while the work
is being conducted whereas the third degree has no requirements with respect to
when the data is collected.

The data was collected during the studies mainly through first degree data collec-
tion techniques. Interviews were the most important data collection technique and all
the interviews conducted were transcribed verbatim. The data collection techniques
are presented in Table 14 based on the categorization by Lethbridge et al. (2005).

Table 14. The data collection techniques of the original publications following the
categorization presented in (Lethbridge et al. 2005).

Original paper Data collection techniques
Paper I First degree

 One group interview with the de-
velopers after the project ended.

 Research diary documenting the
observations, research activities,
ideas considering the study at
hand and future research possi-
bilities etc.,

 On-site observations. On-site
participation during iteration
planning, sprint review and retro-
spective sessions. Participation
during the development iterations
approximately twice a week.

Paper II First degree
 Four group interviews with the

developers
 Research diary documenting the

observations, research activities,
ideas considering the study at
hand and future research possi-
bilities.

 On-site observations. On-site
participation during iteration
planning, sprint review and retro-

79

spective sessions. Participation
during the development iterations
approximately twice a week.

 Email correspondence between
the teams and the customers.
The researchers were included in
this correspondence, but did not
intervene in product development
related matters.

Third degree
 Quantitative defect data recorded

by developers.
Paper III First degree

 Two group interviews with the
developers

 One semi-structured interview
with an experienced developer
working in one of the case pro-
jects in order to cover issues not
discussed in the group inter-
views. This person was the most
easily available for the interview.

 Research diary documenting the
observations, research activities,
ideas considering the study at
hand and future research possi-
bilities.

 On-site observations. On-site
participation during iteration
planning, sprint review and retro-
spective sessions. Participation
during the development iterations
twice a week.

 Email correspondence between
the development team and the
customer during the project. The
researchers were included in this
correspondence, but did not in-
tervene in product development
related matters.

Paper IV First degree
 One group interview involving the

project manager, a software ar-
chitect and one developer from

80

the other development unit. The
U.S. based customer organiza-
tion was not available for inter-
view.

Paper V First degree
 12 interviews. (9 individual inter-

views, 3 group interviews).
 One group interview focusing on

the use of documentation and
tools for sharing and storing it.
General level development-
related matters were also dis-
cussed.

 11 observation sessions taking
place either onsite or via tele-
phone and screen sharing soft-
ware.

 Research diary documenting the
observations, research activities,
ideas considering the study at
hand and future research possi-
bilities.

 Informal discussions with the
project manager and case com-
pany management about the pro-
ject.

 Email discussions with the case
project’s project manager.

Third degree
 A document related to how the

functionalities were distributed
between the sites

 A document explaining the
requirements creation and
backlog refinement processes.

4.3 Data analysis

The data was analysed following the guidelines of Miles and Huberman (1994).
During each individual study the initial codes (seed categories) were defined on
the basis of the research objective, i.e. what was to be analysed. These codes
were adjusted during the studies as considered necessary and additional ones
were added as in Thematic Analysis (Braun & Clarke 2006). The interview tran-

81

scriptions were read through and the findings related to defined codes were
grouped into a data display that formed a condensed set of information, i.e. the
data reduction process was followed. (Miles & Huberman 1994).

The data analysis in the case project described in paper I was conducted fol-
lowing the steps of AR. At first during the diagnosis phase, the practical problem of
not having an onsite customer was defined as the problem to be solved. At the
beginning of each iteration a set of practices to improve customer communication
and involvement was defined. These practices were implemented during action
taking and their effects were evaluated together with developers in post-iteration
workshops (i.e. retrospectives). Finally, these learnings were incorporated in future
iterations. After the project had ended, a single group interview was conducted in
order to gain additional insights into the improved version of the process.

In paper II the focus was on collecting quantitative defect-related data. Each
project documented the requirements in the form of user stories which were fur-
ther refined into tasks, as described in XP (Beck 2000). Defects were also docu-
mented as tasks. The defect-related tasks were analysed from each project and
the type of the defect was classified as either customer dependent or customer
independent. The proportion of defect-fixing tasks from all the tasks as well as the
times required to fix them were also extracted. Since it was possible to extract
accurate defect data from just one case project, statistical methods were not ap-
plied. Instead, the study was able to demonstrate trends on defects within projects
with various levels of customer involvement and communication. The interview
data was complemented with other research material described in Table 14. All
data was analyzed manually.

82

5. Research contributions

In this section, each individual study included in this thesis is described. This de-
scription includes an overall view of the papers and their key contributions.

5.1 Paper I: Extreme Programming: Reassessing the
Requirements Management Process for an Offsite
Customer

This paper approached customer communication using the assumption that it is
not possible to have an onsite customer. In this article, a process for integrating
the customer incapable of on-site participation was refined from its previous ver-
sion. The paper approached customer communication from the perspective of
requirements. Despite this angle, the proposed process aims towards customer
integration and communication throughout the development project. The case
project applied an agile approach called Mobile-D, (Abrahamsson et al. 2004),
specifically designed for the development of mobile applications. Mobile-D incor-
porates all the XP practices, excluding the on-site customer. The iteration length in
Mobile-D is one week and the process includes 5 releases. The first and the last
release last for one week, whereas the duration of the remaining three is two
weeks.

Based on the case results, the paper presents a process and practices that
should ensure efficient communication between the customer and the developers,
and the customer’s involvement in all phases of the project.

The key results of this paper are as follows:

 A process for integrating customer to an agile development process

 A set of practices that aims towards this integration and to ensure that
customer communication is effective throughout the project.

This paper contributes to research question Q2: How is it possible to involve the
customer in the development process in distributed agile development in order to
ensure communication and feedback?

83

5.2 Paper II: A Case Study on the Impacts of Customer
Communication on Defects in Agile Software
Development

The basis of this publication was the assumption that active customer communica-
tion is paramount in agile software development (Beck 2000). The aim of the pa-
per was to study the impacts of various levels of customer communication on
software quality. Similarly to paper I, Mobile-D was the development method used
in the case projects involved. In this study, four case projects with various levels of
customer involvement were analysed. One project had an on-site customer and in
the others the customer was available in various degrees.

The results indicated that when the customer participation and, hence, commu-
nication decreases, the number of defects that could possibly have been avoided
with more frequent customer communication and feedback increases accordingly.

The key findings of this paper were as follows:

 Increased reliance on less interactive media and lesser customer in-
volvement increases the number of defects.

 Attention should be paid to selection of suitable communication media to
be used during iterations when the customer is not available.

This paper contributes to answering research question Q1: Why is customer
communication important in distributed agile software development?

5.3 Paper III: Communication in Distributed Agile
Development: A Case Study

This study approached customer communication from the perspective of practices
described in (Layman et al. 2006). These practices aim to create an environment
that fosters communication in globally distributed agile development projects. In
this study, these suggestions were evaluated against empirical findings derived
from two different case projects. These projects used Mobile-D as the develop-
ment approach.

The results indicated that the practices suggested by Layman et al. (2006) are
worth considering in distributed agile development, but with some caution. In addi-
tion, direct communication, in this case between the developers, is encouraged
and added as an additional practice. In this paper, customer communication was
not operative during one of the case projects, which caused significant challenges
for the development. The team that would have required the customer’s input and
feedback did not receive steering from the customer and had to rely on their per-
ceptions about the functionalities and how they should be implemented so that
they could meet the customer’s expectations. The team was not allowed to directly

84

contact the other team, located at the same site with customer. Instead, all com-
munication was conducted via the customer.

The key findings of this paper were as follows:

 The studied communication practices should be considered in distributed
agile development, but with some caution. An additional practice propos-
ing direct communication between the distributed teams should be en-
couraged.

 Inoperative customer communication can cause significant challenges
even within small-scale distributed agile projects.

 Customer relationship should be given extra effort while planning, man-
aging and executing agile projects.

This paper contributes to research questions Q1: Why is customer communication
important in distributed agile software development? and Q3: What are the means,
practices and tools for improving customer communication in distributed agile
development?

5.4 Paper IV: Combining Agile and Traditional: Customer
Communication in Distributed Environment

The aim of the study was to analyse communication in the context in which two
different methods are being used in a single project. This practitioner-oriented
book chapter describes the challenges in communication encountered in a joint
development effort between two business units of a single organization. One of
the units was using a traditional plan-driven method and the other one used an
agile approach. The traditional organization had assumed the role of a customer
and provided the agile organization with the requirements they were supposed to
implement. The customer organization was located in the United States of Ameri-
ca while the other unit resided in Ireland.

The results suggest that it can be difficult for an agile organization to obtain rel-
evant information from a traditional type of business unit working as the customer,
even though communication was indicated to be active and it was conducted via
multiple different communication media. There were several reasons that contrib-
uted to what was referred to as the “information blackout” in the publication. Simi-
lar findings are also reported in paper III. In order to overcome the issues reported
in this publication, a set of practices was proposed in order to create an environ-
ment that enables efficient customer communication.

The key results of this paper were as follows:

85

 The combination of a customer who is not participating actively in the de-
velopment, bureaucratic organizational environment, differences between
traditional and agile methods and lack of trust can make distributed agile
development very challenging.

 A set of guidelines aiming towards ensuring that a distributed agile de-
velopment project has an involved customer who will provide the neces-
sary information to the development teams. These guidelines are pre-
sented in the form of questions and are as follows:

 What kind of information do we need from the other party?
 Who will be providing this information?
 Are we able to get this information when it is needed?
 Are the sources of information committed to provide the information

when agreed?
 Is there something that prevents us from getting this information?

This paper contributes to research questions Q1: Why is customer communication
important in distributed agile software development? and Q2: How is it possible to
involve the customer in the development process in distributed agile development
in order to ensure communication and feedback?

5.5 Paper V: Waste Identification as the Means for Improving
Communication in Globally Distributed Agile Software
Development

According to Ikonen et al. (2010), applying the principles of Lean production to
software development contexts appears to be one of the emerging trends in soft-
ware development. This journal article approached communication (including
customer communication) in globally distributed agile software development from
the perspective of involving the concept of waste (i.e. resource-consuming, non-
value adding elements) (Womack & Jones 1996) in agile development in order to
identify non-value producing elements from communication.

Paper V aimed towards identifying communication-specific wastes. The study
identified five wastes that are specific to communication and also indicated that
already identified wastes described in (Poppendieck & Poppendieck 2007, Mandi
et al. 2010) are also valid in the context of communication. In addition to five iden-
tified wastes of communication, this study provided another unique contribution in
the form of a process through which communication can be analysed, wastes
extracted and appropriate measures for mitigating them defined. In addition to
these findings, the product owner’s mandatory participation in different develop-
ment process phases ensured efficient communication.

The key results of this journal article were as follows:

86

 Five wastes of communication: lack of involvement, lack of shared un-
derstanding, outdated information, restricted access to information and
scattered information.

 Mandatory customer participation during the phases of the development
project ensures efficient communication by systematically involving the
customer in the process.

 A process for analysing and improving communication in agile develop-
ment projects.

This paper contributes to answering research questions Q2: How is it possible to
involve the customer in the development process in distributed agile development
in order to ensure communication and feedback? and Q3: What are the means,
practices and tools for improving customer communication in distributed agile
development?

5.6 Summary of contributions

Figure 8 presents the findings in the context of the toolbox depicted in Figure 7,
hence complementing the toolbox with the findings of this study. Elements added
to the toolbox as the results of this study are highlighted.

87

Figure 8. Toolbox for mitigating communication challenges in distributed agile
software development complemented with the findings of this study.

88

This study identified new challenge areas that can hinder customer communica-
tion in distributed agile software development. These challenge areas are: bu-
reaucratic organization (paper IV), differences between agile and traditional meth-
ods (paper IV) and communication waste (paper V). This study also identified
solution proposals for different challenge areas. Challenges related to bureaucratic
organization aspects can be mitigated by the guidelines discussed in paper IV,
and these guidelines can also be applied in the context of differences between
agile and traditional methods. A systematic waste mitigation approach in order to
identify communication waste and to improve communication in distributed agile
development projects was presented in paper V. This study also provides addi-
tional solutions to the challenges stemming from the lack of customer involvement.
Paper I provides an approach for integrating the customer to an agile development
project, and the guidelines presented in paper IV and the finding related to manda-
tory customer participation throughout the project reported in paper V provide
means to involve the customer in the process.

89

6. Discussion

In the following, both pragmatic and theoretical implications of this thesis are dis-
cussed on the basis of the main results. The main results are the toolbox for iden-
tifying and mitigating customer communication challenges in distributed agile
software development described in Section 5.6, the new concept of communica-
tion waste and the implication that lack of trust represents potentially the single
most important factor threatening communication in distributed agile develop-
ments. These implications are discussed in the following sections.

6.1 Implications for research

In this section, the main implications of this study for research are presented. In
addition, the findings related to both Media Richness Theory and Media Synchro-
nicity Theory are discussed.

As a unique contribution to the field of communication in agile development, this
thesis introduced the five wastes of communication; lack of involvement, lack of
shared understanding, outdated information, restricted access to information and
scattered information. Waste is a concept emerging from Lean production and
refers to actions that consume resources but do not add value (Womack & Jones
1996). This concept has been adapted to software development, e.g. by Poppend-
ieck and Poppendieck (2007) and Mandi et al. (2010). These authors presented
their own unique wastes of software development, but they are not explicitly tar-
geted towards communication. However, some of the wastes from this literature
are also valid in the context of communication (paper V). Since the concept of
waste in software development is relatively less studied, its nature is somewhat
elusive. On the other hand, existing literature on communication challenges is
rather copious. According to the Merriam-Webster online dictionary, a challenge is
defined as a “difficult task or problem: something that is hard to do7”. Using this
definition, a challenge in communication is something that makes it difficult. On the
other hand waste does not by definition explicitly make communication challeng-
ing. It was found (paper V) that waste was something that did not in fact cause the
project to fail, which supports the finding made by Ikonen (2010). However, if e.g.

7 http://www.merriam-webster.com/dictionary/challenge

http://www.merriam-webster.com/dictionary/challenge

90

shared understanding is not achieved this can potentially have dramatic conse-
quences for the project. Hence, the definition of waste in the context of communi-
cation, and software development in general, should be reformulated.

This study also indicated that lack of trust between the partners is potentially
the single most important factor threatening communication in distributed agile
development. Issues related to trust in distributed environments appear to be
commonplace, as demonstrated e.g. by da Silva et al. (2010) in section 2.4 of this
thesis. Further, Berger (2007) reported that trust issues can prevent stakeholders
of an agile project from building and fostering a relationship enabling collaboration
and cooperation, both of which are essential in agile development. It can be as-
sumed that this defective relationship also affects communication between the
participants.

From the perspective of communication in agile development, the lack of face-
to-face communication and direct communication hinders building of trust between
distributed partners (Conchúir et al. 2009, Therrien 2008, Lee & Yong 2010). In
distributed environments face-to-face communication can be difficult to achieve
and, hence, Therrien (2008) proposed regular visits between the distributed sites
in order to build trust and Moe and Šmite (2008) proposed that teams with low
trust should utilize frequent and predictable communication in order to maintain
and improve the level of trust. Moe and Šmite (2008) argued based on existing
work that trust is a multifaceted problem in GSD, since it is affected by factors
related to geographical, organizational, temporal, cultural and political differences
between the team members. From this perspective, the identified challenges of
geographical, temporal and cultural distance and organizational factors in terms of
bureaucracy can have a negative effect on trust and, hence, customer communi-
cation. Further, disparities between work practices, e.g. differences between tradi-
tional and agile methods (paper IV) can have a negative impact on trust Moe and
Šmite (2008). Therefore, it appears that there is no single reason responsible for
the lack of trust in distributed agile development projects.

This study revealed indications of lack of trust (papers III and IV). During one of
the case projects reported in paper III, the customer was on-site with the remote
team for the first two weeks of the project. After this, all the communication be-
tween the distributed teams was directed via the customer. However, the custom-
er was not communicating with the remote team that would have required infor-
mation, and direct communication between the distributed development teams
was prohibited. It was suggested that the lack of trust between the distributed
partners could have contributed to the lack of communication. The findings made
in paper IV describe a similar situation. Although in this case the customer organi-
zation was actively communicating with the vendor unit, from their perspective the
customer organization did not provide necessary information about requirements.

There were similar findings in the cases reported in papers III and IV. In paper
IV, information was deliberately hidden from the vendor organization (i.e. they
were not allowed to access the program code developed by the customer organi-
zation) due to its business sensitive nature, despite the fact that both organiza-
tions belonged to the same company. Similar information hiding in the form of

91

prohibiting direct communication between the teams was found in the case report-
ed in paper III. Whereas the lack of trust was explicitly mentioned in the case
reported in paper IV, it was only speculated in paper III. However, this similarity
strengthens the case for lack of trust in this case. Further, existing literature pro-
vides insights to this problem. According to Dirks and Ferrin (2001), lack of trust
can make working towards a single shared goal difficult and it is also probable that
competitive motives will be given more attention than cooperation among the
employees, and partners may even withdraw from collaboration due to feelings of
insecurity (Bandow 2001). In addition, a low level of trust can also lead to reduced
information exchange and feedback, as suggested in (Bandow 2001, Dirks &
Ferrin 2001, Salas et al. 2005).

The findings of this study indicated that lack of trust is not limited to customer
relationships where there is a separate customer and vendor organization, but
also involves organizational branches that are in fact part of the same company.
This suggests that lack of trust is a phenomenon that is not limited to any particu-
lar organizational context. Lack of trust is by no means a new finding in distributed
development, e.g. (Conchúir et al. 2009, Therrien 2008, Lee & Yong 2010). How-
ever, Paasivaara et al. (2008b) found that Scrum practices improve trust in global-
ly distributed efforts, since remote sites are able to conduct demanding tasks and
more frequent communication improves monitoring progress. Further, it has been
claimed that direct contact between the customer and the team establishes mutual
trust (Sillitti et al. 2005). Hence, the findings of this study related to trust and the
lack of it appear to contradict with existing literature. However, given the notion
that the distributed environment as a problem domain is very complex (Komi-Sirviö
& Tihinen 2005, Lee et al. 2006), this is not necessarily surprising. However, this
work provides support for the hypothesis that lack of trust can be a key factor
hindering or even preventing customer communication in distributed agile devel-
opments. Further, the claim made by Sillitti et al. (2005) should be regarded criti-
cally, since despite direct contact with the customer, trust was lacking (paper IV).
Rather, it should be ensured that an environment is created that enables and
fosters customer communication in distributed agile development (paper IV).

6.1.1 Media Richness Theory and Media Synchronicity Theory

This study used communication theories as lenses for gaining deeper understand-
ing about communication in the case projects. Communication theories were ex-
plicitly used in the case projects reported in papers II, IV and V.

6.1.1.1 Media Richness Theory.

Media Richness Theory was used as a tool for analysing communication in papers
II and IV. Paper II provided some evidence that less rich communication channels
are not suitable for clarifying ambiguous issues. After the first two weeks when the
customer was onsite during case 4, communication was conducted via email and

92

occasionally by telephone. This resulted in high numbers of defects. In addition, it
was reported in paper II that face-to-face communication during requirements
analysis (i.e. rich communication) created lively discussions between the customer
and the developers. This helped to clarify requirements and supports the claim
that rich communication is able to clarify ambiguous matters.

Paper IV was a practitioner-oriented publication and in this study Media Rich-
ness Theory was used as a lens to analyse communication. Several different
media were used in communication between the distributed sites. However, these
media were not solving the issue of communication being too high level to have
been useful to the vendor site. Therefore, this paper could not show any support-
ing or contradicting evidence for MRT. The findings also indicate that communica-
tion needs to be meaningful (i.e. it should serve its intended purpose, in this case
to provide sufficient information about the requirements) before communication
theories can be applied in analysing and improving communication.

6.1.1.2 Media Synchronicity Theory

Media Synchronicity Theory was applied in the study reported in paper V. In this
study, MST was able to explain the observed results. There were indications that
understanding requirements would have necessitated more efficient conveyance
in the form of more detailed requirements while storing them into the product back-
log. However, this is counterintuitive to agile development, which suggests that
requirements should be clarified when their implementation becomes timely. Fur-
thermore, the use of various communication media helped to clarify unclear mat-
ters between the lead site in North America and the remote site in India. The is-
sues stemmed from a lack of shared understanding considering the project, the
need to explicitly document the requirements for the Indian site and issues related
to a language barrier. These findings support the proposition of MST that no single
communication medium is better than any other, but that different media should be
applied on the basis of communication needs. Considering the communication
media, this paper concluded that face-to-face communication is not necessarily
the most efficient medium under certain conditions. In this project, one of the sites
involved in the development effort was an external contractor who did not share
similar domain knowledge with the other two sites. The case organization had to
carefully explain to the contractor site the contents of the requirements they were
allocated in very high detail. If this was not done, the features did not meet the
expectations assigned to them. This suggests that in cases when there are great
differences in domain and/or product knowledge, more detailed descriptions of
requirements (for example) are a better option than face-to-face communication
even in agile development projects.

This finding is in line with the suggestions of MST: if the communicating partici-
pants do not share a common understanding, a media with lower synchronicity is
a better option to convey information. Hence, it can be proposed that MST could
be used as an instrument for analysing and improving customer communication in
distributed agile software development, and that communication strategies and

93

practices can be derived from it. It should however be noted that the use of MST in
this study was limited to conveyance and convergence processes only.

6.2 Implications for practice

In this section, the key contribution of this study to practice is discussed.
The key contribution to practice is the toolbox depicted in Figure 8. This toolbox

was first defined by the existing literature on challenges and solution proposals in
customer communication and communication in general (Figure 7). The toolbox
was complemented based on the findings of this study. This study identified the
following challenge categories and solution proposals, which are now discussed
against the background of existing literature.

A Bureaucratic organization challenge emerged from the case project reported
in paper IV and refers to communication hindrances stemming from the bureau-
cratic nature of the customer organization. Earlier, Berger (2007) identified that a
bureaucratic environment is challenging for the success of an agile development
project. Bureaucracy is an organizational form that is based on strict rules, speci-
fied roles and positions (Hofstede 2003). Bureaucratic culture for its part is proce-
dural, hierarchical, regulated, established, structured, cautious and power-oriented
(Wallach 1983). There were several indications of bureaucratic characteristics
prevalent in the customer organization. Cautiousness was identified as not openly
sharing information with the vendor organization, and there were indications of
culpability since there were fears of losing jobs if the project should fail, and of
tightly defined responsibilities which prevented people from “crossing borders”.
This latter problem was indicated in the form of deliberately preventing the devel-
opers from each organization from communicating directly with each other. This is
counter-intuitive to agile methods that promote open and active communication
between all the participants. Since customer communication was lacking and the
vendor organization lacked knowledge of the domain, deliberate prohibition of
communication resulting from bureaucratic environment posed severe threats to
the success of the project.

In order to answer to the challenges created by bureaucratic organizational en-
vironment, a set of guidelines was proposed (paper IV). These guidelines can also
be applied while dealing with communication challenges related to a challenge of
differences between traditional and agile development (paper IV). The importance
of the customer’s role is recognized in traditional methods and it is conducted
using formal communication focusing on contractual matters on an as needed
basis (Boehm & Turner 2003b, Nerur et al. 2005). By contrast, in agile methods
the customers’ role is critical, customer interaction is driven by focused increments
and communication is preferably conducted informally (Boehm & Turner 2003b,
Nerur et al. 2005). The customer organization in the case project reported in paper
IV was conducting their work in a traditional milestone-oriented manner, whereas
the vendor organization had adopted an agile approach. One of the key character-
istics of agile development is that communication focuses on steering the project

94

increment by increment. In this particular case, the customer organization did not
want to be involved in “agile communication” and they did not participate in the
planning and review meetings that took place at the vendor organization. Although
these two organizations communicated very actively with each other, the customer
organization did not clarify the requirements that were supposed to be implement-
ed at the vendor site. This implies that when an agile team is working with a more
traditionally oriented organization, it is possible that the agile team is not support-
ed as it should be in terms of communication. Challenges related to adoption of
agile methods have been discussed in the previous literature. For example Ma-
hanti (2006) discussed issues at personal levels related to adoption of agile meth-
ods, whereas (Cohn & Ford 2003) approached adoption challenges from a mana-
gerial perspective. Further, Nerur et al. (2005) and Grossman et al. (2004) claimed
that the most significant challenge when adopting agile methods lies in changing
the organization as a whole in order to adopt an agile way of working. Since for
many people involved in the case project (paper IV) this particular project was the
first agile effort, it is reasonable to expect that agile methods were generally unfamil-
iar to the project participants. Hence, the abovementioned literature should provide
insights into this challenge area and how it affected customer communication.

Another new challenge area is the communication waste discussed earlier in
the previous section. These wastes should provide companies insights into what
could be improved in customer communication in their individual contexts. This
area takes a novel view to hindrances of communication in distributed agile devel-
opment and the wastes can be mitigated and effects of mitigation actions evaluat-
ed by applying a systematic approach (paper V). This process is similar to the
agile practice of Retrospectives, which focuses on continuous improvement of the
development process. Similarly, communication should be actively analysed and
improved. Although the process described in this case is based on analysing
communication throughout individual process phases, it should be noted that the
process does not explicitly take into account when and by whom this process
should be conducted. Considering the principle of Self-organization which enables
empowered people to independently make the solutions they see best, anyone in
the project could be able to conduct the waste identification process.

Considering the earlier identified challenge of lack of customer involvement,
new solution proposals were identified in this study. Lack of customer involvement
was also identified as a communication challenge in this study and, hence, guide-
lines were applied to ensure that a distributed agile development project has an
involved customer who provides necessary information to the development teams
(paper IV). Further, paper I presented an empirically validated process for involv-
ing the customer in an agile development project. Moreover, a finding from a case
reported in paper V provides means for integrating the customer to the develop-
ment process: mandatory customer participation during the phases of the devel-
opment project ensures efficient communication by systematically involving the
customer in the process. In this particular case, the customer’s participation was
mandatory during iteration planning and iteration review sessions and also during
mid-iteration sessions that took place 2–3 times a week, in which the current in-

95

crement was tested by the customer. This enabled efficient customer communica-
tion in the project. Inarguably, this is very close to the on-site customer practice of
XP (Beck 2000) and follows the Real Customer Involvement practice (Beck &
Andres 2004) that has replaced on-site customer availability with less stringent
requirements for participation. The approach taken in this case project clearly
shows the importance of a dedicated customer for the rest of the development
organization, since the scheduled meetings were postponed if the customer was
not able to participate in them. It should, however, be noted that very often the
customers can be too valuable for their employers or they can be too remote to
participate in the development as expected (Jeffries et al. 2001). Furthermore, the
customers can even be reluctant to participate in the process as actively as would
be necessary while taking an agile development approach (Farell et al. 2002).
Therefore, organizations aiming towards closer customer involvement should take
into account the customer’s ability and willingness to participate in a distributed
agile project and identify those most essential phases in which customer involve-
ment is essential and ensure that the customer is available when it is most im-
portant.

In this study, two distinct elements that impact customer communication
emerged. These themes are the customer’s involvement in the process and sys-
tematic analysis and improvement of customer communication. A customer’s
active participation in an agile process is one of the original key tenets of agile
methods (Beck 2000). However, more recent literature has questioned the critical
importance of customer involvement in agile development (Chow & Cao 2008,
Stankovic et al. 2013). As discussed earlier in this work, Chow and Cao (2008)
concluded that customer involvement plays an important role only in relation to the
scope of the project, and in their study based on the work of Chow and Cao
(2008), Stankovic et al. (2013) suggested that customer involvement is not im-
portant by any dimensions against which it was analysed. The findings of this
study, however, are contradictory to those of Chow and Cao (2008) and Stankovic
et al. (2013). The findings of this study clearly show that customer involvement is
critical, since without involvement, customer communication can even be non-
existent, which in turn can jeopardise the whole project (papers III and IV). In the
case reported in paper I the original customer was not able to participate in the
process as necessary, which resulted in the appointment of a customer proxy
consisting of two other customer representatives in order to maintain active cus-
tomer communication. Further, the lack of customer involvement and decreasing
communication correlate with the quality of the software being built in agile pro-
jects; the number of defects increases when the customer’s involvement and
communication decreases (paper II). Hence, involving the customer in the project
is essential in agile projects, which was also shown in paper V. The claim of Chow
and Cao (2008) considering the elusive and changing nature of the success fac-
tors in agile development can also be criticised. The individual studies in this work
were conducted between 2004 and 2011, which gives a longitudinal perspective to
this finding. Customer involvement was seen to be paramount in all the studies as
a factor contributing to efficient communication. Therefore, given the emphasized

96

importance of customer communication in agile development and the role which
customer involvement plays in it, in the light of this study customer involvement
has always been a critical factor contributing to the success of an agile project.

Considering the analysis and improvement of customer communication, existing
literature discussed in this study has shown that different communication media
have their downsides. Similar findings were also made in this study considering
the use of communication media. In the case reported in paper I, the customers
requested daily emails that summarized what had been done during the day. The
daily status emails were at first too technically oriented, and therefore more gen-
eral level descriptions were requested by the customers. A similar format was
used in the study reported in paper II. In this latter case, however, the daily reports
were too abstract for the customer to provide feedback based on them. A finding
considering the reports in paper I could provide some insights considering the
abstract nature of the reports. In this study, the reports contained information only
related to what was done and no questions were asked from the customers. The
customers experienced that they did not have any reason to provide feedback.
Despite this, the customers were not willing to use any other communication me-
dia during the iterations. Paper V identified challenges related to face-to-face
communication, videoconferencing, email and other asynchronous communication
media. In addition, it was suggested in paper III that communication practices can
have their downsides, despite their potential for supporting customer communica-
tion. Although these findings are hardly new, together with existing literature they
suggest that no single communication media or practice is a “silver bullet” that is
able to solve all the issues in customer communication without drawbacks. How-
ever, it was suggested in paper V that the realities of software development (e.g.
customers’ busy schedules) can dictate the use of communication media that are
not necessarily the best for the given situation. Despite this, the means, practices
and tools used in customer communication should be systematically evaluated
throughout the project. Constant improvement is one of the key aspects of agile
software development and this principle should also be applied in the context of
customer communication. What also calls out for systematic evaluation is the
claim made by McLuhan (1964) that the use of media is not static but, instead, the
use should be applied to the situation in which the media are used. Similarly, Me-
dia Synchronicity Theory suggests that no single communication medium is inher-
ently better than any other. Instead, the selection of appropriate media simultane-
ously or in succession creates the best possible communication results.

In addition, this toolbox provides a means to answer the critique that Petersen
and Wohlin (2009) presented against agile methods related to communication
overheads stemming from the high number of teams in large scale agile develop-
ment projects. The toolbox enables both teams and managers (and customers) to
foresee potential communication challenges in distributed agile development pro-
jects and also to respond to them accordingly. Hence, the toolbox supports com-
munication in large agile projects.

97

7. Conclusions

This section summarizes the results of this thesis, discusses its limitations and
suggests future research avenues. The results are presented by providing an-
swers to the research questions presented in Section 1.1.

7.1 Answers to research questions

In the following, the answers to the research questions are provided. Each sub-
question is addressed in separate sections based on the individual findings of the
original research papers. Finally, the answer to the main research question of this
thesis is provided.

7.1.1 Q1: Why is customer communication important in distributed agile
software development?

The answer to this research question is as follows: this study has shown that cus-
tomer communication is important since a lack of communication can cause is-
sues related to software quality (paper II) and significant challenges even within
small-scale distributed agile development projects (paper III). In the context of
globally distributed agile projects in which both agile and traditional development
methods are used, the combination of a customer who is not participating actively
in the development, bureaucratic organizational environment, differences between
traditional and agile methods and lack of trust can make the distributed agile de-
velopment very challenging. The lack of trust in particular appears to be the single
most important factor threatening communication in distributed agile environ-
ments. (Paper IV)

7.1.2 Q2: How is it possible to involve the customer in the development
process in distributed agile development in order to ensure
communication and feedback?

The answer to this research question is as follows: existing literature from distrib-
uted agile development (Layman et al. 2006) suggests the advantage of having a
customer that must be able to make conclusive decisions on project’s scope and

98

functionality, must have a vested interest in the project and needs to be readily
available. A process aiming towards active customer involvement is presented in
paper I. In addition, paper V proposes mandatory customer involvement. Based on
these findings, it should be ensured that a committed customer is actively involved
in distributed agile development project in order to ensure communication and
feedback.

7.1.3 Q3: What are the means, practices and tools for improving
customer communication in distributed agile development?

The answers to this research question are the challenge mitigation approaches for
different challenges depicted in the toolbox (Figure 8). These approaches were
derived from the existing literature and were complemented based on the results
of this study.

These approaches identified from existing literature are as follows: use of syn-
chronized communication media, use of communication media suitable for their
intended purposes, application of communication policies, selective participation in
meetings, minimized number of meetings, synchronized working hours, involve-
ment of relevant people, visits, formal and detailed documentation, Scrum practic-
es, frequent and predictable communication, communicate expectations early and
establish rules for conflict handling, competence and language proficiency, a de-
velopment approach that enables frequent communication, investments in suitable
communication tools and infrastructure, communication theories and committed
customers.

The approaches identified in this study are guidelines for ensuring communica-
tion (paper IV), a waste mitigation approach (paper V) and systematic customer
integration (papers I and V).

7.1.4 RQ: How is it possible to improve customer communication in
distributed agile software development?

Customer communication in distributed agile software development can be im-
proved by taking into account the various challenges that can hinder communica-
tion. These are the challenge areas that are presented in the toolbox described in
Section 5.6. These challenges provide an overview to potential communication
challenges that an agile project may encounter. Subsequently, these challenges
can be mitigated on the basis of the means, practices and tools described in the
previous section. The challenges derived from the existing literature were geo-
graphical distance, temporal distance, cultural distance, lack of trust, communica-
tion tools and media selection, and lack of customer involvement. The challenges
identified in this study are bureaucratic organization (paper IV), communication
waste (paper V) and differences between traditional and agile approaches.

99

7.2 Trustworthiness and limitations of the study

As Creswell and Miller (2000) pointed out, addressing the validity of qualitative
studies can be both challenging and confusing due to the wide array of terms
associated with validity. However, the general consensus is that qualitative studies
need to demonstrate credibility (Creswell & Miller 2000). In this section different
ways of addressing validity are discussed, as well as the validity of this study as
seen from the perspective of trustworthiness. In addition, some limitations of the
study are discussed.

Yin (2003) approached validity from the perspectives of construct validity, inter-
nal validity, external validity and reliability. These criteria address validity as fol-
lows:

Construct validity reflects to what extent the studied measures represent
the intents of the research and what is being studied according to re-
search questions. There is a threat to construct validity if the interviewees
do not interpret the constructs discussed in the interviews in a same way
as the researcher does.

Internal validity is a criteria related to causal relationships. For example, if
it is being studied whether a certain factor affects the factor being stud-
ied, there is a risk that a third factor also affects the one under study.
There is a threat to internal validity if the researcher is not aware of this
factor and/or does not know to what extent this third factor affects the in-
vestigated one.

External validity is an aspect related to generalizability of the results and
to the extent of interest in the results among people outside the investi-
gated case. In case studies, the intention is to extend the results to simi-
lar cases in which the findings would be relevant.

Reliability considers the extent to which the data and the analysis are de-
pendent on the researcher. If another researcher were to conduct the
same study later, the findings should be the same. For example, if it is
unclear how the data has been coded and if interview questions and/or
questionnaires are unclear, there is a threat to the reliability of the study.

In addition to these criteria, Guba (1981) proposed internal validity, external validi-
ty, reliability and objectivity as important criteria for addressing validity. However,
as Stol et al. (2014) pointed out, these criteria are more suitable for evaluating
quantitative data and, in turn, qualitative research should be evaluated in terms of
trustworthiness using credibility¸ transferability, dependability and confirmability as
the criteria against which trustworthiness is assessed. In order to support this,
Cruzes and Dybå (2011) proposed addressing trustworthiness using these criteria

100

in the context of software engineering. These criteria are described as follows
based on Stol et al. (2014) and Cruzes and Dybå (2011):

Credibility is related to the confidence and plausibility of the findings.
Therefore, the focus of the research and the confidence in how well the
data and the analysis processes address the intended focus are im-
portant.

Transferability addresses the generalizability of the results, i.e. to what
extent the findings can be applied in other settings.

Dependability refers to the stability of data, i.e. the extent to which find-
ings are reliable, the degree to which the data changes over the course
of time and as a result of alterations in the researcher’s decisions during
the data analysis process. It should be possible to track and explain any
variance in findings.

Confirmability is related to coding and sorting of extracted data and it also
considers whether other researchers would agree with the applied coding
and sorting approach. Confirmability also concerns bias from the per-
spectives of researcher and participants.

Since four out of the five papers included in this work are based on qualitative data
and the context of the study is software engineering, the trustworthiness of the
study is evaluated as suggested by Cruzes and Dybå (2011).

In order to improve credibility the studies, collected and analysed data and the
findings were actively discussed with researchers involved in the studies. This
peer debriefing (Creswell & Miller 2000) provided valuable feedback that could be
utilized during the individual studies. This approach is also called venting through
which results and interpretations are discussed with colleagues to prevent the
problem of multiple realities (Kaplan & Duchon 1988, Goetz & LeCompte 1984).
According to Stol et al. (2014), triangulation is a technique seeking convergence
among different and multiple information sources. These sources can be different
investigators, different research methods and different types of data. In the studies
of this thesis, the data was collected from several data sources during all but one
study. Furthermore, during the study reported in paper V, the data was member
checked with the participants, which according to Lincoln and Guba (1985) is the
most crucial aspect to be taken into account when establishing credibility. In paper
I member checking was conducted iteratively during the research in the project’s
iteration retrospectives. In the study reported in paper III, member checking was
conducted to a certain extent in the form of a single interview conducted after the
project had ended. In other studies, member checking with the participants was
not possible. This can be seen as a threat to credibility.

Lee and Baskerville (2003) claimed that many researchers working with both
quantitative and qualitative data have restricted themselves only to statistical,

101

sampling-based generalizability. Since statistical generalization cannot be derived
from this study, transferability is addressed from the perspectives of four alterna-
tive types of generalization as suggested by Walsham (1995). These types are
development of concepts, generation of theory, drawing of specific implications
and contribution of rich insights.

Considering development of concepts, paper I presented a process for integrat-
ing the customer to an agile development process in order to ensure active cus-
tomer communication. This process can be considered by organizations as a
means for involving the customer in the development process. Whereas Orlikow-
ski and Baroudi (1991) stated that interpretive studies do not seek generalizability,
the types of generalization discussed by Walsham (1995) are explicitly discussed
in the context of interpretive research. Taking this into account, it can be claimed
that the waste identification process is another concept developed during this
study.

The aim of this study was not to explicitly create a theory, or some propositions
in the form of theory fragments, i.e. a partial theory that is not yet completely de-
veloped (Stol & Fitzgerald 2013). In this work, it was suggested that the lack of
trust in the context of distributed agile software development might be the key
obstacle for customer communication. This can be seen as an initial tentative
theory, which should however be studied further.

Considering the drawing of specific implications, this study provided several im-
plications for both research and practice. Finally, since the main instrument of data
collection in all but one study was interviews, this contributes to contribution of rich
insights. The individual studies have aimed to provide as rich a description of the
case projects and case data as possible. However, similarly to the limitation pre-
sented in Stol et al. (2014), it is challenging to provide all the details of individual
case studies in the research papers due to manuscript length limitations. This
affects negatively the “feeling of experience” discussed by Creswell and Miller
(2000). According to these authors, “thick” descriptions (i.e. rich insights) create
statements, through which the readers could experience, or have experienced, the
events that the study describes.

In order to address dependability several data sources were used to provide the
results in all but one study. The material collected from each individual study forms
an audit trail which helps other investigators “to follow the cognitive development
of a project as it developed” (Morse 1994, p. 24). However, there are limits to
dependability. In the cases reported in papers II, III and IV, it was not possible to
interview the customers, which is a threat to dependability. In addition, during the
study reported in paper II, defect data recording was conducted accurately by the
developers only in one of the individual cases. Hence, the defect data from the
three other cases was able to show only trends in defect amounts. This is a threat
to dependability.

The Confirmability aspect can be addressed with similar techniques as credibil-
ity. As discussed in the context of credibility, peer debriefing was applied between
the researchers and the data was triangulated. Further, member checking was

102

applied in some of the cases when it was possible. Hence, this is a threat for the
confirmability of the study.

Considering the threats to individual aspects and, hence, the trustworthiness of
the study, the concept of convenience sampling should be noted. According to
Lethbridge et al. (2005), most studies in the field of software engineering need to
rely on participants who are available and willing to participate in the study. This
will however lead to bias, and therefore studies need to acknowledge this. Slightly
biased data is still seen as much more useful than a lack of data altogether Leth-
bridge et al. (2005), but it should be noted that the results reported in individual
research papers and, hence, the results of this study can be biased due to limited
availability of participants during the study, considering the inability to interview the
customers during the cases reported in papers II, III and IV.

