
Changing the planning for agile and lean software
development
From roadmapping to continuous planning

Market uncertainties, increased competitiveness and the constant
need to shorten development cycles call for more flexible,
responsive and adaptive software development and planning
practices. Thus, creating a long-term future plan has become
challenging for software development companies.

This thesis investigates how planning has changed for agile and
lean software development from roadmap-based planning towards
continuous planning. This thesis provides empirical evidence of
how large and global software development companies are
conducting planning. The empirical data were collected by
conducting an initial inquiry consisting of both a questionnaire
study and semi-structured interviews, and then, by conducting a
multiple-case study involving three case companies.

The results show that planning practices have changed both in
regard to their scope and schedule. The scope of planning in agile
and lean software development is not restricted to release planning
only; instead planning should be viewed from a wider perspective
involving also strategic, financial, business, and product planning.
What is more, the time frame of plans has shortened remarkably
from years down to months, weeks and days. The reasons for
these changes are both internal and external, which are elaborated
in more details in the thesis.

ISBN 978-951-38-8446-8 (Soft back ed.)
ISBN 978-951-38-8445-1 (URL: http://www.vttresearch.com/impact/publications)
ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)
http://urn.fi/URN:ISBN:978-951-38-8445-1

V
T

T
 S

C
IE

N
C

E
 1

3
2

C
h

a
n

g
in

g
 th

e
 p

la
n

n
in

g
 fo

r a
g

ile
 a

n
d

 le
a

n
 so

ftw
a

re
...

•V
IS

IO
N

S•
SCIENCE•TEC

H
N

O
L

O
G

Y
•RESEARCHHIGHLI

G
H

T
S

Dissertation

132

Changing the planning
for agile and lean
software development

From roadmapping to continuous
planning

Tanja Suomalainen

VTT SCIENCE 132

Changing the planning for
agile and lean software
development

From roadmapping to continuous
planning

Tanja Suomalainen

Thesis for the degree of Doctor of Philosophy to be presented with

due permission for public examination and criticism in auditorium

IT116, at the University of Oulu, Linnanmaa, on the 9th of September

2016, at 12 noon.

ISBN 978-951-38-8446-8 (Soft back ed.)
ISBN 978-951-38-8445-1 (URL: http://www.vttresearch.com/impact/publications)

VTT Science 132

ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)
http://urn.fi/URN:ISBN:978-951-38-8445-1

Copyright © VTT 2016

JULKAISIJA – UTGIVARE – PUBLISHER

Teknologian tutkimuskeskus VTT Oy
PL 1000 (Tekniikantie 4 A, Espoo)
02044 VTT
Puh. 020 722 111, faksi 020 722 7001

Teknologiska forskningscentralen VTT Ab
PB 1000 (Teknikvägen 4 A, Esbo)
FI-02044 VTT
Tfn +358 20 722 111, telefax +358 20 722 7001

VTT Technical Research Centre of Finland Ltd
P.O. Box 1000 (Tekniikantie 4 A, Espoo)
FI-02044 VTT, Finland
Tel. +358 20 722 111, fax +358 20 722 7001

Juvenes Print, Tampere 2016

http://www.vttresearch.com/impact/publications
http://urn.fi/URN:ISBN:978-951-38-8445-1

3

Preface

My dream of becoming a doctor of philosophy (PhD) was born many years ago.

Already while writing my Master’s thesis, I realised that this is something that I

wanted to do. The PhD journey has required both my passion and persistence, but

there have also been a lot of people to thank for making my dream of a completing

a PhD a reality.

First of all, I would like to thank my principal supervisor, Professor Jouni Similä,

who has over the years encouraged me to pursue the dream and believed that I

would finalise this thesis one day. Thank you also for the valuable guidance and

comments on the studies, papers, and the thesis itself. Secondly, I would like to

thank my other supervisor, Professor Veikko Seppänen, for bringing speed and

focus to the actual writing work. I am also really grateful for the endless

discussions about drawing pictures and improving the content of the thesis, as

well as your extremely fast replies to all of my questions. Thirdly, I want to thank

Professor Pekka Abrahamsson for the conversations and advice that you have

given to me along the way, which have calmed my mind in problematic situations.

I would also like to thank the reviewers of this thesis, Professor Casper

Lassenius of Aalto University, Finland, and Professor Pasi Tyrväinen of the

University of Jyväskylä, Finland. I express my sincere thanks for the time and

effort they have spent in reviewing my research and giving their constructive

comments and recommendations, which have helped me to improve the quality of

the thesis.

I am also grateful to VTT for giving me the opportunity to work on various

projects to collect the data for my thesis, as well as to write and thereafter publish

the work. I am grateful to Dr Tua Huomo, who took me into the Cloud software

program and gave me valuable advice at the beginning of the writing process.

Also, I want to thank Dr Raija Kuusela for taking me to the N4S research

programme and letting me work freely on my thesis while still believing that I could

handle it on my own. I really appreciate that you have always been there for me,

listening my troubles and excitement along the way and giving me guidance and

support when needed. Furthermore, as this thesis is based on five papers, I wish

to thank all my co-authors for their contributions. Especial thanks to colleague, co-

author, friend and aunt Dr Maarit Tihinen for your friendship, help, and

encouragement throughout. Also, I want to thank my longitudinal room-mate and

4

colleague Susanna Teppola for your support and putting up with me over the

years. I also, I want to thank my colleague Kaisa Koskela-Huotari for helping me to

organise some of the interviews from one of the case companies.

Over the years, I have worked with many great people, both at VTT and in the

case companies, and I wish to thank all of you. Since this thesis would not have

been possible without the case companies involved, I offer all the case company

representatives as well as all the interviewees who are part of this research much

gratitude. Furthermore, there have been so many talented and great colleagues

during my career who I have been privileged to work with, but as you are so many,

it would be impossible to name you all here. I hope you will understand.

Then to my loved ones, I wish to express my sincere gratitude for your loving

support, understanding, and encouragement through the years. First of all, I want

to thank my loving husband Lari Suomalainen just for being there for me, and

loving me from the bottom of your heart. You have always tried to make my

dreams come true and helped me achieve my goals. I am grateful that you

understand me and my temper as well as changes in my mood so well. Then,

thanks to my loveable children: Veera, Luka, and Viola, for bringing so much love

and joy to my life. I also want to thank my mum and dad for their endless love and

support in all areas of life. I also want to thank my mother-in-law Irma

Suomalainen for taking care of my kids while I needed to work long hours, and my

grandma Rauha Oikarinen for giving all the best instructions for life and providing

me with the time to relax when I have needed it. Finally, I want to thank all my

friends who have supported and encouraged me along the way. I want to thank

my support group ‘baby greetings’, for understanding me as a woman and a mum

and empathising the small and large joys and sorrows of life. In all, this would not

have become true without all of you.

Tanja Suomalainen

Oulu, Finland, August 2016

5

Academic dissertation

Supervisors Professor Jouni Similä

University of Oulu

Faculty of Information Technology and Electrical Engineering

Department of Information Processing Science

P.O. Box 3000, 90014 University of Oulu, Finland

Professor Veikko Seppänen

University of Oulu

Martti Ahtisaari Institute, Oulu Business School, and

Faculty of Information Technology and Electrical Engineering

P.O. Box 3000, 90014 University of Oulu, Finland

Reviewers Professor Casper Lassenius

Aalto University

Department of Computer Science

P.O. Box 15400, 00076 Aalto, Finland

 Professor Pasi Tyrväinen

University of Jyväskylä

Department of Computer Science and Information Systems

P.O. Box 35, 40014 Jyväskylä, Finland

Opponent Professor Hannu Jaakkola

Tampere University of Technology

Department of Software Engineering

P.O. Box 300, 28101 Pori, Finland

http://cs.aalto.fi/en/
http://www.jyu.fi/it/laitokset/cs/en/index_html

6

List of original publications

This thesis is based on the following original publications which are referred to in

the text as Papers I–V. The publications are reproduced with kind permission of

the publishers.

I Suomalainen, T., Tihinen, M., and Parviainen, P. (2009). Challenges for

Product Roadmapping in Inter-company Collaboration. In: Proceedings of

the Third International Conference on Software Engineering Approaches for

Offshore and Outsourced Development (SEAFOOD). ETH Zurich,

Switzerland on July 2–3, 2009. Springer, pp. 66–80.

II Suomalainen, T., Salo, O., Abrahamsson, P., and Similä,

J. (2011).

Software Product Roadmapping in a Volatile Business Environment. The

Journal of Systems and Software, Vol. 84, Issue 6, pp. 958–975.

III Suomalainen, T., Kuusela, R., and Tihinen, M. (2015). Continuous

Planning: An Important aspect of Agile and Lean Development.

International Journal of Agile Systems and Management (IJASM), Vol. 8,

No. 2, pp. 132–162.

IV Suomalainen, T. (2015). Defining Continuous Planning through a Multiple-

Case Study. In: Proceedings of the 16
th
 International Conference of

Product-Focused Software Process Improvement (PROFES). Bolzano, Italy

on December 2–4, 2015. Springer, LNCS 9459, pp. 288–294.

V Rodrıguez, P., Haghighatkhah, A., Lwakatare, L. E., Teppola, S,

Suomalainen, T., Eskeli, J., Karvonen, T., Kuvaja, P., Verner, J. M., and

Oivo, M. (2016). Continuous Deployment of Software Intensive Products

and Services: A Systematic Mapping Study. The Journal of Systems and

Software, in press.

7

Author’s contributions

Paper I ‘Challenges for product roadmapping in inter-company collaboration’

describes product roadmapping from the inter-company collaboration perspective.

Collaboration is defined as an activity in which two or more parties, e.g.

companies, departments, customers, or agencies work together to create a mutual

value and achieve a common goal. The paper discusses the challenges and

opportunities that inter-company collaboration (that is joint R&D partnerships,

customer–supplier relationships, and technology exchange agreements and

licencing) sets for product roadmapping, including, for example, the most

important activities to consider, the most typical problems and how those problems

can be avoided. The empirical research was conducted as a questionnaire study

and interviews, which were planned, carried out, and analysed by Suomalainen.

She was also responsible for the planning and execution of related research and

was the main author of the conference paper.

Paper II ‘Software product roadmapping in a volatile business environment’

develops a framework for software product roadmapping, which is used to study

the critical aspects of the product roadmapping process. The research findings

presented in the paper aim at defining product roadmapping based on the current

literature and empirical research, including an overview of roadmapping,

stakeholders of the product roadmapping process and product roadmapping

phases. The empirical research was conducted as a questionnaire study and

interviews. Both the empirical and scientific part of the research were planned,

executed, and analysed by Suomalainen. Suomalainen was the main author of the

journal paper.

Paper III ‘Continuous planning: an important aspect of agile and lean

development’ defines continuous planning though a multiple-case study. The

paper highlights the importance of continuous planning throughout an entire

organisation, including the elements of continuous planning (that is organisational

planning, strategic planning, and business planning) and their close interrelation.

Organisational planning serves to define a plan’s organisational level and the time

frames of a plan, strategic planning serves to set an overall plan of an

organisation, and business planning serves to establish the budgeting frame of a

plan. The empirical evidence of the paper is drawn from the experiences of three

8

case companies in terms of how they viewed and conducted continuous planning.

The author was responsible for the planning and execution of related research.

Also, the author conducted and analysed the case studies relating to cases A and

B. Raija Kuusela conducted and analysed the case study relating to case C.

Suomalainen was the main author of the journal paper, and Kuusela and Tihinen

provided comments and feedback to the manuscript.

Paper IV ‘Defining continuous planning through a multiple-case study’ presents

the results of a multiple-case study in which the different levels of planning (that is

strategic, financial, business, product, and team) along with their time frames are

explored. The research findings presented in the paper reveal the practices of

continuous planning among the case companies with their key activities. The

empirical evidence of the paper is drawn from the experiences of three case

companies, which were collected through several interviews. Suomalainen was

responsible for planning, carrying out, and analysing the interviews. Suomalainen

was also responsible for the planning and execution of the related work and she

was the sole author of the conference paper.

Paper V ‘Continuous deployment of software intensive products and services: a

systematic mapping study’ defines the method and the main findings of a

systematic mapping study about continuous deployment. The paper classified and

analysed the literature related to continuous deployment in the software domain in

order to scope the phenomenon, provided an overview of its state-of-the-art,

investigated the scientific evidence in the reported results, and identified areas

that were suitable for further research. Suomalainen was one of the participants of

the research group conducting the systematic mapping study of the continuous

deployment. During the analysis of the research results, factors relating to

continuous deployment were divided among the researchers of the research group

based on their interests and research topics. Suomalainen was responsible for the

factors relating to fast and frequent release, including also continuous planning, as

well as agile and lean software development in the continuous deployment

context. Suomalainen was a co-author of the paper as the journal paper was

written together by the research group.

9

Contents

Preface .. 3

Academic dissertation ... 5

List of original publications .. 6

Author’s contributions .. 7

List of abbreviations .. 11

1. Introduction ... 13
1.1 Background and motivation .. 15
1.2 Research questions and scope .. 16
1.3 Structure of the thesis .. 18

2. Background and related work .. 19
2.1 Agile and lean software development .. 19

2.1.1 Agile software development .. 20
2.1.2 Lean software development .. 22
2.1.3 Planning in an agile–lean organisation 23

2.2 Roadmapping ... 28
2.2.1 Roadmap structure ... 29
2.2.2 Roadmapping process .. 31
2.2.3 Roadmapping participants .. 32

2.3 Continuous planning .. 34
2.3.1 Strategic planning ... 36
2.3.2 Business and financial planning .. 38
2.3.3 Portfolio planning .. 40
2.3.4 Product planning ... 41
2.3.5 Release planning .. 43

2.4 Summary of the related work ... 45

3. Research design ... 49
3.1 Research approach .. 49
3.2 Research methods ... 51

10

3.3 Case selection and description .. 53
3.3.1 Case A .. 54
3.3.2 Case B .. 54
3.3.3 Case C .. 54

3.4 Research process .. 55
3.4.1 Literature review ... 55
3.4.2 Initial inquiry .. 56
3.4.3 Multiple-case study ... 58
3.4.4 Empirical data collection methods .. 61

3.5 Data analysis ... 63

4. Original publications .. 65
4.1 Paper I: Challenges for product roadmapping in inter-company

collaboration ... 66
4.2 Paper II: Software product roadmapping in a volatile business

environment ... 67
4.3 Paper III: Continuous planning: an important aspect of agile and lean

development .. 67
4.4 Paper IV: Defining continuous planning through a multiple-case study 68
4.5 Paper V: Continuous deployment of software intensive products and

services: a systematic mapping study .. 69

5. Discussion and conclusions .. 71
5.1 Summary of the research ... 71
5.2 Evaluation of the results ... 87
5.3 Conclusions and future research ... 94

References ... 96

Appendices

Appendix 1: Framework for the initial inquiry
Appendix 2: Themes and questions of the research interviews
Appendix 3: List of interviews conducted for the study
Appendix 4: List of interviewee profiles
Papers I–V

Abstract

Tiivistelmä

11

List of abbreviations

AHP Analytical Hierarchy Process

ART Agile Release Train

ASD Agile Software Development

ASDE Agile Software Development Ecosystem

CD Continuous Deployment

CP Continuous Planning

CPEF Continuous Planning and Execution Framework

CSO Chief Strategy Officer

CTO Chief Technology Officer

ICT Information and Communication Technology

ID Identification

IoT Internet of Things

IT Information Technology

ITEA Information Technology for European Advancement

JIT Just-In-Time

LD Lean Development

MERLIN eMbedded Systems Engineering in Collaboration

MMF Minimum Marketable Features

N4S Need for Speed

PhD Doctor of Philosophy

PSI Potentially Shippable Increment

QA Quality Assurance

12

QFD Quality Function Deployment

R&D Research and Development

RE Requirements Engineering

ROI Return on Investment

RQ Research Questions

SE Software Engineering

SLR Systematic Literature Review

VTT VTT Technical Research Centre of Finland Ltd

XP eXtreme Programming

13

1. Introduction

Market uncertainties, competitive pressures and the constant need for shortened

development cycles call for flexible, responsive and adaptive software

development practices (Olsson et al. 2013). Since the mid-1990s, a variety of agile

methods and practices have been designed so as to enhance development teams’

or an organisation’s ability to respond to dynamic market changes (Highsmith

2002a, Kettunen 2009, Olsson et al. 2013). Also, in recent years, lean thinking

(e.g. Womack and Jones 2003) has been introduced in software development

companies (Poppendieck and Poppendieck 2003, Charette 2003, Middleton et al.

2005) with the aim of achieving a continuous and smooth flow of production in

pursuance of removing waste in processes. The promise of lean development is to

create a change-tolerant organisation that can survive and succeed in times of

uncertainty, change and complexity (Charette 2003). In emphasising the use of

iterations and the development of small features, it is clear that agile practices and

lean development have indeed increased the ability for software development

companies to accommodate fast-changing customer requirements and fluctuating

market needs, as well as having reduced lead times and improved the quality of

their products (Olsson et al. 2013).

Even though many software development companies have succeeded in

adopting agile practices in order to improve responsiveness to customers, agile

development is not the end or final step of software development (Olsson et al.

2013). New and innovative approaches that support continuous practices are

needed. In fact, it has been realised that software development companies are

moving towards continuous deployment (CD) in which software functionality is

continuously deployed and where customer feedback is the main driver for

innovation (Olsson et al. 2013). CD refers to the organisational capability to

develop, release and learn in rapid parallel cycles, such as in hours, days or a

very few weeks and turning the software development into a continuous flow.

According to Järvinen et al. (2014), CD refers to the ability to deliver the smallest

added value to the customers, which requires automating all the processes that

must be executed to deliver the software to customers, and thus implementing CD

concerns the whole company. Similarly, Fitzgerald and Stol (2014) emphasize a

closer connection between development and execution in order to detect and fix

errors as soon as possible. Accordingly, the integration between software

14

development and its operational deployment should be continuous. Similarly, the

link between business strategy and software development should be continuously

assessed and improved (Fitzgerald and Stol 2014).

All of these software development practices – agile, lean, and continuous

deployment – change, among other things, the scheduling and planning. Planning

in general is seen as consisting of both actions and forecasts (that is the expected

outcomes). Roadmapping is a planning process for creating and revising future

plans, that is roadmaps (Kostoff and Schaller 2001). Roadmaps are also forecasts

of what is possible or likely to happen, and plans that express a course of action

(Kappel 2001). A roadmap structure consists of both layers and time frames. The

structure is flexible, and can be adapted to address many issues at different levels

of an organisation (Phaal and Muller 2009). In large organisations, there are

multiple levels of planning performed in different time frames and by different

actors (e.g. Cohn 2006, Leffingwell 2011, Kuusela and Koivuluoma 2011). Even

though roadmapping can be used as a stand-alone problem-solving method, it will

have more impact if it is integrated with the core business processes where

decisions are made and budgets allocated (Cosner et al. 2007). In the software

development context, planning is commonly episodic and performed according to

a traditional cycle, usually triggered by annual financial year-end considerations

(Fitzgerald and Stol 2014). In fact, the problem in planning is that time is divided

into a number of planning horizons, each lasting a significant period of time, and

continuity is not seen throughout the organisation. Yet today, as agile and lean

practices are becoming the norm, the transformation towards continuous practices

is being emphasised in organisations. Drawing on the lean concept of flow, a

number of continuous activities are identified (Fitzgerald and Stol 2014) that are

important for software development in today’s context, one of them being

continuous planning.

Continuous planning is about implementing planning practices continuously, not

just as part of a top-down annual event (Hope and Fraser 2003). Environmental

changes trigger continuous planning instead of the predefined and regular

planning cycle (for example, the financial year), and thus plans are adjusted

according to internal and external events (Rickards and Ritsert 2012). Planning

should be carried out continuously so that, at any time, the full scale of the

development can be presented (Westkamper and Von Briel 2001). Fitzgerald and

Stol (2014) define continuous planning as a holistic attempt involving multiple

stakeholders from business and software functions, whereby plans are dynamic

open-ended artefacts that evolve in response to changes in the business

environment, and thus involve a tighter integration between planning and

execution. In software development, continuous planning refers to the

organisational capability to conduct planning in rapid parallel cycles, which can be

hours, days or very small numbers of weeks or months, depending on the level of

planning.

15

1.1 Background and motivation

The research started already in 2006 with the topic of roadmapping. Back then,

the literature on how roadmapping is conducted in a software development context

was not extensive. Most of the literature was written from the perspective of

industry, science or technology roadmapping, not from the perspective of product

roadmapping involving such aspects as releases, features, requirements or other

even smaller components of software product planning. However, interest in

roadmapping has increased a great deal since then, and it has been noticed more

widely both in research as well as in industry.

Roadmapping, which was initially developed in the 1970s at Motorola to

improve the alignment between technology and innovation (Willyard and McCless

1987), has now spread to several other industrial sectors, for example, from

medical care to software development. It has evolved and become popular in the

last decade, as it has been adopted by companies, governments, and other

institutions (Phaal et al. 2008, Phaal et al. 2009). It has even been claimed that

roadmapping is one of the most widely used planning practice and management

techniques for supporting innovation and strategy (Phaal and Muller 2009). It is

also anticipated that roadmapping will increasingly be used to support strategic

dialogue in the future. However, even though it is claimed (e.g. Kostoff and

Schaller 2001, Lee and Park 2005) that roadmapping is popular and widespread,

Carcalho et al. (2013) point out that there is still little or no evidence from localized

surveys of management practices to support these assertions, and thus, further

research is needed in that regard. Also, based on the current literature (e.g. Phaal

and Muller 2009), the development of roadmapping has largely been driven by

practice (within companies, government agencies and consulting firms), with

relatively little academic research to support the theoretical underpinning of the

method. Therefore, academic research is also relevant.

Furthermore, roadmapping has not been widely studied from the software

development perspective, or more precisely from the agile and lean software

development perspective, which would complement the other research areas in

the field of research. Also, how roadmapping should be integrated with other

management processes, methods and frameworks is not well understood.

Research is needed to determine how organisations have aligned roadmapping

with their core business processes (for example, strategic, financial and business

planning and new product introduction), and to describe how the roadmap

structure can be applied throughout the organisation.

Unlike roadmapping, continuous planning is a relatively new and hence poorly

studied field of research, especially in the software development context.

Therefore, the literature relating to continuous planning is not adequate. Based on

the current literature, continuous planning is not commonly adopted and applied

throughout the organisation and currently involves only a certain level of planning,

for example release planning (by using Scrum for instance). In that regard,

Fitzgerald and Stol (2014) conclude that continuous planning is not widespread

16

throughout the organisation. Accordingly, the only form of continuous planning is

what emerges from agile development approaches, and is related to sprint

iterations or at best, software releases. However, continuous planning requires a

wider perspective than is currently considered, including also other levels of

planning than just the team-level release planning. Actually, there is not any

empirical evidence of how continuous planning is conducted throughout the

organisation at the various levels of planning that would also describe the

interrelationships between these various levels. The interrelationships between the

plans include such information as how the planning as well as the plans are visible

to the other levels of planning.

The planning practices in the field of software development are commonly

adjusted according to the prevalent practices of software development. In the last

ten years, the practices of software development have changed from more

traditional, waterfall practices to agile and lean practices, and now even further to

continuous deployment. Similarly, planning practices have changed from

roadmap-based planning to continuous planning. New planning practices are

typically first applied in product planning and thereafter spread and adopted to the

other levels of planning in the organisation. All in all, the change in planning has

not been systematically explored in the related literature on software development,

and what kind of effects it has for agile and lean software development. Also,

neither the reasons for the change have been identified nor what kind of effects

the changes have.

1.2 Research questions and scope

This subchapter presents the research problem and questions of this thesis. The

main research problem is further elaborated by three additional sub-questions,

each of them targeting a specific area of interest that contributes to the main

research problem. The main research problem is posed as follows:

How has planning changed for agile and lean software development from

roadmapping to continuous planning?

In order to provide an answer to this problem, the following research questions

(RQ) are defined that approach the main research problem from different

perspectives, namely roadmapping and continuous planning, during a period of

time in software development:

RQ1. How is roadmapping conducted in software development?

RQ2. How is continuous planning conducted through roadmapping in agile

and lean software development?

RQ3. How is continuous planning conducted in continuous deployment-

driven software development?

17

The scope of the research consists of two main topical areas, roadmapping and

continuous planning, as illustrated in Figure 1. These two main research topics are

studied in the context of software development, involving companies operating in

the field of Information and Communication Technology (ICT). It has been realised

that both planning and software development practices have changed in recent

years. The background for this change lies in agile and lean development methods

and practices that have triggered the need both for continuous deployment and

continuous planning. Thus, agile and lean software development form the overall

research context to this study. This research context has a strong link to lean

thinking, as the concept of continuity in software development comes from the

lean approach, called flow. Thus, while moving towards continuous deployment,

the purpose is to establish a continuous movement, which closely resembles the

concept of flow.

Figure 1. Scope of the research.

As illustrated in Figure 1, this thesis consists of five original papers published in

the main topical areas of the research, roadmapping and continuous planning.

Each paper in this study tackles the research topic from a particular viewpoint. The

figure also presents the relationship between the research questions and

publications. The first research question is answered in Papers I and II based on

empirical evidence, in which data are gathered through initial inquiry (presented in

Chapter 3.4.2). The second research question is answered in Papers III and IV

based on empirical evidence, in which data are gathered through a multiple-case

study (presented in Chapter 3.4.3). The third research question is answered in

Paper V, based on a wide systematic mapping study (presented in Chapter 3.4.1).

This theoretical evidence is sufficient at this point in the research, as companies

have not yet fully adopted the practices of continuous deployment, while the

Change in planning

“Traditional”

software

development

Agile and lean

software

development

Continuous

deployment

Roadmapping

Paper IIPaper I

RQ1

Continuous

planning

Paper IVPaper III Paper V

Change in software development

RQ2 RQ3

18

purpose is to bring out the future directions for software development and the

research at hand.

1.3 Structure of the thesis

The structure of the thesis consists of five chapters including the introduction,

theory, research design, original publications, and discussion and conclusions.

The thesis is structured as follows.

Chapter 1 is the introduction to this research, presenting the background and

focus of the thesis as well as the field of research. It also defines the research

questions that will be answered.

Chapter 2 describes the theoretical background of the study. It presents the

related work concerning the main areas of the research: 1) agile and lean software

development, 2) roadmapping, and 3) continuous planning. Finally, at the end of

the chapter, the analysis of the related work is summarised.

Chapter 3 presents the research design of this thesis. It defines the research

approach and methods employed. It also introduces the case companies together

with the case selection criteria and description. Thereafter, the data collection

methods are presented, and different phases of the research are introduced, that

is, the initial inquiry and multiple-case studies. Finally, at the end of the chapter,

data analysis methods are defined and discussed.

Chapter 4 introduces the original publications of the thesis. It presents the

overall view of each paper and identifies the key contributions of each paper in

regard to this thesis. It also describes how each publication answers or clarifies

the research questions of the thesis.

Chapter 5 discusses the results of the thesis as well as setting out the

conclusions. Firstly, answers to the defined research questions are provided in a

summary. Secondly, the research results are evaluated. Both the theoretical and

managerial implications are addressed, and the reliability and validity of the

research is discussed. Also, the limitations of the research are described. Finally,

at the end of this chapter, some concluding words are given and the future

research opportunities are presented.

19

2. Background and related work

The aim of this chapter is to provide an overview of the main areas of the

research. Firstly, the background of agile and lean software development is

presented. This provides the overall context for this research, as it has been

realised that agile and lean development practices have triggered the need to

change current planning practices. Secondly, roadmapping is described. This

involves defining of the roadmap structure as well as describing the process and

the participants of the roadmapping activity, especially from the software

development perspective. Thirdly, continuous planning is presented. This involves

several levels of planning, as presented in the roadmap structure, which are

described in more detail from the agile–lean organisation’s point of view. Finally, at

the end of this chapter, the background and the view of the related work are

summarised.

2.1 Agile and lean software development

Given that the current business environment of ICT organisations is very unstable

and constantly changing, organisations are increasingly adopting agile and lean

development practices. That is because being capable of sensing and responding

to predictable and unpredictable events in times of change and uncertainty has

become crucial for companies (Baskerville et al. 2005). Agility is about changing

businesses and business processes, while sensing environmental changes and

responding appropriately (Overby et al. 2005, Van Oosterhout et al. 2005). Lean

development, on the other hand, is about creating a change-tolerant organisation

that can survive and succeed in times of uncertainty, change, and complexity

(Charette 2003).

Agile and lean software development practices are used for both small projects

and large development projects with over 100 designers. The trend that large

companies are adopting these practices to develop large software products in an

iterative manner is increasing (Staron et al. 2012). Similarly, Bellomo et al. (2013)

describe that both industry and government have been increasingly adopting

agile-based incremental software development practices. For the pervasive

adoption of these practices, Papatheocharous and Andreou (2014) provide

20

evidence-based information from the software and ICT industry regarding the state

of practice of agile development. On the other hand, Kurapati et al.’s (2012)

research provides evidence on which of these practices are most commonly used

at a project and organisational level. There are in fact multiple benefits that are

gained though adopting these practices, the most significant being the

enhancement of the acceleration of the time to market and the ability to manage

and prioritise changing requirements (Papatheocharous and Andreou 2014).