This thesis has other limitations as well. In the studies reported in papers I, II
and III the developers involved in the case projects were mainly advanced MSc
level students from the field of software engineering. However, several authors
have discussed the use of students in software development research. For exam-
ple, Höst et al. (2000) came out in favour of using students when experimenting in
software engineering. Considering the papers I, II and III, the Mobile-D develop-
ment approach was applied in the case projects from which the data was collect-
ed. The case projects involved several researchers with individual research inter-
ests and at the general level, these studies aimed towards further development
and validation of Mobile-D, which is a highly experimental development approach.
Since the nature of the case projects as a whole was experimental, the use of
student subjects is acceptable considering the claim of Höst et al. (2000). For
example Kitchenham et al. (2002) did not propose to neglect the empirical data
collected from projects in which students are involved.

7.3 Future research opportunities

This thesis focused on customer communication in distributed agile software de-
velopment at the project level. It could be worthwhile to study communication and
verify the results of this thesis in a wider context, involving the whole organization.
In addition, it could be worthy of study to assess what lean software development
practices or elements from novel development approaches, such as “Leagile”
discussed in Section 2.5 or other interesting methods, for example Scrumban
(Ladas 2009), could possibly provide for communication. Other interesting re-
search avenues also exist. Both Media Richness Theory and Media Synchronicity
Theory were used as the communication theories in the original research papers.
By constructing a theoretical model based on these theories for selecting the most
efficient communication solutions in given situations it could be possible to provide
companies with more insights into customer communication in their work. This
contribution would also benefit the scientific community.

Considering the discussion of the vague nature of waste in Section 6.1, the na-
ture of waste should be studied in depth. Section 6.1 also called out for a more

103

refined definition of this concept and, hence, the use of a preliminary definition of
waste being something that consumes resources but does not add value and can
potentially cause problems if not mitigated could be used as a starting point for
studying this concept further. Section 6.1 emphasized lack of trust as a key factor
affecting customer communication. Given this claim, it would be important to study
whether or not lack of trust is the key obstacle hindering and even preventing
customer communication in agile software development. Finally, the presented
toolbox should be empirically evaluated in distributed agile development projects.

104

References
Abbas, N., Gravell, A. M. & Wills, G. B. (2008). Historical Roots of Agile Methods:

Where Did “Agile Thinking” Come From? In: the proceedings of 9th Inter-
national Conference in Agile Processes in Software Engineering and Ex-
treme Programming (XP2008). June 10–14, 2008. Limerick, Ireland. pp.
94–103.

Abrahamsson, P., Conboy, K., & Wang, X. (2009). Lots done, more to do: the
current state of agile systems development research. European Journal
of Information Systems, 18(4), pp.281–284.

Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M.,
Koskela, J., Kyllönen, P. & Salo, O. (2004). Mobile-D: An Agile Approach
for Mobile Application Development. In: The proceedings of the 19th An-
nual ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA.04). October 24–28, 2004. Vancou-
ver, British Columbia, Canada. pp. 174–175.

Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. (2002). Agile Software
Development Methods: Review and Analysis. VTT Publications 478.
VTT, Espoo. www.vtt.fi/inf/pdf/publications/2002/P478.pdf

Ågerfalk, P. & Fitzgerald, B. (2006). Flexible and Distributed Software Processes:
Old Petunias In New Bowls? Communications of the ACM, 49(10), pp.
10–27.

Ågerfalk, P.J. (2004). Investigating actability dimensions: a language/action per-
spective on criteria for information systems evaluation. Interacting with
Computers,16(5), pp. 957–988.

Ågerfalk, P., Fitzgerald, B. & Slaughter, S. (2009). Flexible and distributed infor-
mation systems development: State of the art and research challenges.
Information systems research, 20(3), pp. 317–328.

Agile Manifesto (2001). [online] Available at: http://agilemanifesto.org/

Avison, D.E. & Fitzgerald, G. (2003). Where now for development methodologies?
Communications of the ACM, 46(1), pp. 78–82.

Bakalova, Z. & Daneva, M. (2011). A comparative case study on clients participa-
tion in a’ traditional' and in an Agile software company. In: Proceedings of
the 12th International Conference on Product Focused Software Devel-
opment and Process Improvement (PROFES 2011). June 20–22, 2011.
Torre Canne, Italy. pp. 74–80.

http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf
http://agilemanifesto.org/

105

Balzer, R., Cheatham Jr, T.E. & Green, C. (1983). Software Technology in the
1990's: Using a New Paradigm. Computer, 16(11), pp. 39–45.

Bandow, D. (2001). Time to create sound teamwork. Journal for Quality and Par-
ticipation, 24(2), pp.41.

Bannerman, P. L., Hossain, E. & Jeffery, R. (2012). Scrum Practice Mitigation of
Global Software Development Coordination Challenges: A Distinctive
Advantage? In: Proceedings of the 45th Hawaii International Conference
on System Sciences (HICSS 2012). January 4–7, 2012. Maui, HI, USA.
pp. 5309–5318.

Baskerville, R. L. (1999). Investigating Information Systems with Action Research.
Communication of the Association for Information Systems, 2(19), Octo-
ber 1999.

Battin, R., Crocker, R., Kreidler, J. & Subramanian, K. (2001). Leveraging Re-
sources in Global Software Development. IEEE Software, 18(2), pp. 70–
77.

Beck, K. (2000). Extreme Programming Explained: Embrace change. Addison-
Wesley, Upper Saddle River, New Jersey. 190 p.

Beck, K. (1999). Embracing Change with Extreme Programming. IEEE Computer,
32(10), pp. 70–77.

Beck, K. & Andres, C. (2004). Extreme Programming Explained: Embrace
Change. Second Edition. Addison-Wesley, Upper Saddle River, NJ,
USA. 189 p.

Benington, H.D. (1983). Production of Large Computer Programs. Annals of the
History of Computing, 5(4), pp. 350–361.

Berger, H. (2007). Agile development in a bureaucratic arena – a case study expe-
rience. International Journal of Information Management, 27(6), pp. 386–
396.

Boehm, B. (2003). Value-Based Software Engineering. ACM SIGSOFT Software
Engineering Notes, 28(2), pp. 1–12.

Boehm, B. (2002). Get Ready For Agile Methods, With Care. IEEE Computer,
35(1), pp. 64–69.

Boehm, B. (1988). A Spiral Model of Software Development and Enhancement.
Computer, 21(5), pp. 61–72.

106

Boehm, B. & Turner, R. (2003a). People Factors in Software Management: Les-
sons From Comparing Agile and Plan-Driven Methods. Crosstalk – The
Journal of Defense Software Engineering, (Dec 2003), 16(12), pp. 4–8.

Boehm, B.W. & Turner, R. (2003b). Balancing Agility and Discipline: A Guide for
the Perplexed. Addison-Wesley Professional. 266 p.

Boland, D. & Fitzgerald, B. (2004). Transitioning From a Co-located to a Globally-
distributed Software Development Team: A Case Study at Analog Devic-
es Inc. In: the proceedings of the 26th International Conference on Soft-
ware Engineering (ICSE 2004). The 3rd International Workshop on Global
Software Development. May 28, 2004. Edinburgh, UK. pp. 4–7.

Börjesson, A. & Mathiassen, L. (2005). Improving software organizations: agility
challenges and implications. Information Technology & People, 18(4),
pp. 359–382.

Bostrom, R. B. & Thomas, B. D. (1983). Achieving excellence in communications:
A key to developing complete, accurate and shared information require-
ments. In: The Proceedings of the Twentieth Annual Computer Person-
nel on Research Conference (SIGCPR '83). November 17–18, 1983.
Charlottesville, VA, USA. pp. 1–13.

Bowers, J., May, J., Melander, E., Baarman, M. & Ayoob, A. (2002). Tailoring XP
for large system mission critical software development. In: the Proceed-
ings of the Second XP Universe and First Agile Universe Conference.
August 4–7, 2002. Chicago, IL, USA. pp. 100–111.

Braithwaite, K. & Joyce, T. (2005). XP expanded: Distributed extreme program-
ming. In: the proceedings of the 6th International Conference in Extreme
Programming and Agile Processes in Software Engineering (XP2005).
June 18–23, 2005. Sheffield, UK. pp. 180–188.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative
research in psychology, 3(2), pp. 77–101.

Bruegge, B., Dutoit, A. H. & Wolf, T. (2006). Sysiphus: Enabling informal collabo-
ration in global software development. In: the proceedings of Internation-
al Conference on Global Software Engineering (ICGSE ’06). October 16–
19, 2006. Florianopolis, Brazil. pp. 139–148.

Cao, L., Mohan, K., Xu, P. & Ramesh, B. (2004). How extreme does extreme
programming have to be? Adapting XP practices to large-scale projects.
In: the Proceedings of the 37th Annual Hawaii International Conference
on System Sciences (HICSS 2004). January 5–8, 2004, Big Island, HI,
USA. pp. 1–10.

107

Chow, T. & Cao, D. (2008). A survey study of critical success factors in agile soft-
ware projects. Journal of Systems and Software, 81(6), pp. 961–971.

Cockburn, A. (2002). Agile Software Development. Addison-Wesley, Indianapolis.
278 p.

Cohn, M. & Ford, D. (2003). Introducing an Agile process to an Organization. IEEE
Computer, 36(6), pp. 74–78.

Conboy, K. (2009). Agility from first principles: reconstructing the concept of agility
in information systems development. Information Systems Research,
20(3), pp. 329–354.

Conboy, K. & Fitzgerald, B. (2007). Agile Drivers, Capabilities, and Value: An
Over-Arching Assessment Framework for Systems Development. In: Ag-
ile Information Systems: Conceptualization, Construction, and Manage-
ment. DeSouza, K.C. (ed.), Elsevier, Burlington, MA, USA. pp. 207–222.

Conboy, K. & Fitzgerald, B. (2004). Toward a conceptual framework of agile
methods: a study of agility in different disciplines. In: Proceedings of the
2004 ACM workshop on Interdisciplinary software engineering research
(WISER ‘04) co-located with SIGSOFT 2004/FSE 12 Conference. No-
vember 5, 2004. Newport Beach, CA, USA. pp. 37–44.

Conchúir, E.Ó., Ågerfalk, P.J., Olsson, H.H. & Fitzgerald, B. (2009). Global soft-
ware development: where are the benefits? Communications of the
ACM, 52(8), pp. 127–131.

Counsell, S., Phalp, K., Mendes, E. & Geddes, S. (2005). What Formal Models
Cannot Show Us: People Issues During The Prototyping Process. In: the
proceedings of the 6th International Conference on Product Focused
Software Process Improvement (PROFES 2005). June 13–18, 2005. Ou-
lu, Finland. pp. 3–15.

Creswell, J.W. & Miller, D.L. (2000). Determining validity in qualitative inquiry.
Theory into practice, 39(3), pp. 124–130.

Cruzes, D.S. & Dybå, T. (2011). Recommended steps for thematic synthesis in
software engineering. In: the proceedings of the 5th International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM 2011)
September 22–23, 2011. Banff, Alberta, Canada. pp. 275–284.

Cunningham, J.B. (1997). Case study principles for different types of cases. Quali-
ty and quantity, 31(4), pp. 401–423.

108

Curtis, B., Krasner, H. & Iscoe, N. (1988). A Field Study of the Software Design
Process for Large Systems. Communications of the ACM, 31(11), pp.
1268–1287.

Da Silva, F.Q.B., Costa, C., França, A.C.C. & Prikladinicki, R. (2010). Challenges
and Solutions in Distributed Software Development Project Management:
A Systematic Literature Review. In: the proceedings of the 5th Interna-
tional Conference on Global Software Engineering (ICGSE 2010). Au-
gust 23–26, 2010. Princeton, NJ, USA. pp. 87–96.

Daft, R.L., Lengel, R. & Trevino, L.K. (1987). Message Equivocality, Media Selec-
tion, and Manager Performance: Implications for Information Support
Systems. MIS Quarterly, 11(3), pp. 355–366.

Daft, R.L. & Lengel, R.J. (1986). Organizational Information Requirements, Media
Richness and Structural Design. Management Science, 32(5), pp. 554–
571.

Daft, R.L. & Weick, K. (1984). Toward a Model of Organizations as Interpretation
Systems. Academy of Management Review, 9(2), pp. 284–295.

Damian, D. & Moitra, D. (2006). Guest Editors' Introduction: Global Software De-
velopment: How Far Have We Come? IEEE Software, 23(5), pp. 17–19.

Damian, D. (2002). Workshop on global software development. SIGSOFT Soft-
ware Engineering Notes, 27(5).

Danait, A. (2005). Agile Offshore Techniques-A Case Study. In: the proceedings of
the Agile Development Conference (ADC’05). July 24–29. Denver, CO,
USA. pp. 214–217.

Davison, R., Martinsons, M.G. & Kock, N. (2004). Principles of canonical action
research. Information Systems Journal, 14(1), pp. 65–86.

De Meyer, A., Loch, C.H. & Pich, M.T. (2002). From variation to chaos. MIT Sloan
Management Review, 43, pp. 60–67.

Del Nuevo, E., Piattini, M. & Pino, F.J. (2011). Scrum-based Methodology for
Distributed Software Development. In: the proceedings of the 6th Interna-
tional Conference of Global Software Engineering (ICGSE 2011). August
15–18. 2011. Helsinki, Finland. pp. 66–74.

Dennis, A.R., Fuller, R.M. & Valacich, J.S. (2008). Media, Tasks, and Communica-
tion Processes: A Theory of Media Synchronicity. MIS quarterly, 32(3),
pp. 575–600.

109

Dennis, A.R. & Valacich, J.S. (1999). Rethinking Media Richness: Towards a
Theory of Media Synchronicity. In: the proceedings of the 32nd Annual
Hawaii International Conference on System Sciences (HICSS 1999).
January 5–8, 1999. Maui, HI, USA. pp. 1017–1027.

Dijkstra, E.W. (1968). Letters to the editor: go to statement considered harmful.
Communications of the ACM, 11(3), pp. 147–148.

Dingsøyr, T., Nerur, S., Balijepally, V. & Moe, N.B. (2012). A decade of agile
methodologies: Towards explaining agile software development. Journal
of Systems and Software, 85(6), pp. 1213–1221.

Dirks, K.T. & Ferrin, D.L. (2001). The role of trust in organizational settings. Or-
ganization Science, 12(4), pp. 450–467.

Drummond, B.S. & Francis, J. (2008). Yahoo! Distributed agile: notes from the
world over. In: Proceedings of Agile 2008. August 4–8, 2008, Toronto,
ON, Canada, pp. 315–321.

Dybå, T. & Dingsøyr, T. (2008). Empirical studies of agile software development: A
systematic review. Information and Software Technology, 50(9–10), pp.
833–859.

Easterbrook, S., Singer, J., Storey, M. & Damian, D. (2008). Selecting empirical
methods for software engineering research. In: Guide to advanced em-
pirical software engineering. F. Shull, J. Singer & D.I. Sjoberg (eds.)
Springer, pp. 285–311.

Ebert, C. & De Neve, P. (2001). Surviving Global Software Development. IEEE
Software, 18(2), pp. 62–69.

Edstrom, A. (1997). User Influence and the Success of MIS Projects: A Contin-
gency Approach. Human Relations, 30(7), pp. 580–607.

Eisenhardt, K.M. (1989). Building Theories From Case Study Research. Academy
of management review, 14(4), pp. 532–550.

Erickson, J., Lyytinen, K. & Siau, K. (2005). Agile modeling, Agile Software Devel-
opment, and Extreme Programming: the State of Research. Journal of
Database Management, 16(4), pp. 88–100.

Estler, H.C., Nordio, M., Furia, C.A., Meyer, B. & Schneider, J. (2012). Agile vs.
Structured Distributed Software Development: A Case Study. In: the pro-
ceedings of the 7th International Conference on Global Software Engi-
neering (ICGSE 2012). August 27–30, 2012. Porto Alegre, Brazil. pp.
11–20.

110

Farell, C., Narang, R., Kapitan, S. & Webber, H. (2002). Towards an Effective
Onsite Customer Practice. In: the proceedings of the 3rd International
Conference on XP and Agile Processes in Software Engineering
(XP2002). May 26–29, 2002. Alghero, Sardinia, Italy. pp. 52–55.

Fish, R. S., Kraut, R. E., Root, R. W. & Rice, R. E. (1992). Evaluating video as a
technology for informal communication. In: the Proceedings of the
SIGCHI conference on Human factors in computing systems (CHI 1992).
May 3–7, 1992. Monterey, CA, USA. pp. 37–48.

Fitzgerald, B., Hartnett, G. & Conboy, K. (2006). Customising agile methods to
software practices at Intel Shannon. European Journal of Information
Systems, 15(2), pp. 200–213.

Fitzgerald, B., Stol, K.-J., O’Sullivan, R. & O’Brien, D. (2013). Scaling Agile Meth-
ods to Regulated Environments: An Industrial Case Study. In: the Pro-
ceedings of 35th International Conference on Software Engineering
(ICSE 2013). May 18–26, 2013. San Francisco, CA, USA. pp. 863–872.

Gilb, T. (1981). Evolutionary development. ACM SIGSOFT Software Engineering
Notes, 6(2), pp. 17.

Gladden, G.R. (1982). Stop the life-cycle, I want to get off. ACM SIGSOFT Soft-
ware Engineering Notes, 7(2), pp. 35–39.

Glass, R.L. (2006). The Standish report: does it really describe a software crisis?
Communications of the ACM, 49(8), pp. 15–16.

Goetz, J.P. & LeCompte, M.D. (1984). Ethnography and qualitative design in
educational research. Academic Press, Orlando, FL, USA.

Goldhaber, G. (1993). Organisational Communication. Sixth Edition. Brown &
Benchmark Publishers.

Gorton, I. & Motwani, S. 1996. Issues in co-operative software engineering using
globally distributed teams. Information and Software Technology, 38(10),
pp. 647–655.

Grisham, P. S. & Perry, D. E. (2005). Customer relationships and extreme pro-
gramming. ACM SIGSOFT Software Engineering Notes, 30. pp. 1–6.

Grossman, F., Bergin, J., Leip, D., Merritt, S. & Gotel, O. (2004). One XP experi-
ence: Introducing Agile (XP) Software Development into a Culture that is
Willing but not Ready. In: proceedings of the 2004 conference of the
Centre for Advanced Studies on Collaborative research (CASCON
2004). October 5–7, 2004. Markham, Ontario, Canada. pp. 242–254.

111

Guba, E.G. (1981). Criteria for assessing the trustworthiness of naturalistic inquir-
ies. Educational Technology Research and Development, 29(2), pp.
75–91.

Hanssen, G.K. & Fægri, T.E. (2006). Agile Customer Engagement: a Longitudinal
Qualitative Case Study. In: the proceedings of the 2006 ACM/IEEE inter-
national symposium on Empirical software engineering (ISESE´06). Sep-
tember 21–22, 2006. Rio de Janeiro, Brazil. pp.164–173.

Hanssen, G.K., Šmite, D. & Moe, N.B. (2011). Signs of agile trends in global soft-
ware engineering research: A tertiary study. In: 6th IEEE International
Conference on Global Software Engineering Workshop (ICGSEW 2011).
August 15–18, 2011. Helsinki, Finland. pp. 17–23.

Hansson, C., Dittrich, Y., Gustafsson, B. & Zarnak, S. (2006). How agile are indus-
trial software development practices? The Journal of Systems & Soft-
ware, 79(9), pp. 1295–1311.

Herbsleb, J. & Grinter, R. (1999). Splitting the Organization and Integrating the
Code: Conway's Law Revisited. In: the proceedings of the 21st interna-
tional conference on Software engineering (ICSE´99), May 16–22, 1999.
Los Angeles, CA. USA. pp. 85–95.

Herbsleb, J. & Moitra, D. (2001). Global software development. IEEE Software,
18(2), pp. 16–20.

Highsmith, J. (2000). Adaptive Software Development: A Collaborative Approach
To Managing Complex Systems. Dorset House Publishing, NY, USA.

Highsmith, J. & Cockburn, A. (2001). Agile Software Development: The Business
of Innovation. Computer, 34(1), pp. 120–122.

Hofstede, G. (2003). Cultures and Organizations-Software of the Mind: Intercultur-
al Cooperation and its Importance for Survival. Profile Books, London.

Holmström, H., Conchuir, E.O., Agerfalk, P.J. & Fitzgerald, B. (2006a). Global
software development challenges: A case study on temporal, geograph-
ical and socio-cultural distance. In: the proceedings of International Con-
ference on Global Software Engineering (ICGSE ’06). October 16–19,
2006. Florianopolis, Brazil. pp. 87–95.

Holmström, H., Fitzgerald, B., Ågerfalk, P.J. & Conchuir, E.O. (2006b). Agile prac-
tices reduce distance in global software development. Information Sys-
tems Development, 23(3), pp. 7–18.

112

Hossain, E., Babar, M.A. & Paik, H. (2009). Using Scrum in Global Software De-
velopment: A Systematic Literature Review. In: the proceedings of the 4th

International IEEE Conference on Global Software Engineering (ICGSE
2009). July 13-16, 2009. Limerick, Ireland. pp. 175–184.

Höst, M., Regnell, B. & Wohlin, C. (2000). Using Students as Subjects – A Com-
parative Study of Students and Professionals in Lead-Time Impact As-
sessment. Empirical Software Engineering, 5(3), pp. 201–214.

Humphrey, W.S. (1995). A Discipline for Software Engineering. Addison-Wesley
Longman Publishing Co., Boston, MA, USA.

Ikonen, M. (2010). Leadership in Kanban Software Development Projects: A Qua-
si-controlled Experiment. In: the proceedings of the International Confer-
ence on Lean Enterprise Software and Systems (LESS2010). October
17–20, 2010. Helsinki, Finland. pp. 85–98.

Ikonen, M., Kettunen, P., Oza, N. & Abrahamsson, P. (2010). Exploring the
sources of waste in Kanban software development projects. In: the pro-
ceedings of the 36th Euromicro Conference on Software Engineering and
Advanced Applications (EUROMICRO 2010). September 1–3, Lille,
France. pp. 376–381.

Jalali, S. & Wohlin, C. (2012). Global software engineering and agile practices: a
systematic review. Journal of Software: Evolution and Process, 24(6),
pp. 643–659.

Jeffries, R., Anderson, A. & Hendrickson, C. (2001). Extreme Programming In-
stalled. Addison-Wesley, Upper Saddle River, New Jersey, USA.

Jiang, L. & Eberlein, A. (2009). An analysis of the history of classical software
development and agile development. In: the proceedings of 2009 IEEE
International Conference on Systems, Man and Cybernetics (SMC 2009).
October 11–14, 2009. San Antonio, TX, USA. pp. 3733–3738.

Jiménez, M., Piattini, M. & Vizcaíno, A. (2009). Challenges and improvements in
distributed software development: a systematic review. Advances in
Software Engineering, 2009, pp. 3–17.

Jokela, T. & Abrahamsson, P. (2004). Usability Assessment of an Extreme Pro-
gramming Project: Close Co-operation with the Customer Does Not
Equal to Good Usability. In: Proceedings of the 5th International Confer-
ence on Product Focused Software Development and Process Improve-
ment (PROFES 2004). April 5–8, 2004. Kansai Science City, Japan. pp.
393–407.

113

Järvenpää, S.L., Shaw, T.R. & Staples, D.S. (2004). Towards contextualized theo-
ries of trust: the role of trust in global virtual teams. Information Systems
Research, 15(3), pp. 250–267.

Kähkönen, T. (2004). Agile methods for large organizations-building communities
of practice. In: the proceedings of Agile Development Conference 2004
(ADC 2004). June 22–26, 2004. Salt Lake City, UT, USA. pp. 2–10.

Kajko-Mattsson, M., Azizyan, G. & Magarian, M.K. (2010). Classes of Distributed
Agile Development Problems. In: the proceedings of Agile 2010. August
9–13, 2010. Orlando, FL, USA. pp. 51–58.

Kaplan, B. & Duchon, D. (1988). Combining qualitative and quantitative methods
in information systems research: a case study. Mis Quarterly, 12(4), pp.
571–586.

Keil, M. & Carmel, E. (1995). Customer-Developer Links in Software Develop-
ment. Communications of the ACM, 38(5), pp. 33–44.

Kettunen, P. (2009). Agile Software Development in Large-Scale New Product
Development Organization: Team-Level Perspective. Doctoral Dissera-
tion. Helsinki University of Technology, Espoo.

Kettunen, P. & Laanti, M. (2008). Combining agile software projects and large-
scale organizational agility. Software Process Improvement and Practice,
13(2), pp. 183–193.

Kircher, M., Jain, P., Corsaro, A. & Levine, D. (2001). Distributed eXtreme Pro-
gramming. In: the proceedings of XP2001. May 21–23, 2001. Villasimius,
Sardinia, Italy, pp. 66–72.

Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El
Emam, K. & Rosenberg, J. (2002). Preliminary Guidelines for Empirical
Research in Software Engineering. IEEE Transactions on Software En-
gineering, 28(8), pp. 721–734.

Klein, H.K. & Myers, M.D. (1999). A set of principles for conducting and evaluating
interpretive field studies in information systems. MIS quarterly, 23(1), pp.
67–93.

Koch, A.S. (2005). Agile Software Development: Evaluating the Methods for Your
Organization. Artech House Publishers, USA.

Komi-Sirviö, S. & Tihinen, M. (2005). Lessons Learned by Participants of Distrib-
uted Software Development. Knowledge and Process Management,
12(2), pp. 108–122.

114

Koskela, J. & Abrahamsson, P. (2004). On-Site Customer in an XP Project: Empir-
ical Results from a Case Study. In: the proceedings of the 11th European
Conference on Software Process Improvement (EuroSPI 2004). Novem-
ber 10–12, 2004. Trondheim, Norway. pp. 1–11.

Kraut, R., Egido, C. & Galegher, J. (1988). Patterns of Contact and Communica-
tion in Scientific Research Collaboration. In: the proceedings of the 1988
ACM conference on Computer-Supported Cooperative Work (CSCW
1988). September 26–28, 1988. Portland, Oregon, USA. pp. 1–12.

Kraut, R.E. & Streeter, L.A. (1995). Coordination in Software Development. Com-
munications of the ACM, 38(3), pp. 69–81.

Kruchten, P. (2004). The rational unified process: an introduction. Addison-Wesley
Professional.

Kussmaul, C., Jack, R. & Sponsler, B. (2004). Outsourcing and Offshoring with
Agility: A Case Study. In: the proceedings of the 4th Conference on Ex-
treme Programming and Agile Methods (XP/Agile Universe 2004). Au-
gust 15–18, 2004. Calgary, Alberta, Canada. pp. 147–154.

Laanti, M., Similä, J. & Abrahamsson, P. (2013). Definitions of Agile Software
Development and Agility. In: the proceedings of the 20th European Con-
ference on Software Process Improvement (EuroSPI 2003). June 25–27,
2013. Dundalk, Ireland. pp. 247–258.

Laanti, M., Salo, O. & Abrahamsson, P. (2011). Agile methods rapidly replacing
traditional methods at Nokia: A survey of opinions on agile transfor-
mation. Information and Software Technology, 53(3), pp. 276–290.

Ladas, C. (2009). Scrumban-essays on kanban systems for lean software devel-
opment. Modus Cooperandi Press.

Larman, C. & Basili, V.R. (2003). Iterative and Incremental Development: A brief
history. IEEE Computer, 36(6), pp. 47–56.

Lau, F. (1999). Toward a framework for action research in information systems
studies. Information Technology & People, 12(2), pp. 148–176.

Layman, L., Williams, L., Damian, D. & Bures, H. (2006). Essential communication
practices for Extreme Programming in a global software development
team. Information and Software Technology, 48(9), pp. 781–794.

Lee, A.S. & Baskerville, R.L. (2003). Generalizing generalizability in information
systems research. Information systems research, 14(3), pp. 221–243.

115

Lee, G., DeLone, W. & Espinosa, J.A. (2006). Ambidextrous coping strategies in
globally distributed software development projects. Communications of
the ACM, 49(10), pp. 35–40.

Lee, S. & Yong, H.S. (2010). Distributed agile: project management in a global
environment. Empirical Software Engineering, 15(2), pp. 204–217.

Lengel, R.H. & Daft, R.L. (1988). The Selection of Communication Media as an
Executive Skill. Academy of Management Executive, 2(3), pp. 225–232.

Leon, G. (1995). On the diffusion of software technologies: technological frame-
works and adoption profiles. In: the proceedings of the first IFIP WG 8.6
working conference on the diffusion and adoption of information technol-
ogy, Oslo, Norway, October 1995, Oslo, Norway. pp. 97–116.

Lethbridge, T.C., Sim, S.E. & Singer, J. (2005). Studying software engineers: Data
collection techniques for software field studies. Empirical Software Engi-
neering, 10(3), pp. 311–341.

Lincoln, Y.S. & Guba, E.G. (1985). Naturalistic inquiry. Sage, Newbury Park, CA,
USA.

Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., May, J.
& Kähkönen, T. (2004). Agile Software Development in Large Organiza-
tions. Computer, 37(12), pp. 26–34.

MacGregor, E., Hsieh, Y. & Kruchten, P. (2005). The impact of intercultural factors
on global software development. In: the proceedings of the Canadian
Conference on Electrical and Computer Engineering. May 1–4, 2005.
Saskatoon, Sask. Canada. pp. 920–926.

Mahanti, A. (2006). Challenges in Enterprise Adoption of Agile Methods – A Survey.
Journal of Computing and Information Technology, 14(3), pp. 197–206.

Malone, T.W. & Crowston, K. (1994). The Interdisciplinary Study of Coordination.
ACM Computing Surveys (CSUR), 26(1), pp. 87–119.

Mandi , V., Oivo, M., Rodríguez, P., Kuvaja, P., Kaikkonen, H. & Turhan, B.
(2010). What Is Flowing in Lean Software Development? In: the proceed-
ings of the International Conference on Lean Enterprise Software and
Systems (LESS2010). October 17–20, 2010. Helsinki, Finland. pp. 72–84.

Martin, A., Biddle, R. & Noble, J. (2004). The XP customer role in practice: three
studies. In: the proceedings of Agile Development Conference 2004
(ADC 2004). June 22–26, Salt Lake City, UT, USA. pp. 42–54.

116

Maurer, F. (2002). Supporting distributed extreme programming. In: the proceedings
of the 2nd XP Universe and First Agile Universe Conference (XP/Agile Uni-
verse 2002). August 4–7, 2002, Chicago, IL, USA. pp. 13–22.

McCracken, D.D. & Jackson, M.A. (1982). Life cycle concept considered harmful.
ACM SIGSOFT Software Engineering Notes, 7(2), pp. 29–32.

McLuhan, M. (1964). Understanding Media: The Extensions of Man. McGraw Hill,
New York.

Melnik, G. & Maurer, F. (2004). Direct Verbal Communication as a Catalyst of
Agile Knowledge Sharing. In: the proceedings of Agile Development
Conference 2004 (ADC 2004). June 22–26, Salt Lake City, UT, USA. pp.
21–31.

Menand, L. (1997). Pragmatism: A reader. Vintage Press, New York.

Merisalo-Rantanen, H., Tuunanen, T. & Rossi, M. (2005). Is Extreme Program-
ming Just Old Wine in New Bottles: A Comparison of Two Cases. Jour-
nal of Database Management (JDM), 16(4), pp. 41–61.

Miles, M.B. & Huberman, A.M. (1994). Qualitative Data Analysis: An Expanded
Sourcebook. 2nd edn. SAGE Publications Inc., Thousand Oaks, Califor-
nia, USA.

Moe, N.B. & Šmite, D. (2008). Understanding a lack of trust in global software
teams: A multiple-case study. Software Process Improvement and Prac-
tice, 13, 2008, pp. 217–231.

Moenaert, R.K. & Caeldries, F. (1996). Architectural redesign, interpersonal com-
munication, and learning in R&D. Journal of Product Innovation Man-
agement, 13(4), pp. 296–310.

Morse, J. M. (1994). Emerging from the Data: The Cognitive Processes of Analy-
sis in Qualitative Inquiry. In J. M. Morse (ed.) Critical Issues in Qualitative
Research Methods. Thousand Oaks, CA: Sage. pp. 23–43.

Murru, O., Deias, R. & Mugheddue, G. (2003). Assessing XP at a European Inter-
net company. IEEE Software, 20(3), pp. 37–43.

Nerur, S., Mahapatra, R.K. & Mangalaraj, G. (2005). Challenges of Migrating to
Agile Methodologies. Communications of the ACM, 48(5), pp. 72–78.

Niederman, F., Kundu, S. & Salas, S. (2006). IT software development offshoring:
A multi-level theoretical framework and research agenda. Journal of
Global Information Management (JGIM), 14(2), pp. 52–74.

117

Noll, J., Beecham, S. & Richardson, I. (2010). Global software development and
collaboration: barriers and solutions. ACM Inroads, 1(3), pp. 66–78.

O'Conchuir, E., Holmström, H., Agerfalk, P.J. & Fitzgerald, B. (2006). Exploring
the Assumed Benefits of Global Software Development. In: the proceed-
ings of International Conference on Global Software Engineering (ICGSE
'06). October 16–19, 2006. Florianopolis, Brazil. pp. 159–168.

Orlikowski, W.J. & Baroudi, J.J. (1991). Studying information technology in organi-
zations: Research approaches and assumptions. Information systems
research, 2(1), pp. 1–28.

Paasivaara, M., Durasiewicz, S. & Lassenius, C. (2008a). Distributed agile devel-
opment: Using scrum in a large project. In: the proceedings of Interna-
tional Conference on Global Software Development (ICGSE’08) August
17–20, 2008. Bangalore, India. pp. 87–95.

Paasivaara, M., Durasiewicz, S. & Lassenius, C. (2008b). Using scrum in a global-
ly distributed project: a case study. Software Process: Improvement and
Practice, 13(6), pp. 527–544.

Paasivaara, M. & Lassenius, C. (2003). Collaboration practices in global inter-
organizational software development projects. Software Process Im-
provement and Practice, 8(4), pp. 183–199.

Palmer, S.R. & Felsing, M. (2001). A practical guide to feature-driven develop-
ment. Pearson Education.

Parnas, D. & Clements, P. (1986). A rational design process: How and why to fake
it. IEEE Transactions on Software Engineering, 12(2), pp. 80–100.

Perry, D.E., Staudenmayer, N.A. & Votta, L.G. (1994). People, organizations, and
process improvement. IEEE Software, 11(4), pp. 36–45.

Petersen, K. & Wohlin, C. (2009). A comparison of issues and advantages in agile
and incremental development between state of the art and an industrial
case. Journal of Systems and Software, 82(9), pp. 1479–1490.

Petersen, K., Wohlin, C. & Baca, D. (2009). The waterfall model in large-scale
development. In: the proceedings of the10th International Conference on
Product-Focused Software Process Improvement (PROFES2009). June
15–17, 2009. Oulu, Finland. pp. 386–400.

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P. & Still, J. (2008). The
impact of agile practices on communication in software development.
Empirical Software Engineering, 13(3), pp. 303–337.

118

Pikkarainen, M., Korkala, M., Kääriainen, J. & Välimäki, A. (2011). Practices for
efficient customer collaboration in innovation – insights from the Finnish
industry. International Journal of Technology Marketing, 6(1), pp. 17–35.

Poppendieck, M. & Poppendieck, T. (2007). Implementing Lean Software Devel-
opment: From Concept to Cash. Addison-Wesley Professional.

Poppendieck, M. & Poppendieck, T. (2003). Lean Software Development: An Agile
Toolkit. Addison-Wesley, Upper Saddle River, NJ, USA.

Prikladnicki, R., Audy, J. & Evaristo, R. (2003). Distributed Software Development:
Toward an understanding of the relationship between project team, users
and customers. In: the proceedings of 5th International Conference on
Enterprise Information Systems (ICEIS2003). April 23–26, 2003. Angers,
France. pp. 417–423.

Prowell, S.J., Trammell, C.J., Linger, R.C. & Poore, J.H. (1999). Cleanroom soft-
ware engineering: technology and process. Pearson Education.

Qumer, A. & Henderson-Sellers, B. (2008). An evaluation of the degree of agility in
six agile methods and its applicability for method engineering. Infor-
mation and Software Technology, 50(4), pp. 280–295.

Qumer, A. & Henderson-Sellers, B. (2006). Measuring agility and adaptability of
agile methods: a 4-dimensional analytical tool. In: the proceedings of
IADIS International Conference on Applied Computing (AC’2006) Febru-
ary 25–28, 2006. San Sebastian, Spain. pp. 503–507.

Ramasubbu, N. & Balan, R.K. (2009). The impact of process choice in high ma-
turity environments: An empirical analysis. In: the proceedings of the 31st

IEEE International Conferences on Software Engineering (ICSE 2009).
May 16–24, 2009. Vancouver, British Columbia, Canada. pp. 529–539.

Ramesh, B., Cao, L., Mohan, K. & Xu, P. (2006). Can distributed software devel-
opment be agile? Communications of the ACM, 49(10), pp. 41–46.

Rizwan Jameel Qureshi, M. (2012). Agile software development methodology for
medium and large projects. IET Software, 6(4), pp. 358–363.

Robert, L.P. & Dennis, A.R. (2005). Paradox of richness: A cognitive model of
media choice. IEEE Transactions on Professional Communication, 48(1),
pp. 10–21.

Robson, C. (2002). Real World Research, 2nd edn. Blackwell Oxford, UK.

Rodríguez, P., Markkula, J., Oivo, M., & Turula, K. (2012). Survey on agile and
lean usage in Finnish software industry. In: the Proceedings of the ACM-

119

IEEE international symposium on Empirical software engineering and
measurement (ESEM’12). September 19–20, 2012. Lund, Sweden. pp.
139–148.

Rogers, E.M. (1986). Communication Technology: The New Media in Society. The
Free Press, New York.

Royce, W. (1990). Pragmatic quality metrics for evolutionary software develop-
ment models. In: the proceedings of the Conference on TRI-ADA'90.
December 3–6, 1990. Baltimore, MD, USA. pp. 551–565

Royce, W. W. (1970). Managing the Development of Large Software Systems. In:
The proceedings of the IEEE WESCON. August 1970. San Francisco,
CA, USA. pp. 328–339.

Runeson, P. & Höst, M. (2009). Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2), pp. 131–164.

Saeki, M. (1995). Communication, Collaboration and Cooperation in Software
Development – How Should We Support Group Work In Software Devel-
opment? In: the proceedings of the 2nd Asia-Pacific Software Engineer-
ing Conference (APSEC’95). December 6–9, 1995. Brisbane, Queens-
land, Australia pp. 12–20.

Sahay, S. (2003). Global software alliances: the challenge of ‘standardization’.
Scandinavian Journal of Information Systems, 15(1), pp. 3–21.

Salas, E., Sims, D.E. & Burke, C.S. (2005). Is there a “big five” in teamwork?
Small Group Research, 35(5), pp. 555–599.

Salo, O. & Abrahamsson, P. (2008). Agile methods in European embedded software
development organisations: a survey on the actual use and usefulness of
Extreme Programming and Scrum. IET Software, 2(1), pp. 58–64.

Sarker, S. & Sahay, S. (2004). Implications of space and time for distributed work:
an interpretive study of US–Norwegian systems development teams. Eu-
ropean Journal of Information Systems, 13(1), pp. 3–20.

Sarker, S. & Sarker, S. (2009). Exploring Agility in Distributed Information Systems
Development Teams: an Interpretive Study in an Offshoring Context. In-
formation Systems Research, 20(3), pp. 440–461.

Schwaber, K. (2004). Agile Project Management with Scrum. Microsoft Press, USA.

Schwaber, K. & Beedle, M. (2002). Agile Software Development with Scrum. Pren-
tice-Hall, Upper Saddle River, New Jersey, USA.

120

Seaman, C.B. (2002). Qualitative methods in empirical studies of software engineer-
ing. IEEE Transactions on Software Engineering, 25(4), pp. 557–572.

Shannon, C.E. (1948). A mathematical theory of communication. The Bell System
Technical Journal, 27(3), pp. 379–423.

Shrivastava, S.V. & Date, H. (2010). Distributed Agile Software Development: A
Review. Journal of Computer Science and Engineering, 1(1), pp. 10–17.

Sillitti, A., Ceschi, M., Russo, B. & Succi, G. (2005). Managing uncertainty in re-
quirements: a survey in documentation-driven and agile companies. In:
the proceedings of the 11th IEEE International Symposium on Software
Metrics, September 19–22, 2005. Como, Italy. pp. 10–17.

Siniaalto, M. & Abrahamsson, P. (2007). A Comparative Case Study on the Im-
pacts of Test-Driven Development on Program Design and Test Cover-
age. In: the proceedings of the First International Symposium on Empiri-
cal Software Engineering and Measurement (ESEM 2007). September
20–21, 2007. Madrid, Spain. pp. 275–284.