These practices also show promise in improving speed and ways to achieve

substantial cost savings and quality improvements (Radnor and Walley 2008,

Bellomo et al. 2013).

Both of these practices, agile and lean, are seen to complement each other.

Petersen (2010) compared these two practices and identified twenty-two agile

practices and four lean practices. The practices were then compared so as to

highlight the differences and similarities between lean and agile software

development. Petersen concluded by saying that 1) both practices share the same

goals (focus on the customer), 2) both practices define similar principles, with the

principle ‘see the whole’ being unique to lean, 3) both practices have unique and

shared principles, and 4) lean does not define processes while agile defines

different ones. The key difference between agile and lean is that, where agile

software focuses on the software development function, lean thinking focuses on

the end-to-end process: from customer to delivery (Petersen 2010).

2.1.1 Agile software development

Agility is about being able to respond rapidly to unpredictable changes in demand

(Holmqvist and Pessi 2005). Furthermore, agility has been defined as the ability to

both create and respond to change in order to profit in a turbulent business

environment (Highsmith 2002a). Highsmith (2002a) explains that agile

organisations foster change by being better than their competitors at responding to

changing conditions by creating change that competitors cannot respond to

adequately. Accordingly, agile organisations are also nimble (able to change

direction quickly) and flexible (able to see how things that worked for them earlier

may not work as well in the future). An agile organisation also needs to know how

to balance structure and flexibility (Highsmith 2002a).

Agile software development (ASD) is characterised by a chaordic (including

chaos and order) perspective, collaborative values and principles, and a barely

sufficient methodology. Highsmith (2002b) calls this definition an agile ecosystem.

The core set of agile software development ecosystems (ASDE) family includes

lean development (LD), Scrum, the dynamic software development method,

crystal methods, feature-driven development, extreme programming, and adaptive

software development. To understand ASDE, Highsmith (2002b) clarifies: ‘Viewing

organisations as chaordic means understanding that the predictability upon which

traditional project management and development life cycle practices are built is a

root cause of dysfunctionality between customer, management, and development

21

organisations.’ A chaordic perspective also impacts how changes are responded

to and how project teams and organisations are managed. In everyday work, such

a perspective may create two outcomes: product goals are achievable, but they

are not predictable, or processes can aid consistency, but they are not repeatable

(Highsmith 2002b). According to Ivachtchouk (2004), agile software development

emphasises customer satisfaction through a continuous delivery of functional

software and accepts changes to requirements in response to evolving business

needs. Thus, the agile development approach primarily addresses the problems of

rapid change (Ivachtchouk 2004).

The following practices are typical of agile software development: short

iterations, continuous testing, self-organizing teams, constant collaboration, and

frequent planning based on current reality (Highsmith 2002b). Values and

preferences of the agile software development are defined as follows by Agile

Manifesto (2001): individuals and interactions over processes and tools, working

software over comprehensive documentation, customer collaboration over

contract negotiation, and responding to change over following a plan.

Business agility, unlike software agility, is the organisation’s ability to sense

environmental change and respond appropriately (Evans 2002, Overby et al.

2005). According to Van Oosterhout et al. (2005), it is about being able to quickly

and easily change businesses and business processes outside the normal level of

flexibility in order to effectively deal with highly unpredictable external and internal

changes. Accordingly, the external changes are the consequence of the following

domains: social or legal, the business network, the competitive environment,

changes in customer needs, and technology. Instead, the internal changes are the

consequence of the following: performance indicators, information technology, and

mergers and acquisitions. Furthermore, internal changes are those such as a new

strategy or a takeover that require the organisation to adapt (Van Oosterhout et al.

2005). According to Overby et al. (2005), an environmental change includes, for

instance, changes predicted by competitors’ actions, consumer preference

changes, regulatory or legal changes, economic shifts, and technological

advancements. An appropriate response supports the organisation’s goals, such

as to increase market share, capture new customers, or avoid competition. The

appropriateness of the response is also affected by relative cost and quality

(Overby et al. 2005).

The intention of business agility is to be able to create new processes and new

value propositions in a rapidly changing business environment and to be able to

implement these changes rapidly (Evans 2002). According to Evans (2002), it is a

a top-down approach when speed and flexibility are integrated into an

organisation’s culture and style. However, business agility is not merely about

speed; it is also about doing purposeful work in alignment with corporate

objectives (Evans 2002). It has three main enabling elements: knowledge

management, value-propositioning skills, and response ability (Dove 2005).

Accordingly, the focused knowledge management process enables accurate and

timely awareness to make a change. Value-propositioning skills enable effective

prioritisation and choice-making among competing response-alternatives.

22

Response ability means ability to change business processes and to customize

operational responses in real time (Dove 2005).

2.1.2 Lean software development

Lean thinking can be traced as far back as the beginning of the 1900s, and after

that it was strengthened by lean manufacturing in the 1950s (Womack and Jones

2003). According to Charette (2003), lean manufacturing was pioneered over the

past 50 years by Japanese automotive manufactures, for example, at Toyota and

Honda. The focus in lean manufacturing was on eliminating waste by just-in-time

(JIT) production, and the lean process withdraws only the number of parts needed

when they were needed (Dittrich et al. 2005). At the end of the 1990s, Womack

and Jones (2003) widened the scope of lean thinking from lean manufacturing to

the lean enterprise. Later, lean thinking has also been applied in software

development (e.g. Charette 2003, Middleton and Sutton 2005, Poppendieck and

Poppendieck 2007). Thus, lean software development and its principles are

derived from lean manufacturing and thinking (Shalloway et al. 2009).

From the software development perspective, lean development (LD) is a

combination of a system of practices, principles, and philosophies for building

software systems for a customer’s use (Charette 2003). LD is characterised by

lean production resources and management of risks by viewing them as an

opportunity (Conn 2004). LD addresses issues from a more strategic and top-

down fashion than most of the agile approaches that use a bottom-up mode

(Charette 2003). It is also said to be the most strategy-intensive of the ASDE

family. Charette (2003) explains that an organisation can change its long-term

behaviour only with strong commitment from the top, and this commitment should

be tied to a vision of what the organisation should be. For LD to be effective, it

requires a resource commitment, an allocation of both time and money, from the

highest levels of the organisation. Philosophical commitment is also required,

because it creates the vision of how the organisation will operate (Charette 2003).

The objective behind LD is to create a change-tolerant organisation or an

organisation that can survive and succeed at times of uncertainty, change and

complexity, and an organisation that uses information technology (IT) to

accomplish this (Charette 2003). Accordingly, the organisation’s strategy should

be characterised as becoming a risk-entrepreneur, which means creating a

business philosophy that seeks risks as the currency of profit. Thus, the

organisation should know how, when, where, and why to take risks. A good risk-

entrepreneur is characterised by the knowledge of how to recognise and exploit

the low-risk, high opportunity situations that others miss. Charette (2003)

continues: ‘LD is most effective in a risk-entrepreneurial organisation’.

According to Charette (2003), the goal of LD is to create software-intensive

systems of size in one-third of the time, at one-third of the cost, and with one-third

of the defect rate of more traditional software development approaches. The

intention is to select the proper mix of processes, methods, and tools to develop

23

change-tolerant software within the specified constraints. It also requires

organisational support to make everything come together. The main idea behind

LD is not only to increase productivity, but also to eliminate waste, for example

waste of time, information, and resources. An organisation can eliminate

substantial development time and costs by gaining a better understanding of a

customer’s genuine needs (Charette 2003). Similarly, Liker (2004) presents 14

lean principles, which are divided according to four categories: philosophy,

process, people and partners, and problem solving, as shown in Figure 2. These

principles have been used as grounds for lean software development. For

example, for software development according to Shalloway et al. (2009), lean

provides the following principles: respect people, eliminate waste, defer

commitment, create knowledge, deliver fast, build quality in, and optimize the

whole.

Figure 2. Principles of lean, modified from Liker (2004).

2.1.3 Planning in an agile–lean organisation

Agile and lean at the enterprise level requires looking at an organisation’s entire

value stream (Shalloway et al. 2009). Accordingly, the value stream refers to the

stream of delivered software solutions from idea to implementation or from

concept to consumption. Agile and lean at the enterprise level or business agility

are referred to as an agile–lean organisation later in this thesis, since they convey

and describe the same issue at hand. The enterprise in an agile–lean context

means that all the parts of the organisation are involved in the value stream of a

product and/or service that is created, enhanced, or maintained. Therefore, the

intention is to minimize the cycle time from deployment to use and to remove

waste and delays in the flow. Thus, the purpose is to create a system that helps

minimize work-in-progress and maximize the speed at which business value is

created (Shalloway et al. 2009).

Problem solving
(continuous

improvement and
learning)

People and partners
(respect, challenge,

and grow them)

Process (eliminate waste)

Philosophy (long-term thinking)

• Continual organisational learning through Kaizen

(i.e. continuous improvement)

• Go to see yourself to thoroughly understand the situation

(Genchi Genbutsu)

• Make decisions slowly by consensus, thoroughly

considering all options; implement rapidly (Nemawshi)

• Grow leaders who live the philosophy

• Respect, develop, and challenge your people and teams

• Respect, challenge, and help your suppliers

• Create process ”flow” to surface problems

• Use pull systems to avoid overproduction

• Level out the workload (Heijunka)

• Stop when there is a quality problem (Jidoka)

• Standardize tasks for continuous improvement

• Use visual control so no problems are hidden

• Use only reliable, thoroughly tested technology

• Base management decisions on a long-term

philosophy, even at the expense of short-term

financial goals

24

The organisational planning consists of the required levels of planning and time

frames. These are the most important aspects of planning that a company

developing and improving its planning practices should define from the start

(Lehtola et al. 2007). The planning level refers to items that are planned and the

time frame refers to the length of the time period of the plans. However, there is no

simple answer to how many different levels of abstraction for planning that a

company should have, since both company size and its organisational structures

play a role (Lehtola et al. 2007). Next, the levels of planning in agile–lean

organisations are shown based on the related literature.

Cohn (2006) presents an agile approach to planning called the ‘Planning onion’.

The planning onion describes the hierarchical relationships between the different

objects of planning. The planning onion consists of the following levels or layers of

planning: strategy, portfolio, product, release, iteration, and day; as shown in

Figure 3.

Figure 3. Planning onion, modified from (Cohn 2006).

According to Cohn (2006), planning should not extend beyond the planner’s

horizon – instead, it should include time for the planner to raise their head, look at

the new horizon, and make adjustments. Thus, a progressive elaboration of the

plan is needed. Agile teams achieve this by planning on three distinct horizons:

the release, the iteration, and the current day. Release planning considers user

stories or themes for a new release with the goal of determining the scope,

schedule, and resources for a project. The release plan should be updated

throughout the project so that it will always reflect the current expectations about

what will be included in the release. During the iteration planning, at the start of

each iteration, the product owner identifies the work that the team should address

in the new iteration. The daily planning meeting is for organising work and

synchronising daily efforts. Cohn (2006) explains that product, portfolio, and

Strategy

Portfolio

Product

Release

Iteration

Day

Team level

planning

25

strategic planning are outside the concern of most agile teams. Product planning

involves looking further ahead than the immediate release and planning for the

evolution of the released product or system. Portfolio planning involves the

selection of the products that will best implement a vision established through a

company’s strategy.

Leffingwell (2011) presents the ‘Agile enterprise big picture’, which is both the

organisational and process model for managing software requirements in an agile

and lean manner. It consists of three levels: the portfolio, the programme, and the

team, as illustrated in Figure 4.

Figure 4. The agile enterprise big picture, modified from Leffingwell (2011).

According to Leffingwell (2011), at the team level, agile teams define, build, and

test user stories in a series of iterations and releases. The team’s product owner

has responsibility for managing the backlog of user stories and other things the

team needs to do. At the program level, the larger-scale system’s functionality is

developed by multiple teams in a synchronised agile release train (ART). The ART

includes time-boxed iterations and milestones that are date- and quality fixed but

where the scope is variable. The ART produces releases or potentially shippable

increments (PSIs) in fixed 60- to 120-day time boundaries. The PSI defines the

basic iterative and incremental cadence and delivery mechanism for the

programme. Product managers are responsible for defining the features of the

system at this level. At the portfolio level, a mix of investment themes is used to

drive the investment priorities for the enterprise. The purpose is to ensure that

Portfolio

Program

Team

Portfolio vision

Architecture runway

Portfolio

backlog

Investment themes Epics scan

releases

Architecture evolves

continuously

Systems, applications, products

Features and components

Roadmap

Vision

Portfolio

management

Release

management

Product

management
Program

backlog Features fit in

releases

Stories fit in

Iterations 

Implemented by

tasks

Spikes are

research, design,

refactor and stories

Developers

and testers

Product

owner

Team

backlog

Release planning

Team

backlog

Team

backlog

Epic 1 Epic 2 Epic 3

Epic 4 Epic 5 Epic 6

From 6 to

12 months

From 12

to over 18

months

90 days /

3 months

Scrum / Agile

master

Agile teams

26

work being performed is necessary to the enterprise and according to its business

strategy. Investment themes drive the portfolio vision and are expressed in a

series of larger scale initiatives called epics. Epics express the product initiative in

bullet form, as a sentence or two, in a video, as a prototype, in a short business

case, for instance. The epics are allocated to various release trains over time. The

portfolio managers are responsible for deriving the decisions. The decision

process results in a set of themes or key product value propositions that provide

market place differentiation and competitive advantage. The epics express the

highest-level customer need. The epics are intended to deliver the value of the

investment theme and are identified, prioritised, estimated, and maintained in the

product backlog. The epics express the intent of the product initiative in any

suitable form (e.g. in bullet form, in user-voice story form, with sentences, in a

video, in prototype) (Leffingwell 2011).

Furthermore, Leffingwell (2007, 2011) points out that, from the planning point of

view, agile affects among others planning and scheduling in software development

and in software project management. At the team level, a series of iterations is

used to combine larger, system-wide functionality for release to the external users.

Many teams have four to five development iterations, and the cadence of a

potentially shippable increment is about every ninety days, which creates a

quarterly planning rhythm for the entire company. The responsibility for planning is

transferred to the teams, and at the programme level it is accomplished by the

release planning function. Release planning is done on a standard cadence,

independent of the project status and release commitments. At the portfolio level,

investment themes span to the strategic planning horizon, and the time frame is

from twelve months to over eighteen months. Investment themes derive epics that

express the highest level of expression of the customer or business need. The

epics are planned in time frames of six to twelve months.