Siniaalto, M. & Abrahamsson, P. (2008). Does Test-Driven Development Improve
the Program Code? Alarming Results from a Comparative Case Study.
In Balancing Agility and Formalism in Software Engineering, eds. B.
Meyer, J.R. Nawrocki & B. Walter, Springer. pp. 143–156.

Šmite, D. (2006). Global Software Development Projects in One of the Biggest
Companies in Latvia: Is Geographical Distribution a Problem? Software
Process Improvement and Practice, 11, pp. 61–76.

Šmite, D., Moe, N.B. & Ågerfalk, P.J. (2010a). Agility Across Time and Space:
Summing up and Planning for the Future. In Agility Across Time and
Space – Implementing Agile Methods in Global Software Projects, eds.
D. Šmite, N.B. Moe & P. J. Åkerfalk, Springer. pp. 333–337.

Šmite, D., Moe, N.B. & Ågerfalk, P.J. (2010b). Fundamentals of Agile Distributed
Software Development. In Agility Across Time and Space – Implement-
ing Agile Methods in Global Software Projects, eds. D. Šmite, N.B. Moe
& P. J. Åkerfalk, Springer. pp. 3–7.

Šmite, D., Wohlin, C., Gorschek, T. & Feldt, R. (2010c). Empirical evidence in
global software engineering: a systematic review. Empirical Software
Engineering, 15(1), pp. 91–118.

Solinski, A. & Petersen, K. (2014). Prioritizing agile benefits and limitations in
relation to practice usage. Software Quality Journal, September 2014,
pp. 1–36.

121

Sommerville, I. (1996). Software process models. ACM Computing Surveys
(CSUR), 28(1), pp. 269–271.

Stake, R. (1995). The Art of Case Research. Sage Publications, Thousand Oaks,
CA, USA.

Stankovic, D., Nikolic, V., Djordjevic, M. & Cao, D. (2013). A survey study of criti-
cal success factors in agile software projects in former Yugoslavia IT
companies. Journal of Systems and Software, 86(6), pp. 1663–1678.

Stapleton, J. (1997). DSDM, dynamic systems development method: the method
in practice. Addison-Wesley Professional.

Stavru, S. (2014). A critical examination of recent industrial surveys on agile
method usage. Journal of Systems and Software, vol 94, August 2014,
pp. 87–97.

Stol, K., Avgeriou, P., Babar, M.A., Lucas, Y. & Fitzgerald, B. (2014). Key factors
for adopting inner source. ACM Transactions on Software Engineering
and Methodology (TOSEM), 23(2), pp. 18.

Stol, K. & Fitzgerald, B. (2013). Uncovering theories in software engineering. In:
the proceedings of 2013 2nd SEMAT Workshop on a General Theory of
Software Engineering (GTSE 2013). May 26, 2013. San Francisco, CA,
USA. pp. 5–14.

Summers, M. (2008). Insights into an Agile adventure with offshore partners. In:
the proceedings of AGILE 2008 Conference. August 4–8, 2008, Toronto,
Ontario, Canada. pp. 333–338.

Sureshchandra, K. & Shrinivasavadhani, J. (2008). Adopting Agile in Distributed
Development. In: the proceedings of International Conference on Global
Software Development (ICGSE’08) August 17–20, 2008. Bangalore, In-
dia. pp. 217–221.

Susman, G. I. & Evered, R. D. (1978). An Assessment of the Scientific Merits of
Action Research. Administrative Science Quarterly, 23, pp. 582–603.

Sutherland, J., Viktorov, A., Blount, J. & Puntikov, N. (2007). Distributed scrum:
Agile project management with outsourced development teams. In: the
Proceedings of 40th Annual Hawaii International Conference on System
Sciences (HICSS 2007), January 3–6, 2007. Waikoloa, Big Island, HI,
USA. pp. 274–284.

Sutherland, J., Schoonheim, G. & Rijk, M. (2009). Fully Distributed Scrum: Repli-
cating Local Productivity and Quality with Offshore Teams. In: the pro-

122

ceedings of 42nd Hawaii International Conference on System Sciences
(HICSS '09). January 5–8, 2009. Hilton Waikoloa Village Resort, Big Is-
land, HI, USA. pp. 1–8.

Teasley, S.D., Covi, L.A., Krishnan, M.S. & Olson, J.S. (2002). Rapid Software
Development Through Team Collocation. IEEE Transactions on Soft-
ware Engineering, 28(7), pp. 671–683.

Therrien, E. (2008). Overcoming the challenges of building a distributed agile
organization. In: the proceedings of AGILE 2008 Conference. August 4–
8, 2008, Toronto, Ontario, Canada. pp. 358–372.

Turk, D., France, R. & Rumpe, B. (2005). Assumptions Underlying Agile Software-
Development Processes. Journal of Database Management, 16(4), pp.
62–87.

Uy, E. & Ioannou, N. (2008). Growing and sustaining an offshore Scrum engage-
ment. In: the proceedings of AGILE 2008 Conference. August 4–8, 2008,
Toronto, Ontario, Canada. pp. 345–350.

van Deursen, A. (2001). Customer Involvement in Extreme Programming: XP2001
Workshop Report. ACM Software Engineering Notes. Nov. 2001, pp. 70–73.

van Oosterhout, M., Waarts, E. & Van Hillegersberg, J. (2006). Change factors
requiring agility and implications for IT. European Journal of Information
Systems, 15(2), pp. 132–145.

Vax, M. & Michaud, S. (2008). Distributed agile: Growing a practice together. In:
the proceedings of AGILE 2008 Conference. August 4–8, 2008, Toronto,
Ontario, Canada. pp. 310–314.

Wallach, E.J. (1983). Individuals and Organizations: The Cultural Match. Training
and development journal, 37(2), pp. 29–36.

Walsham, G. (1995). Interpretive Case Studies in IS Research: Nature and Meth-
od. European Journal of Information Systems, 4(2), pp. 74–81.

Wang, X., Conboy, K. & Cawley, O. (2012). “Leagile” software development: An
experience report analysis of the application of lean approaches in agile
software development. Journal of Systems and Software, 85(6), pp.
1287–1299.

West, D., Grant, T., Gerush, M. & D'Silva, D. (2010). Agile Development: Main-
stream Adoption Has Changed Agility. Forrester Research.

Williams, L. & Cockburn, A. (2003). Guest Editors' Introduction: Agile Software
Development: It's about Feedback and Change. Computer, 36(6), pp. 43.

123

Williams, W. & Stout, M. (2008). Colossal, scattered, and chaotic (planning with a
large distributed team). In: the proceedings of AGILE 2008 Conference.
August 4–8, 2008, Toronto, Ontario, Canada. pp. 356–361.

Wolff, J.G. (1989). The management of risk in system development: Project SP
and the New Spiral Model. Software Engineering Journal, 4(3), pp. 134–
142.

Wolff, S. (2012). Scrum goes formal: Agile methods for safety-critical systems. In:
the proceedings of 2012 Formal Methods in Software Engineering: Rig-
orous and Agile Approaches (FormSERA). June 2, 2012. Zürich, Switzer-
land. pp. 23–29.

Womack, J.P. & Jones, D.T. (1996). Lean Thinking: Banish Waste and Create
Wealth in Your Corporation. Simon & Schuster, New York, NY, USA.

Yin, R.K. (2003). Case Study Research, Design and Methods. 3rd edn. Sage Pub-
lications, Beverly Hills, CA, USA.

Yin, R.K. (1994). Case Study Research Design and Methods. Sage Publications,
Thousand Oaks, CA.

PAPER I

Extreme Programming: Reassessing the
Requirements Management Process

for an Offsite Customer

Proceedings of the 11th European Conference on
Software Process Improvement (EuroSPI 2004).

November 10–12, 2004. Trondheim, Norway. Pp. 12–22.
Copyright 2004 Springer-Verlag.

Reprinted with permission from the publisher.

PAPER II

A Case Study on the Impact of
Customer Communication on Defects in

Agile Software Development

Proceedings of AGILE 2006 Conference. July 23–28, 2006.
Minneapolis, MN, USA. Pp. 76–88.

Copyright 2006 IEEE.
Reprinted with permission from the publisher.

II/1

A Case Study on the Impact of Customer Communication
on Defects in Agile Software Development.

Mikko Korkala1, Pekka Abrahamsson2 and Pekka Kyllönen2

1Department of Information Processing Science
P.O.Box 3000, FIN-90014 University of Oulu, Finland

2VTT Technical Research Centre of Finland
P.O.Box 1100, FIN-90571, Oulu, Finland

Mikko.Korkala@oulu.fi; Pekka.Abrahamsson@vtt.fi;pekka.kyllonen@vtt.fi

Abstract

 Effective communication and feedback are crucial
in agile development. Extreme Programming (XP)
embraces both communication and feedback as
interdependent process values which are essential
for projects to achieve successful results. Our
research presents the empirical results from four
different case studies. Three case studies had
partially onsite customers and one had an onsite
customer. The case studies used face-to-face
communication to different extents along with email
and telephone to manage customer-developer
communication inside the development iterations.
Our results indicate that an increased reliance on
less informative communication channels results in
higher defect rates. These results suggest that the
selection of communication methods, to be used
inside development iterations, should be a factor of
considerable importance to agile organizations
working with partially available customers. This
paper also proposes some guidelines for selecting
proper communication methods.

1. Introduction

Misunderstood or erroneous requirements are
often the reason why software systems are late and
unreliable [1]. Literature and practice show that
agile methods work with unstable requirements
which are managed through short development
cycles and efficient communication (e.g. [2, 3]).
Agile development approaches tend to rely on
effective personal communication and collaboration
between the project participants [2, 4].
 In fact, two agile principles
(http://agilemanifesto.org/principles.html) directly

emphasize the importance of customer-developer
communication. Face-to-face communication is
identified as the most efficient means of
communication between the participants. Moreover,
the daily collaborative work of business people and
developers demands efficient verbal communication
between the customer and the developers. In
addition to communication, feedback is also crucial
in agile development. The most popular agile
method Extreme Programming (XP) embraces both
communication and feedback as interdependent
process values. Previously, XP went to extremes with
customer communication and feedback by proposing
an Onsite Customer, a real person constantly
available for information [3]. Although some authors
(e.g. [5-8]), have found weaknesses in this practice,
on the positive side, having an onsite customer when
possible enables efficient communication and
feedback since the customer is always and easily
available for information. Even though the practice
has its advantages, it is not always possible to have
the customer constantly onsite due to various reasons
(e.g. the customers are too valuable or too remote to
be onsite) [9]. The Onsite Customer has now been
replaced with the Real Customer Involvement
practice which does not assume fulltime customer
presence, but suggests that the customer can
participate in weekly and quarterly meetings [10].
 As demonstrated above, the importance of
communication has been shown to be paramount in
agile development. Less however is known about the
implications of communication and feedback in this
context. The purpose of this paper is therefore
twofold. First, this paper explores the impact of
customer communication and feedback on software
defect rates. Second, it briefly discusses the selection

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

mailto:Mikko.Korkala@oulu.fi
mailto:Pekka.Abrahamsson@vtt.fi
mailto:pekka.kyllonen@vtt.fi
http://agilemanifesto.org/principles.html

II/2 II/3

2) Multiple cues, different cues (e.g. body
language, voice inflection) can be a part of the
message. Some online media are capable of
transmitting multiple cues (e.g. videoconferencing),
some are primarily single channelled (e.g. email)
[20];

3) Language variety¸ refers to the use of different
languages, such as numbers which convey precision
and natural language conveying the understanding of
a broader set of ideas. Written or typed language
provides more precise language [20];

4) Personal focus, A message will be conveyed
more fully when personal feelings are infusing the
communication. However, sometimes lesser
emotional content can be better. Cockburn [4]
provides an example of a project leader and her team
who used telephones because she was too aggressive
with her emotions in person.
 MRT suggest that the richest communication
channel enables instant feedback, is capable of
transmitting multiple cues, has a high language
variety and it can transmit emotional contents.
 Based on [12], the following summary of the
richness of different communication channels can be
made. Face-to-face is the richest form of
communication since it enables instant feedback and
it is able to transmit multiple cues [12].
Videoconferencing is capable of sending both video
and audio, and it enables fast feedback [12].
Videoconferencing is however a somewhat leaner
medium than face-to-face and it restricts some visual
cues, but it has more information capacity than
telephone [12]. Email has capabilities similar to
telephone, but the cues are filtered out [12].
 As mentioned above, MRT has been criticized by
several authors. For example, Dennis and Valacich
[16] conclude that the richest medium is defined by
the situation in which it is used. The richness of
medium depends on its ability to provide the
capabilities needed by the situation. These
capabilities include the individuals, tasks and the
social context in which they interact [16]. They also
state that media is not monolithic, since media are
capable of possessing different levels of
communication depending on their usage (e.g. video
and audio files can be attached to email messages)
[16].

2.2. Communication in agile development
 Agile methods work with volatile requirements
and embrace personal communication between the
participants [2]. Since the level of ambiguity can be

considered high in the form of unstable
requirements, it seems that personal communication
is a natural choice (and in line with MRT) for agile
development. Based on the existing literature, Kraut
& Streeter [21] summarized the characteristics of
informal communication. They state that informal
communication is the primary method of exchanging
information within research and development
organizations [21]. Also in many domains, the
physical proximity of the information source is also
important, and transmitting the information through
informal, interpersonal communication is valuable
especially as development and research tasks become
more uncertain [21]. Also Cockburn [4] agrees that
informal communication between the stakeholders
and their physical proximity are important factors.
Personal, verbal communication has also been
supported e.g. by the following arguments: according
to Juric [22] verbal communication enables defect
detection early in the development process, and
personal contact with the customer causes less
distortion to the information [23]. Melnik and
Maurer [23] compared the differences between
traditional and agile development. Since in
traditional development the information travels
through a long chain of people, it becomes distorted
and some of it is lost. Agile development embraces
personal communication with the customer, which
reduces both information loss and mutation. [23]
Informal and personal communication is thus highly
efficient, but it has to be maintained since according
to Wake [24], the lack of high-bandwidth
communication leads to a loose feedback
mechanism. This makes the steering of a project
become less responsive, which in turn demands more
effort to get the project back on course [24].
 Despite its usefulness, verbal communication has
also been criticized by e.g. Finsterwalder [5] who has
pointed out the pitfalls in verbal communication
when discussing Extreme Programming, according
to Finsterwalder verbal communication is not always
well thought-out and the contents of the
conversations can be forgotten during time.
 In addition to communication, feedback is another
essential success factor (e.g. Wake [24]). The most
popular agile method Extreme Programming (XP)
embraces communication and feedback as
interdependent process values. The Communication
value of XP requires that the communication must be
maximized between the stakeholders through direct,
interpersonal communication. Feedback value, for
its part, requires that the contact with the customer is

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

of customer communication channels based on the
existing literature.
 The empirical material is based on four case
studies. From one of the case studies, the researchers
were able to capture reliable metrics about the defect
division and the times required to fix those defects.
Defect follow-up provides a means for increasing our
understanding of how well a team has understood the
customer's intentions. The other three case studies,
including one onsite customer project, are used to
show trends in the development of defect densities.
These cases applied different communication
channels, varying in their richness. The richness of
the communication channels is observed from the
viewpoint of the Media Richness Theory (MRT) [11,
12], and personal suggestions on the information
richness of different communication mediums by
Ambler [13] and Cockburn [4].
 We claim that effective and rich mid-iteration
communication1 is a highly important factor in cases
where rich customer communication is not always
available, and the lack of high-bandwidth (e.g. face-
to-face) communication and an increasing reliance
on leaner communication channels results in higher
defect rates, despite careful face-to-face requirements
analysis.
 The principal findings of the study are as follows:
It was found that an average of 25.3% of all tasks
involved fixing defects in the three non-onsite
customer projects. The case proving accurate
metrics about the defects indicated that an average of
62.6% of all defects could have been avoided by
either having an onsite customer or a more effective
mid-iteration communication mechanism. These
results indicate that the selection of a mid-iteration
communication medium, especially, must be given
significant attention in agile development efforts
with partially available customers. Some suggestions
to overcome these challenges will be presented in
this paper.
 This paper is organized as follows: section 2
discusses the relevant communication literature,
focusing on the MRT and communication in agile
context; Section 3 explains the research settings; the
empirical research results and our discussion on
agile communication are in section 4; and the
conclusions are drawn in section 5.

1 Mid-iteration communication is used for the customer-developer
communication taking place inside any particular iteration.

2. Related literature

 Effective communication is an essential success
factor for any software development effort (e.g. [3,
14, 15], but according to Cockburn [4] it is far from
being an easy task. Sometimes the idea to be
expressed is not even fully conscious, and for the
communication to be effective the participants must
have a shared experience of the subject that is being
discussed. This shared experience is needed for the
participants to compensate for the gaps in
communications. [4]
 Section 2.1 discusses the Media Richness Theory
which, despite criticism, is possibly the most well-
known theory of media selection. Section 2.2 focuses
on communication in the context of agile software
development.

2.1. Media richness theory (MRT)

 Media Richness Theory (MRT) [11, 12] is perhaps
the most prominent theory of media selection, even
though it has been widely criticized (e.g. [16-18]).
The theory suggests that matching the task needs to
mediums ability to convey information will improve
task performance and that certain media are better
capable of transmitting uncertain or equivocal
information [11, 12].
 Uncertainty is interpreted as the lack of
information [19], while equivocality means that
there are multiple, possibly conflicting
interpretations for the information [16]. The values
of these variables can be classified as high or low
[11]. According to Daft, Lengel and Trevino,
uncertainty leads to data acquisition whereas
equivocality results in the exchange of subjective
views, definition of the problem and resolution of
disagreements [12]. Daft and Lengel [11] suggest
that equivocal tasks should be managed through rich
communication channels, while leaner channels are
effective for processing standard data and well
understood messages.
 The richness of different communication mediums
is based on a blend of four criteria [12]. The
characterization of these variables is complemented
by the perceptions of online media by Graveline,
Geisler and Danchak [20], as follows:
 1) Feedback, instant feedback enables asking
questions and making corrections. The capability of
feedback relates to synchronicity of feedback; online
media are either synchronous or asynchronous [20];

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

II/3

2) Multiple cues, different cues (e.g. body
language, voice inflection) can be a part of the
message. Some online media are capable of
transmitting multiple cues (e.g. videoconferencing),
some are primarily single channelled (e.g. email)
[20];

3) Language variety¸ refers to the use of different
languages, such as numbers which convey precision
and natural language conveying the understanding of
a broader set of ideas. Written or typed language
provides more precise language [20];

4) Personal focus, A message will be conveyed
more fully when personal feelings are infusing the
communication. However, sometimes lesser
emotional content can be better. Cockburn [4]
provides an example of a project leader and her team
who used telephones because she was too aggressive
with her emotions in person.
 MRT suggest that the richest communication
channel enables instant feedback, is capable of
transmitting multiple cues, has a high language
variety and it can transmit emotional contents.
 Based on [12], the following summary of the
richness of different communication channels can be
made. Face-to-face is the richest form of
communication since it enables instant feedback and
it is able to transmit multiple cues [12].
Videoconferencing is capable of sending both video
and audio, and it enables fast feedback [12].
Videoconferencing is however a somewhat leaner
medium than face-to-face and it restricts some visual
cues, but it has more information capacity than
telephone [12]. Email has capabilities similar to
telephone, but the cues are filtered out [12].
 As mentioned above, MRT has been criticized by
several authors. For example, Dennis and Valacich
[16] conclude that the richest medium is defined by
the situation in which it is used. The richness of
medium depends on its ability to provide the
capabilities needed by the situation. These
capabilities include the individuals, tasks and the
social context in which they interact [16]. They also
state that media is not monolithic, since media are
capable of possessing different levels of
communication depending on their usage (e.g. video
and audio files can be attached to email messages)
[16].

2.2. Communication in agile development
 Agile methods work with volatile requirements
and embrace personal communication between the
participants [2]. Since the level of ambiguity can be

considered high in the form of unstable
requirements, it seems that personal communication
is a natural choice (and in line with MRT) for agile
development. Based on the existing literature, Kraut
& Streeter [21] summarized the characteristics of
informal communication. They state that informal
communication is the primary method of exchanging
information within research and development
organizations [21]. Also in many domains, the
physical proximity of the information source is also
important, and transmitting the information through
informal, interpersonal communication is valuable
especially as development and research tasks become
more uncertain [21]. Also Cockburn [4] agrees that
informal communication between the stakeholders
and their physical proximity are important factors.
Personal, verbal communication has also been
supported e.g. by the following arguments: according
to Juric [22] verbal communication enables defect
detection early in the development process, and
personal contact with the customer causes less
distortion to the information [23]. Melnik and
Maurer [23] compared the differences between
traditional and agile development. Since in
traditional development the information travels
through a long chain of people, it becomes distorted
and some of it is lost. Agile development embraces
personal communication with the customer, which
reduces both information loss and mutation. [23]
Informal and personal communication is thus highly
efficient, but it has to be maintained since according
to Wake [24], the lack of high-bandwidth
communication leads to a loose feedback
mechanism. This makes the steering of a project
become less responsive, which in turn demands more
effort to get the project back on course [24].
 Despite its usefulness, verbal communication has
also been criticized by e.g. Finsterwalder [5] who has
pointed out the pitfalls in verbal communication
when discussing Extreme Programming, according
to Finsterwalder verbal communication is not always
well thought-out and the contents of the
conversations can be forgotten during time.
 In addition to communication, feedback is another
essential success factor (e.g. Wake [24]). The most
popular agile method Extreme Programming (XP)
embraces communication and feedback as
interdependent process values. The Communication
value of XP requires that the communication must be
maximized between the stakeholders through direct,
interpersonal communication. Feedback value, for
its part, requires that the contact with the customer is

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

II/4 II/5

Figure 2. The communication value of different techniques, reproduced from [13].

3. Research design
 This section describes the research method, data
collection and analysis techniques, and research
settings on which the results of this study are based.
Our research covered four different case [27] studies,
referred to as Case 1, Case 2, Case 3 and Case 4.
Case 1 has been previously described in [6] and Case
2 is discussed in [28]. The teams consisted of 5 to 6
developers, and in the case of Case 3 one of the
developers was a member of the customer
organization. The aim of projects Case 2, Case 3 and
Case 4 was to implement a mobile software product
to the customers, while Case 1 delivered an
application for internal use. In the case of Case 3,
the assignment was to implement a mobile version of
an existing desktop application, implemented by the
customer organization.
 All the cases were implemented following Mobile-
D™ (hereafter Mobile-D). Mobile-D is inspired by
several agile methods and it is specifically designed
for mobile application development. Mobile-D does

not require a fulltime customer presence. Mobile-D
proposes that the customer should participate
personally in the development when the contents of
the iterations are discussed and analysed, and during
the release when the customer can provide feedback
about the results of the iterations. Otherwise the
customer is not onsite.
 Mobile-D consists of 5 iterations. The first and the
last iterations last for a week, while the duration of
the remaining three is 2 weeks [29]. For the purposes
of the study, the development method is only briefly
described to provide background information about
the research. Mobile-D is explained in greater detail
in [29, 30].
 Before the projects were launched, the teams
(including the customers) were introduced to the
philosophy and principles of agile development
(Agile Manifesto, available at
http://agilemanifesto.org/) and trained to use the
Mobile-D. The following table summarizes the
characteristics of the case projects.

Table 1. Summary of the case projects.

Case 1 Case 2 Case 3 Case 4
Iterations 5 5 5 5
Iteration span
(weeks)

1+2+2+2+1 1+2+2+2+1 1+2+2+2+1 1+2+2+2+1

Number of product
releases

4 4 4 4

Product type Intranet application Mobile application Mobile application Mobile
application

Programming Java Mobile Java Mobile Java Mobile Java

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

close. These values do not exist in isolation but are
strongly related; without communication the
feedback cannot exist and vice versa [10]. Previously
XP defined On-site customer practice as requiring
the customer’s fulltime presence with the team in a
same shared workspace [3]. Even though this
practice has been found problematic (e.g. [5-8]), it
enabled effective communication and instant
feedback.
 The On-site customer has now been replaced by
less demanding Real Customer Involvement practice
which does not explicitly require customer’s constant
presence. The customer who can contribute to
weekly and quarterly planning is still an essential
part of the team, and team should have close contact
with him [10] . Since the customer is not any longer

required for fulltime presence, the already important
roles of communication and feedback become even
more essential. Thus it is essential that the
communication and feedback mechanisms should
receive special attention in agile development.
 Gottesdiener [25] has defined a framework for
holding requirements workshops with various time
and place combinations. This framework can be
applied to agile development, thus indicating that the
teams can select a proper communication channel
from considerably wide collection of different media.
In this work, time can be either synchronous with
every participant present at the same time or
asynchronous. Place can be either co-located or
distributed when participants are at different
locations.

Figure 1. Requirements workshop techniques for different time-place configurations,
reproduced from [25].

 McLuhan [26] has used the terms “hot” and “cool”
when discussing media. McLuhan argues that “cool”
media require a higher level of participation from
users than “hot” media, and because of the lack of
information, much has to be filled in by the users.
McLuhan also adds that the use of “hot” and “cold”
media has to be adapted to the underlying situation
[26]. Ambler and Cockburn [4] have also adapted the
use of “hot” and “cold” communication media. They
argue that “hot” communication channels provide
more information than “cold” media. The following
figure is Ambler’s [13] modification of Cockburn’s
comparison of communication effectiveness in
different communication media. Different
communication channels have been divided into

“cold” and “hot” channels based on their
communication effectiveness. “Hot“ communication
channels are thus more efficient than “cold” media.
Both Cockburn’s and Ambler’s work is based on
personal experience and has not been scientifically
evaluated.

As can be seen from the graph in Fig. 2, face-to-
face communication is the “hottest” communication
channel, while email is positioned in the “colder” end
of the graph. This division is similar to the
classification made by Daft et al in [12]. Thus, both
theory and practice indicate that personal
communication is the richest form of communication,
while less interactive methods are less effective forms
of communication.

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

II/5

Figure 2. The communication value of different techniques, reproduced from [13].

3. Research design
 This section describes the research method, data
collection and analysis techniques, and research
settings on which the results of this study are based.
Our research covered four different case [27] studies,
referred to as Case 1, Case 2, Case 3 and Case 4.
Case 1 has been previously described in [6] and Case
2 is discussed in [28]. The teams consisted of 5 to 6
developers, and in the case of Case 3 one of the
developers was a member of the customer
organization. The aim of projects Case 2, Case 3 and
Case 4 was to implement a mobile software product
to the customers, while Case 1 delivered an
application for internal use. In the case of Case 3,
the assignment was to implement a mobile version of
an existing desktop application, implemented by the
customer organization.
 All the cases were implemented following Mobile-
D™ (hereafter Mobile-D). Mobile-D is inspired by
several agile methods and it is specifically designed
for mobile application development. Mobile-D does

not require a fulltime customer presence. Mobile-D
proposes that the customer should participate
personally in the development when the contents of
the iterations are discussed and analysed, and during
the release when the customer can provide feedback
about the results of the iterations. Otherwise the
customer is not onsite.
 Mobile-D consists of 5 iterations. The first and the
last iterations last for a week, while the duration of
the remaining three is 2 weeks [29]. For the purposes
of the study, the development method is only briefly
described to provide background information about
the research. Mobile-D is explained in greater detail
in [29, 30].
 Before the projects were launched, the teams
(including the customers) were introduced to the
philosophy and principles of agile development
(Agile Manifesto, available at
http://agilemanifesto.org/) and trained to use the
Mobile-D. The following table summarizes the
characteristics of the case projects.

Table 1. Summary of the case projects.

Case 1 Case 2 Case 3 Case 4
Iterations 5 5 5 5
Iteration span
(weeks)

1+2+2+2+1 1+2+2+2+1 1+2+2+2+1 1+2+2+2+1

Number of product
releases

4 4 4 4

Product type Intranet application Mobile application Mobile application Mobile
application

Programming Java Mobile Java Mobile Java Mobile Java

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

http://agilemanifesto.org/

II/6 II/7

the team was able to discuss with the customer in
person even during the development period. Only
email (and in Case 4 also telephone) was used to
exchange information between the customers and the
rest of the development team during the development.
These media were selected, even though the customers
were encouraged to choose richer channels. During
Case 2, the customers specifically asked for simple
reports since they were missing the “big picture” from
technically oriented reports [28]. The reasons why the
customers wanted to use simple reports in the mid-
iteration communication during other cases remains
unclear. The customers’ inexperience in agile
development could be one possible explanation. If the
customers are not fully aware of the nature of agile
development, the importance of communication and
feedback can go unnoticed. During Case 2, the
customer stated the initial requirements and left the
team alone to complete the product without any
support or feedback. This situation is described in
more detail in [28]. In addition, the findings of Kinney
and Watson [18] are interesting. They report that
email was found to be an appropriate medium for most
communication tasks, including both equivocal tasks,
which according to Media Richness Theory should be
handled through a richer medium, and non-equivocal
tasks. We have some evidence that supports this.
When asked about media selection, the customer in
Case 3 responded “Emails will do just fine, they are
enough”. Thus it seems that the customers were
comfortable with simple email reports, and did not
want to change the mid-iteration communication
medium in spite of the increasing amount of defects.
 Even though the customers were pleased with
simple reports, which have been found to provide an
excellent view of a project’s progress at very low cost
[28, 31], it is evident that they do not provide enough
information for crucial customer feedback. The
following excerpt is from an actual status report sent
to the customer in Case 32. The report describes the
number and name of the stories and their status (in
this case either STARTED or DONE) and some brief
explanation of their functionalities3.

“Story 9: Bug Fixes of R2 - DONE
- Lots of work with scrolling
Story 10: Redesign Architecture – STARTED
- Basically finished, move 1 task to the next release
Story 11: Orders Are Shown in OrderListScreen - DONE

2 Even though the reports did not follow a similar format, the
information contents were similar. The reports in all the cases were very
simple and described what was done only on a general level.
3 The comments are translated from Finnish.

Story 12: Enhancements to SalesItemScreen - STARTED
- Week Level still in progress
Story 13: OrderInfoScreen (Info of One Order) - DONE
Story 14: Search Feature – DONE”

 This report indicates that several stories were
completed, but it is obvious that the simplicity of the
report could not enable the customer to give feedback
that could have been used to steer the development.
The analysis of the email correspondence between the
teams and the customers supports this claim. The
customers did not give any feedback based on the
reports during Case 2 and Case 3. The customer
responded once to an email report explaining
implemented features during Case 4.
 Based on the report above, the customer was not
able to verify that the features were in fact
implemented correctly, thus making the contents of
the report partly ambiguous. On the other hand,
ambiguity does not exist when observing stories with
the status of STARTED, since these parts are well-
defined. Thus this supports the claims of MRT that
ambiguous issues should be managed through rich
channels, while leaner channels are adequate for well-
understood subjects. Similarly, this also supports the
works of Cockburn [4] and Ambler [13].
 The customers’ inability to give feedback based on
the reports further supports the claim by Wake [24],
who states that the lack of high bandwidth
communication leads to a loose feedback mechanism,
which in turn requires more effort to get the project
back on course.
 The following table summarizes the times in
minutes required for defect corrections during Case 4.
As mentioned in section 3, there is not sufficient data
available from other cases. The teams, excluding Case
4 did not record a defect log in sufficient detail. The
defects were at first categorized into customer
independent and customer dependent defects based on
their descriptions. Customer independent defects are
such that can be traced back to developers or to the
development platform. Customer dependent defects
are defects which could have been avoided by either
having constant customer communication and
feedback (onsite customer) or utilizing a rich mid-
iteration communication method. Based on the defect
data analysis, customer independent errors were
further divided into two categories. They were either
caused by developers or, as in one case, the defect was
caused by the underlying Java virtual machine.
Similarly the customer dependent defects were divided
into cosmetic (e.g. the user interface was not what the
customer expected, its elements were not as required,

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

Case 1 Case 2 Case 3 Case 4
language
Customer presence Onsite 80% Onsite during the

beginning and the end
of each iteration.
Available for face-to-
face communication.

Onsite during the beginning
and the end of each iteration.

Onsite for
the first 2
weeks.
Afterwards
not onsite.

Customer location Same facility Same facility Same city Different city
Number of customers 1 3 1 1
Face-to-face
communication level

High On demand Periodical Low

Mid-iteration
communication
media used

Face-to-face Face-to-face, email Email Email and
telephone

 During our research the utilization of face-to-face
communication varied as follows: High (onsite
customer), On demand (face-to-face communication
available when needed), Periodical (face-to-face
communication applied at the beginning and the end
of an development iteration) and Low (customer onsite
for the first two weeks, afterwards face-to-face
communication was not applied or available). Case 1
had an onsite customer, and during Case 2 the
customer was required to be onsite during the
Planning Day and Release Day activities of the
Mobile-D [29]. These phases concentrate on deciding
and analyzing the contents of each development
iteration and release, when the results of the iteration
are presented to the customer. During these sessions,
the customer was available for face-to-face
conversation. The mid-iteration communication was
managed via email. The customer was, however,
available for face-to-face communication on demand,
so personal communication and feedback were
available also during the iterations. Case 3 was similar
to Case 2, excluding the mid-iteration face-to-face
communication.
 During Case 4 the customer was constantly
available for the first two weeks for guidance and
feedback. Thereafter, the communication was
managed entirely by email and telephone.
 The task data was collected from each case and the
defect fixing tasks isolated. The amount of defect-
fixing tasks, from all the tasks, were calculated. The
teams were required to record the time needed to fix
the defects, but this was not properly executed except
in the case of Case 4. Table 2 summarizes the defect
data available from the case projects.
 Thus the results from Case 1, Case 2 and Case 3
can be used only to show trends in the amount of
defect densities. It must be noticed that the defect data
from the first release of Case 2 is missing. In addition

to the quantitative research data, qualitative data was
also used. This data is based on onsite observations, a
research diary and interviews.

Table 2. Available defect data from the case
projects.

Case 1 Case 2 Case 3 Case 4
Defect
data

X X X X

Defect
fixing
times

- - - X

4. Empirical research results
In 4.1 the findings of the study are presented. In

4.2 some techniques for customer communication are
discussed based on the existing literature.

4.1. Impact of customer communication on
software defects
 Both theory and practice have shown that rich face-
to-face communication is effective, and its application
proved itself very useful in our research. The
requirements analysis was conducted face-to-face with
the customers and the conversations were further
clarified by lightweight paper-prototyping. This
approach initiated very lively discussions, thus
enabling rich communication between the team and
the customers. When compared to the suggestions of
Media Richness Theory [11, 12] and personal
experiences of both Cockburn [4] and Ambler [13],
this finding is not surprising.
 In spite of the wide array of different
communication methods available for managing mid-
iteration communication, only two of the leanest
channels described in chapter 2 were used in non-
onsite customer cases. Case 2 is an exception, since

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

II/7

the team was able to discuss with the customer in
person even during the development period. Only
email (and in Case 4 also telephone) was used to
exchange information between the customers and the
rest of the development team during the development.
These media were selected, even though the customers
were encouraged to choose richer channels. During
Case 2, the customers specifically asked for simple
reports since they were missing the “big picture” from
technically oriented reports [28]. The reasons why the
customers wanted to use simple reports in the mid-
iteration communication during other cases remains
unclear. The customers’ inexperience in agile
development could be one possible explanation. If the
customers are not fully aware of the nature of agile
development, the importance of communication and
feedback can go unnoticed. During Case 2, the
customer stated the initial requirements and left the
team alone to complete the product without any
support or feedback. This situation is described in
more detail in [28]. In addition, the findings of Kinney
and Watson [18] are interesting. They report that
email was found to be an appropriate medium for most
communication tasks, including both equivocal tasks,
which according to Media Richness Theory should be
handled through a richer medium, and non-equivocal
tasks. We have some evidence that supports this.
When asked about media selection, the customer in
Case 3 responded “Emails will do just fine, they are
enough”. Thus it seems that the customers were
comfortable with simple email reports, and did not
want to change the mid-iteration communication
medium in spite of the increasing amount of defects.
 Even though the customers were pleased with
simple reports, which have been found to provide an
excellent view of a project’s progress at very low cost
[28, 31], it is evident that they do not provide enough
information for crucial customer feedback. The
following excerpt is from an actual status report sent
to the customer in Case 32. The report describes the
number and name of the stories and their status (in
this case either STARTED or DONE) and some brief
explanation of their functionalities3.

“Story 9: Bug Fixes of R2 - DONE
- Lots of work with scrolling
Story 10: Redesign Architecture – STARTED
- Basically finished, move 1 task to the next release
Story 11: Orders Are Shown in OrderListScreen - DONE

2 Even though the reports did not follow a similar format, the
information contents were similar. The reports in all the cases were very
simple and described what was done only on a general level.
3 The comments are translated from Finnish.

Story 12: Enhancements to SalesItemScreen - STARTED
- Week Level still in progress
Story 13: OrderInfoScreen (Info of One Order) - DONE
Story 14: Search Feature – DONE”

 This report indicates that several stories were
completed, but it is obvious that the simplicity of the
report could not enable the customer to give feedback
that could have been used to steer the development.
The analysis of the email correspondence between the
teams and the customers supports this claim. The
customers did not give any feedback based on the
reports during Case 2 and Case 3. The customer
responded once to an email report explaining
implemented features during Case 4.
 Based on the report above, the customer was not
able to verify that the features were in fact
implemented correctly, thus making the contents of
the report partly ambiguous. On the other hand,
ambiguity does not exist when observing stories with
the status of STARTED, since these parts are well-
defined. Thus this supports the claims of MRT that
ambiguous issues should be managed through rich
channels, while leaner channels are adequate for well-
understood subjects. Similarly, this also supports the
works of Cockburn [4] and Ambler [13].
 The customers’ inability to give feedback based on
the reports further supports the claim by Wake [24],
who states that the lack of high bandwidth
communication leads to a loose feedback mechanism,
which in turn requires more effort to get the project
back on course.
 The following table summarizes the times in
minutes required for defect corrections during Case 4.
As mentioned in section 3, there is not sufficient data
available from other cases. The teams, excluding Case
4 did not record a defect log in sufficient detail. The
defects were at first categorized into customer
independent and customer dependent defects based on
their descriptions. Customer independent defects are
such that can be traced back to developers or to the
development platform. Customer dependent defects
are defects which could have been avoided by either
having constant customer communication and
feedback (onsite customer) or utilizing a rich mid-
iteration communication method. Based on the defect
data analysis, customer independent errors were
further divided into two categories. They were either
caused by developers or, as in one case, the defect was
caused by the underlying Java virtual machine.
Similarly the customer dependent defects were divided
into cosmetic (e.g. the user interface was not what the
customer expected, its elements were not as required,

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

II/8 II/9

mid-iteration communication was managed mainly
by email, they were located in the same facility (“He
[one of the customers] was almost always there in
the room next to us” [Case 2]) and thus easily
available for communication and feedback. Thus the
amount of face-to-face communication and feedback
was higher than in the other non-onsite customer
cases. Case 2 had a beneficial situation since the
number of customers was higher in Case 2 than in
the other cases, and at least one the customers was
always available at the beginning and the end of the
iterations for face-to-face communication and
feedback. Thus the customer communication was
regular, while in Case 3 the customer was not always
able to join the scheduled meetings which then had
to be postponed.
 A more alarming trend can be observed when
comparing Case 3 and Case 4. These cases applied
lower levels of face-to-face communication and

relied more on leaner communication channels, not
suitable for ambiguous issues. This backfired in
higher defect rates. Case 3 used Periodical face-to-
face communication and suffered from a 24.7%
defect ratio, while Case 4 using a Low level of face-
to-face communication had a defect rate of 41.8%,
with 62.2% of all defects being customer-related.
The development of the defect ratios during these
cases also follows a similar pattern. The defect rates
were constantly increasing as the projects
progressed, leaving less time to implement new
features or enhance the existing features. Thus our
research indicates that the lower adoption of high-
bandwidth communication and increasing reliance
on lean communication techniques result in higher
defect rates.

Figure 3. The percentage of defect-fixing tasks in the case projects.

 These findings suggest that effective customer
communication and selection of efficient
communication media, especially during mid-
iteration, should receive proper attention in agile
development.

4.2. Suggestions for customer communication
 As discussed in chapter 2, there is a large amount
of different communication mechanisms that can be
integrated into agile development as well. The focus
of this paper is however out of providing a
systematic solution to customer communication in
agile development, but based on existing literature

described here and in section 2, some suggestions
can be made.

Face-to-face communication is the default
communication method in agile development. It has
proven itself effective, so it should be applied
whenever possible. Videoconferencing comes
second in richness to face-to-face and e.g. Wallace et
al. [32] have suggested its utilization in user story
explanation when the customers are remote. We
suggest using videoconferencing in situations that
need effective customer communication and
feedback, where the customer is not available. The
usage of videoconferencing has both positive and

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

the customer was not pleased with the colors or fonts)
or they had requirement related defects (i.e. the

features did not work as expected).