Shalloway et al. (2009) present an agile–lean organisation that involves

coordinating business, management and delivery teams in order to deliver a

sustainable stream of products based on prioritised business need and lean

principles. The business area includes activities such as continuously prioritising

and decomposing incremental needs across the organisation, managing a

portfolio of business needs, and doing release planning. The product management

area addresses activities including: organising cross-functional teams delivering

incremental end-to-end features, managing the value stream, and bringing

visibility to impediments. The delivery team’s activities include: working together

every day and delivering fully tested and integrated code, learning how to deliver

business needs incrementally, and becoming proficient at acceptance test driven

development and refactoring. A software development timeline in an agile–lean

organisation together with the main levels of planning according to (Shalloway et

al. 2009) is shown in Figure 5.

27

Figure 5. Software development timeline, adopted from (Shalloway et al. 2009).

As a summary of the models presented previously, in Leffingwell’s (2011) planning

model, the responsibility for planning is moved to the teams. According to

Leffingwell (2007), planning mainly appears at two levels: gross-level planning for

releases (the programme level) and fine-grained plans for iterations (the team

level). At the programme level, planning is accomplished by the release planning

function. Release planning is done on a standard cadence, independent of the

project status and release commitments. Similarly, according to Cohn’s (2006)

planning onion, agile teams achieve the planning at three distinct horizons:

release, iteration and day. The other levels of planning (that is product, portfolio

and strategic planning) are outside the concern of most agile teams and are hence

not defined in more detail in the model either. However, in terms of daily and

operational planning, Ruhe (2010) has pointed out that they can both become

difficult without a proper release plan that is well-aligned with the product and

portfolio strategy of a company. Therefore, Shalloway et al. (2009) state that the

team agility or team level planning is necessary but not sufficient, hence the real

goal should be to create enterprise agility.

Shalloway et al. (2009) state that agile at the enterprise level requires looking at

an organisation’s entire value stream. They define a business level, product

management level and delivery team level of planning pertaining to agile and lean

organisations, but in the planning practices, they focus on portfolio, product and

release planning. Shalloway et al. (2009) present a continuous planning process

pertaining to releases (defined in more detail later in Subchapter 2.3.5), which is

performed before each iteration and during daily stand-up meetings. Accordingly,

continuous planning, at the project level, is for what is known (for example, from

two to four weeks forward), and the work is for the next iteration and for today.

Shalloway et al. (2009) do not say how, for example, strategic, financial, or

business planning should be conducted. Similarly, Cohn’s (2006) planning onion

and Leffingwell’s (2011) agile enterprise big picture are missing how those levels

of planning should be conducted in an agile–lean organisation. Instead, Heikkilä et

al. (2013) have adopted a three-level planning model, including strategic planning,

release planning and operational planning for a large-scale agile software

development organisation. Accordingly, strategic planning involves interaction

between business and management, and development and is performed in the

long term. Release planning refers to the feature content of the next release and

Visioning
Product
approval

Product
staffing

Project
development

Project
deployment

Support &
Feedback

Agile/Lean

Scrum

Patterns

Business

level

Product

management

level

Delivery team

level

28

to planning aiming to create content efficiently. Operational planning concerns the

implementation of features on a day-to-day basis. However, as with the other

models shown, Heikkilä et al. (2013) focus on release planning without going into

detail on strategic or financial planning. Thus, their understanding of organisational

planning also lacks a broader perspective.

Based on the current models presented in the related literature, the levels of

organisational planning are the following: strategic planning, business and

financial planning, portfolio planning, product planning, and release planning.

These levels of planning are defined in more detail from the continuous planning

point of view in Subchapter 2.3.

2.2 Roadmapping

A roadmap is a layout of existing routes or paths, which is used to decide among

alternative directions towards a desired destination (Kostoff and Schaller 2001). In

more detail, a roadmap is a visualization of a forecast, which can address a

number of key areas, such as technology, capability, platform, system,

environment, threat and business opportunity (DeGregorio 2000). According to

Kappel (2001), roadmaps are also forecasts of what is possible or likely to

happen, and plans that express a course of action. According to Phaal and Muller

(2009), the roadmap provides a strategic lens through with complex systems, such

as a business or strategic issue, can be viewed. It helps to structure and represent

multiple interrelated perspectives on the evolution of the system, providing a

framework to support understanding and communication (Phaal and Muller 2009).

Furthermore, roadmaps are intended to be living documents, to be reviewed and

updated over time in order to remain useful (Albright 2003).

Roadmapping describes the process of creating and revising roadmaps

(Kostoff and Schaller 2001). It is a strategic planning and forecasting process with

long-lasting future activities (Kappel 2001). Roadmapping is also claimed (Li and

Kameoka 2003) to be a decision-making and design process. Furthermore,

Strauss et al. (1998) describe roadmapping as a management activity that links

customer/market needs and opportunities, product quality and competitive

positioning as well as corporate capabilities such as business and technology

value chain attributes. Forecasting can be considered to relate to technology or

market trends, and planning, on the other hand, to products, product lines,

resources or the entire company (Van de Weerd et al. 2010). Roadmapping

supports strategic dialogue within an organisation, and particularly across

functions and levels, but also between organisations. Phaal et al. (2008) highlight

that, even though roadmapping can be used as a stand-alone problem-solving

method, it will have more impact if it is integrated with core business processes

where decisions are made and budgets allocated. In particular, relevance should

be given to strategic planning in which decisions are routinely taken that have a

significant long-term impact, and where the situation is complex and the future

uncertain (Phaal et al. 2008).

29

2.2.1 Roadmap structure

Roadmaps can be expressed in various forms, types or with different taxonomies

(Kameoka et al. 2003). Even though the roadmaps may take various forms or

taxonomies, they should all answer a common set of ‘why-what-how-when’

questions (Phaal et al. 2005) that generally relate to markets, products, and

technologies. However, the form of the roadmap should be tailored to the specific

needs of the company and its business context (Phaal et al. 2004b). Luckily, the

form of the roadmap is flexible, and the structure of the roadmap and the process

used to develop it can be adapted to many different contexts (Phaal et al. 2004a)

The roadmap structure enables scalability and allows the approach to be

customised so as to suit the particular focus of interest. The roadmap structure

consists of two dimensions: layers and time frames (Phaal and Muller 2009). In

the roadmap structure, each layer of information provides input to the next level

(Cosner et al. 2007). The structure of a multi-layered roadmap is shown in Figure 6.

Figure 6. Multi-layered enterprise roadmap, adapted from (Cosner et al. 2007,

Phaal et al. 2008, Phaal and Muller 2009).

The layers according to Kappel (2001) are shown in a chart, in which the

horizontal axis describes the roadmapping purpose at the industry or company

level, and the vertical axis describes the content emphasis of the roadmap either

on specific trends or on positioning within an industry. According to Phaal et al.

(2005), roadmaps commonly take the form of a multi-layered time-based chart that

includes different layers of knowledge relating to purposes, deliveries, and

resources. More precisely, Phaal and Muller (2009) state that at the highest level

roadmaps comprise three broad layers: the top layer (external market and industry

trends and drivers), the middle layer (products, services, infrastructure or other

mechanisms for integrating technology capabilities, knowledge and resources),

Strategic

roadmap

Market

roadmap

Product

roadmap

Technology

roadmap

Time

Product B

Product A

Technology A

Technology B

Technology C

Product C

Why?

What?

How?

Pull

Push

Past Short-term Medium-term Long-term Vision
When?

30

and the bottom layer (both knowledge-based resources: technology, skills,

competencies, and other resources: finance, partnerships, and facilities).

More precisely, the enterprise roadmap development according to Cosner et al.

(2007) includes the following layers of information: strategic roadmap, market

roadmap, product roadmap, technology roadmap, and enterprise roadmap. The

strategic roadmap describes the long-term objectives of senior management. The

market roadmap shows known and predicted customer needs together with, for

example, competitive strategies, the regulatory environment, complementary

product evolution, substitute products, and innovations. Strategic goals and

market targets are defined as milestones or target dates for certain events.

Product roadmaps are for documenting performance and feature evolution and

presenting new-to-the-company products and new-to-the-world products.

Technology roadmaps include expected research and development (R&D)

products, their availability dates, driving factors for R&D, and related information.

The enterprise roadmap combines these different types of roadmaps across the

enterprise. While each roadmap presents existing plans, the enterprise roadmap

may suggest alternate unfunded plans that would be considered if the enterprise

were to alter its plans.

The multi-layered roadmap can be constructed from a market-pull or from a

technology-push perspective (e.g. Albright 2003, Groenveld 2007, Phaal et al.

2008). From the market-pull point of view, a roadmap should begin by defining the

most important requirements of the marketplace and customers. This strategy

includes defining product development in the process of time and defining the

required technologies for these products. From the technology-push viewpoint, a

roadmap should begin by defining the key or new technologies and their market

needs. This strategy describes how technology is going to affect the functionality

of the product (Albright and Kappel 2003, Groenveld 2007).

Phaal and Muller (2009) recommend including five broad time frames in

roadmaps: the past (and current situation), short-term, medium-term, long-term,

and vision. Accordingly, the past time frame helps to understand the key

influences and events that have led to the current situation, and highlights learning

points that will influence the success of future plans. Short-term is typically a one-

year horizon. It is the most important output of the roadmap, since it includes

tangible plans and committed actions. This time frame can be called the budget

horizon, since resources need to be committed so that the actions can be fulfilled.

Medium-term is typically around three years, with links to the strategic planning

horizon. It highlights the broader direction and options that influence the short-term

directions and plans. The long-term time frame is typically a ten-year time frame. It

provides a bridge between the medium-term strategy and the vision of the

organisation. It enables the organisation to articulate key uncertainties and

scenarios, and to explore long-term shifts in the technology, business and market

environment, as well as to capture and assess longer-term issues affecting current

decisions and plans. Vision is about knowing where you are going, setting out the

long-term aspiration of the organisation (Phaal and Muller 2009).

31

2.2.2 Roadmapping process

The roadmapping process focuses on a sharing of perspectives, involving

interaction between people, leading to communicate, acquiring new

understanding, insights, creativity and learning (Phaal et al. 2005). However, the

roadmapping process is different from one company to another (Phaal et al.

2004b, Groenveld 2007). According to Groenveld (2007), this is because

companies serve different markets and have different cultures. Furthermore,

according to Phaal et al. (2004b), the most suitable roadmapping process for a

company depends on many factors. For instance, it depends on the level of

available resources, such as people and time, on the issues to be addressed,

such as purpose and scope, on available information, such as market and

technology, and on other relevant processes and management methods, such as

new product development, project management and market research (Phaal et al.

2004b).

Albright and Kappel (2003) define the roadmapping process in a concise way.

The process includes initiation, maintenance and restarts if required. Similarly,

Phaal et al. (2003) identify three roadmapping phases: planning, facilitated

roadmapping workshop(s) and roll-out. Alternately, McCarthy (2003) adds two

more phases to the roadmapping process that consists of team formation, focus,

technology or workflow analysis, implementation and review.

In particular, from a software development perspective, roadmapping typically

relates to products, and the roadmapping process is defined as follows in the

related literature. Lehtola et al. (2005) describe a three-phase roadmapping

process including phases such as preparation, approval and communication. In

contrast, van de Weerd et al. (2010) define the roadmapping process as

consisting of theme identification, core asset identification, and roadmap

construction. In addition, Vähäniitty et al. (2002) propose a four-step model

especially for creating and updating product roadmaps. These steps are as

follows: 1) Define the strategic mission and vision of the company, and outline the

product vision, 2) Scan the environment by identifying major trends, 3) Revise and

distil the product vision as product roadmaps, and 4) Estimate the product life

cycle and evaluate the mix of development efforts planned. The steps in the model

should be performed periodically in order to adjust the roadmap to new information

and changing market situations. Smaller updates to the roadmaps are suggested

to ensure up-to-date information (Vähäniitty et al. 2002).However, unlike others,

Lehtola et al. (2005) keep the release roadmapping process as distinct from

product roadmapping. It is proposed to consist of data collection, feature

prioritisation, release planning and release roadmap validation. Similarly, van de

Weerd et al. (2010) keep the requirements management and release planning as

distinct from product roadmapping. The requirements management consists of

gathering, identifying, and organizing requirements. The release planning includes

requirements prioritization, requirements selection, release definition, release

validation, launch preparation and scope change management.

32

According to Corner et al. (2007), there are three different approaches to

creating roadmaps: 1) a central process (built by a central group, using information

collected across the enterprise), 2) a workshop approach (built in a series of

workshops with different groups of stakeholders), and 3) a distributed approach

(built by each contributing organisation, working to enterprise guidelines). These

approaches are defined according to (Cosner et al. 2007) as follows:

In the central process, the team builds all the roadmaps using information

provided by the business unit content owners. The team meets with the

stakeholders to obtain and understand the planning data. Then, the team creates

the roadmaps and distributes them to the business units for information. So, the

roadmaps are produced with consistent content and format, and they are used for

creating summary roadmaps that cut across the different business units. With the

help of this process synergies between the roadmaps are easier to find.

In the workshop approach, roadmaps are produced in collaborative sessions

with the business-unit content owners, and it is facilitated by the enterprise team.

The enterprise team conducts a series of workshops in each business unit. In the

beginning, the workshop is tutorial in nature, and focuses on the roadmap’s

purpose, structure and content. Afterwards, the central team and the business unit

participants work together to produce the business unit’s roadmaps, using the

information that the participants brought to the meeting.

In the distributed approach, the individual business-unit and functional content

owners create the roadmaps in a way that subsequent integration is enabled

based on guidelines provided by the enterprise team. A small number of people

from each participating organisation own and manage the process. They are also

responsible for training and supporting the participants in the business units, who

create and maintain the roadmaps. The approach promotes a sense of ownership

of the roadmaps by the business units, but it also leads to major differences in

roadmap content, format, and quality.

2.2.3 Roadmapping participants

The roadmapping process gathers together stakeholders from different functions

of the organisation or from different organisations (e.g. Li and Kameoka 2003,

Lehtola et al. 2005). Thereafter, a roadmapping team is formed from the gathered

stakeholders. The team shares information and perspectives to make decisions

that are then presented in a roadmap (Lehtola et al. 2005). According to McCarthy

(2003), only the roadmapping team participates in the roadmapping process, but

support from management is needed regarding personnel and budget

investments. The team should be formed at the beginning of the roadmapping

process, including R&D and technology management personnel, members from

business development, representatives of finance, and core staff members from

other functions. The first task of the team is to establish a common understanding

of the process and the terminology to be used. After that, the team should begin to

develop a detailed analysis of the process, and to decide on the factors and

33

metrics required for the process evaluation. The roadmapping team is also

responsible for analysing the required technologies as well as implementing and

reviewing the roadmaps (McCarthy 2003).

Similarly, Groenveld (2007) proposes that the roadmapping process should be

started with a small roadmapping team, in which marketing, product management,

research, development, and engineering teams participate. But later, the team

looks for a leader who should become the owner of the drafted roadmaps. The

owner is responsible for the maintenance of the roadmaps and for the initiation of

appropriate updating actions as well as for providing additional information when

needed. Accordingly, the roadmapping team guides the process and organises

workshops to ensure integral involvement of the organisation and input by the

organisation. The outcome of the workshops is used to prepare draft roadmaps, or

parts of them (Groenveld 2007). According Phaal et al. (2000, 2003), a

multifunctional team is needed in the roadmapping process in order to provide

multiple perspectives, such as commercial, technical, research, development,

manufacturing, marketing, and finance. In addition, Phaal et al. (2003) believe that

both the business owner and the process owner should participate in the

roadmapping process. The owners should be involved in the planning phase and,

thereafter, throughout the roadmapping process. It is proposed that the business

owner is responsible for the business outcome of the process, while the process

owner is responsible for the implementation of the roadmapping (Phaal et al.

2003, Wells et al. 2004). The owners are also responsible for selecting the

members of the roadmapping team, for solving issues regarding the application,

and for having knowledge of the roadmapping domain (Phaal et al. 2003).

In addition, a facilitator is proposed for managing and facilitating the

roadmapping process (Phaal et al. 2003, Wells et al. 2004). During the different

phases of the roadmapping, a facilitator can support and guide the roadmapping

team (Albright 2002). A facilitator plays an active role in appropriately scoping the

roadmap, forming the team, setting up a work plan, and assessing individuals with

their tasks in the larger effort (Albright and Kappel 2003). Accordingly, the

facilitator should also challenge assumptions and enforce rigour in the roadmap.

According to Albright (2002), the roadmapping process is best performed as a

cross-functional team led by an experienced facilitator. Through the roadmapping

process, the facilitator steers the team towards a realistic plan. The cross-

functional team includes many functions that contribute to the success of a

product line or business: central and regional marketing, product management,

R&D, manufacturing, services, etc. The purpose of the roadmapping team is to lay

out a possible future or multiple futures, set objectives, and define a plan to

achieve the objectives, as well as make sure that the required capabilities and

technologies are available at the right times (Albright 2002).

On the other hand, Jantunen and Smolander (2006) have identified three types

of roles that need to be present in a roadmapping process: contributor, controller,

and distributor. The contributor is the person who brings valuable information to a

roadmapping context. The controller ensures that roadmapping is done

systematically, and the distributor absorbs information in a roadmapping context

34

and disseminates the results of roadmapping to those who need to act upon it.

The contributor has similar tasks as the previously mentioned member of a

roadmapping team, and the controller acts in a quite similar role to the facilitator.

In addition, Van de Weerd et al. (2006, 2010) have differentiated between internal

and external stakeholder groups. The internal stakeholders are described as

follows: product management, company board, research and innovation, services,

development, support, and sales and marketing. The external stakeholders are

defined as follows: market (that is potential customers, competitors, and analysts),

partners (that is implementation, development, and distribution partners), and

customers.

2.3 Continuous planning

Planning in general is seen to consist of two things: actions and forecasts (that is

expected outcomes). Forecasting can be considered to relate to technology or

market trends, and planning to products, product lines, resources or the entire

company (Van de Weerd et al. 2010). Continuous planning is about implementing

planning practices continuously, not just as part of a top-down annual event (Hope

and Fraser 2003). Planning should be carried out continuously so that, at any

given time, the full scale of the development can be presented (Westkamper and

Von Briel 2001). Fitzgerald and Stol (2014) define continuous planning as a

holistic attempt involving multiple stakeholders from business and software

functions, whereby plans are dynamic open-ended artefacts that evolve in

response to changes in the business environment, and thus involve a tighter

integration between planning and execution. Furthermore, in software

development continuous planning refers to the organisational capability to conduct

planning in rapid cycles, which can be hours, days, or a few weeks or months

depending on the level of planning. According to Suomalainen et al. (2015),

continuous planning in a lean software development context refers to a planning

process that is dynamic and links strategy with execution through continuous

iterative cycles.

Already several years ago, it was claimed by Myers (1999) that continuous

planning is needed and that it would be increasingly important in the future. The

background was that continuous operations required an ability to produce open-

ended plans that develop and evolve within the dynamics of the environment.

Thus, incremental planning techniques were also needed in continuous planning

in response to changing situations. Myers’ (1999) Continuous Planning and

Execution Framework (CPEF) was developed so as to combine plan-generation

and plan-use capabilities so as to solve complex tasks in unpredictable and

dynamic environments. Based on CPEF, continuous planning was seen as

consisting of the two following aspects: firstly, plans should be seen as dynamic,

open-ended artefacts that evolve in response to an ever-changing environment

and that they remain viable and relevant. Secondly, users are seen as an

important part of the overall process, for example providing inputs that will

35

influence the types of plan that is generated, the number of options to consider,

failure assessments and plan-repair strategies.

Later on, after adopting agile and lean development practices, planning has

evolved towards constant planning in small increments and with more people than

with traditional software development methods (Shalloway et al. 2009). Also, one

reason why companies have adopted agile and lean practices is that annual

planning cycles result in longer product development projects than necessary

(Shalloway et al. 2009). According to Shalloway et al. (2009), a typical annual

planning cycle runs from July 1 to December 31, which means that the last six

months of the year is spent in collecting ideas and developing plans for work that

begins next year. Thereafter, all the ideas that came along need to wait until the

next planning cycle, next July 1. So, if planning is done annually, it means that the

entire time from idea to delivery takes an average of eighteen months. Instead, if

the planning is done quarterly, the average time the issues need to wait is only

one and a half months. Also, other industrial experiences of software development

companies (e.g. Lehtola et al. 2007, 2009) have shown that companies perform so

called open-ended planning, with a pre-defined rhythm. Then, planning is

undertaken at regular intervals, but the planning horizon for the future is not fixed.

The planning is usually performed from one to two releases ahead. The near

future is planned in more detail and the remote future is outlined, but in less detail.

Accordingly, open-ended planning is well suited to market-driven planning where

the decisions are trade-offs between now and later (Lehtola et al. 2007, 2009). But

still, in the software development context, planning is commonly episodic and

performed according to a traditional cycle usually triggered by annual financial

year-end considerations (Fitzgerald and Stol 2014). In fact, the problem related to

planning is that time is divided into a number of planning horizons, each lasting a

significant period of time (Fitzgerald and Stol 2014), and the continuity is not seen

throughout the organisation.

Today, as the transformation towards continuous practices is emphasized in

software development organisations, it is highlighted that organisations should

establish a continuous flow of software development (Fitzgerald and Stol 2014).

Accordingly, it should be leveraged as an end-to-end concept that also considers

other functions within an organisation, such as planning, deployment,

maintenance, and operation. Furthermore, Fitzgerald and Stol (2014) claim that,

rather than focusing on agile methods as such, a useful concept for assessing

continuity in software development comes from a lean approach called flow. They

clarify that, rather than a sequence of discrete actions performed by clearly distinct

teams or departments, the argument for continuous software development is to

establish a continuous movement, which closely resembles the concept of flow.

Flow is defined as a progressive achievement of tasks along the value stream so

that a product proceeds from design to end up in the hands of the customer

without stoppages, scrap or backflows (Womack and Jones 2003). However,

Fitzgerald and Stol (2014) point out that many traditional software development

environments are still operating according to the principles of batch-and-queue.

Despite the fact that the software development would be flowing to some degree,

36

the planning and deployment of features are still dealt with in batches, and not in a

continuous flowing movement (Fitzgerald and Stol 2014). Therefore, drawing on

the lean concept of flow, Fitzgerald and Stol (2014, 2015) identify an umbrella

term called Continuous * (continuous star) for a number of initiatives that are

termed continuous in the context of software development, continuous planning

being one of these initiatives. However, they do not define in detail to which level

of planning continuous planning relates and how continuous planning should be

conducted or what the mechanisms are for continuous planning, for instance.

Next, the levels of organisational planning in agile–lean organisation, identified

in Subchapter 2.1.3, are described in more detail. These levels of planning are the

following: strategic planning, business and financial planning, portfolio planning,

product planning, and release planning. In the forthcoming subchapters, these

levels of planning are discussed especially from the point of continuous planning

and the agile–lean organisation.

2.3.1 Strategic planning

A generic strategy process can be divided into four stages: analysis, development,

planning and implementation (Eppler and Platts 2009). Bryson (2011) defines

strategic planning as follows: ‘a deliberative, disciplined approach to producing

fundamental decisions and actions that shape and guide what an organisation (or

other entity) is, what it does, and why.’ Strategic planning means accounting for

where you are, where you want to be, how to get there and how these are

connected (Bryson 2011). It also includes the development of timelines, resource

allocations, responsibilities and deliverables (Eppler and Platts 2009). Mintzberg

(1994) claims that the most successful strategies are visions, not plans. Therefore,

strategic planning does not mean necessarily strategic thinking. After

understanding the difference between planning and strategic thinking, the

company can get back to the strategy-making process: capturing what the

manager learns from all sources. According to Mintzberg (1994), planning is about

analysis and breaking down a goal or set of intentions into steps, formalizing those

steps to be implemented almost automatically, and then articulating the

anticipated consequences or results of each step. Strategic planning, on the one

hand, can be applied to all kinds of activities. For example, conventional planners

organise planning and seeing how quickly it becomes formalised. Strategic

thinking, on the other hand, is about synthesis and involves intuition and creativity.

Strategic thinking results in an integrated perspective within the company, but not

too precisely an articulated vision of direction. Planning cannot generate

strategies, but it can make strategies operational (Mintzberg 1994). According to

Beeton et al. (2008) planning or, as they call it, roadmapping strategies can be

divided into two categories. Either the roadmapping can be exploratory, that is,

surveying future possibilities, or goal-oriented, that is defining strategies to realise

clearly defined future targets.

37

The strategy process varies across companies, but at a group level, it is

commonly a continuous and issue-driven process (Bogsnes 2008). The various

components of a given strategy commonly consist of specific routines and work

patterns that vary from firm to firm and between different types of firms (Nordqvist

and Melin 2010). Te Brömmelstroet (2013) states that strategic planning phases

can vary widely in terms of how they are organised: bottom-up or top-down.

However, all strategic planning processes can be seen as part of a multilevel

group process, in which planning actors work together towards a shared outcome.

Furthermore, Bogsnes (2008) states that, during the strategy process, the

strategic objectives are often defined in what is known as a strategy map.

Strategic themes are then commonly addressed as needed, or bi-annual executive

committee strategy sessions will be held. When there is a major change in an

organisation’s strategic direction, its strategic objectives are often renewed or

revised. Hence, the strategic plans should be living documents adjusting to

internal and external changes (Nordqvist and Melin 2010). However, Eppler and

Platts (2009) define the strategic planning process as one of the most demanding

tasks that managers are facing because of today’s complex markets. Thus, it is

extremely challenging to take into account, simultaneously, the developments of

technologies and societal trends, and the behaviour of competitors, customers and

regulators, all within a changing legal, environmental and financial framework.

Making sound and sustainable strategic decisions becomes even more

challenging when this is compounded with time pressures, market uncertainty and

constant distractions and internal tensions (Eppler and Platts 2009).

From an agile–lean organisation’s perspective, Koenigsaecker (2009) defines a

lean strategic organisational process in which strategic deployment is about

reviewing key strategic efforts for the next year, identifying how lean improvement

can be accelerated and enabling these efforts, setting true goals to support the

strategic direction, establishing the pace and pattern of improvement effort for the

year to achieve these goals, and then establishing a monthly review process.

According to Koenigsaecker (2009), strategic planning is typically done once a

year and is a learning experience by itself. Also, monthly strategy deployment

meetings are held to review progress, to create opportunities, and to share

knowledge about the lessons learned. The existence of monthly strategy-

deployment reviews helps to get a company thinking about how to make its work

fundamentally better with each passing month. Most companies commonly have a

monthly meeting to review performance that is financially driven. Even though the

meeting would be about a company’s direction, it is fundamentally focused on

modifications to the financial plan. Instead, a strategy deployment is a process that

focuses the enterprise on fundamental improvement and on learning from the on-

going improvement experience. By having the monthly strategy-deployment

reviews, it helps to get the enterprise thinking about making the work

fundamentally better every month.

38

2.3.2 Business and financial planning

Every business should have clearly defined objectives and parameters within

which to operate. The business planning process provides an opportunity to

assess the range of skills needed for a business to succeed and to identify

potential gaps within this range. Financial planning and the preparation of

marketing plans help to determine whether or not the objectives are achieved.

According to Leffingwell (2011), in most enterprises investment decisions occur at

the business unit level based on an annual or bi-annual budgeting process. During

the budgeting process, the amount of funds available for each business unit or

product to invest in development is determined (Leffingwell 2011). Financial

planning is commonly conducted by the financial and business management.

Wareham and Majka (2003) claim that continuous financial planning processes

are commonly based on goals formulated in a strategic plan, such as the

establishment of capital structures appropriate to an organisation’s current

competitive and strategic position. They also point out that continuous financial

planning should involve a capital allocation process that forces an organisation to

prioritise capital spending decisions in a way that will improve the services

provided while also protecting the long-term financial capacity (Wareham and

Majka 2003). Furthermore, marketing plans provide measurable targets to

compare and monitor progress as well as achievements on a continuous basis

(Butler 2012). According to Cosner et al. (2007) the budgeting process should be

aligned with the key milestones and events of an organisation’s roadmap. More

precisely, it should include the following three elements: firstly, the R&D categories

for development resources for each major capability of a roadmap, secondly,

categories of resources for operations that support different capabilities, and

thirdly, life-cycle funding plans that forecast necessary ‘ramp-ups’ as well as

simultaneous ‘ramp-downs’ in operational funding related to different types of

capabilities shown on a roadmap.

In relation to financial planning, Rickards and Ritsert (2012) have discussed

rolling forecasts and budgets. The most important characteristics of rolling plans

compared to traditional forecast and budgets are as follows:

 a constant horizon independent of the financial year

 periodicity (the rule of quarterly preparation)

 planning is more detailed for early periods and less detailed for later

periods

 planning focuses mainly on monetary and non-monetary business drivers

that influence monetary results (revenues and costs).

According to Rickards and Ritsert (2012), rolling forecasts and plans (relating

mainly to budgets) are commonly made over a time period typically spanning five

quarters (or thirteen months) to eight quarters (or twenty-two months).