Table 3. Defect fix times in minutes for customer independent and customer dependent
defects in Case 4.

Release Customer independent Customer dependent
Developer Platform Cosmetic Requirement
1 310 - - -
2 150 - 70 355
3 230 - 160 595
4 30 20 - 30
Subtotal 720 20 230 980
Total 740 1210

 It can be interpreted from the above data that the
cost of fixing customer dependent defects was ~1.6
times larger in terms of time when compared to
customer independent defects. Further analysis
indicated that the percentage of defects in the above
table was distributed as follows: developer: 37%,
platform: 1%, cosmetic: 12% and requirements:
50%. When releases were reviewed separately the
amount of customer dependent defects was
distributed as set out in Table 4.

Table 4. The proportion of customer
dependent defects/release in Case 4.

Release # % of all defects
1 0
2 73,9
3 76,6
4 37,5

 The contents of the first release during all the
cases concentrated on the technical infrastructure. In
Case 4 the only implemented feature on which the
customer was able to give feedback to the team was
login functionality. During this particular iteration,
all the defects were caused by the carelessness of the
developers.
 Clearly, the rate of customer dependent defects
was very high during the second and third release
and remained considerably high also in the final
release. Since face-to-face communication was
applied only during the first two weeks, the
communication was managed entirely through lean
communication channels thereafter. This further
supports the MRT’s claim that lean channels are not
suitable for managing ambiguous issues. In
summary, during Case 4, 62.6% of software defects

were caused by the lack of efficient customer
communication and feedback.
 Our other findings, even though not as precise,
also support this viewpoint. The following figure
shows the percentage of all defect-fixing tasks in
each project. The average percentage of defect-fixing
tasks was 6.3% in Case 1 and we can assume that all
the defects were in this case developer-oriented. In
Case 2 the percentage of the defect-fixing tasks was
reasonably low on average, whereas it increased
continuously in Case 3 and Case 4. The last release
of Case 4 concentrated solely on defect-fixing,
because all the other scheduled functionalities were
cancelled.
 For more precise information about the defect task
percentages, the following table summarizes the
averages for defect-fixing tasks in each case project.

Table 5. The averages for defect-fixing tasks
in the case projects.

Project Utilization of
face-to-face

communication

Average of
defect fixing
tasks (%)

Case 1 High 6,3
Case 2 On demand 9,4
Case 3 Periodical 24,7
Case 4 Low 41,8

 When combining the figures from Case 2, Case 3
and Case 4, 25.3% share of all the tasks were defect
fixing tasks in non-onsite customer projects. On the
bases of figure 3 and table 5, it can be seen that the
averages for defect-fixing tasks in Case 1 and Case
2, and their variation in different releases, are very
similar to each other. Even though the customers
were not constantly onsite during Case 2, and the

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

II/9

mid-iteration communication was managed mainly
by email, they were located in the same facility (“He
[one of the customers] was almost always there in
the room next to us” [Case 2]) and thus easily
available for communication and feedback. Thus the
amount of face-to-face communication and feedback
was higher than in the other non-onsite customer
cases. Case 2 had a beneficial situation since the
number of customers was higher in Case 2 than in
the other cases, and at least one the customers was
always available at the beginning and the end of the
iterations for face-to-face communication and
feedback. Thus the customer communication was
regular, while in Case 3 the customer was not always
able to join the scheduled meetings which then had
to be postponed.
 A more alarming trend can be observed when
comparing Case 3 and Case 4. These cases applied
lower levels of face-to-face communication and

relied more on leaner communication channels, not
suitable for ambiguous issues. This backfired in
higher defect rates. Case 3 used Periodical face-to-
face communication and suffered from a 24.7%
defect ratio, while Case 4 using a Low level of face-
to-face communication had a defect rate of 41.8%,
with 62.2% of all defects being customer-related.
The development of the defect ratios during these
cases also follows a similar pattern. The defect rates
were constantly increasing as the projects
progressed, leaving less time to implement new
features or enhance the existing features. Thus our
research indicates that the lower adoption of high-
bandwidth communication and increasing reliance
on lean communication techniques result in higher
defect rates.

Figure 3. The percentage of defect-fixing tasks in the case projects.

 These findings suggest that effective customer
communication and selection of efficient
communication media, especially during mid-
iteration, should receive proper attention in agile
development.

4.2. Suggestions for customer communication
 As discussed in chapter 2, there is a large amount
of different communication mechanisms that can be
integrated into agile development as well. The focus
of this paper is however out of providing a
systematic solution to customer communication in
agile development, but based on existing literature

described here and in section 2, some suggestions
can be made.

Face-to-face communication is the default
communication method in agile development. It has
proven itself effective, so it should be applied
whenever possible. Videoconferencing comes
second in richness to face-to-face and e.g. Wallace et
al. [32] have suggested its utilization in user story
explanation when the customers are remote. We
suggest using videoconferencing in situations that
need effective customer communication and
feedback, where the customer is not available. The
usage of videoconferencing has both positive and

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

II/10 II/11

[8] P. Abrahamsson and T. Jokela, "Usability assessment of
an extreme programming project: Close co-operation with
the customer does not equal to good usability," in Profes
2004, Kansai Science City, Japan, 2004, pp. 393-407.

[9] R. Jeffries, A. Anderson and C. Hendrickson, Extreme
Programming Installed. Upper Saddle River, New Jersey,
USA: Addison-Wesley, 2001.

[10] K. Beck and C. Andres, Extreme Programming
Explained; Embrace Change, Second Edition. Upper Sadle
River, NJ, USA: Addison-Wesley, 2005.

[11] R. L. Daft and R. J. Lengel, "Organizational
Information Requirements, Media Richness and Structural
Design," Manage. Sci., vol. 32, pp. 554-571, 1986.

[12] R. L. Daft, R. Lengel and L. K. Trevino, "Message
Equivocality, Media Selection, and Manager
Performance:Implications for Information Support Systems,"
MIS Quarterly, vol. 11, pp. 355-366, 1987.

[13] S. W. Ambler, "Validating Agile Models," Cutter IT
Journal, vol. 15, pp. 33-39, 2002.

[14] A. Edstrom, "User Influence and the Success of MIS
Projects: A Contingency Approach," Human Relations, vol.
30, pp. 580-607, 1997.

[15] R. B. Bostrom and B. D. Thomas, "Achieving
excellence in communications: A key to developing
complete, accurate and shared information requirements," in
Proceedings of the Twentieth Annual Computer Personnel
on Research Conference, Charlottesville, Virginia, United
States, 1983, pp. 1-13.

[16] A. R. Dennis and J. S. Valacich, "Rethinking media
richness: Towards a theory of media synchronicity," in
HICSS’99, Hawaii, United States, 1999, pp. 1017.

[17] S. Kinney and A. Dennis, "Reevaluating media
richness: Cues, feedback, and task," in HICSS’94, Hawaii,
United States, 1994, pp. 21-30.

[18] S. T. Kinney and R. T. Watson, "The Effect of Medium
and Task on Dyadic Communication” in Proceedings of the
13th International Conference on Information Systems,
Dallas, Texas, United States, 1992, pp. 107-117.

[19] R. L. Daft and K. Weick, "Toward a Model of
Organizations as Interpretation Systems," Academy of
Management Review, vol. 9, pp. 284-295, 1984.

[20] A. Graveline, C. Geisler and M. Danchak, "Teaming
together apart:Emergent patterns of media use in
collaboration at a distance," in Proceedings of the 2000 joint
IEEE International and 18th Annual Conference on
Computer Documentation, Cambridge, Massachusetts,
United States, 2000, pp. 381-393.

[21] R. E. Kraut and L. A. Streeter, "Coordination in
Software Development," Communications of the ACM,
vol. 38, pp. 69-81, 1995.

[22] R. Juric. “Extreme programming and its development
practices”. in Proceedings of the 22nd International
Conference on Information Technology Interfaces, ITI2000,
Pula, Croatia, 2000, pp. 97-104.

[23] G. Melnik and F. Maurer, "Direct verbal
communication as a catalyst of agile knowledge sharing," in
Agile2004, Salt Lake City, Utah, United States, 2004, pp.
21- 31.

[24] W. C. Wake, Extreme Programming Explored.
Addison-Wesley, 2002.

[25] E. Gottesdiener, Requirements by
Collaboration:Workshops for defining needs.
Boston:Addison-Wesley, 2002.

[26] M. McLuhan, Understanding Media:The Extensions
of Man. New York: McGraw Hill, 1964.

[27] R. K. Yin, Case Study Research Design and Methods.
2nd ed. Sage Publications, 1994

[28] M. Korkala and P. Abrahamsson, "Extreme
programming: Reassessing the requirements management
process for an offsite customer," in EuroSPI 2004,
Trondheim, Norway, 2004, pp. 12-22

[29] T. Ihme and P. Abrahamsson, "Agile Architecting:The
Use of Architectural Patterns in Mobile Java Applications,"
IJAM, 2005.

[30] P. Abrahamsson, A. Hanhineva, H. Hulkko, T. Ihme, J.
Jäälinoja, M. Korkala, J. Koskela, P. Kyllönen and O. Salo,
"Mobile-D: An agile approach for mobile application
development," in OOPSLA 2004,Poster session, Vancouver,
Canada, 2004.

[31] M. Korkala, "Extreme programming: Introducing a
requirements management process for an offsite customer,"
Department of Information Processing Science Research
Papers Series A, University of Oulu, Finland, 2004.

[32] N. Wallace, P. Bailey and N. Ashworth, "Managing XP
with multiple or remote customers," in 3rd International
Conference on eXtreme Programming and Agile Processes
in Software Engineering (XP2002), Alghero, Italy, 2002,
pp. 134-137.

[33] M. Sumner and D. Hostetler, "A comparative study of
computer conferencing and face-to-face communications in
systems design," in 2000 ACM SIGCPR Conference on
Computer Personnel Research, Chicago, Illinois, United
States, 2000, pp. 93-99.

[34] D. E. H. Damian, A. Eberlein, M. L. G. Shaw and B.
R. Gaines, "Using Different Communication Media in
Requirements Negotiation," IEEE Software, vol. 17, pp.
28-36, 2000.

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

negative effects. Sumner and Hostetler [33] have
identified the following shortcomings. The difficulty
of coordinating and clarifying ideas, and the time
required to achieve consensus and arrive at a
decision increases [33]. On the other hand, they state
that computer conferencing produces better
decisions, a wider range of options, greater analysis,
and it creates the psychological distance needed to
engage in a more open exchange of options. It is also
reported in [34] that in the case of requirements
negotiation, the teams communicating face-to-face
did not outperform teams using computer support.
Telephone: A telephone is not capable of
transmitting visual cues, but it enables instant
feedback. Telephone can be useful for example for
negotiating, for example, schedules with the
customer. Email: Emails are suitable for
communicating well-understood issues.
 However, it is not recommended that one blindly
chooses a number of different methods for enriching
the communication between the customer and the
developers. Rather, the decision about
communication channels should be agreed in
collaboration with the different parties involved, as it
also depends on the situation at hand as proposed by
Dennis [16] (See also McLuhan [26]).
 While the selection of the most appropriate
communication method in agile development is not a
focus of this paper, we believe it is not a
straightforward task and it is a subject that requires
further research.

5. Conclusions
 Agile software development emphasizes face-to-face
communication as the primary communication
channel between the project participants. The
existing literature has promoted the benefits of face-
to-face communication, but less is known about the
implications of communication and feedback in the
context of agile development.
 Our research in four different case studies
provides empirical evidence of the effects of
customer communication. Despite the considerably
wide array of existing communication methods, the
customers chose email, and in one case also
telephone, to manage both clear and ambiguous
issues inside the development iterations. Our
research indicates that when the reliance on leaner
communication mediums increases, the software
defect rates increase accordingly. These results
suggest that the selection of communication methods
to be used inside development iterations must be paid

significant attention by agile organizations working
with partially available customers. Even though it is
not the focus of this paper, some suggestions for
customer communication are also discussed based on
the existing literature.
 We claim that a defect follow-up provides a means
for increasing our understanding of how well a team
has understood a customer's intentions. Yet, we do
not encourage developers and customers to aim at
reducing defect rates per se. We rather emphasize
the importance of intense and meaningful
communication. This is bound to decrease the
number of misunderstandings, increase the efficiency
of the work and offer improved opportunities for
learning.
 This paper has empirically shown that the defect
rates increase due to the use of less informative
communications channels in the development time.
However, due to the agile principle of short
iterations, this is less risky than in traditional
software development where the length of an
iteration may last for quite long periods. Our
empirical data, however, demonstrates that there is
room for improvement even in short cyclical agile
development by making good use of rich
communication mechanisms as we propose in this
paper.

6. References
[1] L. Bernstein. (2005, Taking software requirements
creation from folklore to analysis. ACM SIGSOFT Software
Engineering Notes 30(5), pp. 3-5.

[2] P. Abrahamsson, O. Salo, J.Ronkainen and J. Warsta,
Agile Software Development Methods: Review and
Analysis. Espoo: VTT Publications, 2002, pp. 107.
Available at:www.inf.vtt.fi/pdf/publications/2002/P478.pdf

[3] K. Beck, Extreme Programming Explained: Embrace
Change. Upper Saddle River, New Jersey: Addison-Wesley,
2000.

[4] A. Cockburn, Agile Software Development. Indianapolis:
Addison-Wesley, 2002.

[5] M. Finsterwalder, "Does XP need a professional
customer”, XP2001 workshop on customer involvement, in
XP2001, Cagliari, Italy, 2001.

[6] J. Koskela and P. Abrahamsson, "On-site customer in an
XP project: Empirical results from a case study," in
EuroSPI2004, Trondheim, Norway, 2004, pp. 1-11.

[7] A. Martin, "A case study: Exploring the role of customers
on extreme programming projects," Victoria University of
Wellington, New Zealand, 2003.

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf

II/11

[8] P. Abrahamsson and T. Jokela, "Usability assessment of
an extreme programming project: Close co-operation with
the customer does not equal to good usability," in Profes
2004, Kansai Science City, Japan, 2004, pp. 393-407.

[9] R. Jeffries, A. Anderson and C. Hendrickson, Extreme
Programming Installed. Upper Saddle River, New Jersey,
USA: Addison-Wesley, 2001.

[10] K. Beck and C. Andres, Extreme Programming
Explained; Embrace Change, Second Edition. Upper Sadle
River, NJ, USA: Addison-Wesley, 2005.

[11] R. L. Daft and R. J. Lengel, "Organizational
Information Requirements, Media Richness and Structural
Design," Manage. Sci., vol. 32, pp. 554-571, 1986.

[12] R. L. Daft, R. Lengel and L. K. Trevino, "Message
Equivocality, Media Selection, and Manager
Performance:Implications for Information Support Systems,"
MIS Quarterly, vol. 11, pp. 355-366, 1987.

[13] S. W. Ambler, "Validating Agile Models," Cutter IT
Journal, vol. 15, pp. 33-39, 2002.

[14] A. Edstrom, "User Influence and the Success of MIS
Projects: A Contingency Approach," Human Relations, vol.
30, pp. 580-607, 1997.

[15] R. B. Bostrom and B. D. Thomas, "Achieving
excellence in communications: A key to developing
complete, accurate and shared information requirements," in
Proceedings of the Twentieth Annual Computer Personnel
on Research Conference, Charlottesville, Virginia, United
States, 1983, pp. 1-13.

[16] A. R. Dennis and J. S. Valacich, "Rethinking media
richness: Towards a theory of media synchronicity," in
HICSS’99, Hawaii, United States, 1999, pp. 1017.

[17] S. Kinney and A. Dennis, "Reevaluating media
richness: Cues, feedback, and task," in HICSS’94, Hawaii,
United States, 1994, pp. 21-30.

[18] S. T. Kinney and R. T. Watson, "The Effect of Medium
and Task on Dyadic Communication” in Proceedings of the
13th International Conference on Information Systems,
Dallas, Texas, United States, 1992, pp. 107-117.

[19] R. L. Daft and K. Weick, "Toward a Model of
Organizations as Interpretation Systems," Academy of
Management Review, vol. 9, pp. 284-295, 1984.

[20] A. Graveline, C. Geisler and M. Danchak, "Teaming
together apart:Emergent patterns of media use in
collaboration at a distance," in Proceedings of the 2000 joint
IEEE International and 18th Annual Conference on
Computer Documentation, Cambridge, Massachusetts,
United States, 2000, pp. 381-393.

[21] R. E. Kraut and L. A. Streeter, "Coordination in
Software Development," Communications of the ACM,
vol. 38, pp. 69-81, 1995.

[22] R. Juric. “Extreme programming and its development
practices”. in Proceedings of the 22nd International
Conference on Information Technology Interfaces, ITI2000,
Pula, Croatia, 2000, pp. 97-104.

[23] G. Melnik and F. Maurer, "Direct verbal
communication as a catalyst of agile knowledge sharing," in
Agile2004, Salt Lake City, Utah, United States, 2004, pp.
21- 31.

[24] W. C. Wake, Extreme Programming Explored.
Addison-Wesley, 2002.

[25] E. Gottesdiener, Requirements by
Collaboration:Workshops for defining needs.
Boston:Addison-Wesley, 2002.

[26] M. McLuhan, Understanding Media:The Extensions
of Man. New York: McGraw Hill, 1964.

[27] R. K. Yin, Case Study Research Design and Methods.
2nd ed. Sage Publications, 1994

[28] M. Korkala and P. Abrahamsson, "Extreme
programming: Reassessing the requirements management
process for an offsite customer," in EuroSPI 2004,
Trondheim, Norway, 2004, pp. 12-22

[29] T. Ihme and P. Abrahamsson, "Agile Architecting:The
Use of Architectural Patterns in Mobile Java Applications,"
IJAM, 2005.

[30] P. Abrahamsson, A. Hanhineva, H. Hulkko, T. Ihme, J.
Jäälinoja, M. Korkala, J. Koskela, P. Kyllönen and O. Salo,
"Mobile-D: An agile approach for mobile application
development," in OOPSLA 2004,Poster session, Vancouver,
Canada, 2004.

[31] M. Korkala, "Extreme programming: Introducing a
requirements management process for an offsite customer,"
Department of Information Processing Science Research
Papers Series A, University of Oulu, Finland, 2004.

[32] N. Wallace, P. Bailey and N. Ashworth, "Managing XP
with multiple or remote customers," in 3rd International
Conference on eXtreme Programming and Agile Processes
in Software Engineering (XP2002), Alghero, Italy, 2002,
pp. 134-137.

[33] M. Sumner and D. Hostetler, "A comparative study of
computer conferencing and face-to-face communications in
systems design," in 2000 ACM SIGCPR Conference on
Computer Personnel Research, Chicago, Illinois, United
States, 2000, pp. 93-99.

[34] D. E. H. Damian, A. Eberlein, M. L. G. Shaw and B.
R. Gaines, "Using Different Communication Media in
Requirements Negotiation," IEEE Software, vol. 17, pp.
28-36, 2000.

Proceedings of AGILE 2006 Conference (AGILE'06)
0-7695-2562-8/06 $20.00 © 2006

PAPER III

Communication in Distributed Agile
Development: A Case Study

Proceedings of the 33rd EUROMICRO Conference on
Software Engineering and Advanced Applications

(EUROMICRO 2007), August 28–31, 2007.
Lübeck, Germany. Pp. 203–210.

Copyright 2007 IEEE.
Reprinted with permission from the publisher.

III/1

Communication in Distributed Agile Development: A Case Study

Mikko Korkala and Pekka Abrahamsson
VTT Technical Research Centre of Finland
P.O.Box 1100, FIN-90571, Oulu, Finland

Mikko.Korkala@vtt.fi; Pekka.Abrahamsson@vtt.fi

Abstract

Distributed software development is an increasingly
important development approach for software companies
as it brings tempting opportunities. Distributed
development is already burdened with several problems
and agile methods bring further challenges in the form of
their reliance on verbal communication and volatile
requirements. There is little empirical knowledge on
distributed agile software development. We conducted two
distributed agile software development case studies and
compared our findings against existing recommendations
about communication in distributed agile development.
Our findings along with existing literature conclude that
presented recommendations are worthwhile considering
in distributed agile development, but with some caution.
Our empirically based findings indicate that the role of a
well-defined customer is the key recommendation. The
lack of a well-defined customer able to meet
responsibilities, as well as volatile requirements and
inefficient communication, can cause severe problems
even in small-scale distributed agile software
development projects. Discussed recommendations are
complemented with an additional recommendation.

1. Introduction

Distributed software development (DSD)1 is becoming a
common practice in modern software industry [e.g. 1],
where the level of distribution can range from team
members being located in the same city to those on
different continents [2]. The significance of DSD has
accelerated because of factors such as improving time-to-
market through constant development across different
time-zones, quick formation of virtual teams and the
benefits of business market advantages. These needs have
driven the software development efforts further towards a
multi-site globally distributed environment. [1]
Simultaneously, several studies have concluded that
distributed enterprises are risky [e.g. 3-5]. For example,

1 The literature discusses both Distributed Software Development
(DSD) and Global Software Development (GSD). In this research, DSD
is used to cover both terms if not explicitly stated otherwise.

communication and coordination, software quality,
schedule overruns and exceeded costs are some of the
problems troubling both single-site and distributed
software projects. However, the extent of the problem in
the case of DSD seems to be so complex that a thorough
understanding of it has not yet been defined. [3, 4] Several
studies agree that communication is a particularly
important issue in distributed agile development, [e.g. 5-
7]. Agile methods rely on volatile requirements that are
managed through efficient verbal communication [8] and
thus agile software development methods pose their own
challenges to the field of DSD.
 In order to tackle the problems of DSD, several
different techniques have been proposed. These
techniques range from using different tools, such as
instant messaging [9], videoconferencing [10] and
whiteboard software [5] to a set of more general
recommendations [5]. We conducted two different case
studies with different levels of distribution ranging from
the customer being in the same city, to one with a
geographical distribution of 600 kilometers within the
same country. Therefore, cultural differences were not an
issue in these cases. We compared our findings against the
recommendations of Layman et al. [5] and provide more
insight on their application based on our empirical
findings and the existing literature. Even though we were
able to evaluate only three recommendations out of the
existing four, our contribution provides valuable insight
into conducting distributed agile projects. Our results
further emphasize the critical role of effective
communication, indicating that inefficient and irregular
communication in conjunction with volatile requirements
can cause severe problems even in very small-scale agile
projects. However, it seems that effective communication
is not the key. Our cases suggest that having a well-
defined customer2 is the key recommendation affecting to
recommendations about having a Development Manager
[5] and using asynchronous communication channels. As
ineffective customer collaboration may render the other
recommendations redundant, effective customer
collaboration seems to be a key factor for successful
distributed agile development. In addition, we
complement the existing recommendations by introducing

2 In this study the term means those persons responsible for product
requirements and prioritization, i.e. the case projects’ customers.

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

mailto:Mikko.Korkala@vtt.fi
mailto:Pekka.Abrahamsson@vtt.fi

III/2 III/3

an additional recommendation: i.e. enable and support
direct communication between the developers.
Unexpectedly, the teams in the second case were not
allowed to communicate directly with each other. To
compensate, a management-led communication channel
was established to balance the communication flow,
which gave poor results. This factor severely blocked the
progress of the project. As a limitation in this study, the
results are drawn only from the viewpoint of the
development teams.
 The content of this paper is as follows: the next section
reviews the existing literature on DSD and agile DSD.
This is continued by setting out the research settings.
Section four presents the results, and a discussion of the
results, and the paper concludes with final remarks and
indications for future research.

2. Related literature

This section discusses DSD and distributed agile
development.
 DSD allows geographically independent software
development for companies of all sizes and it is becoming
a common practice in the modern software development
industry [1, 3-5, 11]. Several factors have been
contributing to the growing interest in distributed
development, such as time-zone independent 24 hour
development, reduced costs, access to well-educated
labour and maturation of the technical infrastructure, just
to name a few [4, 12-14]. Even though these factors
inevitably provide tempting opportunities for software
companies, DSD is troubled by the same problems as
single-site efforts. Communication, requirements
engineering, cost related problems, problems with quality
and schedule are common issues in single-site
development alone, and distribution makes these
problems even more complex. [3, 4] Additionally,
language and cultural differences create problems in DSD
[12]. It has been also found that distributed development
tasks take about 2.5 times longer to complete compared to
co-located tasks due to communication and coordination
related issues [9]. Komi-Sirviö and Tihinen [4] conducted
an extensive study into charting the main problems
encountered in DSD. Their results were categorized into
nine specific problem areas, and the top three issues were
1) Development tools and environment, 2)
Communications and contacts and 3) Design knowledge.
Problems with tools and environment were the number
one problem source within the large companies. The
problems related to incompatible development tools and
to the functionality of network connections. Medium sized
and small organizations suffered mostly from design
knowledge related issues, such as situations in which the
software design and implementation take place in separate
locations. While not being the main source of problems,

74% of the respondents identified communication as a
problem in DSD. In general, the problem aspect of DSD
seems to be so complex that a thorough understanding of
it has not been reached. [4]
 The research on distributed agile development has
identified communication as one of the main issues to be
taken into account [e.g. 5, 7, 10]. Agile software
development involves highly volatile requirements which
are managed through efficient verbal communication [8].
Effective communication is a crucial element in software
production regardless of the development approach [8, 15,
16], and it can be considered even more important in agile
software development due to its paramount role. In
addition, the lack of informal communication results in
lower awareness [5, 7] and poor coordination [17].
Awareness is defined as [18]: “an understanding of the
activities of others”. Coordination helps individuals to
view, plan and execute their actions in relation to their
colleagues’ actions towards a common goal. Awareness is
a key concept affecting coordination in a distributed
environment. [7]
 Requirements engineering has also proven difficult in
DSD [3, 4]. According to [4] requirements related issues
were the major source of software errors, and
communication makes this critical subject even more
challenging [3-5]. Since in agile development the software
requirements are documented on a very general level and
communication can be considered cumbersome in
distributed agile development, it is quite safe to argue that
the volatility of agile requirements in conjunction with
troublesome communication can create significant risks
for distributed agile development efforts.
 Several solutions for tackling the problems in
distributed agile development have been proposed. These
techniques include e.g. different support tools, such as
instant messaging [9], videoconferencing [10] and
whiteboard software [5]. Also more general level
recommendations have been made. Layman et al. [5] have
proposed guidelines presented in Table 1 for distributed
agile development. They conducted a distributed case
study using Extreme Programming [8]. The developers
were located in the Czech Republic, while the
management was situated in the USA.

Table 1. Recommendations by Layman et al. [5]

Proposed recommendations
a) Define a person to play the role of the customer up front.
This individual must be able to make conclusive decisions on
project functionality and scope, must be readily accessible,
and must have a vested interest in the project.
b) When the project management and development teams are
separated, create a role within the XP team whose purpose is
to work closely with both development and project
management teams on a daily basis, preferably someone who
speaks all the languages involved.
c) When face-to-face, synchronous communication is

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

III/3

unfeasible, use an email listserv to increase the chance of a
response and encourage prompt, useful, and conclusive
responses to emails.
d) Use globally-available project management tools to record
and monitor the project status on a daily basis.

 These recommendations aim to create a
communication-rich environment for projects unable to
achieve it due to their distributed nature. Even though
these recommendations have been developed as a result of
agile GSD effort spreading over different time-zones, they
could be applied also to efforts with a less distributed
context.
 To define the level of distribution we applied the model
proposed by Prikladnicki et al. [2]. The model can be used
to analyze the distribution through different scenarios in
which the model’s actors interact. The suggested model is
set out in Figure 1.

Figure 1. DSD Distribution Level [2].

The model consists of the following actors: Project
Team, Customers and Users. A Project Team includes
everyone involved in the development including
developers, business-oriented personnel, testers etc. Users
represent people responsible for providing e.g.
requirements, and Customers are the person(s) or
organization that requested the project. The term Intra-
Group defines the distance inside the different stakeholder
groups, while Inter-Group refers to the distance between
the different actors [2]. The stakeholder groups interact
within different scenarios involving both intra- and inter-
group distances [2]. According to the model, the level of
distribution can range from relatively small, e.g. the
Project Team and the Customers are located in adjacent
buildings, to larger scenarios of global distribution [2].

3. Research design

 This section presents the research method, research
settings and data collection techniques. Also the levels of
distribution in the case projects are described.

3.1 Research method, research settings and data
collection

 Our research covered two separate semi-industrial case
studies [19] providing real software with real business
value for real customers. The project team in Case A
consisted of one experienced professional developer from
the customer organization, and three experienced 5-6th

year information processing science students working in a
single shared environment. The target was to implement a
mobile version of already existing software as an
extension of that product. The customer was located in the
same city and participated personally in the process
during iteration planning and release phases.
 In Case B, there were two development teams working
on the same product and sharing a single customer. The
project implemented a mobile front-end application that
was integrated into the customer’s main product. The
front-end team was located in Oulu, Finland and the main
product team in Helsinki, Finland was located
approximately 600 kilometers away. The customer spent
the first two weeks of the project with the Oulu team and
for the rest of the effort he was located with the Helsinki
team. Proxy customers were not utilized. The customer
organization was located in Helsinki and Case B was not
affected by time zone differences.
 The Oulu team in Case B consisted of four to seven
developers for the different iterations. This composition
included an experienced developer and a Test Driven
Development specialist.
 The case projects were implemented following Mobile-
D™, which is an incremental, iterative, agile inspired
development methodology specially designed for mobile
application development [20, 21]. Because of the
limitations of this paper, Mobile-D™ is only briefly
discussed. The data was collected using the following
techniques: onsite observations in Case A, final
interviews with the developers in Case A and the
developers of the Oulu team in Case B. The interviews
were semi-structured. A personal research diary and
email correspondence between the team and the
customer were utilized in both cases. In Case B the email
correspondence between the customer and the Oulu team
was examined. One team member from Case B was
separately interviewed after the project using a semi-
structured interview to cover issues not discussed in the
final interview. This developer was selected to be
interviewed since he was one of the most experienced
developers and the one most easily available for the
interview.

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

III/4 III/5

have been more active (On the customer communication.
A Developer, Case B).
 In addition to the lack of efficient customer
communication, the communication of technical issues
between the teams was not allowed. All communication
between the teams was passed through the customer.
Since the customer communication was not effective, it is
not surprising that the Oulu team encountered significant
problems during the development. The Oulu team, for
example, did not receive any information about the
communication protocol between the mobile front-end
and the main application. This may indicate a lack of trust
between the customer organization and the Oulu team.
Prikladnicki et al. [22] identified trust as one of the
difficulties in distributed development. Whether or not the
lack of trust was the reason why the teams were not
allowed to communicate directly, communication between
separate teams should be allowed and maintained. This
assumption can be supported by the finding made by
Layman et al. [5]:“The customer noted that cooperation
and teamwork were the biggest success factors in this
project”. Thus active customer communication in
conjunction with an environment supporting direct
communication between the teams is essential for a
successful result. The importance of peer-to-peer links is
also mentioned in [23].

Recommendation 2: When the project management
and development teams are separated, create a role
within the XP team whose purpose is to work closely
with both development and project management teams
on a daily basis, preferably someone who speaks all the
languages involved.

 The project team in Case A was complemented with an
experienced developer from the customer organization.
This developer had a profound understanding of the
software domain and he had been participating in the
development of the desktop version of the same product.
He had a strong working relationship with the customer so
it seemed natural that he assumed the role of the
Development Manager [5] – the role is described in
recommendation two. However, he did not communicate
with the customer on a daily basis. During the project the
requirements analysis process was conducted almost
invariably by the Development Manager and the
customer. When the other team members were asked why
they were not participating in the process, the answer was
short: “He [the Development Manager] knows what to
do” (Developer, Case A). The team also mistakenly
referred to the Development Manager as the “Onsite
customer” even though he did not possess any power over
the requirements definition or project scope. The
passiveness of the team during the requirements analysis,
along with the misunderstood role of the Development
Manager, may indicate that the he was the main source of

information for the rest of the team. The following
comment from the final interview supports our view: “If
he [the Development Manager] hadn’t participated in this
project, we would have had to ask the customer a lot more
questions and the requirements analysis would have been
a lot more difficult” (A Developer, Case A). We argue that
these comments indicate that having a member assuming
the role of the Development Manager can create a false
sense of confidence and security. The false sense of
security is not a new issue in the field of agile
development [24].

Another factor that needs to be taken into account if
having a Development Manager is to emphasize that the
requirements analysis process (for example) is not the
responsibility of the Development Manager alone. We
contend that allocating this task to a single person can
reduce the possibilities of understanding the
functionalities correctly. More people involving in
requirements analysis process can reveal issues that can
go unnoticed if the process is conducted only by the
Development Manager and the customer. In addition,
having a Development Manager may increase the chance
of information distortion as, according to [25],
information mutates and some of it gets lost if it passes
through different people. In addition, similar viewpoints
have been presented e.g. in [26]. In addition, it is also
quite safe to argue that using intermediaries between the
development and management sides is pointless if the
customer is not able or willing to work actively with the
Development Manager.

Recommendation 3: When face-to-face, synchronous
communication is infeasible, use an email listserv to
increase the chance of a response and encourage
prompt, useful, and conclusive responses to emails.

 During our research the daily iteration time
communication between the developers and the customers
was managed through email (Case A) and email and
telephone (Case B). These channels were specifically
requested by the customers during both cases, despite the
wide array of different existing communication channels
(see section 2 for examples and [27]). Layman et al. [5]
had positive experiences using asynchronous
communication by utilizing mailing lists to share
information. Their findings indicate that the customer was
actively and constantly participating in the development,
i.e. the customer was well-defined.
 On the other hand, empirical evidence indicates that
increasing reliance on so called lean, asynchronous
communication channels can result in higher software
defect rates [28]. During Case A, a total of 18 daily emails
about the project were sent to the customer. All of these
messages were brief status reports describing what was
done during the day. Questions were not asked in these

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

 The customers were not interviewed which can be
considered a limitation of the study.

3.2 Levels of distribution in the case projects

 The case projects applied different levels of
distribution. Following the distribution level model [2],
the distribution in Case A appears in Figure 2. In both
cases the Users and Customers were the same, which is
often the case [2].

Figure 2. Distribution in Case A based on [2].

 Since the developers were sharing the same workspace,
the Project Team was centralized, while the Inter-Group
distribution between the team and the other stakeholders
followed a Cross Town Scenario. There was only one
customer, so the distribution within the Customers/Users
was the Same Physical Localization Scenario. A similar
analysis was conducted in Case B, and appears in Figure
3.

Figure 3. Distribution in Case B based on [2].

 In Case B the Project Team was distributed. The
Customers/Users spent time with both of the teams, one
team at a time. Therefore the Inter-Group distribution
falls into a No Time Shift Scenario -category since the
stakeholders were located in the same country without
constant collaboration between all parties involved.

4. Results

 In this section the results of the study are presented. We
discuss our findings against the recommendations by
Layman et al. [5].

Recommendation 1: Define a person to play the role
of the customer upfront. This individual must be able to
make conclusive decisions on project functionality and
scope, must be readily accessible, and must have a vested
interest in the project.

The study conducted by Layman et al. [5] indicates
that the customer role is essential for effective
requirements management in a distributed agile project,
and active, consistent customer involvement cannot be
overlooked.

 The customer in Case A participated personally during
the iteration planning and release phases. Our findings on
this recommendation are drawn from Case B. During the
Case B the customer was at first participating actively in
the development with the Oulu team. He was available for
continuous feedback for the first two weeks, afterwards he
stayed with the Helsinki team. After his departure the
communication was managed by daily emails and during
the planning and release phases by telephone. The
customer communication left a lot to be desired from the
perspective of the developers. When he [the customer]
was present he was active, but when otherwise he should

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

III/5

have been more active (On the customer communication.
A Developer, Case B).
 In addition to the lack of efficient customer
communication, the communication of technical issues
between the teams was not allowed. All communication
between the teams was passed through the customer.
Since the customer communication was not effective, it is
not surprising that the Oulu team encountered significant
problems during the development. The Oulu team, for
example, did not receive any information about the
communication protocol between the mobile front-end
and the main application. This may indicate a lack of trust
between the customer organization and the Oulu team.
Prikladnicki et al. [22] identified trust as one of the
difficulties in distributed development. Whether or not the
lack of trust was the reason why the teams were not
allowed to communicate directly, communication between
separate teams should be allowed and maintained. This
assumption can be supported by the finding made by
Layman et al. [5]:“The customer noted that cooperation
and teamwork were the biggest success factors in this
project”. Thus active customer communication in
conjunction with an environment supporting direct
communication between the teams is essential for a
successful result. The importance of peer-to-peer links is
also mentioned in [23].

Recommendation 2: When the project management
and development teams are separated, create a role
within the XP team whose purpose is to work closely
with both development and project management teams
on a daily basis, preferably someone who speaks all the
languages involved.

 The project team in Case A was complemented with an
experienced developer from the customer organization.
This developer had a profound understanding of the
software domain and he had been participating in the
development of the desktop version of the same product.
He had a strong working relationship with the customer so
it seemed natural that he assumed the role of the
Development Manager [5] – the role is described in
recommendation two. However, he did not communicate
with the customer on a daily basis. During the project the
requirements analysis process was conducted almost
invariably by the Development Manager and the
customer. When the other team members were asked why
they were not participating in the process, the answer was
short: “He [the Development Manager] knows what to
do” (Developer, Case A). The team also mistakenly
referred to the Development Manager as the “Onsite
customer” even though he did not possess any power over
the requirements definition or project scope. The
passiveness of the team during the requirements analysis,
along with the misunderstood role of the Development
Manager, may indicate that the he was the main source of

information for the rest of the team. The following
comment from the final interview supports our view: “If
he [the Development Manager] hadn’t participated in this
project, we would have had to ask the customer a lot more
questions and the requirements analysis would have been
a lot more difficult” (A Developer, Case A). We argue that
these comments indicate that having a member assuming
the role of the Development Manager can create a false
sense of confidence and security. The false sense of
security is not a new issue in the field of agile
development [24].

Another factor that needs to be taken into account if
having a Development Manager is to emphasize that the
requirements analysis process (for example) is not the
responsibility of the Development Manager alone. We
contend that allocating this task to a single person can
reduce the possibilities of understanding the
functionalities correctly. More people involving in
requirements analysis process can reveal issues that can
go unnoticed if the process is conducted only by the
Development Manager and the customer. In addition,
having a Development Manager may increase the chance
of information distortion as, according to [25],
information mutates and some of it gets lost if it passes
through different people. In addition, similar viewpoints
have been presented e.g. in [26]. In addition, it is also
quite safe to argue that using intermediaries between the
development and management sides is pointless if the
customer is not able or willing to work actively with the
Development Manager.

Recommendation 3: When face-to-face, synchronous
communication is infeasible, use an email listserv to
increase the chance of a response and encourage
prompt, useful, and conclusive responses to emails.

 During our research the daily iteration time
communication between the developers and the customers
was managed through email (Case A) and email and
telephone (Case B). These channels were specifically
requested by the customers during both cases, despite the
wide array of different existing communication channels
(see section 2 for examples and [27]). Layman et al. [5]
had positive experiences using asynchronous
communication by utilizing mailing lists to share
information. Their findings indicate that the customer was
actively and constantly participating in the development,
i.e. the customer was well-defined.
 On the other hand, empirical evidence indicates that
increasing reliance on so called lean, asynchronous
communication channels can result in higher software
defect rates [28]. During Case A, a total of 18 daily emails
about the project were sent to the customer. All of these
messages were brief status reports describing what was
done during the day. Questions were not asked in these

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

III/6 III/7

the team. There is also a chance of
information distortion e.g. [25, 26]. The
whole team should be encouraged to
participate e.g. in planning actions.
However if the customer is not well-
defined, the Development Manager
becomes redundant. Thus this
recommendation is linked to
recommendation 1.

3: When face-to-face, synchronous
communication is infeasible, use an
email listserv to increase the chance of a
response and encourage prompt, useful,
and conclusive responses to emails.

While the customer was not personally
available, the communication was
managed by email (Case A). Email, like a
mailing list, is an asynchronous
communication channel. In addition to
email, also the telephone was used in
customer communication (Case B).

Asynchronous communication can be
used if all the parties involved in the
development are committed to
communicating actively. Empirical
evidence has indicated that
communication increasingly relying on
asynchronous communication media can
increase software defect rates accordingly
[28]. This recommendation is highly
linked to recommendation 1. If the
customer is not able or willing to
participate actively in the communication,
the utilization of any communication
mechanism becomes redundant.

4: Use globally-available project
management tools to record and monitor
the project status on a daily basis.

Not utilized in this study. We have no findings from this area.

New recommendation: Enable and
support direct communication between
the developers.

The teams (Case B) were not allowed to
communicate directly, but only through
the customer who did not communicate
actively with the Oulu team after the
initial two weeks.