Furthermore, they claim that many enterprises that utilise rolling forecasts and

budgets use them in combination with a traditional budget plan. This approach

determines using the lower boundary of five quarters (or thirteen months),

39

because at latest, at the beginning of the fourth quarter (or twelfth month),

forecasts and budget values must completely cover the next financial year. Rolling

revisions of plans ensure that the length of the time period covered is constantly

evaluated so that new information is integrated into plans. By doing this, more

detailed forecasts and budgets can be made for upcoming quarters, both in the

near and distant future.

Hope and Fraser (2003) have presented the ‘beyond budgeting’ management

model, in which they define budgeting in a much broader context than is

commonly understood. One of the highlights of this model is that it understands

budgeting, planning and improvement as a continuous and customised process,

not just as part of an annual event (Hope and Fraser 2003). The model includes a

set of coherent alternative processes supporting relative targets and rewards,

continuous planning, resources on demand, dynamic cross-company coordination

and an array of multilevel controls (Hope and Fraser 2003). The model is divided

into twelve principles: six leadership principles (including customers, organisation,

responsibility, autonomy, values and transparency) and six process principles

(including goals, rewards, planning, controls, resources and coordination).

The beyond budgeting principles are quite similar to lean principles (presented

in Subchapter 2.1) as they both advocate a customer-centric focus, systems

thinking and self-organisation and empowerment of people within an organisation

(Fitzgerald and Stol 2015). The beyond budgeting model emerged around the

same time as the agile methods and both concepts have similarities, with both

having an agile or adaptive perspective (Lohan et al. 2010, Lohan 2013). Lohan et

al. (2010) have explored the performance management of agile software

development (ASD) teams through the lenses of the beyond budgeting model; that

is, they have taken the model as a whole and explored its applicability within the

ASD domain. Lohan et al. (2010) have stated relating to planning that ‘Rather than

having a single top-down fixed plan that determines actions for the year ahead,

the devolution of the planning would allow for a continuous adaptation of short

term plans to meet strategic objectives.’ Agile development methods, for example,

using Scrum and eXtreme Programming (XP), foster an environment for

operational transparency through regular communication, improve accessibility to

project information and increase the developers’ continuing awareness of the work

that is going on around them (Chong 2005). Thus, ASD teams should have access

to all relevant information needed for them to operate efficiently, including also

access to other ASD teams’ velocity rates, burn down charts, product backlogs,

etc. operating within the organisation (Lohan et al. 2010).

According to Bogsnes (2008), similar to the rolling forecasts and plans

presented by Rickards and Ritser (2012), five-quarter rolling forecasts have

become standard in ‘beyond budgeting’ implementations. However, Bogsnes

(2008) clarifies that, even though a five-quarter rolling horizon is better than

stopping planning at the year-end, planning is still done in a fixed period. Hence, a

more dynamic planning process that is more event-based than calendar-driven

with no fixed update frequency and with no fixed time horizons should be

developed (Bogsnes 2008).

40

2.3.3 Portfolio planning

Portfolio management and planning is about selecting the most important products

to create and enhance. Especially from the software product management

perspective, according to Bekkers et al. (2010), portfolio management is strategic

information-gathering and decision-making across the entire product portfolio,

including the following focus areas: market analysis, product lifecycle

management, and partnering and contracting. Market analysis gathers decision

support information about the market needed to make decisions about the product

portfolio of an organisation. Information-gathering and key decision-making about

the product life and major product changes across the entire product portfolio are

made in product lifecycle management. Partnerships, pricing, and distribution

aspects are established through partnering and contracting (Bekkers et al. 2010).

Furthermore, from an agile–lean organisation’s perspective, Leffingwell (2011) has

pointed out that a set of strategic investment themes drive the vision of all

products, systems, and services and the responsibility of the investment decisions

generally lies with a portfolio management team.

Portfolio management in an agile–lean organisation starts by thinking about the

relationships between the portfolio’s needs and the development team’s needs

(Shalloway et al. 2009). Accordingly, the goal is to support a fast-flexible-flow of

work as well as to select projects that return the greatest value to the organisation.

Lean guides the organisation to select smaller projects to work on whenever

possible, which means that early in the planning, projects are defined as small as

they can possibly be. Hence, essential projects are being worked on all the time.

Agile–lean portfolio management brings value to the customers by prioritising

which business features to work on, based on business value and then managing

the project in a visible portfolio. This approach allows stakeholders and clients to

identify and prioritise features that create the highest return on investment (ROI)

for the business. In an agile–lean organisation, cross-functional teams can review

and break down business features and system dependencies in order to create

minimal marketable software solutions. The lean approach is a results-based,

validation approach unlike the traditional task-based and resource-driven

approach. Thus, status reviews are based on the validation of technical results,

instead of completed tasks (Shalloway et al. 2009).

Poppendieck and Poppendieck (2009) suggest a novel approach to lean

portfolio management to manage larger as well as more important projects and

initiatives. This approach is recommended in Ward (2007). The first thing to do is

to classify development efforts by type. The types may include, for example,

business feature upgrades, strategic business initiatives, infrastructure upgrades

and maintenance. The second step is to determine the cycle time (that is a time-

box) for each type of effort. After each type of effort has been time-boxed, a

schedule can be created that shows how many initiatives of each type you have

the capacity to take in a year. For example, the classification of effort may be

allocated as follows: two slots of six months each for strategic business initiatives,

41

twelve two-month-long slots for business feature upgrades a full year for the on-

going upgrade effort and twenty percentage capacity for other efforts including

maintenance. Based on this classification, one can see how much capacity is

needed for the year for medium and large requests and initiatives as well as the

staffing levels needed to provide that capacity. However, this approach does not

really support the continuous planning perspective.

2.3.4 Product planning

Product planning is an important part of the software engineering (SE) process, as

it is a method for planning and defining software product requirements based on

the market and needs of stakeholders. Software systems requirements

engineering (RE) is defined as a process of discovering a system’s purpose, by

identifying stakeholders and their needs, and documenting these in a form that is

adequate for analysis, communication, and subsequent implementation (Nuseibeh

and Easterbrook 2000). Product planning is also closely linked to RE, as it deals

with the different releases of each product (Jantunen and Smolander 2006). In a

product plan, the product is represented as product releases containing several

product features. According to Wiegers (2003), a product feature is a set of

logically-related requirements that provide a capability to the user and that enable

the satisfaction of a business objective. On the other hand, a requirement is a

statement of a customer need or objective. A requirement can also be a condition,

which a product must meet to satisfy such a need or objective. In other words, a

requirement is a property that a product must have to provide value to a

stakeholder. However, product planning or product roadmapping differs from RE in

that it is a process with long-lasting future activities, and in the product plan, high-

level features are presented within a timeline and scheduled for different releases.

In contrast, in RE, the features are analysed in more detail and defined as to what

they mean from the perspective of the product development project. Lehtola et al.

(2005) have also pointed out that targets for the release planning and the product

planning are quite the same, but the product plan is more high-level. The main

objective of the release plan is to inform stakeholders about scheduled future

releases. On the other hand, the objective of the product plan is to help product

managers create and maintain release plans, manage situations where the same

technical product is included in several products, and use R&D to identify needs

for research projects (Lehtola et al. 2005).

Product planning focuses on gathering information for a roadmap and creating

a roadmap for a product or product line and its core assets (Bekkers et al. 2010).

Therefore, a product roadmap is one of the main documents in product planning.

According to Bekkers et al. (2010), product planning in the software product

management context consists of three focus areas: roadmap intelligence, product

roadmapping and core asset roadmapping. Accordingly, roadmap intelligence

gathers the information needed for the decision support in order to create the

product roadmap. Product roadmapping is the actual creation of the product

42

roadmap itself. Core asset roadmapping is about planning the development of

core assets, for example, components that are shared by multiple products

(Bekkers et al. 2010).

A product plan, also known as the product roadmap, provides a forecast of

product family evolution over time and views the whole platform or relationships

between the products in a platform (Albright and Kappel 2003). Typically, product

roadmaps are developed, reviewed and improved iteratively. Often, this is

achieved through close human interaction, such as face-to-face meetings and

workshops with relevant stakeholders (Phaal et al. 2005). Product roadmaps are

owned by the business owner of the product, who is also responsible for gathering

all relevant stakeholders to obtain the needed information for the roadmaps.

Product roadmaps typically cover a scope of two to three years, during which time

they are frequently revised in order to ensure the currency of the documentation

(Tabrizi and Walleigh 1997, Lehtola et al. 2005). Documentation of features is an

important part of product planning, since accurate documentation ensures that the

plans can be read, analysed, redrawn, and validated (Nuseibeh and Easterbrook

2000). According to Lehtola et al. (2005), the information in the product roadmap

incrementally describes how the product and its business environment changes

yearly. The fields in the product roadmap define the high-level functionality of the

product and target customer group. The high-level product functionality is a

description of forthcoming releases with basic mandatory information. The

mandatory information includes the release goal and high-level features for each

release. In addition, release time, localization, platforms, and dropped topics, e.g.

features that are not supported in the subsequent versions of the product, are

recorded. The fields include information about positioning, market arguments, and

the geographical focus of the product for every year. This information is

represented with a few bullet points for each issue (Lehtola et al. 2005).

From the software product management perspective, the product roadmap

provides an overview of how a product is going to develop over the strategic time

frame of up to five years in terms of new releases or versions, their schedules, and

major themes (Kittlaus and Clough 2009). Accordingly, a roadmap usually shows

dependencies between products or platform technology. In some companies, the

roadmap may also include a rough financial picture, involving the expected

revenues and costs. The roadmap tends to be rather detailed and precise for the

short-term time frame, and the more it looks to the future, the less precise it tends

to be. The roadmap gives directions to both internal and external use. Internally,

the roadmap shows the relationship between product plans and financial forecasts

and the major themes and the requirements governing the plan. Externally the

roadmap demonstrates the viability of a product as well. The roadmap is important

especially for a product manager to reach an agreement within the company

regarding the longer-term direction and priorities (Kittlaus and Clough 2009).

Commonly, the product roadmap is updated as part of the company’s planning

cycle (Kittlaus and Clough 2009), which in agile software development planning

should be constant and in small increments (Shalloway et al. 2009).

43

Pichler (2010) describes product roadmapping from a more iterative, agile

software development perspective. Accordingly, a product roadmap allows for

capturing the goals of upcoming product versions. The product roadmap is a

planning artefact showing how the product evolves across product versions and

facilitating discussion between the Scrum team and stakeholders. A product

roadmap helps organisations to coordinate the development and launch of

products in the product roadmap or product portfolio. The product roadmap should

be kept simple and focused on essentials. It should include the following

information: the projected launch date for each version, the target customers and

their needs, and the top three to five features. Product roadmaps are living

documents since they evolve and change. The product roadmap should be

created once the product has successfully been introduced into the marketplace. It

should be created together with all the relevant people, for example, including the

Scrum team, the person in charge of the product portfolio, representatives of other

product development teams, and stakeholders. Furthermore, the roadmap should

be created for a realistic time frame focusing on the next six to twelve months

rather than predicting the next two to three years (Pichler 2010).

2.3.5 Release planning

Release planning is a process of planning for the next release of an evolving

product (Ruhe 2010). According to Bekkers et al. (2010), release planning

includes the software product management capabilities needed to successfully

create and launch a release, which includes requirements prioritisation, release

definition, release definition validation, scope change management, build

validation, and launch operation. In requirements prioritisation, requirements are

identified and organised. In release definition, the requirements to be implemented

in the next release are selected based on the prioritisation, and the release

definition is created. The development department performs the release definition

validation before the release is built. The different kinds of scope changes that can

occur during the development of a release are handled in scope change

management. After realising the release, the development performs the build

validation that focuses on validating the build release before it is launched. Internal

and external stakeholders are prepared for the launch of a new release with

launch preparation when issues from communication to documentation, training,

and preparations for the implementation of the release are addressed (Bekkers et

al. 2010).

Shalloway et al. (2009) present a continuous planning process pertaining to

releases, especially for agile–lean organisations. Accordingly, release planning is

a continuous and transparent activity that the whole organisation can observe.

Anyone can contribute to the discussion about the value of items in the plan and

the effort required in producing them. The agile–lean product portfolio serves as a

transparent focal point for the business to sequence releases of minimum

marketable features (MMF). During release planning, a product vision is

44

continuously decomposed while focusing on those features with greater priority (or

value) to the business. Just-in-time methods are used to prevent wasted effort on

lower-level or unneeded features, which means that the features are expanded

just as much as is needed according to their build timetable. The release plan

enables the team to look ahead so that activities requiring major effort can be

broken down into smaller segments (right-sized work) and balanced against

possibly upcoming higher priority features. A good release plan provides a clear

visual control and removes the need to look too far ahead and work too far in

advance of larger features. Figure 7 illustrates continuous release planning and

the associated activities as presented by (Shalloway et al. 2009).

Figure 7. Continuous release planning, adapted from Shalloway et al. (2009).

According to Shalloway et al. (2009), continuous release planning starts with a

vision provided by the product champion, who can make decisions regarding both

the customer and the business value priority. The vision should be understood and

reviewed by the delivery team and revised as market conditions change priorities.

The vision should be visible (that is transparent so that everyone can access

them) and reviewed as part of an iteration’s planning session. Target dates can be

determined by looking at the estimates in relation to the team’s velocity. Short

cycle times of one to four weeks enable quick feedback on the rate of completion

and how well the customer needs are met. During each iteration, the team should

focus on coding only the most important features at any time. It provides a clear

picture of business value (that is features) evaluated against system constraints

(that is technical stories) and enables high-value decisions regarding minimum

releasable features.

According to Heikkilä et al. (2013), a continuous release planning process in a

large agile–lean organisation is characterised by regular scoping and prioritisation

of decisions and by incremental elaboration of features. Features are initiated

Vision / Initiative

Business capability

Feature

Story

Task

Identifying customer

needs

Prioritising for value

What we have to provide

the business?

What is the minimum

required to realise value?

Minimum marketable

business capability

Minimum marketable

feature

Release plan

When we need to provide it?

MMF

MMF

MMF

MMF

MMF

MMF

High Low

People, process,

technology

Mitigate risk and uncertainty

Maximise business ROI

Manage effort by team capacity

Market segmentation

Regulatory compliance

Product line differentiation

Refine as

knowledge

increases

Refine as

knowledge

increases

45

based on the availability of resources and the priority of the feature. The release

planning is a collaborative action in which developers (that is the team) participate

in the early phases of the feature elaboration. The work is divided among three

work items: features, epics, and user stories. Epics are split from features and

user stories are split from epics. Thus, according to Heikkilä (2010), plans for a

release project can be seen on two levels or time horizons: roadmaps or PSIs.

Roadmaps contain epics (i.e. epics form high-level functional goals for the

products) and features, which show the tentative content of future releases. The

PSIs are internal releases of the product, which contain a subset of the intended

features of the final, external release of the product.

2.4 Summary of the related work

Agile and lean development practices are seen to complement each other; they

share similarities but also differences. Agile software development focuses on the

software development function, whereas lean development focuses on executing

processes efficiently regarding the whole process from customer to delivery.

Agility is about being able to create and respond rapidly to changes (Highsmith

2002a) and lean is about creating a change-tolerant organisation that can survive

and succeed in times of uncertainty, change and complexity (Charette 2003).

Despite the wide adoption of these practices, it is realised that the companies are

going further with their practices towards continuous deployment. All of these

practices, agile, lean and continuous deployment, change among other things

scheduling and planning. Therefore, the main aim of this research is to study the

change in planning, starting with roadmap-based planning and going towards

continuous planning.

Roadmapping is a process of creating, reviewing and revising roadmaps. It is a

planning and forecasting process with future activities. It is also a decision-making

or design process, in which roadmaps are seen as either exploratory; surveying

future possibilities, or goal-oriented; or defining strategies to realise future targets.

Roadmaps can be illustrated with various forms or different taxonomies, but they

commonly answer a set of ‘why-what-how-when’ questions that generally relate to

markets, products, and technologies. In this thesis, the roadmap structure is

presented with a multi-layered time-based chart that includes different layers of

knowledge. The roadmapping process is different between companies, and thus

there is not just one process model to be adopted. This is because companies

serve different markets and have different cultures, but also because the process

depends on the level of available resources, issues to be addressed, available

information, and other relevant processes and management methods. Therefore,

the roadmap process should be designed based on the company’s needs and the

context in which it operates. Based on the related work, the roadmapping process

commonly involves three phases. The first phase is the initiation of the process

that involves activities such as planning and preparation. The second phase is the

actual workshop(s), which involve the maintenance and the approval of the

46

roadmap. The third phase involves communication and implementation based on

the roadmap decisions made in the workshop(s). Also, the third phase may involve

a restart of the roadmapping process. The roadmapping process involves three

main roles: owner, facilitator, and the member of the roadmapping team. The

process is commonly conducted by a roadmapping team, which is formed by an

owner and assisted by a facilitator. The roadmapping team is responsible for

planning, creating, maintaining, and possibly redrawing the roadmaps. The owner

is responsible for selecting the members of the roadmapping team and guiding the

team through the workshops. In contrast, the facilitator is responsible for arranging

practical matters, for example, materials and facilities for the roadmapping

workshops, in order to enable the roadmapping process. However, in the case of a

small roadmapping team, the facilitator might not be needed, and hence the

owner, for instance, can conduct the facilitator’s tasks.

Continuous planning is about implementing planning practices continuously,

instead of a traditional annual top-down event, so that at any time the full scale of

the development can be presented. Similarly with roadmapping, it involves

multiple participants from business and software functions. But plans are seen as

more dynamic open-ended artefacts that evolve in response to changes in the

business environment. Thus, continuous planning involves a tighter integration

between planning and execution. Furthermore, in software development,

especially in the agile and lean context, continuous planning refers to the

organisational capability to conduct planning in rapid cycles, which can be hours,

days or a few weeks or months depending on the level of planning. The levels of

planning (or layers of knowledge as referred to in the roadmap structure) are in the

current literature divided based on strategic planning, business and financial

planning, portfolio planning, product planning, and release planning (presented in

Subchapter 2.3).

Based on the related work, often the responsibility for planning is moved to the

agile teams, and thus planning mainly relates to iterations or releases. The other

levels of planning, especially, portfolio, business, financial, and strategic planning,

are outside the concern of most agile teams and hence are not defined with the

same level of detail in the related literature either. Therefore, it is seen that the

agile-team-level planning is necessary but not sufficient; hence, the real goal

should be to create enterprise agility and to look at the organisation’s entire value

stream of planning. Based on the related work and the models presented in the

current literature, it is evident that continuous planning requires a wider

perspective than currently considered. It should be examined from a broader, even

a more continuous perspective than currently exists. It is realised that continuous

planning is not only a project- or team-level activity, but involves higher-level

planning as well, for example, strategic and financial planning. Similar to the

findings of this related work, Fitzgerald and Stol (2014) also state that the only

forms of continuous planning have emerged from agile development approaches

and are related to sprint iterations, or at best, software releases. Thus, it is evident

that continuous planning is not widespread throughout organisations in the context

of software development.

47

Figure 8 summarises the related work presented in Chapter 2. The figure brings

out the current planning practices presented in the related work with the help of a

roadmap structure. The horizontal axis presents the time frame of the plan, and

the vertical axis presents the level of planning together with the main participants.

Accordingly, the levels of planning involve the following participants: agile team,

product management, portfolio management, business and financial management,

and executive committee. The plans are created within the time frame, from days

to eighteen months as illustrated in the figure. Release planning is commonly

conducted within less than a three months’ time frame, whereas product planning

is conducted within a three- to six-month time frame. Portfolio, business and

financial planning is done within a six-months to one-year time frame and strategic

planning is done within the time frame of one year to eighteen months.

48

Figure 8. Summary of the literature findings.

P
u

rp
o

s
e
:

•
S

tr
a

te
g

ic
 o

b
je

c
ti
v
e

s

a
re

 d
e
fi
n

e
d

 in
to

 a

s
tr

a
te

g
y

m
a

p

R
e

la
te

s
 t

o
:

•
In

v
e

s
tm

e
n
t
th

e
m

e
s


in

v
e

s
tm

e
n
t

p
ri
o
ri
ti
e

s
 b

a
s
e

d
 o

n

th
e
 b

u
s
in

e
s
s

s
tr

a
te

g
y

T
a

s
k

s
:

•
A

n
a
ly

s
is

,

d
e
v
e

lo
p
m

e
n
t,

p
la

n
n

in
g
,

im
p

le
m

e
n
ta

ti
o

n
 o

f

s
tr

a
te

g
ic

 o
b
je

c
ti
v
e

s

•
D

e
c
is

io
n
s
 a

n
d

a
c
ti
o

n
s
 s

h
a
p

in
g
 a

n
d

g
u
id

in
g

o
rg

a
n

is
a

ti
o

n
’s

p
u
rp

o
s
e

,
g

o
a

ls
,

a
n

d

re
a
s
o

n
s
 a

n
d

c
o

n
n

e
c
ti
o

n
s

b
e
tw

e
e
n

 t
h

e
m

•
D

e
v
e

lo
p
in

g

ti
m

e
lin

e
s
,

re
s
o

u
rc

e

a
llo

c
a

ti
o

n
s
,

re
s
p

o
n

s
ib

ili
ti
e

s
 a

n
d

d
e
liv

e
ra

b
le

s

E
x

e
c

u
ti

v
e

c
o

m
m

it
te

e

P
u

rp
o

s
e
:

•
M

a
k
in

g
 f

in
a
n

c
ia

l

fo
re

c
a

s
ts

 a
n
d

 p
la

n
s

R
e

la
te

s
 t

o
:

•
D

e
te

rm
in

in
g
 t

h
e

a
m

o
u
n

t
o

f
fu

n
d

s

a
v
a

ila
b
le

 f
o

r
e

a
c
h

b
u
s
in

e
s
s
 u

n
it
 o

r

p
ro

d
u

c
t

T
a

s
k

s
:

•
A

lig
n
in

g
 b

u
d

g
e

ti
n

g

w
it
h

 t
h

e

o
rg

a
n

is
a

ti
o

n
’s

 k
e

y

m
ile

s
to

n
e

s
 a

n
d

e
v
e

n
ts

B
u

s
in

e
s

s
 &

F
in

a
n

c
ia

l

m
a

n
a

g
e

m
e

n
t

P
u

rp
o

s
e
:

•
M

a
n

a
g

in
g
 a

 p
o
rt

fo
lio

o
f
b

u
s
in

e
s
s
 n

e
e
d
s

R
e

la
te

s
 t

o
:

•
In

v
e

s
tm

e
n
t
th

e
m

e
s


p

o
rt

fo
lio

 v
is

io
n
 

e
p
ic

s
 

re
le

a
s
e

s

T
a

s
k

s
:

•
S

e
le

c
ti
n

g
 t

h
e

p
ro

d
u

c
ts

im
p

le
m

e
n
ti
n

g
 t
h

e

c
o

m
p

a
n

y’
s
 v

is
io

n

•
P

ri
o

ri
ti
s
in

g
 a

n
d

d
e
c
o

m
p

o
s
in

g
 o

f

in
c
re

m
e

n
ta

l
n

e
e

d
s

a
c
ro

s
s
 t
h

e

o
rg

a
n

is
a

ti
o

n

•
P

la
n
n

in
g
 f

o
r

re
le

a
s
e
s

•
In

fo
rm

a
ti
o

n

g
a
th

e
ri
n

g
 a

n
d

d
e
c
is

io
n
 m

a
k
in

g
 w

it
h

fo
llo

w
in

g
 f

o
c
u

s

a
re

a
s
:
m

a
rk

e
t

a
n
a

ly
s
is

,
p

ro
d

u
c
t

lif
e

c
y
c
le

m
a

n
a

g
e

m
e

n
t,

 a
n
d

p
a
rt

n
e
ri
n

g
 a

n
d

c
o

n
tr

a
c
ti
n

g

P
o

rt
fo

li
o

m
a

n
a

g
e

m
e

n
t

P
u

rp
o

s
e
:

•
M

a
n

a
g

e
m

e
n
t
a

n
d

e
v
o

lu
ti
o

n
 o

f
th

e

re
le

a
s
e

d
 p

ro
d

u
c
t
o

r

s
y
s
te

m

R
e

la
te

s
 t

o
:

•
T

im
e

-b
o
x
e

d

it
e

ra
ti
o

n
s
 a

n
d

m
ile

s
to

n
e

s

T
a

s
k

s
:

•
R

e
le

a
s
in

g
 i
n

fi
x
e

d

d
a
y
-t

im
e

 b
o
u

n
d

a
ri
e

s

•
D

e
fi
n

in
g
 s

y
s
te

m

fe
a
tu

re
s

•
P

ro
d
u

c
t
s
ta

ff
in

g

•
O

rg
a
n

is
in

g
 c

ro
s
s
-

fu
n
c
ti
o

n
a

l
te

a
m

s

•
D

e
liv

e
ri
n
g

in
c
re

m
e
n
ta

l
e
n
d

-t
o
-

e
n
d

 f
e

a
tu

re
s

•
M

a
n

a
g

in
g
 t

h
e

 v
a

lu
e

s
tr

e
a
m

•
B

ri
n

g
in

g
 v

is
ib

ili
ty

 t
o

im
p

e
d

im
e

n
ts

P
ro

d
u

c
t

m
a

n
a

g
e

m
e

n
t

P
u

rp
o

s
e
:

•
M

a
n

a
g

e
m

e
n
t
o

f

re
le

a
s
e

,
it
e

ra
ti
o

n

a
n
d

 c
u

rr
e

n
t

d
a

y

R
e

la
te

s
 t

o
:

•
E

p
ic

s
 

fe
a
tu

re
s
 

u
s
e

r
s
to

ri
e

s

T
a

s
k

s
:

•
D

e
fi
n

in
g
 s

c
o

p
e

,

s
c
h

e
d

u
le

,
a

n
d

re
s
o

u
rc

e
s
 f
o

r
a

p
ro

je
c
t

•
D

e
fi
n

in
g
,

b
u

ild
in

g

a
n
d

 t
e

s
ti
n

g
 u

s
e

r

s
to

ri
e

s

•
M

a
n

a
g

in
g
 t

h
e

b
a
c
k
lo

g
 o

f
u

s
e

r

s
to

ri
e

s

•
D

e
liv

e
ri
n
g
 f

u
lly

te
s
te

d
 a

n
d

in
te

g
ra

te
d
 c

o
d
e

•
D

e
liv

e
ri
n
g

 b
u
s
in

e
s
s

n
e
e

d
s
 i
n

c
re

m
e

n
ta

lly

•
A

c
c
e

p
ta

n
c
e

 t
e

s
t

d
ri
v
e

n
 d

e
v
e

lo
p
m

e
n
t

a
n
d

 r
e

fa
c
to

ri
n

g

•
P

ro
je

c
t

d
e
v
e

lo
p
m

e
n
t
a
n
d

d
e
p

lo
ym

e
n
t

A
g

il
e
 T

e
a
m

1
2
 t

o
 1

8
 m

o
n

th
s

6
 t

o
 1

2
 m

o
n

th
s

3
 t

o
 6

 m
o

n
th

s
1

 d
a

y
 t

o
 3

 m
o

n
th

s

49

3. Research design

Empirical research is characterised by an implicit or explicit research design;

hence, this chapter introduces the research design of the study (Yin 1994). The

research design specifies the logical sequence that connects the empirical data to

the research questions of the study and, eventually, to its conclusions. Hence, the

purpose of the research design is to avoid a situation in which the evidence does

not address the initial research questions (Yin 1994). Therefore, the empirical

research of this thesis was carefully planned and implemented. Firstly, the

research approach is described, and then, the research methods used are

defined. Thereafter, the case companies are presented together with the case

selection criteria and description. Then, the research process together with data

collection methods are presented, and finally the data analysis methods are

defined.

3.1 Research approach

The research approach involves the major decision on how to conduct the

research. According to Creswell (2003), there are three different research

approaches: qualitative, quantitative and mixed methods. The qualitative data are

descriptive, and capture as well as communicate experiences of the field of study.

In other words, qualitative data tell a story about the researched phenomenon. In

addition, qualitative research relies on logical conclusions on the gathered data. In

contrast, quantitative data seek numerical responses, and thus rely on quantitative

measurement and mathematical models (e.g. Yin 1994, Patton 2002). The mixed

method research approach employs data collection and analytical techniques

associated with both qualitative and quantitative research methods by using

multiple data collection methods (Easterbrook et al. 2008).

The larger philosophical stances should be made explicit by the researchers

since that information helps to explain the decision for the chosen research

approach (Creswell 2003). Different people make different assumptions about

scientific truth, and therefore it is vital to define how the assumptions are arrived at

through scientific investigation (Easterbrook et al. 2008). In order to understand

the different philosophical stances, it should be noticed that philosophers make a

distinction between epistemology (the nature of human knowledge, and how we

obtain it) and ontology (the nature of the word irrespective of our attempts to

50

understand it) (Walsham 1995, Easterbrook et al. 2008). Researchers also make

claims about axiology (values affecting knowledge), and methodology (the process

of studying knowledge) (Creswell 2003). There are four dominant philosophical

stances adopted by scientists (Creswell 2003), as presented in Table 1.

Table 1. Dominant philosophical stances, based on (Creswell 2003).