The teams should be able to communicate
directly in order to achieve successful
results. The lack of direct peer-to-peer
communication can result in significant
problems.

 Even though the cases were not globally distributed as
in [5], the presented recommendations can be viable also
in a less distributed context, if they are fulfilled properly.
 Based on the empirical data it seems that having a well-
defined customer (recommendation 1) is the key to
successful distributed agile development. Without proper
customer collaboration, the other two investigated
recommendations become redundant. Thus the customer
relationship should be given extra effort in planning,
managing and executing distributed agile projects. This
relationship should also be maintained throughout the
project.
 As a limitation in this study, the results are drawn from
the developers’ points of view alone. Therefore, further
research is required on the viewpoints of all the
stakeholders for additional validation of all the existing
recommendations, and possible discovery of new
recommendations.

References

[1] J. Herbsleb and D. Moitra, "Global software
development," IEEE Software, vol. 18, pp. 16-20, 2001.

[2] R. Prikladnicki, J. Audy and R. Evaristo. “Distributed
software development: Toward an understanding of the
relationship between project team, users and customers”.
In Proceedings of ICEIS, Angers, France 2003. pp. 417-
423.

[3] D. Damian and D. Zowghi, "Requirements
Engineering Challenges in Multi-site Software
Development Organizations," Requirements Engineering
Journal, vol. 8, pp. 149-160, 2003.

[4] S. Komi-Sirviö and M. Tihinen, "Lessons Learned by
Participants of Distributed Software Development,"
Knowledge and Process Management, vol. 12, pp. 108-
122, 2005.

[5] L. Layman, L. Williams, D. Damian and H. Bures,
"Essential communication practices for Extreme
Programming in a global software development team,"
Information and Software Technology, vol. Volume 48,
pp. 781-794, 2006.

[6] C. Poole, "Distributed product development using

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

reports. Thus it seems that the team was confident about
what they were doing. During Case B, a total of 46 reports
were sent. Three of these reports included questions for
the customer, and the customer responded only to one
issue. The average defect rate was 41.8%, while 62.6% of
all defects were caused by inefficient customer
communication [28]. These findings are in contradiction
with the results by Layman et al. [5], indicating that this
recommendation is strongly linked to the recommendation
for a well-defined customer. Thus we conclude that if the
customer is not able or willing to participate actively in
the communication when needed, any communication
mechanism becomes redundant.

Recommendation 4: Use globally-available project
management tools to record and monitor the project
status on a daily basis.

 Shared project management tools were not utilized in
either of the cases.
 In summary it seems that a well-defined customer
(recommendation 1) is the key recommendation. If the
customer is not able or willing to participate actively in
the development, this makes the use of intermediaries
between the development and customer sides, and use of
mailing lists or any medium used in customer-developer
communication, fruitless. In addition, we conclude that
enabling and fostering direct inter-team communication
deserves considerable attention. We propose this as an

additional recommendation to the existing
recommendations.

5. Conclusions

 Distributed software development (DSD) is becoming a
common practice in modern software development [5]. It
both provides exciting opportunities [4, 12-14] and poses
significant risks to the success of distributed projects [3-
5]. Agile software development methodologies bring
challenges to the field of DSD in the form of volatile
requirements managed by informal communication.
Several tools proposed in [e.g. 9, 10] have been used to
tackle the problems of distributed development. Recent
research has provided more general communication
related recommendations focusing on distributed agile
development [5]. The aim of this paper was to review
these recommendations, and increase the knowledge
about their usage based on the existing literature and
empirical findings from two different small-scale
distributed agile development efforts with different levels
of distribution. Table 3 summarizes the recommendations
made by Layman et al. [5] and illustrates how they were
implemented in our research and are complemented with
our empirical findings. We conclude by presenting our
empirically based additional recommendation: Enable and
support direct communication between the developers.

Table 3. Recommendations by Layman et al. [5] their utilization in this study and corresponding
findings, including a new recommendation.

Recommendations [5] Utilized in this study Findings

1: Define a person to play the role of the
customer up front. This individual must
be able to make conclusive decisions on
project functionality and scope, must be
readily accessible, and must have a
vested interest in the project.

During Case A the team had a single
customer located in the same city. The
customer was accessible during iteration
planning and release.
During Case B the customer spent the
first two weeks constantly with the
developers located in Oulu, Finland,
afterwards he was not accessible. Both
customers were in a situation to make
decisions on functionality and scope.

Our findings from this area come
primarily from Case B, concerning the
team located in Oulu, Finland. The
customer participated actively for the first
two weeks; afterwards the communication
was diminished radically. The customer
replied only once to the email clarification
requests sent by the team. This ineffective
communication backfired with an average
of 41.8% defect rate [28].

2: When the project management and
development teams are separated, create
a role within the XP team whose
purpose is to work closely with both
development and project management
teams on a daily basis, preferably
someone who speaks all the languages
involved.

The Development Manager role [5] was
utilized in Case A. The Development
Manager was a member of the customer
organization. The Development Manager
was not communicating with the customer
in daily basis. Case B did not have a
Development Manager.

During our study the Development
Manager seemed to be the main source of
information for the developers in Case A.
Personal customer communication e.g.
requirements analysis was almost entirely
managed by the Development Manager
alone. It was admitted that without him
the requirements analysis would have
been a lot more difficult. We argue that
having a Development Manager can
create a false sense of confidence within

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

III/7

the team. There is also a chance of
information distortion e.g. [25, 26]. The
whole team should be encouraged to
participate e.g. in planning actions.
However if the customer is not well-
defined, the Development Manager
becomes redundant. Thus this
recommendation is linked to
recommendation 1.

3: When face-to-face, synchronous
communication is infeasible, use an
email listserv to increase the chance of a
response and encourage prompt, useful,
and conclusive responses to emails.

While the customer was not personally
available, the communication was
managed by email (Case A). Email, like a
mailing list, is an asynchronous
communication channel. In addition to
email, also the telephone was used in
customer communication (Case B).

Asynchronous communication can be
used if all the parties involved in the
development are committed to
communicating actively. Empirical
evidence has indicated that
communication increasingly relying on
asynchronous communication media can
increase software defect rates accordingly
[28]. This recommendation is highly
linked to recommendation 1. If the
customer is not able or willing to
participate actively in the communication,
the utilization of any communication
mechanism becomes redundant.

4: Use globally-available project
management tools to record and monitor
the project status on a daily basis.

Not utilized in this study. We have no findings from this area.

New recommendation: Enable and
support direct communication between
the developers.

The teams (Case B) were not allowed to
communicate directly, but only through
the customer who did not communicate
actively with the Oulu team after the
initial two weeks.

The teams should be able to communicate
directly in order to achieve successful
results. The lack of direct peer-to-peer
communication can result in significant
problems.

 Even though the cases were not globally distributed as
in [5], the presented recommendations can be viable also
in a less distributed context, if they are fulfilled properly.
 Based on the empirical data it seems that having a well-
defined customer (recommendation 1) is the key to
successful distributed agile development. Without proper
customer collaboration, the other two investigated
recommendations become redundant. Thus the customer
relationship should be given extra effort in planning,
managing and executing distributed agile projects. This
relationship should also be maintained throughout the
project.
 As a limitation in this study, the results are drawn from
the developers’ points of view alone. Therefore, further
research is required on the viewpoints of all the
stakeholders for additional validation of all the existing
recommendations, and possible discovery of new
recommendations.

References

[1] J. Herbsleb and D. Moitra, "Global software
development," IEEE Software, vol. 18, pp. 16-20, 2001.

[2] R. Prikladnicki, J. Audy and R. Evaristo. “Distributed
software development: Toward an understanding of the
relationship between project team, users and customers”.
In Proceedings of ICEIS, Angers, France 2003. pp. 417-
423.

[3] D. Damian and D. Zowghi, "Requirements
Engineering Challenges in Multi-site Software
Development Organizations," Requirements Engineering
Journal, vol. 8, pp. 149-160, 2003.

[4] S. Komi-Sirviö and M. Tihinen, "Lessons Learned by
Participants of Distributed Software Development,"
Knowledge and Process Management, vol. 12, pp. 108-
122, 2005.

[5] L. Layman, L. Williams, D. Damian and H. Bures,
"Essential communication practices for Extreme
Programming in a global software development team,"
Information and Software Technology, vol. Volume 48,
pp. 781-794, 2006.

[6] C. Poole, "Distributed product development using

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

III/8 1

PAPER IV

Combining Agile and Traditional:
Customer Communication in

Distributed Environment

Agility Across Time and Space – Implementing Agile
Methods in Global Software Projects.

Eds. D. Šmite, N.B. Moe & P.J. Åkerfalk. Pp. 201–216.
Copyright 2010 Springer-Verlag.

Reprinted with permission from the publisher.

extreme programming," in XP2004, Garmisch-
Partenkirchen, Germany. pp. 60-67.

[7] T. Schümmer and J. Schümmer, "Support for
distributed teams in eXtreme programming," in ,1st ed.G.
Succi and M. Marchesi, Eds. Addison-Wesley, 2001,

[8] K. Beck, Extreme Programming Explained: Embrace
Change. Upper Saddle River, New Jersey: Addison-
Wesley, 2000,

[9] J. Herbsleb and A. Mockus, "An Empirical Study of
Speed and Communication in Globally Distributed
Software Development," IEEE Transactions on Software
Engineering, vol. 29, pp. 481-494, 2003.

[10] M. Kircher, P. Jain, A. Corsaro and D. Levine,
"Distributed eXtreme programming," in 2001, pp. 66-71.

[11] L. Taxén, "An integration centric approach for the
coordination of distributed software development
projects," Information and Software Technology, vol. 48,
pp. 767-780, 2006.

[12] C. Ebert and P. De Neve, "Surviving Global
Software Development," IEEE Software, vol. 18, pp. 62-
69, 2001.

[13] R. Battin, R. Crocker, J. Kreidler and K.
Subramanian, "Leveraging Resources in Global Software
Development," IEEE Software, vol. 18, pp. 70-77, 2001.

[14] I. Gorton and S. Motwani, "Issues in co-operative
software engineering using globally distributed teams,"
Information and Software Technology, vol. 38, pp. 647-
655, 1996.

[15] R. B. Bostrom and B. D. Thomas, "Achieving
excellence in communications: A key to developing
complete, accurate and shared information requirements,"
in The Proceedings of the 20th Annual Computer
Personnel on Research Conference 1983, Charlottesville,
Virginia, United States pp. 1-13.

[16] A. Edstrom, "User Influence and the Success of MIS
Projects: A Contingency Approach," Human Relations,
vol. 30, pp. 580-607, 1997.

[17] J. Herbsleb and R. Grinter, "Splitting the
organization and integrating the code: Conway's law
Revisited ," in the proceedings of the 21st international
conference on Software Engineering 1999, Los Angeles,
CA, United States pp. 85-95.

[18] P. Dourish and V. Bellotti, "Awareness and

coordination in shared workspaces," in 1992 ACM
Conference on Computer-Supported Cooperative Work,
1992, Toronto, Ontario, Canada. pp. 107-114.

[19] R. K. Yin, Case Study Research Design and
Methods. Thousand Oaks, CA: Sage Publications, 1994,

[20] P. Abrahamsson, A. Hanhineva, H. Hulkko, T. Ihme,
J. Jäälinoja, M. Korkala, J. Koskela, P. Kyllönen and O.
Salo, "Mobile-D: an agile approach for mobile application
development," in OOPSLA 2004, Vancouver, Canada.
pp. 174-175, 2004.

[21] T. Ihme and P. Abrahamsson, "Agile
Architecting:The Use of Architectural Patterns in Mobile
Java Applications," IJAM, 2005.

[22] R. Prikladnicki, J. Audy and R. Evaristo, "Global
Software Development in Practice Lessons Learned,"
Softw. Process Improve. Pract., vol. 8, pp. 267-281, 2003.

[23] M. Paasivaara and C. Lassenius. (2003,
Collaboration practices in global inter-organizational
software development projects. Softw. Process Improve.
Pract. 8(4), pp. 183-199.

[24] T. Jokela and P. Abrahamsson. “Usability assessment
of an extreme programming project: Close co-operation
with the customer does not equal to good usability”. in
PROFES 2004, Kansai Science City, Japan pp. 393-407.

[25] G. Melnik and F. Maurer, "Direct verbal
communication as a catalyst of agile knowledge sharing,"
in AGILE 2004, Salt Lake City, Utah, United States pp.
21-31.

[26] M. Keil and E. Carmel, "Customer-Developer Links
in Software Development," Commun ACM, vol. 38, pp.
33-44, 1995.

[27] E. Gottesdiener, Requirements by Collaboration.
Addison-Wesley, 2002,

[28] M. Korkala, P. Abrahamsson and P. Kyllönen, "A
case study on the impact of customer communication on
defects in agile software development” in AGILE 2006,
Minneapolis, Minnesota, United States. pp. 76-86.

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007

PAPER IV

Combining Agile and Traditional:
Customer Communication in

Distributed Environment

Agility Across Time and Space – Implementing Agile
Methods in Global Software Projects.

Eds. D. Šmite, N.B. Moe & P.J. Åkerfalk. Pp. 201–216.
Copyright 2010 Springer-Verlag.

Reprinted with permission from the publisher.

PAPER V

Waste Identification as the Means for
Improving Communication in Globally

Distributed Agile Software Development

Journal of Systems and Software.
Volume 95, September 2014, pp. 122–140.

Copyright 2014 Elsevier.
Reprinted with permission from the publisher.

V/1

The Journal of Systems and Software 95 (2014) 122–140

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

Waste identification as the means for improving communication in
globally distributed agile software development

Mikko Korkalaa,∗, Frank Maurerb,1

a VTT Technical Research Centre of Finland, Vuorimiehentie 3, 02150, Espoo, Finland
b Department of Computer Science, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4

a r t i c l e i n f o

Article history:
Received 28 November 2012
Received in revised form 26 March 2014
Accepted 26 March 2014
Available online 8 April 2014

Keywords:
Distributed agile software development
Lean software development
Communication

a b s t r a c t

Agile approaches highly values communication between team members to improve software devel-
opment processes, even though, communication in globally distributed agile teams can be difficult.
Literature proposes solutions for mitigating the challenges encountered in these environments. These
solutions range from general-level recommendations and practices to the use of communication tools.
However, an approach covering the whole development process for identifying challenges, and improv-
ing communication in globally distributed agile development projects, is missing. In order to address
this, we conducted a case study within a globally distributed agile software development project focused
on using the concept of waste as a lens for identifying non-value producing communication elements.
In order to achieve this, we constructed a waste identification approach through which we identified
five communication wastes, and solutions to mitigate them. These wastes can help companies identify
communication issues that are present in their development efforts, while the presented waste identifi-
cation technique gives them a mechanism for waste identification and mitigation. This work contributes
to the scientific community by increasing the knowledge about communication in globally distributed
agile development efforts.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Agile software development methods emerged during the late
1990s and early 2000s as a response to the industry’s need for
faster and more lightweight development approaches. One of the
essential aspects of agile development methods is the emphasis on
informal communication conducted preferably face-to-face (Beck,
2000). Informal communication has been defined by Kraut and
Streeter (1995) as personal, peer-oriented and interactive. Fur-
ther, Herbsleb and Grinter (1999) label informal communication
as something that happens outside the official reporting struc-
ture of the project, and sometimes invoked without the knowledge
of management. Informal communication enables correcting mis-
takes and filling in the required details fast (Herbsleb and Grinter,
1999). Physical proximity is essential for participants to engage
in informal communication (Kraut and Streeter, 1995) and it is
highly emphasized in agile literature. An agile development team

∗ Corresponding author. Tel.: +358 40 514 1042.
E-mail addresses: mikko.korkala@vtt.fi, mikko.korkala@gmail.com (M. Korkala),

frank.maurer@ucalgary.ca (F. Maurer).
1 Tel.: +1 403 220 3531.

should be located in a shared workspace and the customer (i.e.
someone who will actively steer the project) should be on site to
provide input and feedback (Beck, 2000). Close collaboration with
the customers in agile software development has proven useful.
For example, Ceschi et al. (2005) state that managing a customer
relationship has proven easier in agile software development when
comparing to traditional2 approaches. 50% of the companies using
traditional software development methods suffered from problems
related to customer relationships. This is 40% higher than customer
relationship issues encountered when using an agile development
approach (Ceschi et al., 2005). Agile approaches are currently used
in globally distributed environments that cross significant dis-
tances over time and space. This in turn makes physical, as well as
temporal, proximity between the participants difficult to achieve
and, hence, creates challenges for informal face-to-face communi-
cations (Nöteberg et al., 2003).

2 In this work, traditional development is synonymous with plan-driven devel-
opment. Plan-driven software development is an engineering approach in which
the software is developed following specific processes, commencing at the require-
ments gathering stage and ending with the final code (Boehm and Turner, 2003).
Perhaps the most well known plan-driven method is the Waterfall method (Royce,
1970).

http://dx.doi.org/10.1016/j.jss.2014.03.080
0164-1212/© 2014 Elsevier Inc. All rights reserved.

http://www.elsevier.com/locate/jss
mailto:mikko.korkala@vtt.fi
mailto:mikko.korkala@gmail.com
mailto:frank.maurer@ucalgary.ca
http://dx.doi.org/10.1016/j.jss.2014.03.080

V/2 V/3

124 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

Table 1
Challenges of GSD and agile GSD from the perspectives of temporal, geographical and cultural distances.

Challenge area Findings

Temporal distance General GSD literature
Opportunities for synchronous communication are reduced (Ågerfalk and Fitzgerald, 2006).

Communication needs to take place on unconventional times due to the lack of overlapping working hours and leads to overtime work.
This is consuming and leads to communication overhead (Holmstrom et al., 2006; Conchúir et al., 2009; Sarker and Sahay, 2004).

Possible unavailability of remote colleagues when help is needed can lead to delays. Asynchronous communication media used over
temporal distance increases response times (Ågerfalk, 2004).
Agile GSD literature
Using interactive media for efficient communication can be very difficult due to temporal distance (Korkala et al., 2010).

Geographical distance General GSD literature
Face-to-face meetings are difficult to arrange and informal communication is lacking (Ågerfalk and Fitzgerald, 2006). This inhibits idea
sharing (Conchúir et al., 2009).
Agile GSD literature
Explicit findings not found. However, the identified challenges can be seen valid in globally agile development as well.

Cultural distance General GSD literature
Misunderstandings in communication stemming from cultural differences (Holmstrom et al., 2006; Ågerfalk and Fitzgerald, 2006;
Conchúir et al., 2009).
Agile GSD literature
Misunderstandings in communication stemming from cultural differences (Summers, 2008).

Cultural differences may result into situations in which e.g. disagreements are not willingly expressed and negative issues are shared
reluctantly (Lee and Yong, 2010; Drummond and Francis, 2008).

Language barriers can significantly hinder communication (Layman et al., 2006; Uy and Ioannou, 2008; Kajko-Mattsson et al., 2010).

Different work styles cause communication problems (Sutherland et al., 2007).

to resolve technical issues with videoconferencing (Williams and
Stout, 2008). Poor technical communication infrastructure can cre-
ate such challenges that meetings may even need to be rescheduled
due to poor sound/video quality (Therrien, 2008). Other times, it
is not even possible to use videoconferencing tools (Paasivaara
et al., 2008; Herbsleb and Moitra, 2001). Considering the consum-
ing nature of unconventional overlapping work hours that enable
synchronous communication, it is recommended that work should
be kept sustainable (Therrien, 2008).

In order to overcome cultural hurdles there are several recom-
mendations available. For example, experienced domain experts
should communicate with distributed teams daily. This should
mitigate communication risks emerging from cultural differences
by keeping the potential problems transparent (Summers, 2008).
In addition, creation of specific roles has been proposed as an
approach for mitigating communication issues stemming from cul-
tural differences. Layman et al. (2006) proposed the creation of
a role responsible for close collaboration between the developers
and the management, in the event that they are separated. Korkala
and Abrahamsson (2007) studied the propositions of Layman et al.
(2006) and concluded that they are worthwhile to consider in dis-
tributed settings. Furthermore, they emphasize the importance of
direct communication links between the participants. It should be
noted however, that the distribution in the case project was not on
a global scale (Korkala and Abrahamsson, 2007).

Bureaucratic organization can create barriers for commu-
nication in agile GSD projects. Bureaucratic organizations are
characterized as hierarchical, procedural, regulated, established,
structured, cautious and power-oriented (Wallach, 1983), and they
have been identified as a difficult environment for agile develop-
ment projects (Berger, 2007). Korkala et al. (2010) found supporting
evidence for this claim in their study focusing on analysing com-
munication in a globally distributed agile development project that
had separate customer and vendor organizations involved. They
found that bureaucratic organizational culture created significant
challenges for communication. One of the challenges was delib-
erate information hiding, i.e. the customer organization did not
grant the vendor access to important information such as their

codebase. Further, the customer organization did not provide ade-
quate information about the requirements for the vendor. The lack
of domain knowledge at the vendor organization made their situ-
ation even more challenging. In order to respond to these findings,
the study concludes with a set of guidelines aiming at creating an
environment that supports meaningful communication (Korkala
et al., 2010).

The literature study made for the purposes of this work
shows that communication challenges of GSD are many, and exist
regardless of the development approach. It also shows that the
mechanisms for mitigating these challenges are merely general-
level recommendations and encouragements for using individual
communication tools. This finding, combined with the pivotal role
of communication in agile development, further supports the pur-
pose of this study to provide a concrete approach for companies to
improve communication in their agile GSD projects.

2.2. Media Synchronicity Theory

Communication theory and the processes through which com-
munication was analyzed during the study are presented in this
section. An overview provides understanding of the main concepts
that created the theoretical lenses of the study from the perspective
of communication.

Media Synchronicity Theory (MST) is an extension of Media
Richness Theory (MRT) (Daft and Lengel, 1986; Daft et al., 1987)
and aims to predict the performance of communication and exam-
ine communication media capabilities in various contexts of use
(Dennis et al., 2008). MST defines two separate communication
processes, conveyance and convergence. In our study, we use these
processes to categorize and analyze the use of different communi-
cation media in different phases of the case project.

Conveyance is related to transmission of new information that
enables the receiver to create and revise a mental model of the
information. In order to establish this understanding, as much
relevant information as necessary is required. If information is
insufficient (i.e. conveyance is defective), incorrect conclusions
will be reached. Convergence process aims towards a shared

M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140 123

Effective communication is essential in globally distributed
software development regardless of the development approach
(Herbsleb et al., 2001; Carmel and Agarwal, 2001; Mockus
and Herbsleb, 2001). In contrast to agile methods, traditional
approaches rely on formal communication which codifies pro-
cess and product knowledge into extensive documentation (Nerur
et al., 2005). Kraut and Streeter (1995) describe formal commu-
nication as communication through structured meetings, writing
and other relatively impersonal and non-interactive channels. A
globally distributed context creates its own challenges that affect
communication between distributed partners (e.g. Noll et al., 2010).
According to the study made by Komi-Sirviö and Tihinen (2005),
74% of the problems of distributed development were related to
communication. They found that the lack of communication or
poor quality of it was often the root cause behind other problems
identified in the study (Komi-Sirviö and Tihinen, 2005).

In order to address the communication challenges, different
solutions have emerged. These proposals focus on general-level
recommendations to establish an environment that fosters mean-
ingful communication (e.g. Layman et al., 2006; Korkala et al.,
2010), and the use of individual communication tools (e.g. Kircher
et al., 2001; Danait, 2005). These recommendations provide solu-
tions to particular problems such as organizational challenges
(Korkala et al., 2010) and means to maintain interactive commu-
nication. In summary, there are no concrete approaches covering
the entire development process to help companies analyze and
improve communication in their globally distributed agile develop-
ment projects. In our study, we use the concept of waste to illustrate
communication specific bottlenecks. Waste is defined as any human
activity consuming resources but not providing value (Womack and
Jones, 1996) and this concept has also been applied in the context
of Lean software development (e.g. Poppendieck and Poppendieck,
2007; Mandić et al., 2010). While these wastes are not limited to any
particular aspect of software development, our study aims to iden-
tify communication specific wastes. Hence, the motivation of this
study was to create an approach that covers the entire agile devel-
opment process to identify communication specific waste and to
classify what those wastes are.

We conducted a single case study within a North American
software intensive company that was implementing a product
in a globally distributed fashion. In the study, we applied the
constructed waste identification approach and analyzed the com-
munication between the involved stakeholders using the key
concepts of Media Synchronicity Theory (MST) (Dennis et al., 2008).
The communication wastes were extracted from the data and we
propose actions for mitigating the effects of the identified wastes.

The contribution of this paper is twofold. First, we propose a
waste identification process through which the non-value pro-
ducing communication elements can be identified. As a second
contribution, we identified five types of waste related to com-
munication; lack of involvement, lack of shared understanding,
outdated information, restricted access to information and finally
scattered information. This study concludes that the proposed
waste identification process can point out non-value producing
elements from communication, after which, measures to mitigate
them can be identified.

The rest of the paper is organized as follows: Section 2 discusses
background literature relevant to this study in order to provide the
reader an understanding of communication in globally distributed
environments. Section 2 also discusses the concept of waste in the
context of software development and explains the communica-
tion theory through which communication was analyzed. Section
3 presents how the study was conducted and introduces the waste
identification approach. Section 4 presents the findings of this
study, and generalized descriptions of the wastes alongside pro-
posals for mitigating them. Threats to validity are also discussed

in this section. In Section 5 the findings are discussed along with
future research opportunities. Finally, the conclusions are drawn
with more detailed description of how to apply the presented waste
identification approach.

2. Related literature

In this section, background literature relevant to the study is dis-
cussed. First, we discuss communication in the context of globally
distributed software development from the perspectives of both
traditional and agile software development, after which we intro-
duce Media Synchronicity Theory. Finally, we address the concept
of waste. These elements provide the theoretical framework for our
study.

2.1. Communication in globally distributed development
environments

Globally distributed software development (GSD) is a common
approach in software engineering (Damian and Moitra, 2006) and
several factors have contributed to the growth of this phenomenon.
Some of the most commonly cited benefits include time-zone inde-
pendent “follow the sun” development, access to well-educated
labour, maturation of the technical infrastructure and reduced costs
due to different salary structures based on geographical regions
(Komi-Sirviö and Tihinen, 2005; Ebert and De Neve, 2001; Gorton
and Motwani, 1996; Battin et al., 2001). In order to achieve these
benefits, communication between the distributed parties must be
effective. However, there are several challenges that hinder com-
munication in distributed contexts.

Noll et al. (2010) have identified geographical, cultural and
temporal distances as the key barriers for communication and col-
laboration in globally distributed environments. Holmström et al.
(2006) state that it is the combination of these distances that
makes globally distributed development complex. Table 1 presents
challenges found in these categories both from the general GSD lit-
erature (not focusing on any particular development approach) and
those found in agile GSD literature.

Several different approaches to address these challenges have
been suggested. The reduced opportunities for synchronous and
face-to-face communication from both geographical and temporal
viewpoints can be mitigated by using interactive communi-
cation tools, such as videoconferencing (Kircher et al., 2001;
Sureshchandra and Shrinivasavadhani, 2008), whiteboard software
(Layman et al., 2006), web conferencing and Instant Messag-
ing tools (Danait, 2005). Asynchronous tools can also be used.
According to Damian and Zowghi (2003), email is the dominant
asynchronous media due to its important role as a means of
exchanging documents across temporal distances. The use of asyn-
chronous media can, however, create challenges. Email messages
can be forgotten or lost which leads to unresolved issues, and the
time when a response to an email message will arrive is unsure
(Damian and Zowghi, 2003). Carmel and Agarwal (2001) further
state that asynchronous media often delays problem resolution and
makes it more complicated. As an example, even simple issues can
take days of email discussion before resolving (Carmel and Agarwal,
2001). In order to reduce communication overhead, strict com-
munication policies are promoted if asynchronous communication
tools are used, such as, emails need to be replied within 12 business
hours as suggested in Vax and Michaud (2008).

Communication tools themselves can create challenges. Sound
quality of teleconferencing tools may be poor. This can create
misunderstanding and communication overhead can occur when
messages need to be repeated several times (Williams and Stout,
2008). Additionally, significant amounts of time may be needed

V/3

124 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

Table 1
Challenges of GSD and agile GSD from the perspectives of temporal, geographical and cultural distances.

Challenge area Findings

Temporal distance General GSD literature
Opportunities for synchronous communication are reduced (Ågerfalk and Fitzgerald, 2006).

Communication needs to take place on unconventional times due to the lack of overlapping working hours and leads to overtime work.
This is consuming and leads to communication overhead (Holmstrom et al., 2006; Conchúir et al., 2009; Sarker and Sahay, 2004).

Possible unavailability of remote colleagues when help is needed can lead to delays. Asynchronous communication media used over
temporal distance increases response times (Ågerfalk, 2004).
Agile GSD literature
Using interactive media for efficient communication can be very difficult due to temporal distance (Korkala et al., 2010).

Geographical distance General GSD literature
Face-to-face meetings are difficult to arrange and informal communication is lacking (Ågerfalk and Fitzgerald, 2006). This inhibits idea
sharing (Conchúir et al., 2009).
Agile GSD literature
Explicit findings not found. However, the identified challenges can be seen valid in globally agile development as well.

Cultural distance General GSD literature
Misunderstandings in communication stemming from cultural differences (Holmstrom et al., 2006; Ågerfalk and Fitzgerald, 2006;
Conchúir et al., 2009).
Agile GSD literature
Misunderstandings in communication stemming from cultural differences (Summers, 2008).

Cultural differences may result into situations in which e.g. disagreements are not willingly expressed and negative issues are shared
reluctantly (Lee and Yong, 2010; Drummond and Francis, 2008).

Language barriers can significantly hinder communication (Layman et al., 2006; Uy and Ioannou, 2008; Kajko-Mattsson et al., 2010).

Different work styles cause communication problems (Sutherland et al., 2007).

to resolve technical issues with videoconferencing (Williams and
Stout, 2008). Poor technical communication infrastructure can cre-
ate such challenges that meetings may even need to be rescheduled
due to poor sound/video quality (Therrien, 2008). Other times, it
is not even possible to use videoconferencing tools (Paasivaara
et al., 2008; Herbsleb and Moitra, 2001). Considering the consum-
ing nature of unconventional overlapping work hours that enable
synchronous communication, it is recommended that work should
be kept sustainable (Therrien, 2008).

In order to overcome cultural hurdles there are several recom-
mendations available. For example, experienced domain experts
should communicate with distributed teams daily. This should
mitigate communication risks emerging from cultural differences
by keeping the potential problems transparent (Summers, 2008).
In addition, creation of specific roles has been proposed as an
approach for mitigating communication issues stemming from cul-
tural differences. Layman et al. (2006) proposed the creation of
a role responsible for close collaboration between the developers
and the management, in the event that they are separated. Korkala
and Abrahamsson (2007) studied the propositions of Layman et al.
(2006) and concluded that they are worthwhile to consider in dis-
tributed settings. Furthermore, they emphasize the importance of
direct communication links between the participants. It should be
noted however, that the distribution in the case project was not on
a global scale (Korkala and Abrahamsson, 2007).

Bureaucratic organization can create barriers for commu-
nication in agile GSD projects. Bureaucratic organizations are
characterized as hierarchical, procedural, regulated, established,
structured, cautious and power-oriented (Wallach, 1983), and they
have been identified as a difficult environment for agile develop-
ment projects (Berger, 2007). Korkala et al. (2010) found supporting
evidence for this claim in their study focusing on analysing com-
munication in a globally distributed agile development project that
had separate customer and vendor organizations involved. They
found that bureaucratic organizational culture created significant
challenges for communication. One of the challenges was delib-
erate information hiding, i.e. the customer organization did not
grant the vendor access to important information such as their

codebase. Further, the customer organization did not provide ade-
quate information about the requirements for the vendor. The lack
of domain knowledge at the vendor organization made their situ-
ation even more challenging. In order to respond to these findings,
the study concludes with a set of guidelines aiming at creating an
environment that supports meaningful communication (Korkala
et al., 2010).

The literature study made for the purposes of this work
shows that communication challenges of GSD are many, and exist
regardless of the development approach. It also shows that the
mechanisms for mitigating these challenges are merely general-
level recommendations and encouragements for using individual
communication tools. This finding, combined with the pivotal role
of communication in agile development, further supports the pur-
pose of this study to provide a concrete approach for companies to
improve communication in their agile GSD projects.

2.2. Media Synchronicity Theory

Communication theory and the processes through which com-
munication was analyzed during the study are presented in this
section. An overview provides understanding of the main concepts
that created the theoretical lenses of the study from the perspective
of communication.

Media Synchronicity Theory (MST) is an extension of Media
Richness Theory (MRT) (Daft and Lengel, 1986; Daft et al., 1987)
and aims to predict the performance of communication and exam-
ine communication media capabilities in various contexts of use
(Dennis et al., 2008). MST defines two separate communication
processes, conveyance and convergence. In our study, we use these
processes to categorize and analyze the use of different communi-
cation media in different phases of the case project.

Conveyance is related to transmission of new information that
enables the receiver to create and revise a mental model of the
information. In order to establish this understanding, as much
relevant information as necessary is required. If information is
insufficient (i.e. conveyance is defective), incorrect conclusions
will be reached. Convergence process aims towards a shared

V/4 V/5

126 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

Table 3
The wastes of software development and their descriptions based on Poppendieck
and Poppendieck (2007) and Mandić et al. (2010).

Waste Description

Wastes and their descriptions identified by Poppendieck and Poppendieck
(2007)

Partially done work Something that is not completed. E.g. untested
code, undocumented or not maintained business
decisions.

Extra features Something that is not really needed.

Relearning E.g. forgetting decisions, re-trying solutions
already tried and the inability to utilize the
knowledge of other people.

Handoffs Passing work to someone else, getting work from
someone else.

Task switching How many other tasks the people need to do.
Switching between tasks is distracting. For
example, often switching between three or four
smaller tasks requires more time to re-orientate to
those tasks than to work on those. The time
required to re-orientate to a task is waste.

Delays Waiting for something.

Defects Errors in program code.

Wastes and their descriptions identified by Mandić et al. (2010)
Avoiding

decision-making
This waste is about avoiding decision-making
altogether and it should not be confused with
“Defer commitment” practice of lean software
development (Poppendieck and Poppendieck,
2007). The reasons behind this waste can vary
from organizational issues, such as lack of
empowerment, to individual characteristics.

Limited access to
information

This waste is related to the existence of
information; it might not exist. Limited access to
relevant information may result in harmful
decisions.

Noise or
information
distortion

Further divided to the dimensions of time and
space. Time related distortion occurs when
information is not recorded, not updated or is
forgotten. Space related distortion occurs because
actors are distributed across different levels or
units of an organization and representing different
contexts and sub-contexts. Space related
information distortion is a phenomenon described
by Melnik and Maurer in (2004).

Uncertainty A variable or choice can have multiple values or
options. These increased values or options increase
the level of uncertainty.

This main research question is further elaborated by the following
sub-questions:

• SQ1: How can communication waste be identified in globally dis-
tributed agile software development?

• SQ2: What wastes can be found in communication in globally dis-
tributed agile software development?

In this study, we identify waste that is specific to communication
in globally distributed agile software development. We do not clas-
sify previously identified waste as communication specific in spite
that they can be linked to communication in agile GSD. Similarly,
we exclude well-known issues in GSD from being classified as com-
munication waste.

The unit of analysis in this study was a single globally distributed
agile software development project within a medium-sized North
American software intensive company that implements interactive
products for education and business. This site was selected based
on the following criteria:

1. The case organization had operated using agile approaches for
a period of nearly three years at the time of the study and had
extensive experience working in a globally distributed context.

2. The case organization provided extensive access to individuals at
multiple levels within the organization. These individuals were
able to describe the situation from different viewpoints.

The project to we studied was suggested by the case company’s
management since it was working clearly in a globally distributed
fashion with different tasks allocated to various sites across conti-
nents. In addition, management and the project personnel provided
the authors extensive access to relevant data that was gathered
using several different data collection techniques. The discussions
with management and the project manager prior to the study
revealed that they were, in general, satisfied with the project’s
progress. However, they identified the increased demands for
communication with the offshore development organization as a
challenge.

The project developed an improved version of an existing prod-
uct that had been implemented by the case organization over the
last 10 years. The software was divided into high-level units of
functionality labelled as themes by the case organization. These
themes contained different sets of functions that the product was
supposed to provide. The themes were allocated to three differ-
ent sites, remaining as independent as possible from the themes
that were allocated to other locations, with the idea to minimize
dependencies. Two of the sites were located in North America and
were part of the case company. One site was located in India. This
site was an independent contractor organization. Fig. 1 depicts the
project organization along with temporal distances between the
sites.

Initial Product Backlog was created before the actual program-
ming work began. This process is described later in the paper. The
programming work was not initiated at the same time in all sites.
NorthAmerica 2 began development in September 2010. The pro-
gramming work began at NorthAmerica 1 in June 2011 and in May
2011 at India. The reason why NorthAmerica 2 started earlier than
the others was that the largest themes from the Product Backlog
were assigned to them while the rest of the personnel allocated
to the project at other sites were fully committed to other efforts.
India had been collaborating with the parent organization for the
last two years. NorthAmerica 1 was leading the development and
contained the personnel responsible for steering the development
along with the Product Owner. Before the implementation began
at NorthAmerica 1, their leading role focused on steering the devel-
opment at other sites.

3.1. Data collection

The application of several data collection methods such as
archives, observations, interviews and questionnaires is often used
in case studies in order to increase their validity (Eisenhardt,
1989; Yin, 1994; Stake, 1995). In our study, the data was collected
using observations, informal discussions, documents provided by
the case organization, and semi-structured interviews with open-
ended questions. This data was collected at different phases of
the project. The timeline of the study is presented in Fig. 2. The
study had two main phases. The first phase focused on obtaining a
solid overview of the case project while the latter phase focused on
acquiring detailed information from the participants in the form of
interviews. The actions described in Fig. 2 in some instances over-
lapped despite being presented in a linear fashion for the sake of
clarity. Data collection and analysis were conducted throughout the
project. The one-month gap between the phases is due to a vaca-
tion. The timeline presents the research activities after site and case
project selection.

M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140 125

Table 2
The ability of different communication media to support synchronicity as defined
in Dennis et al. (2008).

Communication medium Ability to support
synchronicity

Face-to-face High
Video conference High
Teleconference Medium
Synchronous instant messaging Medium
Email and asynchronous electronic communication Low
Voice mail Low
Fax Low
Documents Low

understanding on the meaning of information, and the participants
need to mutually agree that the mutual understanding is achieved
or that it cannot be achieved (“agree to disagree”). Convergence
can require less information processing compared to conveyance
if it focuses on a smaller set of information, for example a partic-
ular detail, than what was conveyed in the first place. However,
if large differences in individual understandings exist convergence
may require as much cognitive processing than conveyance. Defec-
tive convergence prevents individuals moving forward to other
activities since they lack a shared understanding (Dennis et al.,
2008).

Synchronicity is defined in MST as “the ability to support
individuals working together at the same time with a shared pat-
tern of coordinated behaviour”. Further, media synchronicity is
defined as “the extent to which the capabilities of a communica-
tion medium enable individuals to achieve synchronicity” (Dennis
et al., 2008). Synchronicity is not always easy to achieve. Dennis
et al. (2008) postulate that synchronous communication is neces-
sary to synchronicity, but it is not necessarily sufficient considering
participants can lack a shared focus during communication. The
participants can for example, read their email during a meeting.

Using media with lower synchronicity should increase per-
formance for conveyance processes (i.e. sharing new complex
information), while convergence processes (agreeing on details,
for example) benefit from using media with higher synchronicity
(Dennis et al., 2008). In addition, a convergence process typically
requires rapid transmission of small quantities of pre-processed
information back and forth between the participants (Dennis et al.,
2008). Communication media vary in their properties to support
synchronicity. Table 2 is a summary from Dennis et al. (2008)
depicting media abilities to support synchronicity.

According to Dennis et al. (2008), no single medium is inherently
better than another and successful completion of tasks requires
both conveyance and convergence processes. Therefore, it is pro-
posed to use different media either simultaneously or in succession.
Dennis et al. (2008) further suggest that the situation in which a
medium is used affects its suitability for particular communication
situations. The communication processes, the individuals engaged
in communication and the social context in which the communi-
cation takes place all affect the medium’s suitability for the given
situation.

Dennis et al. (2008) also discuss appropriation factors that influ-
ence how people use different media. These factors further propose
that when communicating participants’ familiarity with each other
increases, the need for media that supports high synchronicity is
reduced (Dennis et al., 2008). Thus, the need to use different com-
munication media is not constant, but evolves in time. In addition,
media that fit the users’ needs are more likely to be appropriated
and used faithfully than those not meeting these needs (Dennis
et al., 2008).

Considering the validity of MST, Niinimäki et al. (2010) stud-
ied twelve distributed projects and found evidence that MST can

be used for selecting communication tools for projects operating in
globally distributed settings. The study concludes that even though
the tool use and decisions made on media choice were not always
following suggestions of MST, the ideas presented in the theory are
applicable and useful in globally distributed development projects.
The results of a laboratory experiment on the theoretical underpin-
nings of MST are reported in Dennis et al. (1998). The study focused
on the impacts of different media on effectiveness of both con-
veyance and convergence. The study provided preliminary support
for MST. DeLuca and Valacich (2006) studied MST through seven
hypotheses and found support for MST. Further, Dennis et al. (2008)
provide a list of studies whose findings they explain via MST. Orig-
inally these studies applied MRT, whereas MST was able to answer
to unexplained results of these works.

2.3. The concept of waste

The origins of waste can be traced back to the Japanese auto-
mobile industry of the 1950s and more specifically to Toyota
Production System (TPS) (Ohno, 1988). The literature discusses two
kinds of waste: Type 1 waste involves non-value adding activities
that cannot be removed or mitigated from the current operating
environment while Type 2 waste is a non-value adding activity that
can be removed or mitigated (Womack and Jones, 1996). While the
manufacturing industry has its own defined wastes, Poppendieck
and Poppendieck (2007) have mapped these wastes to software
development activities. These wastes, complemented with those
identified by Mandić et al. (2010) and their descriptions, are dis-
cussed in Table 3.

A case study reported by Ikonen et al. (2010) revealed that
the wastes presented in Poppendieck and Poppendieck (2003)
are relevant to software engineering. It was concluded that soft-
ware development projects can be successful even though waste
exists and waste seems to be something that cannot be avoided
in software development projects (Ikonen, 2010). There seems to
be certain challenges in identifying waste in software develop-
ment. Usually, in production and manufacturing the underlying
nature of waste is visible and generally well understood (Hicks,
2007). In his work, Hicks (2007) argues that in the context of
information management, the situation is the opposite. Ikonen
et al. (2010) share a similar understanding around software
development.

3. Research design

In this section, we describe how our study was conducted. The
case study and its context are discussed along with the data col-
lection and analysis techniques. In addition, we present the waste
identification process.

Even though research in software engineering has a result-
oriented, pragmatic view on research methodologies (Seaman,
2002), the philosophical perspective on this study can be seen as
an interpretative case study. Orlikowski and Baroudi (1991) claim
that an interpretive study attempts to understand a particular
phenomenon (in this case, communication), through how the par-
ticipants interpret their context. Hence these studies try to increase
the understanding of this phenomenon and use this knowledge to
inform other settings.

Case studies typically aim at answering “how” and “why” ques-
tions (Benbasat et al., 1987). In this study, we formulated three
research questions. The main research question is:

• RQ: How can waste identification improve communication in glob-
ally distributed agile software development?

V/5

126 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

Table 3
The wastes of software development and their descriptions based on Poppendieck
and Poppendieck (2007) and Mandić et al. (2010).

Waste Description

Wastes and their descriptions identified by Poppendieck and Poppendieck
(2007)

Partially done work Something that is not completed. E.g. untested
code, undocumented or not maintained business
decisions.

Extra features Something that is not really needed.

Relearning E.g. forgetting decisions, re-trying solutions
already tried and the inability to utilize the
knowledge of other people.

Handoffs Passing work to someone else, getting work from
someone else.

Task switching How many other tasks the people need to do.
Switching between tasks is distracting. For
example, often switching between three or four
smaller tasks requires more time to re-orientate to
those tasks than to work on those. The time
required to re-orientate to a task is waste.

Delays Waiting for something.

Defects Errors in program code.

Wastes and their descriptions identified by Mandić et al. (2010)
Avoiding

decision-making
This waste is about avoiding decision-making
altogether and it should not be confused with
“Defer commitment” practice of lean software
development (Poppendieck and Poppendieck,
2007). The reasons behind this waste can vary
from organizational issues, such as lack of
empowerment, to individual characteristics.

Limited access to
information

This waste is related to the existence of
information; it might not exist. Limited access to
relevant information may result in harmful
decisions.

Noise or
information
distortion

Further divided to the dimensions of time and
space. Time related distortion occurs when
information is not recorded, not updated or is
forgotten. Space related distortion occurs because
actors are distributed across different levels or
units of an organization and representing different
contexts and sub-contexts. Space related
information distortion is a phenomenon described
by Melnik and Maurer in (2004).

Uncertainty A variable or choice can have multiple values or
options. These increased values or options increase
the level of uncertainty.

This main research question is further elaborated by the following
sub-questions:

• SQ1: How can communication waste be identified in globally dis-
tributed agile software development?

• SQ2: What wastes can be found in communication in globally dis-
tributed agile software development?

In this study, we identify waste that is specific to communication
in globally distributed agile software development. We do not clas-
sify previously identified waste as communication specific in spite
that they can be linked to communication in agile GSD. Similarly,
we exclude well-known issues in GSD from being classified as com-
munication waste.

The unit of analysis in this study was a single globally distributed
agile software development project within a medium-sized North
American software intensive company that implements interactive
products for education and business. This site was selected based
on the following criteria:

1. The case organization had operated using agile approaches for
a period of nearly three years at the time of the study and had
extensive experience working in a globally distributed context.

2. The case organization provided extensive access to individuals at
multiple levels within the organization. These individuals were
able to describe the situation from different viewpoints.

The project to we studied was suggested by the case company’s
management since it was working clearly in a globally distributed
fashion with different tasks allocated to various sites across conti-
nents. In addition, management and the project personnel provided
the authors extensive access to relevant data that was gathered
using several different data collection techniques. The discussions
with management and the project manager prior to the study
revealed that they were, in general, satisfied with the project’s
progress. However, they identified the increased demands for
communication with the offshore development organization as a
challenge.

The project developed an improved version of an existing prod-
uct that had been implemented by the case organization over the
last 10 years. The software was divided into high-level units of
functionality labelled as themes by the case organization. These
themes contained different sets of functions that the product was
supposed to provide. The themes were allocated to three differ-
ent sites, remaining as independent as possible from the themes
that were allocated to other locations, with the idea to minimize
dependencies. Two of the sites were located in North America and
were part of the case company. One site was located in India. This
site was an independent contractor organization. Fig. 1 depicts the
project organization along with temporal distances between the
sites.

Initial Product Backlog was created before the actual program-
ming work began. This process is described later in the paper. The
programming work was not initiated at the same time in all sites.
NorthAmerica 2 began development in September 2010. The pro-
gramming work began at NorthAmerica 1 in June 2011 and in May
2011 at India. The reason why NorthAmerica 2 started earlier than
the others was that the largest themes from the Product Backlog
were assigned to them while the rest of the personnel allocated
to the project at other sites were fully committed to other efforts.
India had been collaborating with the parent organization for the
last two years. NorthAmerica 1 was leading the development and
contained the personnel responsible for steering the development
along with the Product Owner. Before the implementation began
at NorthAmerica 1, their leading role focused on steering the devel-
opment at other sites.

3.1. Data collection

The application of several data collection methods such as
archives, observations, interviews and questionnaires is often used
in case studies in order to increase their validity (Eisenhardt,
1989; Yin, 1994; Stake, 1995). In our study, the data was collected
using observations, informal discussions, documents provided by
the case organization, and semi-structured interviews with open-
ended questions. This data was collected at different phases of
the project. The timeline of the study is presented in Fig. 2. The
study had two main phases. The first phase focused on obtaining a
solid overview of the case project while the latter phase focused on
acquiring detailed information from the participants in the form of
interviews. The actions described in Fig. 2 in some instances over-
lapped despite being presented in a linear fashion for the sake of
clarity. Data collection and analysis were conducted throughout the
project. The one-month gap between the phases is due to a vaca-
tion. The timeline presents the research activities after site and case
project selection.

V/6 V/7

128 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

Table 4
The interviewed stakeholders at different sites along with the description of their main responsibilities and their code in this study.

Role Description of main responsibilities Code

NorthAmerica 1
Product Owner Responsible for providing an overall strategy for the product. Identification and prioritization of

new features and steering of development.
ProductOwner

Project Manager Project planning and defect monitoring. Responsible for timely delivery of the product that meets
both quality and financial requirements.

ProjectManager

Personnel Manager Responsible for coordinating people based on the demands of technical decisions, for example,
supporting the growth of peoples’ technical competences and well-being.

PersonnelManager

User Experience Specialist Creating user interface drafts, conducting usability testing and user research. Supporting
development teams in usability aspects. Discussing user interface & usability topics with the
ProductOwner and the development teams.

UserExperience

Overall Technical Lead Responsible for technical aspects of the whole project. Responsible for technical architecture of
the product and communicating technical details of the requirements to all teams.

MainTechLead

Two Developers Responsible for developing the software at NorthAmerica 1. NorthAmerica 1.Dev1 and
NorthAmerica 1.Dev2

NorthAmerica 2
Technical Lead Responsible for technical aspects of the product at NorthAmerica 2. NorthAmerica 2.TechLead

Developer and Tester Developer was responsible for developing the software at NorthAmerica 2 while Tester was
responsible for creating automated test cases for the product and worked as a coordinator
between the testing services team and other teams working with the project.

NorthAmerica 2.Dev and
NorthAmerica 2.Tester

India
Project Manager Responsible for delivering the decided contents of each Sprint at India. India.ProjectManager

Quality Assurance Engineer Responsible for the quality of the software developed at India. India.QualityAssurance

Two developers Responsible for developing the software at India. India.Dev1 and India.Dev2

of the media when used during the step, and (5) what were the wastes
in communication during the step.

Questions related to Documentation involved the following top-
ics: (1) what documents were produced during the development, (2)
who was involved in the creation and updating of documents, (3) what

were the benefits and wastes of using documents as a communication
tool, and (4) how were the documents stored and what issues did this
cause. The output from each step was the general overview of com-
munication during the steps (who participated, what was discussed
and using what media), the benefits of communication media used

Fig. 3. The waste identification process applied in the study.

M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140 127

Fig. 1. The project organization along with temporal distances between the sites.

When the study was initiated all sites were involved in the
project. NorthAmerica 1 and India were in the process of clari-
fying their individual requirements at the point when the study
began. NorthAmerica 2 was implementing the product require-
ments assigned to them.

In order to ensure that the research data would be obtained
from all necessary viewpoints, the key stakeholders of the project
were identified together with the project manager, and the case
company management. Table 4 presents the interviewed project
stakeholders. In order to unambiguously identify stakeholders,
their corresponding codes are preceded by the site name when
there is a possibility of ambiguity in stakeholder location.

The study participants at NorthAmerica 1, excluding the deve-
lopers, were team members who in addition to their work
responsibilities worked as Product Owner intermediates for the
teams relaying information from the Product Owner to the teams
and vice versa. In addition, these senior members supported the
Product Owner in decision-making on features to be implemented
and provided direct feedback to the other sites.

The initial understanding of the project and the product was
obtained during a total of 11 observation sessions taking place
either onsite at NorthAmerica 1 or via telephone and screen shar-
ing software. Field notes were taken during these sessions and
a research diary was constantly updated during the study. In
addition to observations, documentation about the requirements
gathering and analysis process, as well as informal discussions and
emails served as the means of providing information. If informa-
tion was ambiguous, clarifying questions were asked until mutual
understanding was achieved. In these observations, communica-
tion between NorthAmerica 1 and NorthAmerica 2 and between
NorthAmerica 1 and India was studied.

During the first stage of data collection, one 70-minute inter-
view focusing on the use of documentation and tools for sharing
and storing it was conducted face-to-face at NorthAmerica 1. This
interview involved all NorthAmerica 1 participants excluding the
developers.

Data collection in research phase 2 was conducted via inter-
views. A total of 12 semi-structured interviews with open-ended

questions and probes were conducted. Each interview lasted from
60 to 90 minutes and all participants were interviewed once. The
interviews at NorthAmerica 1 were conducted face-to-face, while
Skype was used in interviews involving NorthAmerica 2 and India.
Due to company policies at India and to help with language related
issues India.ProjectManager participated in all the interviews con-
ducted with India. All the interviews were recorded and transcribed
verbatim. In addition, field notes were taken and the research diary
was updated.

3.2. Waste identification process

The project’s development process contained two main phases
labelled pre-development and development. As the names sug-
gest, the pre-development phase included work conducted before
the implementation begun. In this phase we focused on com-
munication during the definition of the initial requirements and
the initial Product Backlog. The development phase followed a
Scrum approach (Schwaber and Beedle, 2002; Schwaber, 2004)
with fixed-length three week synchronized Sprints (i.e. all sites
began and ended at the same time). In this phase, we focused
on analysing communication during identified development steps.
The analysis of documentation as a communication tool dur-
ing the project was included in the waste identification process.
Fig. 3 describes the waste identification process applied in this
study.

The use of different communication channels used by key stake-
holders during different process steps is analyzed and related
communication wastes are extracted in this process. The improve-
ment actions responding to these challenges are determined and
applied in the development process.

In our study, the input for each analysis step was a set of
questions used to obtain a holistic view of communication within
each phase. The questions focused on the steps belonging to
Pre-Development and Development phases were based on the fol-
lowing main topics: (1) who was involved in communication during
the step, (2) what media were used during the step, (3) what kind of
information was discussed during the step, (4) what were the benefits

Fig. 2. The timeline of the study along with research activities.

V/7

128 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

Table 4
The interviewed stakeholders at different sites along with the description of their main responsibilities and their code in this study.

Role Description of main responsibilities Code

NorthAmerica 1
Product Owner Responsible for providing an overall strategy for the product. Identification and prioritization of

new features and steering of development.
ProductOwner

Project Manager Project planning and defect monitoring. Responsible for timely delivery of the product that meets
both quality and financial requirements.

ProjectManager

Personnel Manager Responsible for coordinating people based on the demands of technical decisions, for example,
supporting the growth of peoples’ technical competences and well-being.

PersonnelManager

User Experience Specialist Creating user interface drafts, conducting usability testing and user research. Supporting
development teams in usability aspects. Discussing user interface & usability topics with the
ProductOwner and the development teams.

UserExperience

Overall Technical Lead Responsible for technical aspects of the whole project. Responsible for technical architecture of
the product and communicating technical details of the requirements to all teams.

MainTechLead

Two Developers Responsible for developing the software at NorthAmerica 1. NorthAmerica 1.Dev1 and
NorthAmerica 1.Dev2

NorthAmerica 2
Technical Lead Responsible for technical aspects of the product at NorthAmerica 2. NorthAmerica 2.TechLead

Developer and Tester Developer was responsible for developing the software at NorthAmerica 2 while Tester was
responsible for creating automated test cases for the product and worked as a coordinator
between the testing services team and other teams working with the project.

NorthAmerica 2.Dev and
NorthAmerica 2.Tester

India
Project Manager Responsible for delivering the decided contents of each Sprint at India. India.ProjectManager

Quality Assurance Engineer Responsible for the quality of the software developed at India. India.QualityAssurance

Two developers Responsible for developing the software at India. India.Dev1 and India.Dev2

of the media when used during the step, and (5) what were the wastes
in communication during the step.

Questions related to Documentation involved the following top-
ics: (1) what documents were produced during the development, (2)
who was involved in the creation and updating of documents, (3) what

were the benefits and wastes of using documents as a communication
tool, and (4) how were the documents stored and what issues did this
cause. The output from each step was the general overview of com-
munication during the steps (who participated, what was discussed
and using what media), the benefits of communication media used

Fig. 3. The waste identification process applied in the study.

V/8 V/9

130 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

Table 6
The identified communication related waste from Pre-development phase.

Identified waste Description in the context of the phase

Lack of
involvement

The lack of involvement from India to the initial
backlog creation process resulted in insufficient
understanding of real end user needs. This further
caused extra features.

“Some information in the documents that we received wasn’t
complete. There wasn’t enough information in order for us to
do the work. So not being co-located, it wasn’t as easy as just
walking over to someone, asking what did you mean by this.”
(NorthAmerica 2.TechLead)

The requirements were documented on a high level following agile
approaches, so the incompleteness of the information in this case is
something that can be expected. In a distributed context, difficul-
ties of engaging in informal discussions over geographical distance
are a known issue. Filling in the missing details (i.e. converging on
the details) was more laborious, but it did not cause any particular
issues.

“We tried to spend a little bit more time investigating, and then
writing up emails or getting telephone calls to try to get that
information. It was just getting the information in order to do
the proper research. When it was missing it was just harder to
get.” (NorthAmerica 2.TechLead)

These findings indicate similar issues with conveyance as in
NorthAmerica 1; the information provided for NorthAmerica 2 was
not conveyed efficiently. However, NorthAmerica 2 was able to
compensate the lack of information by converging on the miss-
ing details even though it was more laborious due to geographical
distance.

4.1.3. Findings from India
India did not participate in the backlog creation process and

had no communication with NorthAmerica 1 before they started
developing the features assigned to them. India did not report any
specific issues that had emerged from documenting requirements
at a high level. However, they experienced one particular issue dur-
ing the development that stemmed from not participating in the
backlog creation process.

“Sometimes it happens that we suggest some features which
may be very good for a customer, and sometimes it is accepted.
And sometimes it happens that they (NorthAmerica 1) say that
the users basically don’t require or don’t like this feature. So, this
basically is a gap because we don’t have a clear picture of what
the end-user wants, what kind of features the user basically
prefers.” (India.Developer)

Therefore, there were extra features at India resulting from not
participating in the initial backlog creation process. In this case,
the waste behind the issues was lack of involvement stemming
from India’s absence during backlog creation process. A summary
of the communication related waste from this phase is described
in Table 6.

The requirements were documented following agile
approaches, which, from the perspective of MST, rely on conver-
gence instead of conveyance. At NorthAmerica 1, the initial backlog
creation process was conducted using media with high support
for convergence. This approach was not free from problems.
Considering the extra effort for understanding the requirements,
this could have been mitigated by more efficient conveyance,
e.g. more detailed documentation, which on the other hand is
counterintuitive with the propositions of agile development.

Table 7
The communication media used during Sprint Planning phase.

Communication within
NorthAmerica 1

Communication
between NorthAmerica
1 and NorthAmerica 2

Communication
between NorthAmerica
1 and India

Face-to-face meetings The decisions
considering the Sprint
contents were agreed
via telephone,
supported by screen
sharing software.

The decisions
considering the Sprint
contents were agreed
via telephone,
supported by screen
sharing software.

Defective conveyance due to vaguely defined requirements was
encountered at NorthAmerica 2 as well, and they had to put
more effort in converging on details. In this particular case, more
effective conveyance could have helped NorthAmerica 2 to grasp
the details better.

4.2. Sprint Planning

Sprint Planning was divided into two separate phases. Sprint
Pre-planning meetings were held a few days before the internal
Sprint Planning meetings that focused on implementation details.
Internal Sprint Planning meetings were conducted independently
at different sites without participation from others. The aim of
the pre-planning sessions was to achieve a mutual understanding
on what should be implemented in the forthcoming Sprint, simi-
larly to Sprint Planning meetings of Scrum. Therefore, the meetings
aimed for converging on details of to-be-implemented features.
Pre-planning meetings were arranged so that they would fit in the
ProductOwner’s schedule. If the ProductOwner was not available
for a scheduled meeting, the meeting would be rescheduled, if pos-
sible, so that the ProductOwner was able to participate. Table 7
indicates the communication media used between the sites during
this phase.

4.2.1. Findings from NorthAmerica 1
Sprint Pre-planning meetings between NorthAmerica 1 and

NorthAmerica 2 and NorthAmerica 1 and India were held sepa-
rately via telephone and screen sharing software. These sessions
lasted approximately one hour. The internal Sprint Pre-planning
meetings at NorthAmerica 1 lasted from five to ten minutes. As it
was agreed, the ProductOwner participated in Sprint Pre-planning
meetings but not in internal technically oriented planning sessions.

“I’ve made a conscious decision not to be too involved in internal
sprint planning and try to be more involved in high-level pre-
planning. Primarily because I’m not spending enough time in the
market, I’m spending too much time with product development.
But to be honest, where my strength lies is more in higher-level
functionality, what problems are we trying to solve.” (Produc-
tOwner)

The internal planning sessions at NorthAmerica 1 were run by
the MainTechLead who had extensive knowledge about technical
details of the product. The following comment made by MainTech-
Lead indicates a need for extra communication stemming from the
ProductOwner’s absence in internal Sprint Planning meetings:

“A lot of times when we were thinking about the tasks that we
were given, we come up with a bunch of different ways to do it
in the sprint planning. And then we have to go to ProductOwner
and get feedback saying we could do it in half the time if we did
it this way, is that okay?”

Therefore, lack of involvement was identified as a source for this
additional work. As proposed in agile approaches, this waste could

M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140 129

in them, and the non-value producing elements of communication
from each step. Similar output was acquired from the perspective
of documentation. Waste mitigation actions were defined in the
waste mitigation actions process step.

This approach is derived from a framework described in
Pikkarainen et al. (2008). Through their framework, Pikkarainen
et al. (2008) analyzed whether the use of agile practices improved
or hindered communication between the stakeholders of the orga-
nization. While communication hurdles are discussed in their
approach, Pikkarainen et al. (2008) do not discuss communication
waste. Further, their approach considers the whole organization
including management while our approach focuses entirely on the
development project level.

3.3. Data analysis

After the interviews, the transcriptions were first read and rel-
evant topics were coded. Prior to the study a set of initial codes
(“seed categories” (Miles and Huberman, 1994)) were created. As
in Thematic Analysis (Braun and Clarke, 2006), additional cate-
gories were added when seen relevant. During the analysis a data
reduction process (Miles and Huberman, 1994) was followed in
order to focus on the essential data. The notes from informal dis-
cussions and observations were analyzed after the sessions from
which they were collected. After the coding the tagged questions
and resulting answers were grouped into a separate table forming
a data display containing the compressed assembly of informa-
tion, as proposed by Miles and Huberman (1994). The information
was complemented with data available from field notes, observa-
tions and discussions. Wastes were extracted from the data. We
also analyzed if the communication in each phase aimed towards
conveyance or convergence and if the used media was capable of
supporting these processes. This enabled us to discuss our findings
from the perspective of MST.

Our data analysis has similarities to Grounded Theory. Cruzes
and Dybå (2011) summarize Grounded Theory from Glaser and
Strauss (1967) and Corbin and Strauss (2008) as a research
approach that describes methods for qualitative sampling, data
collection and data analysis. Grounded Theory includes simulta-
neous data collection and analysis phases (which was also applied
in our study). However, Grounded Theory aims towards a genera-
tion of new theories, which was not the aim of our work. Further, in
Grounded Theory the codes through which the data are analyzed
are not pre-defined. Instead, they emerge from the data. Hence, the
similarities between Grounded Theory and this study are limited
to overlapping data collection and analysis.

4. Findings

This section discusses the findings of the study categorized
by identified development process phases including the use of
documentation. The identified communication specific wastes are
summarized in each section. Further, we provide generalized
descriptions of the identified waste as well as means to mitigate
them in this section. In addition, the findings are discussed from
the perspective of MST and threats to validity are addressed.

4.1. Pre-Development

Prior to entering the actual development phase, the Produc-
tOwner collected a set of product requirements from real end-users,
through the feedback system built into the older version of the
product as well as by analysing competitors and market trends
in the domain. In addition, internationalization needs affected the
requirements. The collected requirements were further divided
into 12 different themes that depicted functionalities at a high level.

Table 5
The communication media used during Pre-Development phase.

Communication within
NorthAmerica 1

Communication
between NorthAmerica
1 and NorthAmerica 2

Communication
between NorthAmerica
1 and India

Backlog creation was
conducted in
face-to-face sessions
at NorthAmerica 1.

NorthAmerica 2 did
not participate in the
backlog creation
process with
NorthAmerica 1.
However, they
provided input for
themes allocated to
them via telephone
and screen sharing.
Also email was used for
exchanging
information.

India did not
participate in the
backlog creation
process. They did not
communicate with
NorthAmerica 1 before
the development
began.

These themes were split up between the three sites. Each site was
given the responsibility to refine the themes to user stories with
support from NorthAmerica 1. Table 5 depicts the usage of different
communication media during Pre-Development phase.

4.1.1. Findings from NorthAmerica 1
The initial Product Backlog was created in face-to-face brain-

storming sessions at NorthAmerica 1. All the stakeholders
from NorthAmerica 1 participated in these sessions, excluding
NorthAmerica 1.MainTechLead and UserExperience who were not
working for the project at the time when these sessions took
place. During the backlog creation process the PersonnelManager
encountered problems in understanding one of the new product
features. This particular feature was described in the initial require-
ments list in a very general way (PersonnelManager): “It was a very
high-level statement like containers will accept or reject objects”. This
caused the PersonnelManager to seek additional information in
order to provide accurate information to the ProductOwner about
the functionality:

“I needed a little bit of coaching to help me understand what it
really was. I couldn’t see how somebody would really use that
unless it was simple to use and set up. You really have to under-
stand the details in order to give a good detailed analysis of how
something like that could be built.” (PersonnelManager)

Also the ProductOwner saw similar challenges in the high level
requirements: “Our requirements documents are sufficiently high-
level that it leaves a lot open to interpretation, which has its benefits but
also has its drawbacks in that it’s difficult to define from the require-
ments documents specifically what is the exact requirement. At that
point it’s not really broken down to the story level, sometimes it’s just
a major theme.”

The extra effort needed to acquire additional information about
vaguely communicated requirements can be seen as wasteful.
However, these findings are stemming from the inherent character-
istics of agile development since deliberately vague requirements
are only clarified as needed. Therefore, these findings are not
treated as waste in the context of this study.

4.1.2. Findings from NorthAmerica 2
NorthAmerica 2 did not participate in brainstorming ses-

sions but they provided input for certain themes identified by
NorthAmerica 1. These conversations took place via telephone and
screen sharing software. The information shared in these conver-
sations was further converged (i.e. more details were provided) via
email and telephone. The issues NorthAmerica 2 experienced in
this phase emerged from the requirements documentation.

V/9

130 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

Table 6
The identified communication related waste from Pre-development phase.

Identified waste Description in the context of the phase

Lack of
involvement

The lack of involvement from India to the initial
backlog creation process resulted in insufficient
understanding of real end user needs. This further
caused extra features.

“Some information in the documents that we received wasn’t
complete. There wasn’t enough information in order for us to
do the work. So not being co-located, it wasn’t as easy as just
walking over to someone, asking what did you mean by this.”
(NorthAmerica 2.TechLead)

The requirements were documented on a high level following agile
approaches, so the incompleteness of the information in this case is
something that can be expected. In a distributed context, difficul-
ties of engaging in informal discussions over geographical distance
are a known issue. Filling in the missing details (i.e. converging on
the details) was more laborious, but it did not cause any particular
issues.

“We tried to spend a little bit more time investigating, and then
writing up emails or getting telephone calls to try to get that
information. It was just getting the information in order to do
the proper research. When it was missing it was just harder to
get.” (NorthAmerica 2.TechLead)

These findings indicate similar issues with conveyance as in
NorthAmerica 1; the information provided for NorthAmerica 2 was
not conveyed efficiently. However, NorthAmerica 2 was able to
compensate the lack of information by converging on the miss-
ing details even though it was more laborious due to geographical
distance.

4.1.3. Findings from India
India did not participate in the backlog creation process and

had no communication with NorthAmerica 1 before they started
developing the features assigned to them. India did not report any
specific issues that had emerged from documenting requirements
at a high level. However, they experienced one particular issue dur-
ing the development that stemmed from not participating in the
backlog creation process.

“Sometimes it happens that we suggest some features which
may be very good for a customer, and sometimes it is accepted.
And sometimes it happens that they (NorthAmerica 1) say that
the users basically don’t require or don’t like this feature. So, this
basically is a gap because we don’t have a clear picture of what
the end-user wants, what kind of features the user basically
prefers.” (India.Developer)

Therefore, there were extra features at India resulting from not
participating in the initial backlog creation process. In this case,
the waste behind the issues was lack of involvement stemming
from India’s absence during backlog creation process. A summary
of the communication related waste from this phase is described
in Table 6.

The requirements were documented following agile
approaches, which, from the perspective of MST, rely on conver-
gence instead of conveyance. At NorthAmerica 1, the initial backlog
creation process was conducted using media with high support
for convergence. This approach was not free from problems.
Considering the extra effort for understanding the requirements,
this could have been mitigated by more efficient conveyance,
e.g. more detailed documentation, which on the other hand is
counterintuitive with the propositions of agile development.

Table 7
The communication media used during Sprint Planning phase.

Communication within
NorthAmerica 1

Communication
between NorthAmerica
1 and NorthAmerica 2

Communication
between NorthAmerica
1 and India

Face-to-face meetings The decisions
considering the Sprint
contents were agreed
via telephone,
supported by screen
sharing software.

The decisions
considering the Sprint
contents were agreed
via telephone,
supported by screen
sharing software.

Defective conveyance due to vaguely defined requirements was
encountered at NorthAmerica 2 as well, and they had to put
more effort in converging on details. In this particular case, more
effective conveyance could have helped NorthAmerica 2 to grasp
the details better.

4.2. Sprint Planning

Sprint Planning was divided into two separate phases. Sprint
Pre-planning meetings were held a few days before the internal
Sprint Planning meetings that focused on implementation details.
Internal Sprint Planning meetings were conducted independently
at different sites without participation from others. The aim of
the pre-planning sessions was to achieve a mutual understanding
on what should be implemented in the forthcoming Sprint, simi-
larly to Sprint Planning meetings of Scrum. Therefore, the meetings
aimed for converging on details of to-be-implemented features.
Pre-planning meetings were arranged so that they would fit in the
ProductOwner’s schedule. If the ProductOwner was not available
for a scheduled meeting, the meeting would be rescheduled, if pos-
sible, so that the ProductOwner was able to participate. Table 7
indicates the communication media used between the sites during
this phase.

4.2.1. Findings from NorthAmerica 1
Sprint Pre-planning meetings between NorthAmerica 1 and

NorthAmerica 2 and NorthAmerica 1 and India were held sepa-
rately via telephone and screen sharing software. These sessions
lasted approximately one hour. The internal Sprint Pre-planning
meetings at NorthAmerica 1 lasted from five to ten minutes. As it
was agreed, the ProductOwner participated in Sprint Pre-planning
meetings but not in internal technically oriented planning sessions.

“I’ve made a conscious decision not to be too involved in internal
sprint planning and try to be more involved in high-level pre-
planning. Primarily because I’m not spending enough time in the
market, I’m spending too much time with product development.
But to be honest, where my strength lies is more in higher-level
functionality, what problems are we trying to solve.” (Produc-
tOwner)

The internal planning sessions at NorthAmerica 1 were run by
the MainTechLead who had extensive knowledge about technical
details of the product. The following comment made by MainTech-
Lead indicates a need for extra communication stemming from the
ProductOwner’s absence in internal Sprint Planning meetings:

“A lot of times when we were thinking about the tasks that we
were given, we come up with a bunch of different ways to do it
in the sprint planning. And then we have to go to ProductOwner
and get feedback saying we could do it in half the time if we did
it this way, is that okay?”

Therefore, lack of involvement was identified as a source for this
additional work. As proposed in agile approaches, this waste could

V/10 V/11

132 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

Table 8
The identified communication related waste from Sprint Planning phase.

Identified waste Description in the context of the phase

Lack of involvement The ProductOwner’s absence in internal Sprint
Planning meetings caused extra work since the
most suitable way to implement something had to
be agreed with the ProductOwner after the
meeting.

Lack of shared
understanding

Participants in NorthAmerica 1 and India did not
share similar understandings of features being
discussed. This resulted from the fact that India
lacked deep technical and domain knowledge of
the project. Also, it was difficult for India to explain
their work clearly for NorthAmerica 1 since
NorthAmerica 1 did not share their deep
knowledge about the implementation of the
features.

“Over long distances, the lag can be frustrating.” (Produc-
tOwner)

“We have got delays of up to 30 seconds to one minute
between when I update a screen at my end and (NorthAmer-
ica 1) is able to see the same screen. And similarly vice versa.”
(India.ProjectManager)

Further, the connection between the sites was unstable: “Sometimes
connection goes off, so that is also a limitation, while you reconnect,
and again start a meeting. So it’s sometimes time-consuming also”
(India.QualityAssurance). Despite the same communication tools
being used between NorthAmerica 1 and NorthAmerica 2, technical
issues were not reported. While it is unclear why communication
between these sites was smooth, it can be assumed that possibly a
better technical infrastructure and shorter distance between the
sites could have contributed to this. The summary of identified
communication related wastes is provided in Table 8.

From MST’s viewpoint, the lack of shared understanding stems
from insufficient conveyance since the information provided prior
to pre-planning sessions was sometimes too vague. Similarly to
this, missing acceptance tests mentioned by NorthAmerica 2.Tech-
Lead indicate defective conveyance. In the case of a lack of shared
understanding, the issues of lacking conveyance and also conver-
gence emerged. From a theoretical perspective, mitigation requires
conveying information effectively (e.g. documenting acceptance
tests properly before they are converged). In order to improve the
understanding between the communicating participants, the fea-
tures that are expected to be implemented should be conveyed (e.g.
documented) in detail for the party with the lesser understanding.

4.3. Sprints: communication media related waste

In this section, the wastes related to communication media used
during the development iterations are discussed. Table 9 depicts
the use of different media between sites. The discussion of com-
munication media between different sites is divided based on their
ability to support either conveyance or convergence.

Table 9
The communication media used during Sprints phase.

Communication within
NorthAmerica 1

Communication
between NorthAmerica
1 and NorthAmerica 2

Communication
between NorthAmerica
1 and India

Face-to-face
communication,
instant messaging (IM),
telephone and email.

Telephone supported
by screen sharing.
Email.

Telephone supported
by screen sharing.
Email.

4.3.1. Media supporting conveyance
Email was extensively used during development. Email was

seen as beneficial for more formal decisions that require a “paper
trail”, “Email is really nice, if you need something a little more for-
mal” (PersonnelManager). Similarly to the PersonnelManager, the
NorthAmerica 2.TechLead saw advantages in email: “To have a
summary of results at the end of a meeting is always handy, so to
have something via email is something you can go back and refer to.”
There were, however, waste in email communication. Email is not
supposed to be an effective medium for convergence, but in the
project it was used also for this purpose. According to the Person-
nelManager there was handoff in emails: “Sometimes there’s several
follow-up emails that say, did you really mean this. And you compound
that with the delay for each time, it’s not as efficient.”

Other stakeholders recognized delay in email as an issue as well:
“(the challenge is) the delay between sending it back and forth. If
you would be able to get someone on the phone it’s much faster to
get some of your responses and explanations” (NorthAmerica 2.Tech-
Lead). Also NorthAmerica 2.Tester mentioned delay as an issue in
email communication: “There’s a delay in replying.” The abovemen-
tioned is in line with findings related to delayed and complicated
problem solving via email. There were also other issues in using
email communication in converging information resulting from
multiple and conflicting viewpoints presented in email discussions:

“Somebody would ask him (the ProductOwner) something, but
there would be other people on the emails and they’d answer
actually you can’t do that because technically you can’t do it. So,
meanwhile, the first email how would you (the ProductOwner)
like us to do this. (The ProductOwner) will come back, yes, I’d
like you to do that. Meanwhile there’s another email that says
no, actually technically you can’t do it.” (ProjectManager)

The ProductOwner did not answer to the latest email that had the
newest information, using outdated information as the basis of
making decisions. However, this waste was seen as a minor prob-
lem and the discussion converged sooner or later either by email or
during a meeting. In this particular case, the reasons contributing
to outdated information from the ProductOwner’s side stemmed
from his very busy schedule: “His schedule is packed and I email the
(ProductOwner) with a question, then I have no idea when I’ll hear
back from him.” (UserExperience). Paradoxally, the ProductOwner’s
busy schedule was the reason why the majority of communication
with him was conducted via email:

“As a general rule, we’d send an email, because his (the Pro-
ductOwner) schedule is always very busy.” (NorthAmerica
2.TechLead)

From India, communication with the ProductOwner was done via
intermediates (mainly MainTechLead) and this was seen as a com-
munication challenge leading to a delay: “Since we don’t have direct
communication with the product owner, so that’s basically a lag for
our development. So, it basically hampers the development speed”
(India.Dev1). There was extensive email communication between
the sites. Time zone difference combined with the delay resulting
from waiting for the answer from a relevant person was seen as a
challenge within India.

“Challenges (in email communication), the turnaround time
that we get for our queries. Owing to the time differences and
having the people who decide what should be done, to answer
our queries. So that basically leads to a delay by a day, because
we have a time zone difference.”(India.Dev2)

The MainTechLead saw challenges in emails sent by India.
NorthAmerica 1 and India had agreed that India would prepare a
daily email message explaining the current status of their work
with possible questions. This information was further discussed

M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140 131

have been avoided by involving the ProductOwner in internal
Sprint Planning at NorthAmerica 1.

4.2.2. Findings from NorthAmerica 2
At NorthAmerica 2, there were challenges resulting from par-

tially done work that realized in a form of missing acceptance tests3

during Sprint Pre-planning meetings: “All the acceptance criteria
should already be done before pre-planning begins. That’s (defining
acceptance criteria) not something that should be in the pre-planning
session” (NorthAmerica 2.TechLead). In the case of such events,
NorthAmerica 2 conducted Spikes and re-evaluated the unclear
feature. In the case that evaluating the unclear feature required
a Spike, either additional information was requested or the fea-
ture was postponed to the next Sprint. If the feature could not be
postponed, additional effort was added to the estimate:

“We spike it out and say, get the information from the product
owner and we’ll work on it next sprint. If it’s something that had
to be done this sprint then sometimes we’d put a placeholder
and say we’re gonna do the spike and then we’ll allocate five
story points to do the implementation.” (NorthAmerica 2.Tech-
Lead)

Earlier in the project, NorthAmerica 2 tried an approach of con-
tacting NorthAmerica 1 via phone to sort out the problem that
way. This practice was discarded since it was not seen productive.
(NorthAmerica 2.TechLead):

“We did try to phone some people to try and get informa-
tion either during our lunch when NorthAmerica 1 would be
available. Sometimes we started planning late so it could be
overnight and we’d go to the next day, then late at night we’d
try to get some information from them. When we did this at the
beginning we’d actually waste the time.”

From the viewpoint of communication, the amount of informa-
tion provided to NorthAmerica 2 was not enough to conduct the
work without obtaining additional information that could have
been provided in the planning meetings by NorthAmerica 1. In the
case of NorthAmerica 2, previously identified waste partially done
work was identified as a waste. No communication-specific waste
emerged.

4.2.3. Findings from India
From India, India.ProjectManager and India.Dev1 participated in

these meetings. Similarly to NorthAmerica 1, insufficient time for
communication was experienced during Sprint Pre-planning with
India: “I found that we have a very limited time of backlog grooming
(Sprint Pre-planning). And in that, sometimes it happens that some
of the stories were not very clear, and we end up discussing those
things for a long time, and then we get less time for each to discuss”
(India.Dev1).

The following provides insights why India saw ambigu-
ity in their user stories. The MainTechLead saw challenges in
communication with India: “It’s (communication during Spring
Pre-planning) more challenging because, it’s the different team culture
where it’s one person (India.ProjectManager) doing all the talking,
there’s not really any conversations.” Communication with India dur-
ing the Sprint Pre-planning meetings took extra effort due to the
abovementioned:

“We have to really explain the rationale behind everything so
they can understand where we’re coming from. But it’s harder
because you’re not talking to the person who’s actually going to
be doing the work with India. A lot of times you’d ask them a

3 Acceptance criteria were the case organization’s term for acceptance tests.

question and they’d just say, okay, sure, we’ll do that. And you
don’t know if they actually understood it. That’s why we have
to be very careful with them and spend more time in carefully
defining not only our questions but all the acceptance criteria.”
(MainTechLead)

Cultural issues are widely recognized in the GSD literature as a
factor affecting communication. In this case, India lacked in-depth
knowledge on the technical as well as domain aspects of the project
and this was seen as a major issue: “We really, really struggle
with that” (ProjectManager). This resulted into challenges and the
biggest of them was:

“How do we get them working on more complex features, more
complex themes that we don’t need to define really in detail.
Like for example (a particular theme). We actually had to spend
a lot of time defining that here first and then give it to them and
we still have to really, really work with them.” (ProjectManager)

Similar views to the lack of understanding were experienced also
at India:

“The (person at NorthAmerica 1), he doesn’t have any back-
ground about the problem. So, he is not familiar or is not at the
level of understanding that we have about the specific problem.
So to explain the particular scenario or particular feature very
clearly is a challenge.” (India.QualityAssurance)

Therefore, there was a lack of shared understanding between
NorthAmerica 1 and India that set increased demands for com-
munication and made it prone to misunderstandings. This in turn
required a significant communication effort in order to clarify them.

The ProductOwner (or anybody else from NorthAmerica 1)
did not participate in the internal Sprint Planning meetings at
NorthAmerica 2 and India. NorthAmerica 2.TechLead saw that par-
ticipation from NorthAmerica 1 was not worthwhile:

“In order for someone to attend a meeting that’s four hours plus,
in order to provide input for ten minutes, is not for me a good use
of time. I don’t see it having as much of an advantage. I wouldn’t
expect ProductOwner to be in there. ProductOwner’s already
said this is what I want done, I’ve agreed, you guys determine
how it actually should be done. That’s why we have the pre-
planning.”

India, however, saw benefits if someone from NorthAmerica 1
would have participated in their internal Sprint Planning meetings.
India.Dev1: “Definitely that will be beneficial for us, because some-
times it happens that we require more design or some clarification
from (NorthAmerica 1), and then we, basically after the (internal)
Sprint Planning we used to discuss those things in a tech call4 (with
NorthAmerica 1).” There were requirement-related challenges in
India, but due to significant time-zone difference, participation
from NorthAmerica 1 was not reasonable.

Issues with technical infrastructure are recognized challenges
of GSD and they were encountered also in our study. The following
is not limited to this particular phase alone, but applies in all situa-
tions and phases in which communication tools were used between
NorthAmerica 1 and India. Occasionally, the voice quality was poor
and this resulted in challenges: “(NorthAmerica 1) has had trou-
ble understanding what we are talking about or we have had trouble
understanding, in the sense that, because the voice quality is poor, we
are not able to be sure what they have to say” (India.ProjectManager).

Considering screen sharing software, especially over long dis-
tances, the increased lag was seen as problematic and it was
sometimes significant.

4 Tech calls are discussed in more detail later in this study.

V/11

132 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

Table 8
The identified communication related waste from Sprint Planning phase.

Identified waste Description in the context of the phase

Lack of involvement The ProductOwner’s absence in internal Sprint
Planning meetings caused extra work since the
most suitable way to implement something had to
be agreed with the ProductOwner after the
meeting.

Lack of shared
understanding

Participants in NorthAmerica 1 and India did not
share similar understandings of features being
discussed. This resulted from the fact that India
lacked deep technical and domain knowledge of
the project. Also, it was difficult for India to explain
their work clearly for NorthAmerica 1 since
NorthAmerica 1 did not share their deep
knowledge about the implementation of the
features.

“Over long distances, the lag can be frustrating.” (Produc-
tOwner)

“We have got delays of up to 30 seconds to one minute
between when I update a screen at my end and (NorthAmer-
ica 1) is able to see the same screen. And similarly vice versa.”
(India.ProjectManager)

Further, the connection between the sites was unstable: “Sometimes
connection goes off, so that is also a limitation, while you reconnect,
and again start a meeting. So it’s sometimes time-consuming also”
(India.QualityAssurance). Despite the same communication tools
being used between NorthAmerica 1 and NorthAmerica 2, technical
issues were not reported. While it is unclear why communication
between these sites was smooth, it can be assumed that possibly a
better technical infrastructure and shorter distance between the
sites could have contributed to this. The summary of identified
communication related wastes is provided in Table 8.

From MST’s viewpoint, the lack of shared understanding stems
from insufficient conveyance since the information provided prior
to pre-planning sessions was sometimes too vague. Similarly to
this, missing acceptance tests mentioned by NorthAmerica 2.Tech-
Lead indicate defective conveyance. In the case of a lack of shared
understanding, the issues of lacking conveyance and also conver-
gence emerged. From a theoretical perspective, mitigation requires
conveying information effectively (e.g. documenting acceptance
tests properly before they are converged). In order to improve the
understanding between the communicating participants, the fea-
tures that are expected to be implemented should be conveyed (e.g.
documented) in detail for the party with the lesser understanding.

4.3. Sprints: communication media related waste

In this section, the wastes related to communication media used
during the development iterations are discussed. Table 9 depicts
the use of different media between sites. The discussion of com-
munication media between different sites is divided based on their
ability to support either conveyance or convergence.

Table 9
The communication media used during Sprints phase.

Communication within
NorthAmerica 1

Communication
between NorthAmerica
1 and NorthAmerica 2

Communication
between NorthAmerica
1 and India

Face-to-face
communication,
instant messaging (IM),
telephone and email.

Telephone supported
by screen sharing.
Email.

Telephone supported
by screen sharing.
Email.

4.3.1. Media supporting conveyance
Email was extensively used during development. Email was

seen as beneficial for more formal decisions that require a “paper
trail”, “Email is really nice, if you need something a little more for-
mal” (PersonnelManager). Similarly to the PersonnelManager, the
NorthAmerica 2.TechLead saw advantages in email: “To have a
summary of results at the end of a meeting is always handy, so to
have something via email is something you can go back and refer to.”
There were, however, waste in email communication. Email is not
supposed to be an effective medium for convergence, but in the
project it was used also for this purpose. According to the Person-
nelManager there was handoff in emails: “Sometimes there’s several
follow-up emails that say, did you really mean this. And you compound
that with the delay for each time, it’s not as efficient.”

Other stakeholders recognized delay in email as an issue as well:
“(the challenge is) the delay between sending it back and forth. If
you would be able to get someone on the phone it’s much faster to
get some of your responses and explanations” (NorthAmerica 2.Tech-
Lead). Also NorthAmerica 2.Tester mentioned delay as an issue in
email communication: “There’s a delay in replying.” The abovemen-
tioned is in line with findings related to delayed and complicated
problem solving via email. There were also other issues in using
email communication in converging information resulting from
multiple and conflicting viewpoints presented in email discussions:

“Somebody would ask him (the ProductOwner) something, but
there would be other people on the emails and they’d answer
actually you can’t do that because technically you can’t do it. So,
meanwhile, the first email how would you (the ProductOwner)
like us to do this. (The ProductOwner) will come back, yes, I’d
like you to do that. Meanwhile there’s another email that says
no, actually technically you can’t do it.” (ProjectManager)

The ProductOwner did not answer to the latest email that had the
newest information, using outdated information as the basis of
making decisions. However, this waste was seen as a minor prob-
lem and the discussion converged sooner or later either by email or
during a meeting. In this particular case, the reasons contributing
to outdated information from the ProductOwner’s side stemmed
from his very busy schedule: “His schedule is packed and I email the
(ProductOwner) with a question, then I have no idea when I’ll hear
back from him.” (UserExperience). Paradoxally, the ProductOwner’s
busy schedule was the reason why the majority of communication
with him was conducted via email:

“As a general rule, we’d send an email, because his (the Pro-
ductOwner) schedule is always very busy.” (NorthAmerica
2.TechLead)

From India, communication with the ProductOwner was done via
intermediates (mainly MainTechLead) and this was seen as a com-
munication challenge leading to a delay: “Since we don’t have direct
communication with the product owner, so that’s basically a lag for
our development. So, it basically hampers the development speed”
(India.Dev1). There was extensive email communication between
the sites. Time zone difference combined with the delay resulting
from waiting for the answer from a relevant person was seen as a
challenge within India.

“Challenges (in email communication), the turnaround time
that we get for our queries. Owing to the time differences and
having the people who decide what should be done, to answer
our queries. So that basically leads to a delay by a day, because
we have a time zone difference.”(India.Dev2)

The MainTechLead saw challenges in emails sent by India.
NorthAmerica 1 and India had agreed that India would prepare a
daily email message explaining the current status of their work
with possible questions. This information was further discussed

V/12 V/13

134 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

Table 10
The identified waste from Sprints phase.

Identified waste Description in the context of the phase

Outdated information Email related finding. The ProductOwner did not
always make his decisions based on the latest
information about the particular topic.

Lack of shared
understanding

India’s lack of similar understanding with
NorthAmerica 1 considering software’s domain
and design guidelines resulted in increased
demands for documenting requirements assigned
to them. Otherwise, the way India implemented
their features was sometimes not what was
expected by NorthAmerica 1.

where participants do not share a similar understanding of the
product, efficient conveyance is required (as can be deducted from
the tenets of MST). Efficient convergence is required to sort out
misunderstandings.

4.4. Sprint Reviews

Table 11 presents the communication media used in Sprint
Review sessions.

Sprint Review meetings were held for two different audiences.
The Sprint Review meetings focusing on the outcome of each iter-
ation were held face-to-face at NorthAmerica 1 when there was
something to be demonstrated to the ProductOwner. Similarly to
Sprint Planning and PlayTime meetings, ProductOwner’s partici-
pation was mandatory and Sprint Reviews were rescheduled when
necessary based on the ProductOwner’s availability. However, if
there was nothing to be demonstrated to the ProductOwner in
NorthAmerica 1, Sprint Reviews were cancelled. The study partici-
pants from NorthAmerica 1 Sprint Reviews identified no waste.

The Sprint Reviews between NorthAmerica 1 and NorthAmer-
ica 2 and NorthAmerica 1 and India were held via telephone and
screen sharing. Similarly to NorthAmerica 1, no waste was iden-
tified. However, the challenges experienced with communication
infrastructure during other phases were encountered during these
meetings. From the ProductOwner’s side, there were no communi-
cation issues since he was well aware of what was to be presented
in each meeting:

“Typically I know before what’s been accomplished just because
of my communication with the team. So I have a good under-
standing as to what’s going to be presented.” (ProductOwner)

In addition to team specific meetings, the project had joint Mas-
ter Sprint Review meetings hosted at NorthAmerica 1 during which
all the teams presented their work to other teams. However, the
main purpose of these meetings was to demonstrate the software
to the representatives of the case company’s upper management
who participated in these sessions in order to get the big picture of
the project and provide their feedback. Aside from the challenges
related to technical communication infrastructure, no waste was
identified in these meetings.

Sprint Reviews aim to verify whether the set goals for the Sprint
have been met. The demo held for the ProductOwner this session

Table 11
The communication media used during Sprint Reviews phase.

Communication within
NorthAmerica 1

Communication
between NorthAmerica
1 and NorthAmerica 2

Communication
between NorthAmerica
1 and India

Face-to-face meetings. Held via telephone
supported by screen
sharing software.

Held via telephone
supported by screen
sharing software.

Table 12
The communication media used during Retrospectives phase.

Communication within
NorthAmerica 1

Communication
between NorthAmerica
1 and NorthAmerica 2

Communication
between NorthAmerica
1 and India

Face-to-face meetings. NorthAmerica 1
participated via
telephone supported
by screen sharing
software.

No involvement from
NorthAmerica 1. The
conclusions from India
Retrospectives were
sent to NorthAmerica 1
as an email.

aimed towards convergence, considering the ProductOwner was
well aware of the contents to be presented. Interactive media was
used during all the Sprint Review sessions. This follows the sugges-
tions of MST due to these medias strong support of synchronicity
and, hence, convergence. No specific waste emerged from this
phase.

4.5. Retrospectives

Table 12 summarizes the use of different communication media
within NorthAmerica 1 and between sites during Retrospectives.

The teams held internal Retrospectives, but the ProductOwner
did not participate in these. The reason for not participating was
the ProductOwner’s limited time:

“Mostly it’s just time. It’s just a function of my time is better
spent elsewhere. I’m assuming that if there’s things that they
need me to do, to help with the effectiveness of the sprint, they’ll
feed that back to me.” (ProductOwner)

Instead, the MainTechLead was in charge of running the Retrospec-
tives and participated in meetings taking place at NorthAmerica 1
and NorthAmerica 2. Due to the significant temporal distance to
India, no one from NorthAmerica 1 participated in the India Retro-
spectives. The Retrospectives were conducted face-to-face within
NorthAmerica 1.

NorthAmerica 1 participated in Retrospectives conducted
within NorthAmerica 2 via telephone and screen sharing. The par-
ticipation from NorthAmerica 1 was seen as beneficial:

“It’s much more productive, because we will assign them action
items. A lot of the things that we need help with are not nec-
essarily things that we can fix on our own, so we need product
management in some way to take an active role in it. So we do
need some sort of representation, just as long as somebody is
there, I think is important.” (NorthAmerica 2.TechLead)

Even though the temporal distance prevented NorthAmerica 1’s
participation in Retrospectives conducted in India, the potential
participation of NorthAmerica 1 was not seen as beneficial, as was
mentioned by India.ProjectManager:

“Would it be helpful for someone from NorthAmerica 1 to par-
ticipate, perhaps, I mean, they’d be able to see what the team
thinks how the sprint went. But would it be greatly beneficial, I
doubt it.”

Relevant topics emerging from India Retrospectives were com-
municated to NorthAmerica 1 after the meetings: “We prepare
the document and send a mail to (NorthAmerica 1). They also look
at it, and they take appropriate action and decision based on it”
(India.QualityAssurance). In summary, no waste was identified
from Retrospectives phase at any site.

Within NorthAmerica 1 and between NorthAmerica 1 and
NorthAmerica 2, Retrospectives were conducted using interactive
media. From the MST’s perspective, using media supporting con-
vergence is in line with the propositions made in agile literature.

M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140 133

and clarified in a separate teleconference supported by screen shar-
ing software: “A lot of times their initial email to me, it may not make
sense to me. So then, in my morning call, I ask them to demonstrate it,
and if I’m still confused I tell them OK, make a video” (MainTechLead).
These daily calls, also referred as “Tech Calls” were held in order
to compensate for the problems caused by time zone difference
and limited overlapping work hours with India. These calls took
place at approximately 7:30 am NorthAmerica 1 time and lasted
for approximately 30 minutes.

The challenge experienced by the UserExperience in email com-
munication provides insights to why the email communication
with India was ambiguous: “There’s some time that I need to spend
just making sure I have the right idea of what they’re trying to com-
municate. There have been some miscommunications about what they
were trying to get across. Just the way that the sentences are structured,
it’s not clear what their meaning is, so you have to kind of guess.” This
language barrier led to poor conveyance.

Requirements-related communication during the Sprints with
India took extra effort and was also seen as source of miscommu-
nication (MainTechLead): “The one thing with India is the implicit
requirements that we need to be better at enumerating. This is the
biggest instance of miscommunication, they’re expecting everything
to be very explicit.” UserExperience stated a similar communica-
tion problem with India considering the user interfaces. Everything
needed to be specified in detail, since:

“Otherwise they’ll give us something weird. Even if it’s just like
an OK button, I still need to do a mock-up of that which takes
time. Because otherwise it’ll be really squished, or the buttons
will be on the left side instead of the right side. It’s just com-
pletely random.”

The following comment by the PersonnelManager suggests that, to
some extent, the need to document everything explicitly for India
resulted from their lack of experience on the product: “We have
usability here, we have people that have worked with this product for-
ever. We know the little nuances and idiosyncrasies of it and why we do
things, some history behind things. They don’t know that. We do things
based sometimes on history.” Therefore, there was a lack of shared
understanding within India that resulted in miscommunication
and increased demands for conveying information.

4.3.2. Media supporting convergence
Face-to-face communication was used during the Sprints within

NorthAmerica 1. While it was seen as extremely beneficial due to
immediate feedback (i.e. high synchronicity and support for con-
vergence) there were also challenges.

“You don’t have things written down. So you gotta be careful,
you gotta take your notebook, write things down. MainTechLead
and I will say, I’m pretty sure the ProductOwner said that, but
now we gotta check, because we forgot to write it down, or
neither of us can remember exactly what he said. It’s hard to
remember.” (ProjectManager)

In this case, relying on face-to-face communication and leaving
decisions undocumented led to relearning. Undocumented deci-
sions themselves are a source of information distortion. According to
the UserExperience, face-to-face communication resulted in deci-
sions that were made too fast without thorough understanding of
the topic: “There’s no time to think about things, you just have to
decide. You don’t get a chance to think about all the possible weird
cases that could happen.” The missing details were later converged
using email or in PlayTime Sessions described later in this paper.

Within NorthAmerica 1, there was occasional Sprint time
communication with the ProductOwner via both telephone and
instant messaging. Their usage was, however, limited by the

ProductOwner’s availability. Instant messaging was used occasion-
ally, for example, for quickly converging on details and to check
if the ProductOwner is at the office; “We don’t use that a ton, just
once in a while when I just have a quick question or I need to know
if (ProductOwner) is there, then I’ll ask (ProductOwner) that” (User-
Experience). Telephone was used for converging information that
would have been more laborious to converge through email:

“I wanna discuss it (email from India) more, and it’s too compli-
cated to write. Or it would take a lot of effort to write an email,
so that’s when I’ll see if he’s there and just ask him, what do you
think about this. It’s just easier.” (UserExperience)

4.3.3. PlayTime sessions
The PlayTime sessions were meetings during which the stake-

holders of NorthAmerica 1 gathered together to use the latest build
of the product together with the ProductOwner for feedback. These
sessions were held from two to three times per week and were seen
as an essential factor for efficient communication. India was not
able to participate in these sessions due to the temporal distance.
NorthAmerica 2 as well did not take part in these meetings. The rea-
son for this was that the members of NorthAmerica 2 did not see
value in participating due to the fact that the senior stakeholders
steering the development and relaying information to them were
located at NorthAmerica 1:

“What I see is that (NorthAmerica 1) has the usability team, and
the people who he’d (the ProductOwner) play with and try to get
ideas of are there. So long as you have representation there, then
that’s fine. So, right now I would believe that (MainTechLead)
would be our representation in this project, and anything that
comes up he’ll try to forward to us.” (NorthAmerica 2.TechLead)

Similarly to relearning that emerged during face-to-face discussions
outside PlayTime meetings, important details related to the feed-
back received from the ProductOwner were sometimes lost during
PlayTime sessions:

“It’s a very informal meeting, so there’s not someone taking
meeting minutes. Sometimes, (the ProductOwner) is using the
software and ideas are just spewing out there, and we don’t cap-
ture them all, and we let them slip. We get the big things but
then a lot of the smaller little details we sometimes miss and
they come up in a different PlayTime. The second time we defi-
nitely write it down because we recognize it the second time.”
(NorthAmerica 1.MainTechLead)

This comment indicates that the information loss was not perma-
nent due to efficient convergence mechanism that was provided
by the PlayTime sessions. The importance of these sessions is illus-
trated by the comment from the ProductOwner: “I think it can save
a lot of time for development. You know, save them from going down
a wrong path if people are there for them to ask questions and, show
functionality and ask questions.”

The developers at NorthAmerica 1 did not see any communica-
tion challenges in these meetings: “I could only think of benefits, I
couldn’t think of any challenges” (NorthAmerica 1.Dev1).

The waste identified from this phase is summarized in Table 10.
From the perspective of MST, email was used to converge infor-

mation within NorthAmerica 1. The findings of this study suggest
that convergence via email can cause other wastes than delay, such
as outdated information in the context of this study. However, the
circumstances of the project affected the use of email as a means for
passing, requesting and clarifying information between the partic-
ipants. Also media with high synchronicity can cause waste if the
information communicated is not documented anywhere. This can,
however, be mitigated by efficient convergence strategies, such as
the PlayTime sessions described in this study. Also, in situations

V/13

134 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

Table 10
The identified waste from Sprints phase.

Identified waste Description in the context of the phase

Outdated information Email related finding. The ProductOwner did not
always make his decisions based on the latest
information about the particular topic.

Lack of shared
understanding

India’s lack of similar understanding with
NorthAmerica 1 considering software’s domain
and design guidelines resulted in increased
demands for documenting requirements assigned
to them. Otherwise, the way India implemented
their features was sometimes not what was
expected by NorthAmerica 1.

where participants do not share a similar understanding of the
product, efficient conveyance is required (as can be deducted from
the tenets of MST). Efficient convergence is required to sort out
misunderstandings.

4.4. Sprint Reviews

Table 11 presents the communication media used in Sprint
Review sessions.

Sprint Review meetings were held for two different audiences.
The Sprint Review meetings focusing on the outcome of each iter-
ation were held face-to-face at NorthAmerica 1 when there was
something to be demonstrated to the ProductOwner. Similarly to
Sprint Planning and PlayTime meetings, ProductOwner’s partici-
pation was mandatory and Sprint Reviews were rescheduled when
necessary based on the ProductOwner’s availability. However, if
there was nothing to be demonstrated to the ProductOwner in
NorthAmerica 1, Sprint Reviews were cancelled. The study partici-
pants from NorthAmerica 1 Sprint Reviews identified no waste.

The Sprint Reviews between NorthAmerica 1 and NorthAmer-
ica 2 and NorthAmerica 1 and India were held via telephone and
screen sharing. Similarly to NorthAmerica 1, no waste was iden-
tified. However, the challenges experienced with communication
infrastructure during other phases were encountered during these
meetings. From the ProductOwner’s side, there were no communi-
cation issues since he was well aware of what was to be presented
in each meeting:

“Typically I know before what’s been accomplished just because
of my communication with the team. So I have a good under-
standing as to what’s going to be presented.” (ProductOwner)

In addition to team specific meetings, the project had joint Mas-
ter Sprint Review meetings hosted at NorthAmerica 1 during which
all the teams presented their work to other teams. However, the
main purpose of these meetings was to demonstrate the software
to the representatives of the case company’s upper management
who participated in these sessions in order to get the big picture of
the project and provide their feedback. Aside from the challenges
related to technical communication infrastructure, no waste was
identified in these meetings.

Sprint Reviews aim to verify whether the set goals for the Sprint
have been met. The demo held for the ProductOwner this session

Table 11
The communication media used during Sprint Reviews phase.

Communication within
NorthAmerica 1

Communication
between NorthAmerica
1 and NorthAmerica 2

Communication
between NorthAmerica
1 and India

Face-to-face meetings. Held via telephone
supported by screen
sharing software.

Held via telephone
supported by screen
sharing software.

Table 12
The communication media used during Retrospectives phase.

Communication within
NorthAmerica 1

Communication
between NorthAmerica
1 and NorthAmerica 2

Communication
between NorthAmerica
1 and India

Face-to-face meetings. NorthAmerica 1
participated via
telephone supported
by screen sharing
software.

No involvement from
NorthAmerica 1. The
conclusions from India
Retrospectives were
sent to NorthAmerica 1
as an email.

aimed towards convergence, considering the ProductOwner was
well aware of the contents to be presented. Interactive media was
used during all the Sprint Review sessions. This follows the sugges-
tions of MST due to these medias strong support of synchronicity
and, hence, convergence. No specific waste emerged from this
phase.

4.5. Retrospectives

Table 12 summarizes the use of different communication media
within NorthAmerica 1 and between sites during Retrospectives.

The teams held internal Retrospectives, but the ProductOwner
did not participate in these. The reason for not participating was
the ProductOwner’s limited time:

“Mostly it’s just time. It’s just a function of my time is better
spent elsewhere. I’m assuming that if there’s things that they
need me to do, to help with the effectiveness of the sprint, they’ll
feed that back to me.” (ProductOwner)

Instead, the MainTechLead was in charge of running the Retrospec-
tives and participated in meetings taking place at NorthAmerica 1
and NorthAmerica 2. Due to the significant temporal distance to
India, no one from NorthAmerica 1 participated in the India Retro-
spectives. The Retrospectives were conducted face-to-face within
NorthAmerica 1.

NorthAmerica 1 participated in Retrospectives conducted
within NorthAmerica 2 via telephone and screen sharing. The par-
ticipation from NorthAmerica 1 was seen as beneficial:

“It’s much more productive, because we will assign them action
items. A lot of the things that we need help with are not nec-
essarily things that we can fix on our own, so we need product
management in some way to take an active role in it. So we do
need some sort of representation, just as long as somebody is
there, I think is important.” (NorthAmerica 2.TechLead)

Even though the temporal distance prevented NorthAmerica 1’s
participation in Retrospectives conducted in India, the potential
participation of NorthAmerica 1 was not seen as beneficial, as was
mentioned by India.ProjectManager:

“Would it be helpful for someone from NorthAmerica 1 to par-
ticipate, perhaps, I mean, they’d be able to see what the team
thinks how the sprint went. But would it be greatly beneficial, I
doubt it.”

Relevant topics emerging from India Retrospectives were com-
municated to NorthAmerica 1 after the meetings: “We prepare
the document and send a mail to (NorthAmerica 1). They also look
at it, and they take appropriate action and decision based on it”
(India.QualityAssurance). In summary, no waste was identified
from Retrospectives phase at any site.

Within NorthAmerica 1 and between NorthAmerica 1 and
NorthAmerica 2, Retrospectives were conducted using interactive
media. From the MST’s perspective, using media supporting con-
vergence is in line with the propositions made in agile literature.

V/14 V/15

136 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

Table 14
Proposed corrective actions to the identified waste in the context of the case project.

Waste Generalized description derived from the findings Proposed corrective actions for the case company in the
context of the project

Lack of involvement The absence of key stakeholders from the process phases
where their participation is essential to acquire
information and provide input for the development and/or
receive feedback.

Active collaboration and communication between all
project participants is emphasized (Beck, 2000). Therefore,
all the teams should be involved in the development
process from the beginning. In addition, the stakeholders
should participate in activities requiring their presence.

Lack of shared understanding The communicating participants do not share similar
understanding and expertise on the topic being
communicated. This creates increased demands for
communication and makes it prone to misunderstandings.

Considering the tenets of MST (Dennis et al., 2008), unclear
topics should be communicated in as much detail as
possible using media supporting conveyance. In this
particular case, detailed specifications should be written
for India and the information should be converged
actively. Effective convergence strategy was applied with
India by daily Tech Calls. This approach is in line with the
recommendation of using domain experts communicating
daily with distributed teams (Summers, 2008).

Outdated information The topic that is being communicated or required is not
based on the latest information about it.

In the context of email, this waste was a minor problem in
this study and the waste was mitigated either in
subsequent emails or in a meeting, such as the PlayTime
session. In this case, the mechanisms for mitigating this
waste were adequate.

Considering documentation, ensuring that it remains
up-to-date should be paid attention. This could be
achieved by adding documentation related aspects as a
part of the acceptance criteria in order to complete a task.

Restricted access to information Relevant information is not readily available for all parties
that need it.

Provide appropriate access rights to all participants from
the beginning of the project.

Scattered information The information related to the product or the project is
dispersed in several locations which make it difficult and
time-consuming to find.

Establish uniform policies to store and document
information and follow these guidelines.

Internal validity: issues related to internal validity arise mainly
when causal relations are examined. According to Robson (2002),
causal relationships are often used as a tool in explanatory stud-
ies when seeking an explanation of a situation or a problem. Case
studies are primarily used in exploratory studies, which aim to
understand what is happening and seeking new insights (Robson,
2002). However, due to limited time reserved for the study, the
effects of proposed solutions were not verified. Also, it could not be
observed if the solutions would have generated additional waste
themselves.

External validity: the results are drawn from a particular con-
text in which the Product Owner is collocated with senior project
members that work as intermediates with the distributed teams.
Results can be valid only in this or similar contexts. However, the
context itself is an important factor in case studies (e.g. Benbasat
et al., 1987). In addition, interpretive case studies do not seek gen-
eralizability (Orlikowski and Baroudi, 1991).

Reliability: in order to improve reliability of the study, every
action and item (e.g. codes and interview questions) related to
the study was documented and, if necessary, updated as the study
proceeded to form a chain of evidence.

There were additional limitations. The waste mitigation
approach presented in this paper does not take into account against
what criteria the improvements should be measured. Metrics
such as defect rates, the amount of change requests, and perhaps
the most essential agile metric, Velocity (Schwaber, 2004), could
provide some guidelines for assessing the impacts of the waste mit-
igation actions. As mentioned earlier, waste identification can be
seen as a challenge in software development since waste is not so
visible, nor as well understood as in the manufacturing industry. In
addition, the use of Media Synchronicity Theory was limited to con-
veyance and convergence processes alone, and the use of different
media was observed through them. However, the purpose of this

study was not to study the theory itself, but use its main concepts
as the lens for analysing communication.

Theoretical saturation of data is a measure that is reached after
new themes, insights or issues are not emerging from the data that
is being gathered (Strauss and Corbin, 1998). The lack of practi-
cal guidelines that assist the estimation of sample sizes (e.g. the
amount of people to be interviewed) has been criticized, e.g. in
Guest et al. (2006). In order to answer to this critique, Guest et al.
conducted a study in which they concluded that saturation was
reached during the first twelve interviews they conducted within
a homogenous sample, i.e. the participants were chosen according
to common criteria. In our study, the participants were considered
homogenous for all being software professionals that worked on
the same globally distributed agile software development project.
A total of 14 people were interviewed during the study, so consider-
ing the results presented in Guest et al. (2006), the data seems to be
saturated. Whether saturation was achieved during data collection
is unknown, due to limited availability of the participants. However,
convenience sampling is commonplace in software engineering
studies due to limited stakeholder availability for interviewing
(Lethbridge et al., 2005).

5. Discussion and future work

In addition to the identified communication wastes, the issues
previously encountered in globally distributed environments, also
encountered in this study, can be considered wasteful. Challenges
with language barrier have been discussed in Layman et al. (2006),
Uy and Ioannou (2008) and Kajko-Mattsson et al. (2010), and
problems with technical communication infrastructure in Ågerfalk
(2004), Williams and Stout (2008) and Therrien (2008). Communi-
cation delays resulting from temporal distance are widely reported
as challenges in distributed environments (e.g. Holmstrom et al.,

M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140 135

In the case of India, the discussions were conducted without par-
ticipation from NorthAmerica 1 and action points were afterwards
conveyed to NorthAmerica 1. This information was then converged
later.

4.6. Waste found while discussing documentation

Documentation was used as a source of product related infor-
mation. The initial themes and the user stories were stored in a
dedicated Product Backlog tool. In addition, a wiki was extensively
used during the development and the project had a dedicated net-
work drive in which, for example, user interface illustrations were
stored. In the wiki, there were separate “sub-wikis” for different
teams. Based on the data, the following documentation-related
waste was identified.

Keeping documentation up to date was seen difficult: “The chal-
lenges are keeping them up to date at all times” (MainTechLead). In
many occasions, documentation was seen as a task of lesser prior-
ity and it had to be done later, if at all: “The documentation usually
doesn’t get done later. So that’s a big challenge. And it happens. We have
out-of-date documentation, no question” (PersonnelManager). This
was seen as common problem that created issues for the project.

“An outdated document or incomplete document is always the
problem.” (NorthAmerica 1.Dev2)

“If the information is out of date, then it’s not useful, or it might
mislead you to the wrong place.” (NorthAmerica 1.Dev1)

Hence, there was outdated information and it was also found that
if documentation was done later, some of the important infor-
mation was forgotten and not included in the documentation: “I
need to complete that (development task) first, then I create the
document. So, sometimes it happens that you may miss some infor-
mation or you may miss some knowledge to share in that document”
(India.QualityAssurance). This is time related information distor-
tion.

In addition, restricted access to information was found for the
project wiki at India:

“We don’t have overall access for all the pages. This limits us
for the pages which we are working at. If we need designs
from other team’s page, we inform this to (MainTechLead),
and (MainTechLead) sends our read-only access to that page5.”
(India.Dev1)

Relevant information was scattered across different documents
stored at the project wiki: “I can look on the wiki and I can show all
sorts of implementation, design documents, detail design documents,
functional specs, that sort of thing. But nowhere in one document are
all these things concentrated in one spot” (PersonnelManager).

This was seen as resulting from the fact that there was no uni-
form approach to update the project wiki: “There’s no process that
says you must do it (updating information) this way. If people don’t
sort of look at it and follow that same form, you can get stuff in there
that gets lost” (PersonnelManager).

This comment indicates that finding relevant information was
also difficult. The comment from NorthAmerica 2.Dev supports
this: “The search feature is terrible. It’s almost unusable to search it, I
find, unless you actually can find someone who can tell you where it
is, it’s hard to find documentation.” Information was sometimes also
fragmented. It was mentioned that information related to features
they were implementing was documented in the wikis related to
the earlier versions of the product, which in turn can make finding

5 This comment is an edited version of the original. Grammatical errors are
removed and the comment is edited for readability.

Table 13
The identified waste found while discussing documentation.

Identified waste Description in the context of the phase

Outdated information The documentation was outdated and was missing
relevant information. This resulted in defective
conveyance of information.

Restricted access to
information

India did not have access to all information stored
in project wiki. The access to relevant information
had to be obtained via NorthAmerica 1. This waste
is different from limited access to information,
which is related to the existence of information. In
the case of this waste, the relevant information
exists, but is not available.

Scattered information Relevant information was scattered across several
documents and it was difficult to find. This
consumed resources.

the relevant information difficult: “Some information is documented
in (the earlier version) wiki. For new people that join (the project),
he doesn’t know where to search for the information” (NorthAmerica
1.Dev1). Further, the organization of the wiki caused problems in
form of limited visibility to interrelated features implemented by
different sites:

“There’s the documentation for features which exist and the
usability wiki pages, which are linked to ours, but we don’t nec-
essarily see the changes that they’re doing on their wiki pages,
so we don’t get that visibility. Something that may affect us may
be documented in another team’s wiki page, but you don’t know
to look there.” (NorthAmerica 2.TechLead)

Therefore, the abovementioned issues can be considered as scat-
tered information.

Table 13 summarizes the communication waste found while
discussing documentation.

From the perspective of MST, documentation is an efficient
medium for conveying information. In this case, the identified waste
indicates also defective conveyance. The ability of documents to
convey information would improve if they would be kept updated,
made readily available for every participant, and stored cohesively.

4.7. Proposed corrective actions to the identified waste

Table 14 discusses the solution proposals for the identified
waste in the context of this study. We provide generalized descrip-
tions of the wastes and the corrective actions are derived from
both empirical findings and existing recommendations found from
literature. The actions stemming from literature are indicated by
appropriate references.

4.8. Threats to validity

According to Yin (2003), validity of case studies can be
approached from the perspective of construct validity, internal
validity, external validity and reliability. In the following, we dis-
cuss the validity of our study based on this classification.

Construct validity: in order to improve construct validity, mul-
tiple data sources were utilized during the study. In addition, every
action related to the study was documented in a form of field notes
and a research diary, thus establishing a chain of evidence (Yin,
1994). Finally, ambiguities in data were validated, when possible,
with the informants as suggested in Yin (1994). We also applied
investigator triangulation proposed in Stake (1995) and discussed
results and interpretations with colleagues, in this case between
the researchers of this study, to prevent the problem of multiple
realities (Kaplan and Duchon, 1988; Goetz and LeCompte, 1984).

V/15

136 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

Table 14
Proposed corrective actions to the identified waste in the context of the case project.

Waste Generalized description derived from the findings Proposed corrective actions for the case company in the
context of the project

Lack of involvement The absence of key stakeholders from the process phases
where their participation is essential to acquire
information and provide input for the development and/or
receive feedback.

Active collaboration and communication between all
project participants is emphasized (Beck, 2000). Therefore,
all the teams should be involved in the development
process from the beginning. In addition, the stakeholders
should participate in activities requiring their presence.

Lack of shared understanding The communicating participants do not share similar
understanding and expertise on the topic being
communicated. This creates increased demands for
communication and makes it prone to misunderstandings.

Considering the tenets of MST (Dennis et al., 2008), unclear
topics should be communicated in as much detail as
possible using media supporting conveyance. In this
particular case, detailed specifications should be written
for India and the information should be converged
actively. Effective convergence strategy was applied with
India by daily Tech Calls. This approach is in line with the
recommendation of using domain experts communicating
daily with distributed teams (Summers, 2008).

Outdated information The topic that is being communicated or required is not
based on the latest information about it.

In the context of email, this waste was a minor problem in
this study and the waste was mitigated either in
subsequent emails or in a meeting, such as the PlayTime
session. In this case, the mechanisms for mitigating this
waste were adequate.

Considering documentation, ensuring that it remains
up-to-date should be paid attention. This could be
achieved by adding documentation related aspects as a
part of the acceptance criteria in order to complete a task.

Restricted access to information Relevant information is not readily available for all parties
that need it.

Provide appropriate access rights to all participants from
the beginning of the project.

Scattered information The information related to the product or the project is
dispersed in several locations which make it difficult and
time-consuming to find.

Establish uniform policies to store and document
information and follow these guidelines.

Internal validity: issues related to internal validity arise mainly
when causal relations are examined. According to Robson (2002),
causal relationships are often used as a tool in explanatory stud-
ies when seeking an explanation of a situation or a problem. Case
studies are primarily used in exploratory studies, which aim to
understand what is happening and seeking new insights (Robson,
2002). However, due to limited time reserved for the study, the
effects of proposed solutions were not verified. Also, it could not be
observed if the solutions would have generated additional waste
themselves.

External validity: the results are drawn from a particular con-
text in which the Product Owner is collocated with senior project
members that work as intermediates with the distributed teams.
Results can be valid only in this or similar contexts. However, the
context itself is an important factor in case studies (e.g. Benbasat
et al., 1987). In addition, interpretive case studies do not seek gen-
eralizability (Orlikowski and Baroudi, 1991).

Reliability: in order to improve reliability of the study, every
action and item (e.g. codes and interview questions) related to
the study was documented and, if necessary, updated as the study
proceeded to form a chain of evidence.

There were additional limitations. The waste mitigation
approach presented in this paper does not take into account against
what criteria the improvements should be measured. Metrics
such as defect rates, the amount of change requests, and perhaps
the most essential agile metric, Velocity (Schwaber, 2004), could
provide some guidelines for assessing the impacts of the waste mit-
igation actions. As mentioned earlier, waste identification can be
seen as a challenge in software development since waste is not so
visible, nor as well understood as in the manufacturing industry. In
addition, the use of Media Synchronicity Theory was limited to con-
veyance and convergence processes alone, and the use of different
media was observed through them. However, the purpose of this

study was not to study the theory itself, but use its main concepts
as the lens for analysing communication.

Theoretical saturation of data is a measure that is reached after
new themes, insights or issues are not emerging from the data that
is being gathered (Strauss and Corbin, 1998). The lack of practi-
cal guidelines that assist the estimation of sample sizes (e.g. the
amount of people to be interviewed) has been criticized, e.g. in
Guest et al. (2006). In order to answer to this critique, Guest et al.
conducted a study in which they concluded that saturation was
reached during the first twelve interviews they conducted within
a homogenous sample, i.e. the participants were chosen according
to common criteria. In our study, the participants were considered
homogenous for all being software professionals that worked on
the same globally distributed agile software development project.
A total of 14 people were interviewed during the study, so consider-
ing the results presented in Guest et al. (2006), the data seems to be
saturated. Whether saturation was achieved during data collection
is unknown, due to limited availability of the participants. However,
convenience sampling is commonplace in software engineering
studies due to limited stakeholder availability for interviewing
(Lethbridge et al., 2005).

5. Discussion and future work

In addition to the identified communication wastes, the issues
previously encountered in globally distributed environments, also
encountered in this study, can be considered wasteful. Challenges
with language barrier have been discussed in Layman et al. (2006),
Uy and Ioannou (2008) and Kajko-Mattsson et al. (2010), and
problems with technical communication infrastructure in Ågerfalk
(2004), Williams and Stout (2008) and Therrien (2008). Communi-
cation delays resulting from temporal distance are widely reported
as challenges in distributed environments (e.g. Holmstrom et al.,

V/16 V/17

138 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

to how and what people communicate. According to Cataldo et al.
(2006), congruence reduces the time required to perform differ-
ent tasks while the use of different communication channels are
chosen to better fit the task at hand. In addition, when there is a
proper fit between the ways of coordination and the needs for coor-
dination, the time for resolving modification needs is significantly
reduced (Cataldo et al., 2008). Hence, socio-technical congruence
framework supports more effective communication, as does our
approach. Therefore, applying socio-technical congruence could
provide more insights to communication in globally distributed
agile development and could perhaps validate whether the waste
identified in this study are valid in software engineering.

6. Conclusions

Communication has been widely recognized as one of the
key elements contributing to the success or failure of a software
development project. Nowadays, implementing software in a glob-
ally distributed fashion is a common approach and this creates
additional challenges for communication. For example, tempo-
ral, cultural and geographical distances (Noll et al., 2010) and
their combination (Holmstrom et al., 2006) introduce challenges
to the success of distributed efforts. More traditional plan-driven
development approaches rely on formal communication (e.g.
detailed extensive documentation) for conveying information,
while agile development approaches emphasize informal com-
munication relying on face-to-face interactions instead. Effective
communication is difficult to achieve in distributed plan-driven
efforts alone and agile approaches create additional challenges
since significant geographical and temporal distances can prevent
face-to-face, or other interactive communication.

Existing literature has approached this challenge by attempting
to create suggestions establishing and maintaining effective com-
munication in globally distributed agile development projects (e.g.
Layman et al., 2006; Kircher et al., 2001; Danait, 2005). While
they are valuable contributions to the topic, they do not provide
companies the means to analyze and improve communication in
their globally distributed agile efforts. To address this shortcom-
ing, we conducted a case study within a North American software
intensive company that was implementing a product across three
sites in a globally distributed fashion. We constructed a waste
identification process through which communication between the
key stakeholders was analyzed, using the concept of waste from
lean manufacturing (Ohno, 1988) and Lean software development
(Poppendieck and Poppendieck, 2007). In addition to finding waste
already identified in literature (Poppendieck and Poppendieck,
2007; Mandić et al., 2010), we identified five wastes that were
specific to communication and presented the case company solu-
tion proposals for tackling them in the context of their project.
While the improvement actions are dependent on the context,
these wastes can provide companies an idea of what could be the
non-value adding elements in communication within their globally
distributed agile projects.

We defined three research questions through which we
approached this work. The answer to the sub-research question
aiming to identify the waste in communication within globally
distributed agile development projects is the five wastes of com-
munication. These wastes are lack of involvement, lack of shared
understanding, outdated information, restricted access to infor-
mation and scattered information. The second sub-question aimed
to identify means for identifying waste. The answer to this question
is provided in a form of the waste identification approach described
in this work. Companies and researchers can use this approach
by applying the same actions conducted in this study. Next, we
describe how the waste identification approach could be conducted

based on this study. The answer to the main research question will
be provided after this description.

First, the project from which the communication waste is to be
identified and mitigated is selected. The next step is to identify the
key stakeholders that would participate in the waste identification
process. After this, the development approach taken in the cho-
sen project and the key steps in which communication takes place
is identified. In this study the chosen development approach was
Scrum and the all the key steps of this method (Sprint Planning,
Sprint, Sprint Review and Retrospective) were present. In addition,
we analyzed communication before the implementation phase
begun, with communication related to documentation included
in the analysis. Also appropriate inputs through which communi-
cation is analyzed and waste is extracted should be identified. In
this study, we used a set of questions to attain a cohesive view of
communication, including both positive and wasteful aspects. In
addition, the documentation provided by the case company sup-
ported us to understand the development approach. Hence, the
companies or other instances should apply all the data seen rele-
vant for understanding communication within the chosen project.
Reaching saturation in the data collection (i.e. analysis of the data
collection did not reveal new information) was used as the measure
for obtaining all information necessary for understanding commu-
nication and identifying waste. The main output from the steps
is the communication wastes. Finally, the measures for removing
or mitigating the wastes should be identified and these measures
incorporated into the process. In our case, these measures were
either empirical or derived from literature. This process should be
conducted at regular intervals.

The main research question of this study is to identify how
waste identification can improve communication in globally dis-
tributed agile software development. The answer to this question is
that waste identification, when completed in a structured manner,
can point to non-value producing communication elements and
the waste can then be mitigated. The results of this study provide
companies an idea of the potential wastes that may be present in
their globally distributed agile efforts, as well as a technique for
mitigating their effects.

For the research community, this study contributes to the field of
communication in globally distributed agile software development
by presenting and discussing five wastes specific to communica-
tion. Also, the presented waste identification approach is the initial
step towards a systematically validated approach for analysing and
improving communication in a globally distributed agile develop-
ment context.

References

Ågerfalk, P., Fitzgerald, B., 2006. Flexible and distributed software processes: old
petunias in new bowls? Commun. ACM 49 (10), 10–27.

Ågerfalk, P.J., 2004. Investigating actability dimensions: a language/action perspec-
tive on criteria for information systems evaluation. Interact. Comput. 16 (5),
957–988.

Battin, R., Crocker, R., Kreidler, J., Subramanian, K., 2001. Leveraging resources in
global software development. IEEE Softw. 18 (2), 70–77.

Beck, K., 2000. Extreme Programming Explained: Embrace Change. Addison-Wesley,
Upper Saddle River, NJ, USA.

Benbasat, I., Goldstein, D.K., Mead, M., 1987. The case research strategy in studies of
information systems. MIS Quart. 11 (3), 369–386.

Berger, H., 2007. Agile development in a bureaucratic arena—a case study experi-
ence. Int. J. Inform. Manage. 27 (6), 386–396.

Boehm, B.W., Turner, R., 2003. Balancing Agility and Discipline: A Guide for the
Perplexed. Addison-Wesley Professional, Boston, MA, USA.

Boland, D., Fitzgerald, B., 2004. Transitioning from a co-located to a globally-
distributed software development team: a case study at Analog Devices Inc.
In: 3rd International Workshop on Global Software Development (ICSE2004),
23–28 May 2004, Scotland, UK, pp. 4–7.

Braun, V., Clarke, V., 2006. Using thematic analysis in psychology. Qual. Res. Psychol.
3 (2), 77–101.

Carmel, E., Agarwal, R., 2001. Tactical approaches for alleviating distance in global
software development. IEEE Softw. 18 (2), 22–29.

M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140 137

2006; Ågerfalk and Fitzgerald, 2006; Conchúir et al., 2009; Sarker
and Sahay, 2004; Ågerfalk, 2004; Boland and Fitzgerald, 2004).
We deliberately excluded these from being communication spe-
cific waste, since these challenges are well-known issues in global
software development. Also, some communication media are
inherently wasteful. For example, email has a built-in delay result-
ing from its asynchronous nature, where resolving even simple
matters can take a significant time converging when communi-
cated via email (Carmel and Agarwal, 2001). Similar findings were
present in our study as well. Despite these downsides, email is a
dominant communication tool in globally distributed settings and
it was extensively used in this project as well. The Product Owner
had a very busy schedule and this resulted in using email as the
main communication media between him and the rest of the devel-
opment organization. Hence, certain conditions may dictate the use
of a medium that is not necessarily the best possible option given
the communication requirements.

This study indicated that some of the wastes presented in
Poppendieck and Poppendieck (2007) and Mandić et al. (2010)
were also found in this study. Considering the impacts of these
wastes and the wastes related to communication, their realization
did not create any problems that would have seriously jeopardized
the project. The only major challenge was the communication with
India, but this caused only increased demands for conveying and
converging information. Since the case project had established an
efficient communication strategy with India in a form of daily calls,
this mitigated the effects of waste identified from communication
with them. Considering the findings of this study, they are in line
with the findings made by Ikonen et al. (2010) who concluded that
software projects can be successful despite existing waste.

For example, scattered information required more work to
obtain the necessary, and available, information so that mis-
understandings stemming from outdated information in email
discussions were corrected at some point during the development.
Outdated information in the context of documentation was, how-
ever, more permanent in nature. Even though seen as a challenge, it
did not create any enduring problems throughout the development.
However, if documents are used to convey information and conver-
gence on this information is defective, making decisions based on
outdated information can possibly have serious effects. Restricted
access to information did not create major problems since India
was able to obtain the information after requesting access to it.
However, in the study reported in Korkala et al. (2010) the required
information remained restricted from the organization needing
it due to bureaucratic reasons. Therefore, even though the prob-
lems in this study were minor, restricted access to information
can have more severe impacts on the project. Lack of involvement
was encountered in two phases of the project. Within NorthAmer-
ica 1 it caused communication overhead due to ProductOwner’s
absence in internal Sprint Planning sessions and with India it
resulted in extra effort. India was not able to participate in Play-
Time sessions due to temporal distance. From this viewpoint, lack
of involvement was also a type 1 waste. Existing literature shows
that lack of involvement can have other effects as well. Korkala
et al. (2006) studied four agile development projects with varying
customer involvement during the development. The results show
that, while customer’s involvement during development decreases
the amount of defects, these defects could have been avoided by
increased, regular customer feedback.

The most significant pattern related to waste was the communi-
cation challenges between NorthAmerica 1 and India. Considering
the interaction between NorthAmerica 1 and India, lack of shared
understanding emerged as the most significant waste encountered
during Sprint Pre-planning sessions and during the Sprints. The
increased need for communication was identified by NorthAmerica
1 representatives before the study was even initiated. In addition,

a lack of involvement in the case of India could have contributed
to lack of shared understanding since India was not properly
aware of end-user needs. A previous finding from Korkala et al.
(2010) supports this: the lack of domain knowledge combined with
unelaborated requirements provided by an uninvolved customer
organization caused problems. In addition to a significant gap in
knowledge of the domain and the knowledge related to the prod-
uct itself, barriers in language and culture contributed to impacts
of this waste by increasing the difficulty of communication. There-
fore, our finding provides additional evidence on the importance
of understanding cultural distance (Noll et al., 2010). Further, the
identified waste can fall into both waste categories. As an example,
restricted access to information can be a type 1 waste that cannot
be removed due to company policies. This further emphasizes the
context-dependent nature of the mitigation strategies. Practices
from agile development methods, suggestions for MST, and more
rigid policies for ensuring that documentation remains updated and
information is readily available for all, can provide guidelines for
mitigating the effects of waste. While the policies are presented
as empirical solutions, they follow the suggestions of Boehm and
Turner (2003) about balancing agility with more discipline when
seen necessary.

In general, the project was able to maintain active communica-
tion and followed the agile principle of face-to-face communication
when it was applicable. PlayTime sessions with mandatory Prod-
uct Owner participation can be seen as a factor contributing to the
agile principle of active customer involvement and fast feedback
and guidance from the customer side. Considering communication
in the project as a whole, it was active and involved all the partici-
pating sites using interactive media when possible. This can be seen
as a communication policy following the agile recommendation
of interactive and active communication. In addition, the effective
communication strategy within the project helped to mitigate the
effects of identified wastes.

There are several opportunities for future research. It would be
useful to evaluate if the communication wastes identified in this
study are valid and if other wastes can be identified. This could be
studied by applying the approach presented in this work in other
contexts as well. We believe that this would further help compa-
nies to identify communication waste in their development efforts
and to provide them tools to mitigate them. The proposed waste
identification process requires additional research as well. In this
particular case, we applied the process in the context of a single
development project. Applying this approach in the context of a
larger development programme consisting of several development
projects would be a potent arena to test and further develop the
waste identification process. In addition, identifying wastes and the
ways of mitigating them could potentially have significant impacts
for both industry and research. It would be interesting to apply the
presented approach to identify wastes from areas outside commu-
nication, such as requirements management and defect correction,
or from other levels within an organization.

Suitability of the mitigating process should be studied fur-
ther since we were not able to verify the impacts of proposed
improvement suggestions. It would also be very interesting to
study communication wastes in globally distributed environments
through other processes and approaches as well, since this could
provide additional evidence on the validity of the findings pre-
sented in this work. Socio-technical congruence (Cataldo et al.,
2006, 2008) could be used as such a process. According to Perry
et al. (1994) the amount of communication developers engage in
during the development is significant and communication on its
behalf is a central mechanism for coordination (Kraut and Streeter,
1995). Socio-technical congruence focuses on the “fit” between task
dependencies and the individuals’ coordination activities. From the
perspective presented by Kraut and Streeter (1995) this translates

V/17

138 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

to how and what people communicate. According to Cataldo et al.
(2006), congruence reduces the time required to perform differ-
ent tasks while the use of different communication channels are
chosen to better fit the task at hand. In addition, when there is a
proper fit between the ways of coordination and the needs for coor-
dination, the time for resolving modification needs is significantly
reduced (Cataldo et al., 2008). Hence, socio-technical congruence
framework supports more effective communication, as does our
approach. Therefore, applying socio-technical congruence could
provide more insights to communication in globally distributed
agile development and could perhaps validate whether the waste
identified in this study are valid in software engineering.

6. Conclusions

Communication has been widely recognized as one of the
key elements contributing to the success or failure of a software
development project. Nowadays, implementing software in a glob-
ally distributed fashion is a common approach and this creates
additional challenges for communication. For example, tempo-
ral, cultural and geographical distances (Noll et al., 2010) and
their combination (Holmstrom et al., 2006) introduce challenges
to the success of distributed efforts. More traditional plan-driven
development approaches rely on formal communication (e.g.
detailed extensive documentation) for conveying information,
while agile development approaches emphasize informal com-
munication relying on face-to-face interactions instead. Effective
communication is difficult to achieve in distributed plan-driven
efforts alone and agile approaches create additional challenges
since significant geographical and temporal distances can prevent
face-to-face, or other interactive communication.

Existing literature has approached this challenge by attempting
to create suggestions establishing and maintaining effective com-
munication in globally distributed agile development projects (e.g.
Layman et al., 2006; Kircher et al., 2001; Danait, 2005). While
they are valuable contributions to the topic, they do not provide
companies the means to analyze and improve communication in
their globally distributed agile efforts. To address this shortcom-
ing, we conducted a case study within a North American software
intensive company that was implementing a product across three
sites in a globally distributed fashion. We constructed a waste
identification process through which communication between the
key stakeholders was analyzed, using the concept of waste from
lean manufacturing (Ohno, 1988) and Lean software development
(Poppendieck and Poppendieck, 2007). In addition to finding waste
already identified in literature (Poppendieck and Poppendieck,
2007; Mandić et al., 2010), we identified five wastes that were
specific to communication and presented the case company solu-
tion proposals for tackling them in the context of their project.
While the improvement actions are dependent on the context,
these wastes can provide companies an idea of what could be the
non-value adding elements in communication within their globally
distributed agile projects.

We defined three research questions through which we
approached this work. The answer to the sub-research question
aiming to identify the waste in communication within globally
distributed agile development projects is the five wastes of com-
munication. These wastes are lack of involvement, lack of shared
understanding, outdated information, restricted access to infor-
mation and scattered information. The second sub-question aimed
to identify means for identifying waste. The answer to this question
is provided in a form of the waste identification approach described
in this work. Companies and researchers can use this approach
by applying the same actions conducted in this study. Next, we
describe how the waste identification approach could be conducted

based on this study. The answer to the main research question will
be provided after this description.

First, the project from which the communication waste is to be
identified and mitigated is selected. The next step is to identify the
key stakeholders that would participate in the waste identification
process. After this, the development approach taken in the cho-
sen project and the key steps in which communication takes place
is identified. In this study the chosen development approach was
Scrum and the all the key steps of this method (Sprint Planning,
Sprint, Sprint Review and Retrospective) were present. In addition,
we analyzed communication before the implementation phase
begun, with communication related to documentation included
in the analysis. Also appropriate inputs through which communi-
cation is analyzed and waste is extracted should be identified. In
this study, we used a set of questions to attain a cohesive view of
communication, including both positive and wasteful aspects. In
addition, the documentation provided by the case company sup-
ported us to understand the development approach. Hence, the
companies or other instances should apply all the data seen rele-
vant for understanding communication within the chosen project.
Reaching saturation in the data collection (i.e. analysis of the data
collection did not reveal new information) was used as the measure
for obtaining all information necessary for understanding commu-
nication and identifying waste. The main output from the steps
is the communication wastes. Finally, the measures for removing
or mitigating the wastes should be identified and these measures
incorporated into the process. In our case, these measures were
either empirical or derived from literature. This process should be
conducted at regular intervals.

The main research question of this study is to identify how
waste identification can improve communication in globally dis-
tributed agile software development. The answer to this question is
that waste identification, when completed in a structured manner,
can point to non-value producing communication elements and
the waste can then be mitigated. The results of this study provide
companies an idea of the potential wastes that may be present in
their globally distributed agile efforts, as well as a technique for
mitigating their effects.

For the research community, this study contributes to the field of
communication in globally distributed agile software development
by presenting and discussing five wastes specific to communica-
tion. Also, the presented waste identification approach is the initial
step towards a systematically validated approach for analysing and
improving communication in a globally distributed agile develop-
ment context.

References

Ågerfalk, P., Fitzgerald, B., 2006. Flexible and distributed software processes: old
petunias in new bowls? Commun. ACM 49 (10), 10–27.

Ågerfalk, P.J., 2004. Investigating actability dimensions: a language/action perspec-
tive on criteria for information systems evaluation. Interact. Comput. 16 (5),
957–988.

Battin, R., Crocker, R., Kreidler, J., Subramanian, K., 2001. Leveraging resources in
global software development. IEEE Softw. 18 (2), 70–77.

Beck, K., 2000. Extreme Programming Explained: Embrace Change. Addison-Wesley,
Upper Saddle River, NJ, USA.

Benbasat, I., Goldstein, D.K., Mead, M., 1987. The case research strategy in studies of
information systems. MIS Quart. 11 (3), 369–386.

Berger, H., 2007. Agile development in a bureaucratic arena—a case study experi-
ence. Int. J. Inform. Manage. 27 (6), 386–396.

Boehm, B.W., Turner, R., 2003. Balancing Agility and Discipline: A Guide for the
Perplexed. Addison-Wesley Professional, Boston, MA, USA.

Boland, D., Fitzgerald, B., 2004. Transitioning from a co-located to a globally-
distributed software development team: a case study at Analog Devices Inc.
In: 3rd International Workshop on Global Software Development (ICSE2004),
23–28 May 2004, Scotland, UK, pp. 4–7.

Braun, V., Clarke, V., 2006. Using thematic analysis in psychology. Qual. Res. Psychol.
3 (2), 77–101.

Carmel, E., Agarwal, R., 2001. Tactical approaches for alleviating distance in global
software development. IEEE Softw. 18 (2), 22–29.

V/18 V/19

140 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

Yin, R.K., 2003. Case Study Research, Design and Methods, 3rd ed. Sage Publications,
Beverly Hills, CA, USA.

Yin, R.K., 1994. Case Study Research Design and Methods. Sage Publications, Thou-
sand Oaks, CA, USA.

Mikko Korkala works as a research scientist at VTT Technical Research Centre of
Finland. He has worked with agile methodologies since 2001 and is currently finaliz-
ing his Ph.D on customer communication in distributed agile software development.
Prior to joining VTT at 2007 he has worked in the University of Oulu, Finland as an
assisting teacher and as a researcher. He has also worked as a software engineer
in the industry. In addition to scientific research, he has provided agile trainings
for over 400 software professionals and held talks about agile software develop-
ment and lean software development in Finland and other countries. Further, he has
worked as an onsite agile coach and Scrum Master and has outlined agile processes

for companies. In addition to agile software development, his interests include lean
software development, service development, and innovation in the context of soft-
ware industry.

Frank Maurer is a professor of computer science and associate vice-president
(research) at the University of Calgary. His research interests include application
engineering for digital surfaces, analytics & visualization and agile software method-
ologies. Dr Maurer leads the NSERC SurfNet Strategic Research Network. SurfNet is a
Canadian research alliance of academic researchers, industry partners, and govern-
ment collaborators. The goal of SurfNet is to improve the development, performance,
and usability of software applications for surface computing environments: non-
traditional digital display surfaces including multi-touch screens, tabletops, and
wall-sized displays.

M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140 139

Cataldo, M., Herbsleb, J.D., Carley, K.M., 2008. Socio-technical congruence: a frame-
work for assessing the impact of technical and work dependencies on software
development productivity. In: Proceedings of ESEM’08, 9–10 October 2008,
Kaiserslautern, Germany, pp. 2–11.

Cataldo, M., Wagstrom, P.A., Herbsleb, J.D., Carley, K.M., 2006. Identification of
coordination requirements: implications for the design of collaboration and
awareness tools. In: Proceedings of CSCW’06, 4–8 November 2006, Banff,
Alberta, Canada, pp. 353–362.

Ceschi, M., Sillitti, A., Succi, G., De Panfilis, S., 2005. Project management in plan-
based and agile companies. IEEE Softw. 22 (3), 21–27.

Conchúir, E.Ó., Ågerfalk, P.J., Olsson, H.H., Fitzgerald, B., 2009. Global software devel-
opment: where are the benefits? Commun. ACM 52 (8), 127–131.

Corbin, J., Strauss, A., 2008. Basics of Qualitative Research: Techniques and Proce-
dures for Developing Grounded Theory. Sage Publications, Thousand Oaks, CA,
USA.

Cruzes, D.S., Dybå, T., 2011. Research synthesis in software engineering: a tertiary
study. Inform. Softw. Technol. 538 (5), 440–455.

Daft, R.L., Lengel, R., Trevino, L.K., 1987. Message equivocality, media selection,
and manager performance: implications for information support systems. MIS
Quart. 11 (3), 355–366.

Daft, R.L., Lengel, R.J., 1986. Organizational information requirements, media rich-
ness and structural design. Manage. Sci. 32 (5), 554–571.

Damian, D., Moitra, D., 2006. Guest Editors’ introduction: Global software develop-
ment: how far have we come? IEEE Softw. 23 (5), 17–19.

Damian, D., Zowghi, D., 2003. Requirements engineering challenges in multi-site
software development organizations. Requir. Eng. J. 8, 149–160.

Danait, A., 2005. Agile offshore techniques—a case study. In: Proceedings of Agile
Development Conference (AGILE 2005), 24–29 July 2005, Denver, CO, USA, pp.
214–217.

DeLuca, D., Valacich, J.S., 2006. Virtual teams in and out of synchronicity. Inform.
Technol. People 19 (4), 323–344.

Dennis, A.R., Fuller, R.M., Valacich, J.S., 2008. Media, tasks, and communication pro-
cesses: a theory of media synchronicity. MIS Quart. 32 (3), 575–600.

Dennis, A.R., Valacich, J.S., Speier, C., Morris, M.G., 1998. Beyond media richness: an
empirical test of media synchronicity theory. In: Proceedings of HICSS’98, 6–9
January 1998, Kohala Coast, Hawaii, USA, pp. 48–57.

Drummond, B.S., Francis, J., 2008. Yahoo! Distributed agile: notes from the world
over. In: Proceedings of Agile 2008, 4–8 August 2008, Toronto, ON, Canada, pp.
315–321.

Ebert, C., De Neve, P., 2001. Surviving global software development. IEEE Softw. 18
(2), 62–69.

Eisenhardt, K.M., 1989. Building theories from case study research. Acad. Manage.
Rev. 14 (4), 532–550.

Glaser, B., Strauss, A., 1967. The Discovery of Grounded Theory: Strategies for Qual-
itative Research. Aldine Publishing Company, New Jersey, NY, USA.

Goetz, J.P., LeCompte, M.D., 1984. Ethnography and Qualitative Design in Educational
Research. Academic Press, Orlando, FL, USA.

Gorton, I., Motwani, S., 1996. Issues in co-operative software engineering using
globally distributed teams. Inform. Softw. Technol. 38 (10), 647–655.

Guest, G., Bunce, A., Johnson, L., 2006. How many interviews are enough? An exper-
iment with data saturation and variability. Field Methods 18 (1), 59–82.

Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E., 2001. An empirical study of
global software development: distance and speed. In: Proceedings of ICSE2001,
12–19 May 2001, Toronto, ON, Canada, pp. 81–90.

Herbsleb, J., Grinter, R., 1999. Splitting the organization and integrating the code:
Conway’s Law revisited. In: Proceedings of ICSE’99, 16–22 May 1999, Los Ange-
les, CA, USA, pp. 85–95.

Herbsleb, J., Moitra, D., 2001. Global software development. IEEE Softw. 18 (2),
16–20.

Hicks, B.J., 2007. Lean information management: understanding and eliminating
waste. Int. J. Inform. Manage. 27 (4), 233–249.

Holmström, H., Conchuir, E.O., Agerfalk, P.J., Fitzgerald, B., 2006. Global software
development challenges: A case study on temporal, geographical and socio-
cultural distance. In: Proceedings of ICGSE’06, 16–19 October 2006, Costão do
Santinho, Florianópolis, Brazil, pp. 3–11.

Holmstrom, H., Fitzgerald, B., Ågerfalk, P.J., Conchuir, E.O., 2006. Agile practices
reduce distance in global software development. Inform. Syst. Dev. 23 (3), 7–18.

Ikonen, M., 2010. Leadership in Kanban software development projects: a quasi-
controlled experiment. In: Proceedings of LESS2010, 17–20 October 2010,
Helsinki, Finland, pp. 85–98.

Ikonen, M., Kettunen, P., Oza, N., Abrahamsson, P., 2010. Exploring the sources of
waste in Kanban software development projects. In: Proceedings of EUROMI-
CRO2010, 1–3 September 2010, Lille, France, pp. 376–381.

Kajko-Mattsson, M., Azizyan, G., Magarian, M.K., 2010. Classes of distributed agile
development problems. In: Proceedings of Agile 2010, 9–13 August 2010,
Orlando, FL, USA, pp. 51–58.

Kaplan, B., Duchon, D., 1988. Combining qualitative and quantitative methods in
information systems research: a case study. MIS Quart. 12 (4), 571–586.

Kircher, M., Jain, P., Corsaro, A., Levine, D., 2001. Distributed eXtreme programming.
In: Proceedings of XP2001, 21–23 May 2001, Villasimius, Sardinia, Italy, pp.
66–72.

Komi-Sirviö, S., Tihinen, M., 2005. Lessons learned by participants of distributed
software development. Knowl. Process Manage. 12 (2), 108–122.

Korkala, M., Pikkarainen, M., Conboy, K., 2010. Combining agile and traditional: cus-
tomer communication in distributed environment. In: Ågerfalk, P.J, Smite, D.
(Eds.), Agility Across Time and Space. Springer, Berlin, Heidelberg, pp. 201–216.

Korkala, M., Abrahamsson, P., 2007. Communication in distributed agile develop-
ment: a case study. In: Proceedings of EUROMICRO2007, 28–31 August 2007,
Lübeck, Germany, pp. 203–210.

Korkala, M., Abrahamsson, P., Kyllönen, P., 2006. A case study on the impact of cus-
tomer communication on defects in agile software development. In: Proceedings
of Agile 2006, 23–28 July 2006, Minneapolis, MN, USA, pp. 76–88.

Kraut, R.E., Streeter, L.A., 1995. Coordination in software development. Commun.
ACM 38 (3), 69–81.

Layman, L., Williams, L., Damian, D., Bures, H., 2006. Essential communication prac-
tices for Extreme Programming in a global software development team. Inform.
Softw. Technol. 48 (9), 781–794.

Lee, S., Yong, H.S., 2010. Distributed agile: project management in a global environ-
ment. Empir. Softw. Eng. 15 (2), 204–217.

Lethbridge, T.C., Sim, S.E., Singer, J., 2005. Studying software engineers: data collec-
tion techniques for software field studies. Empir. Softw. Eng. 10 (3), 311–341.

Mandić, V., Oivo, M., Rodríguez, P., Kuvaja, P., Kaikkonen, H., Turhan, B., 2010. What
is flowing in lean software development? In: Proceedings of LESS2010, 17–20
October 2010, Helsinki, Finland, pp. 72–84.

Melnik, G., Maurer, F., 2004. Direct verbal communication as a catalyst of agile
knowledge sharing. In: Proceedings of Agile 2004, 22–26 June 2004, Salt Lake
City, UT, USA, pp. 21–31.

Miles, M.B., Huberman, A.M., 1994. Qualitative Data Analysis: An Expanded Source-
book, 2nd ed. SAGE Publications Inc., Thousand Oaks, CA, USA.

Mockus, A., Herbsleb, J., 2001. Challenges of global software development. In:
Proceedings of METRICS 2001, 4–6 April, London, England, pp. 182–184.

Nerur, S., Mahapatra, R.K., Mangalaraj, G., 2005. Challenges of migrating to agile
methodologies. Commun. ACM 48 (5), 72–78.

Niinimäki, T., Piri, A., Lassenius, C., Paasivaara, M., 2010. Reflecting the choice and
usage of communication tools in GSD projects with media synchronicity theory.
In: Proceedings of ICGSE 2010, 23–26 August 2010, Princeton, NJ, USA, pp. 3–12.

Noll, J., Beecham, S., Richardson, I., 2010. Global software development and collab-
oration: barriers and solutions. ACM Inroads 1 (3), 66–78.

Nöteberg, A., Benford, T.L., Hunton, J.E., 2003. Matching electronic communication
media and audit tasks. Int. J. Account. Inform. Syst. 4 (1), 27–55.

Ohno, T., 1988. Toyota Production System: Beyond Large-scale Production. Produc-
tivity Press, Cambridge, MA, USA.

Orlikowski, W.J., Baroudi, J.J., 1991. Studying information technology in organiza-
tions: research approaches and assumptions. Inform. Syst. Res. 2 (1), 1–28.

Paasivaara, M., Durasiewicz, S., Lassenius, C., 2008. Distributed agile development:
using scrum in a large project. In: Proceedings of ICGSE 2008, 17–20 August
2008, Bangalore, India, pp. 87–95.

Perry, D.E., Staudenmayer, N.A., Votta, L.G., 1994. People, organizations, and process
improvement. IEEE Softw. 11 (4), 36–45.

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J., 2008. The impact of
agile practices on communication in software development. Empir. Softw. Eng.
13 (3), 303–337.

Poppendieck, M., Poppendieck, T., 2007. Implementing Lean Software Development:
From Concept to Cash. Addison-Wesley Professional, Boston, MA, USA.

Poppendieck, M., Poppendieck, T., 2003. Lean Software Development: An Agile
Toolkit, 1st ed. Addison-Wesley, Upper Saddle River, NJ, USA.

Robson, C., 2002. Real World Research, 2nd ed. Blackwell, Oxford, UK.
Royce, W.W., 1970. Managing the development of large software systems. In:

Proceedings of IEEE Wescon, August 1970, Los Angeles, CA, USA.
Sarker, S., Sahay, S., 2004. Implications of space and time for distributed work: an

interpretive study of US–Norwegian systems development teams. Eur. J. Inform.
Syst. 13 (1), 3–20.

Schwaber, K., 2004. Agile Project Management with Scrum. Microsoft Press, USA.
Schwaber, K., Beedle, M., 2002. Agile Software Development with Scrum. Prentice-

Hall, Upper Saddle River, NJ, USA.
Seaman, C.B., 2002. Qualitative methods in empirical studies of software engineer-

ing. IEEE Trans. Softw. Eng. 25 (4), 557–572.
Stake, R., 1995. The Art of Case Research. Sage Publications, Thousand Oaks, CA, USA.
Strauss, A., Corbin, J., 1998. Basics of Qualitative Research: Grounded Theory Proce-

dures and Techniques, 2nd ed. Sage Publications, Thousand Oaks, CA, USA.
Summers, M., 2008. Insights into an agile adventure with offshore partners. In:

Proceedings of Agile 2008, 4–8 August 2008, Toronto, ON, Canada, pp. 333–338.
Sureshchandra, K., Shrinivasavadhani, J., 2008. Adopting agile in distributed devel-

opment. In: Proceedings of ICGSE 2008, 17–20 August 2008, Bangalore, India,
pp. 217–221.

Sutherland, J., Viktorov, A., Blount, J., Puntikov, N., 2007. Distributed scrum: agile
project management with outsourced development teams. In: Proceedings of
HICSS2007, 3–6 January 2007, Waikoloa, Big Island, HI, USA, p. 274.

Therrien, E., 2008. Overcoming the challenges of building a distributed agile orga-
nization. In: Proceedings of Agile 2008, 4–8 August 2008, Toronto, ON, Canada,
pp. 358–372.

Uy, E., Ioannou, N., 2008. Growing and sustaining an offshore Scrum engagement. In:
Proceedings of Agile 2008, 4–8 August 2008, Toronto, ON, Canada, pp. 345–350.

Vax, M., Michaud, S., 2008. Distributed agile: growing a practice together. In:
Proceedings of Agile 2008, 4–8 August 2008, Toronto, ON, Canada, pp. 310–314.

Wallach, E.J., 1983. Individuals and organizations: the cultural match. Train. Dev. J.
37 (2), 29–36.

Williams, W., Stout, M., 2008. Colossal, scattered, and chaotic (planning with a large
distributed team). In: Proceedings of Agile 2008, 4–8 August 2008, Toronto, ON,
Canada, pp. 356–361.

Womack, J.P., Jones, D.T., 1996. Lean Thinking: Banish Waste and Create Wealth in
Your Corporation. Simon & Schuster, New York, NY, USA.

V/19

140 M. Korkala, F. Maurer / The Journal of Systems and Software 95 (2014) 122–140

Yin, R.K., 2003. Case Study Research, Design and Methods, 3rd ed. Sage Publications,
Beverly Hills, CA, USA.

Yin, R.K., 1994. Case Study Research Design and Methods. Sage Publications, Thou-
sand Oaks, CA, USA.

Mikko Korkala works as a research scientist at VTT Technical Research Centre of
Finland. He has worked with agile methodologies since 2001 and is currently finaliz-
ing his Ph.D on customer communication in distributed agile software development.
Prior to joining VTT at 2007 he has worked in the University of Oulu, Finland as an
assisting teacher and as a researcher. He has also worked as a software engineer
in the industry. In addition to scientific research, he has provided agile trainings
for over 400 software professionals and held talks about agile software develop-
ment and lean software development in Finland and other countries. Further, he has
worked as an onsite agile coach and Scrum Master and has outlined agile processes

for companies. In addition to agile software development, his interests include lean
software development, service development, and innovation in the context of soft-
ware industry.

Frank Maurer is a professor of computer science and associate vice-president
(research) at the University of Calgary. His research interests include application
engineering for digital surfaces, analytics & visualization and agile software method-
ologies. Dr Maurer leads the NSERC SurfNet Strategic Research Network. SurfNet is a
Canadian research alliance of academic researchers, industry partners, and govern-
ment collaborators. The goal of SurfNet is to improve the development, performance,
and usability of software applications for surface computing environments: non-
traditional digital display surfaces including multi-touch screens, tabletops, and
wall-sized displays.

Series title and number

VTT Science 80

Title Customer communication in distributed agile
software development

Author(s) Mikko Korkala

Abstract Agile software development methods emerged in the late 1990s and early 2000s
with a promise to deliver high quality software within schedule and budget. One of
the key differences between so-called traditional development approaches and
agile methods is that agile software development methods put significant emphasis
on communication. In agile development, communication is proposed to be
conducted in an informal face-to-face manner. This communication extends
beyond the development team, involving all project stakeholders including the
customers, whose role in agile development is pivotal. Since their emergence, agile
methods have been adopted in distributed development environments at sites that
can be separated by significant geographic and temporal as well as cultural
distances. Communication in distributed environments is already difficult in more
traditional development projects, and it is even more challenging in agile
development projects that emphasise face-to-face communication. The focus of
this thesis is to understand how customer communication can be improved in
distributed agile software development. The research problem is approached from
the perspectives of customer involvement, actions for communication improvement
and distributed context through a series of case studies. The empirical evidence is
derived from five different case studies involving both small-scale efforts and large,
globally distributed development projects. The findings of this thesis have both
theoretical and practical implications. The first implication for research comprises
the five wastes of communication; lack of involvement, lack of shared
understanding, outdated information, restricted access to information and
scattered information. These wastes provide a unique view to communication
hindrances that are present in distributed agile software development. The second
theoretical implication is that lack of trust between the distributed partners is
potentially the single most important obstacle to customer communication. As a
practical implication, this study provides a toolbox that can be used in order to
improve customer communication in distributed agile software development. In this
work, the toolbox is first defined on the basis of existing literature and then further
complemented with the findings of the studies. The toolbox presents different
communication challenges and the solution proposals for them. Based on this
study, two distinct areas emerged from the toolbox. These themes are the
customer's involvement in the process and systematic analysis and improvement
of customer communication, both of which should be given additional attention in
distributed agile efforts.

ISBN, ISSN ISBN 978-951-38-8230-3 (Soft back ed.)
ISBN 978-951-38-8231-0 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)

Date April 2015

Language English, Finnish abstract

Pages 123 p. + app. 77 p.

Name of the project

Commissioned by

Keywords Agile software development, distributed agile software development,
customer communication, communication challenges, communication
waste, waste, communication solutions

Publisher VTT Technical Research Centre of Finland Ltd
P.O. Box 1000, FI-02044 VTT, Finland, Tel. 020 722 111

http://www.vtt.fi/publications/index.jsp

Julkaisun sarja ja numero

VTT Science 80

Nimeke Asiakaskommunikaatio hajautetussa ketterässä
ohjelmistokehityksessä

Tekijä(t) Mikko Korkala

Tiivistelmä 1990-luvun lopussa ja 2000-luvun alussa ilmaantuneet ketterät
ohjelmistokehitysmenetelmät painottavat aktiivista kommunikaatiota kaikkien
kehitysprojektiin osallistuvien tahojen välillä. Kommunikaation näkökulmasta
keskeisempänä erona niin kutsuttuihin perinteisiin kehitysmenetelmiin verrattuna on
se, että ketterissä menetelmissä kommunikaatio on jatkuvaa ja epäformaalia, kun
taas perinteisissä menetelmissä eri osapuolten välinen kommunikaatio on
epäsäännöllistä ja noudattaa formaaleja menetelmiä. Ketteriä
ohjelmistokehitysmenetelmiä sovelletaan nykyään myös hajautetussa
ohjelmistokehityksessä, mikä asettaa kehitystyölle omat haasteensa
huomattavienkin maantieteellisten etäisyyksien, aikaerojen sekä kulttuurillisten
eroavaisuuksien muodossa. Nämä puolestaan saattavat aiheuttaa huomattavia
kommunikaatiohaasteita. Tämän tutkimuksen tarkoituksena on tarkastella, kuinka
asiakaskommunikaatiota voidaan parantaa hajautetussa ketterässä
ohjelmistokehityksessä. Tätä tutkimusongelmaa lähestytään asiakkaan
osallistuttamisen, asiakaskommunikaation parantamisen ja hajautetun
ohjelmistokehityksen näkökulmista. Tutkimus on suoritettu viitenä erillisenä
tapaustutkimuksena, jotka lähestyvät asiakaskommunikaatiota sekä pienten
kehitysprojektien että laajojen globaalien hankkeiden näkökulmista. Tämän
tutkimuksen keskeinen käytännön tulos on kokoelma työkaluja, jotka auttavat
tunnistamaan hajautettujen ketterien ohjelmistokehitysprojektien kohtaamia
kommunikaatiohaasteita. Tämä kokoelma tarjoaa myös ratkaisumalleja näiden
haasteiden lieventämiseen. Työssä esiteltävä työkalukokoelma on johdettu
olemassa olevasta kirjallisuudesta ja sitä on täydennetty tämän tutkimuksen
tuloksilla.

Tutkimuksen keskeinen teoreettinen tulos on viisi kommunikaatiohukkaa: aktiivisen
osallistumisen puute (lack of involvement), yhteisymmärryksen puute (lack of
shared understanding), vanhentunut tieto (outdated information), rajoitettu pääsy
tietoon (restricted access to information) sekä hajallaan oleva tieto (scattered
information). Nämä kommunikaatiohukat tarjoavat uuden näkökulman
hajautetuissa ketterissä kehitysprojekteissa kohdattaviin kommunikaatiota
haittaaviin tekijöihin. Lisäksi tämä tutkimus esittää, että projektiin osallistuvien
osapuolten välinen luottamuksen puute on mahdollisesti tärkein yksittäinen tekijä,
joka vaikeuttaa asiakaskommunikaatiota hajautetuissa ketterissä
ohjelmistokehityshankkeissa.

ISBN, ISSN ISBN 978-951-38-8230-3 (nid.)
ISBN 978-951-38-8231-0 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN-L 2242-119X
ISSN 2242-119X (Painettu)
ISSN 2242-1203 (Verkkojulkaisu)

Julkaisuaika Huhtikuu 2015

Kieli Englanti, suomenkielinen tiivistelmä

Sivumäärä 123 s. + liitt. 77 s.

Projektin nimi

Rahoittajat

Avainsanat ketterä ohjelmistokehitys, hajautettu ketterä ohjelmistokehitys,
asiakaskommunikaatio, kommunikaatiohaasteet, kommunikaatiohukka,
hukka, kommunikaatioratkaisut

Julkaisija Teknologian tutkimuskeskus VTT Oy
PL 1000, 02044 VTT, puh. 020 722 111

http://www.vtt.fi/publications/index.jsp

Customer communication in distributed agile
software development

One of the key differences between so-called traditional
development approaches and agile methods is that agile software
development methods put significant emphasis on communication.
In agile development, communication is proposed to be conducted
in an informal face-to-face manner. This communication extends
beyond the development team, involving all project stakeholders
including the customers, whose role in agile development is
pivotal. Since their emergence, agile methods have been adopted
in distributed development environments at sites that can be
separated by significant geographic and temporal as well as
cultural distances.The focus of this thesis is to understand how
customer communication can be improved in distributed agile
software development.

The findings of this thesis have both theoretical and practical
implications. The first implication for research comprises the five
wastes of communication; lack of involvement, lack of shared
understanding, outdated information, restricted access to
information and scattered information. These wastes provide a
unique view to communication hindrances that are present in
distributed agile software development. The second theoretical
implication is that lack of trust between the distributed partners is
potentially the single most important obstacle to customer
communication. As a practical implication, this study provides a
toolbox that can be used in order to improve customer
communication in distributed agile software development. In this
work, the toolbox is first defined on the basis of existing literature
and then further complemented with the findings of the individual
case studies. The toolbox presents different communication
challenges and the solution proposals for them.

ISBN 978-951-38-8230-3 (Soft back ed.)
ISBN 978-951-38-8231-0 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)

V
T

T
 S

C
IE

N
C

E
 8

0
C

u
sto

m
e

r c
o

m
m

u
n

ic
a

tio
n

 in
 d

istrib
u

te
d

 a
g

ile
 so

ftw
a

re
...

•V
IS

IO
N

S•
SCIENCE•TEC

H
N

O
L

O
G

Y
•RESEARCHHIGHLI

G
H

T
S

Dissertation

80

Customer
communication in
distributed agile
software development

Mikko Korkala

http://www.vtt.fi/publications/index.jsp