Positivism Constructivism

 Determination

 Reductionism

 Empirical observation and

measurement

 Theory verification

 Understanding

 Multiple participant meanings

 Social and historical construction

 Theory generation

Advocacy/Participatory Pragmatism

 Political

 Empowerment issue-oriented

 Collaborative

 Change-oriented

 Consequences of actions

 Problem-centred

 Pluralistic

 Real-world practice-oriented

The author adopts the constructivist philosophical stance. The stance that the

author adopts affects which methods the author believes lead to acceptable

evidence in response to the set research questions. Constructivism, also knowns

as interpretivism (Yin 2003), rejects the idea that scientific knowledge can be

separated from its human context (Easterbrook et al. 2008). Instead, constructive

research highlights that software development is made and enacted by people

with different values, expectations, and strategies, as a result of their different

frames of interpretation (Vidgen and Wang 2009). The author concentrates less on

verifying theories and more on understanding how different people make sense of

the world and how they assign meaning to actions, which is typical of

constructivists. Theories may emerge from the process, but they are tied to the

context being studied (Easterbrook et al. 2008). Furthermore, the author prefers to

use research methods that collect rich qualitative data about human activities from

which local theories might emerge.

According to Creswell (2003), in a qualitative approach the researcher often

makes knowledge claims based on constructivist perspectives (that is the multiple

meanings of individual experiences, meanings that are socially or historically

constructed, with the aim of developing a theory or pattern) or

advocacy/participatory perspectives (that is political, issue oriented, collaborative,

or change-oriented), or both. The researcher may also use strategies of inquiry

such as narratives, phenomenologies, ethnographies, grounded theory studies, or

case studies. The researcher collects open-ended, emerging data with the

51

intention of developing themes from the data (Creswell 2003). In contrast, in a

quantitative approach, the researcher primarily uses post-positivist claims for

developing knowledge (that is cause and effect thinking, reduction to specific

variables and hypotheses and questions, use of measurement and observation,

and the testing of theories), employs strategies of inquiry such as experiments and

surveys, and collects data on predetermined instruments that yield statistical data

(Creswell 2003).

In this thesis, the research is conducted as empirical research carried out as

case study research. All four philosophical stances presented can be applied to

case studies; however, different stances affect the way in which cases are

selected and data analysis is performed (Easterbrook et al. 2008). Constructivists

use exploratory case studies to investigate the differences in culture and

perspective in various settings, as was done in this thesis. In contrast,

confirmatory case studies draw on the positivist perspective of theory-driven

research, though positivists also use exploratory case studies to develop new

theories (Easterbrook et al. 2008). Thus, case studies can be based on both

quantitative and qualitative evidence (Yin 1994, Creswell 2003). In case study

research, data are collected through such methods as inquiries, interviews,

observation, and through the use of documents and artefacts (e.g. Yin 1994,

Patton 2002). In this thesis, both qualitative and quantitative research approaches

are used, since the empirical data are collected with a questionnaire study,

interviews, and through the use of company-specific internal memos and material.

However, as the sampling of the questionnaire study is quite small, the research

focuses mainly on the qualitative data.

3.2 Research methods

The qualitative research data in this thesis are collected by using a case study

research method. A case study is, according to Yin (1994), ‘an empirical inquiry

that investigates a contemporary phenomenon within its real-life context,

especially when the boundaries between the phenomenon and context are not

clearly evident’. Accordingly, a case study is both descriptive and interpretive by

nature, and it allows an investigation to retain holistic and meaningful

characteristics of real-time events such as individual events and organisational

and managerial processes. According to Yin (1994), the descriptive need for case

studies arises out of the desire to understand complex social phenomena.

Furthermore, a case study is preferred when the researcher has little control over

the events, and when ‘how’, ‘why’, and explanatory ‘what’ questions are posed

(Yin 1994). Easterbrook et al. (2008) divide case studies into two categories:

exploratory case studies and confirmatory case studies. Accordingly, exploratory

case studies are used as initial investigations of some phenomena to drive new

hypotheses and to build theories, and confirmatory case studies are used to test

existing theories. However, according to Darke et al. (1998), case study research

52

is used to achieve various research aims, for instance to provide descriptions of

the phenomena, to test a theory, and to develop a theory (Darke et al. 1998).

The case study research method was chosen for this thesis because the aim of

the research was to provide descriptions of the phenomena by identifying general

practices used by companies to conduct continuous planning and roadmapping.

Also, one of the reasons for selecting a case study research approach was that

the literature on continuous planning and roadmapping was not yet well

formulated, and practical experience from the field of research was difficult to find.

As Järvinen (2001) emphasises, case studies make it possible to examine very

complicated circumstances and, in this way, to gather new information for creating

new knowledge. Also, according to Yin (2003), the case design is eminently

justifiable if the case represents (a) a critical test of existing theory, (b) a rare or

unique circumstance, or (c) a representative or typical case, where the case

serves a revelatory or longitudinal purpose. So, the use of case research was

selected to provide experiences and to gather new information and gain an

understanding of complicated circumstances, while it is emphasised that the

environments in each organisation are unique depending on, for example, cultural,

historical, and technical issues and backgrounds, production and strategic

processes. Furthermore, according to Easterbrook et al. (2008), case studies are

especially appropriate when the context is expected to play a role in the

phenomena (for example, if the stresses of a real project affect developers’

behaviour), or when effects are expected to be wide-ranging or are expected to

take a long time (for example weeks, months, or years) to appear, as was the

case in this research. Also, the case study methodology is claimed to be well

suited to software engineering research, as it studies contemporary phenomena in

their natural context (Runeson and Höst 2009).

Case study research can contain both single- and multiple-case studies. A

single-case study is used when a well-formulated theory is tested, or when there is

the possibility to have access to an extreme or unique case that is commonly

difficult to approach (Yin 1994). Multiple-case studies are used either when the

results of the earlier case study are verified, that is similar results are predicted, or

when contrasting results are obtained, but for predictable reasons (Yin 1994).

Furthermore, according to Easterbrook et al. (2008) case study research uses

purposive sampling rather than random sampling, since the aim is to select the

cases most relevant to the research proposition. Sometimes it is sufficient to

identify a typical case to gain more insight into a common situation, but multiple-

case studies usually provide greater validity (Easterbrook et al. 2008). In this

thesis, the multiple-case studies approach is used, since the theory on continuous

planning and roadmapping is not yet well formulated, and practical experiences

from the field of research are difficult to find. Therefore, the purpose is to fill the

gaps found in the literature, and thereafter, to create a theory relating to

continuous planning and roadmapping practices and processes based on the case

descriptions. To verify the theory based on the case descriptions, the experiences

of several companies should be gathered and analysed.

53

3.3 Case selection and description

The research included three global ICT companies. These case companies were

selected because they were large companies with multiple levels of planning,

which enabled planning practices to be studied throughout the organisation; all the

way from strategic planning through to business and financial planning to product

and release planning. Also, these case companies were selected because they

had transformed their organisational practices towards agile and lean software

development. The companies had started with the agile method, more precisely

with the Scrum method (e.g. Abrahamsson et al. 2002), and then, later on,

complemented it with the lean approach (e.g. Middleton et al. 2005). These

companies had also recognised the importance of continuous software

development, and were moving towards the practices of continuous deployment

and planning. In addition, one of the reason for selecting these case companies

was they were easily accessible through VTT’s (VTT Technical Research Centre

of Finland Ltd) research projects, namely the Embedded Systems Engineering in

Collaboration (MERLIN) project of Information Technology for European

Advancement (ITEA) (2004–2007), Cloud Software Program (2010–2013), and

Need for Speed (N4S) program (2014–2017) of Digile (Finnish Strategic Centre for

Science, Technology and Innovation). The case companies together with the data

collection methods are shown in Table 2.

Table 2. Case companies.

Case

ID

Number of

employees

Industry Data

collection

method

Number of

interviews

Role of the

interviewee

A 1800 IT, products

and

services

Interviews,

series of

meetings

with the

case

company

representati

ves, and

analysing

company’s

internal

data

1 in 2011 Head of quality and

environment

9 in 2014-

2015

Scrum master,

Team leader/project

manager, Product

manager, Sales

director, President of

a business segment,

Vice president of a

business area,

Quality managers

(2), Business

developer

54

B 1000 Data

security

An

interview

and

analysing

company’s

internal

data

1 in 2011 Project manager

12 in 2014 Product marketing

manager (2), Chief

strategy officer

(CSO), Senior

product manager

(2), Product

marketing

management (2),

Director of product

management (3),

Executive vice

president, Vice

president of R&D

C 110 000 Communi-

cation

equipment,

software,

and

services

Interviews 3 in 2015 Line manager,

Domain manager,

Product owner

3.3.1 Case A

Case company A is a global company from Finland with roughly 1800 employees

that operates in eight countries, providing cutting-edge technological solutions to

the automotive and wireless industries. In the Wireless Business Segment (the

case context), the company offers products and solutions based on their own

platforms for defence, public safety and other authorities markets, Internet of

Things (IoT) markets as well as for industrial use.

3.3.2 Case B

Case company B is an online security and privacy company from Finland with

approximately 1000 employees at twenty offices around the world. The company

offers millions of people around the globe the power to surf invisibly and store and

share data, safe from online threats. The company was founded in 1988, and has

partnerships with more than 200 operators, and it operates 22 wholly owned

subsidiaries.

3.3.3 Case C

Case company C is a multinational provider of communications technology and

services from Sweden. It operates in the environment of communications

technology by providing equipment, software and services to its customers. The

55

company employs more than 110 000 people and works with customers all over

the world.

3.4 Research process

The research process was initiated by conducting a literature review. Then, the

empirical data in the thesis were collected in two ways: firstly, by conducting an

initial inquiry consisting of both questionnaire study and semi-structured

interviews, and secondly, by conducting a multiple-case study. The research

process together with the main phase of the research is illustrated in Figure 9.

Next, the three main phases of the research are described in more detail, and then

the empirical data collection methods used during the research are defined.

Figure 9. Research process and the main phases of the research.

3.4.1 Literature review

The research began with a literature review. The purpose of the literature review

was to understand the current state and knowledge relating to the main areas of

the research: roadmapping, continuous planning, and agile and lean software

development (which is the scope of the research, as described in Subchapter 1.2).

Also, according to Yin (2003), constructing a preliminary theory relating to the

study is essential, especially, in the case study research. The development of the

preliminary theory helps to define the appropriate research design and data

collection as well as generalising the results of the case study research (Yin

2003). The preliminary theory of this thesis is presented in Chapter 2. The

intention of the literature review was also to discover gaps in the literature and

thus focus the research on the most unexplored areas of research, and then to

help to structure the empirical data collection, for example, formulating the

questionnaire and interview themes and questions.

The literature review was continued by conducting a systematic mapping study

on continuous deployment (Kitchenham and Charters 2007, Petersen et al. 2008).

The systematic mapping study was conducted in order to obtain an overview of

the research on CD. Also, it was hoped to bring insights to some of the vital areas

Literature review & Systematic mapping study

Initial inquiry

Questionnaire study

Interviews

Case studies

Interviews:

1. Round of
interviews 2011-2012

2. Round of
interviews 2014-2015

Case descriptions

Findings

56

of this research, namely to continuous planning and to agile and lean software

development. The main difference between systematic mapping studies and the

systematic literature review (SLR) is that while SLRs aim to ‘identify best practice

with respect to specific procedures, technologies, methods or tools by aggregating

information from comparative studies’, mapping studies focus on ‘classification

and thematic analysis of literature on a software engineering topic’ (Kitchenham

and Charters 2007). In the case of CD, although the term is frequently used in

industrial and academic circles, its meaning and the main factors that are part of

CD have remained undeveloped. Therefore, before aggregating information in

terms of research outcomes, it was realised that there is a need to provide a

comprehensive definition of CD. That is to identify, categorize and analyse the

available research on the topic of CD in order to describe the phenomenon, obtain

an overview of its state-of-the-art practice, determine the scientific evidence in the

reported results and determine areas that are suitable for more detailed study.

During the mapping study, the process of an SLR was followed as established by

Kitchenham and Charters (2007), but adapted to a mapping study process, as

suggested by Petersen et al. (2008). The research process is outlined in more

detail in Paper V.

3.4.2 Initial inquiry

The research was started already in 2006 with an initial inquiry about product

roadmapping consisting of both a questionnaire study and interviews. The

framework for the initial inquiry is presented in Appendix 1. Firstly, a literature

research was conducted in order to understand the state-of-the-art of product

roadmapping. In addition, the purpose of the literature review was to focus

research on a few of the most important issues from the field of research, and to

prepare the proposed questionnaire based on the literature review. The data

collection was carried out, firstly, in the form of a questionnaire study to collect

background knowledge on the companies on the application of product

roadmapping. The interviews were then conducted to collect more in-depth

knowledge about product roadmapping in different companies. The process of the

initial inquiry research was carried out in five phases: 1) formulating the

questionnaire, 2) pilot testing of the questionnaire, 3) analysis of the questionnaire

results, 4) interviews, and 5) analysis of the findings.

The empirical research of the initial inquiry was carried out as qualitative

research conducted with a questionnaire-based survey study (Oppenheim 1992)

and semi-structured interviews (Järvinen 2001). In the questionnaire-based survey

method, Alreck and Settle (1995) classify three methods of data collection:

personal interviewing, telephone interviewing and mail data collection, all of which

were used during the research. In selecting the respondent organisations for the

questionnaire survey and interviewees, purposive sampling (Nardi 2003) was

used. Purposive sampling involves designating a group of people for selection

because they have some traits that are important for the study (Nardi 2003). The

57

questionnaire respondents were selected based on VTT’s electronic mailing lists.

Also, the questionnaire was sent to the European-wide MERLIN research projects’

partner companies, since they were assumed to have knowledge of the field of

study. Then the interviewees were selected based on the respondent’s experience

in product roadmapping. The emphasis of the empirical research was put on the

interviews. The questionnaire was mainly used to obtain the right persons to be

interviewed, but also to acquire data about product roadmapping.

The inquiry form of the questionnaire study was divided into three parts:

general information, company profile and product roadmapping process. The

questions were phrased based on the literature (e.g. Tabrizi and Walleigh 1997,

Albright 2002, McCarthy 2003, Rautiainen et al. 2003, Phaal et al. 2003, Lehtola et

al. 2005, Groenveld 2007, Van de Weerd et al. 2010). In more detail, the

questions related to the product roadmapping, collaborative development, and

requirements prioritisation. All the questions in the questionnaire study were asked

in a structured form so that the respondent could select from several alternatives.

However, in order to obtain more information about the research areas, each

question could also be replied to with an open answer. Thus, the questionnaire

study included both structured and unstructured questions. The structured

questions were selected in order to shorten the response time and therefore to

receive more replies. Also, the structured questions were chosen to make the

analysis easier and the conclusions stronger.

The questions for the inquiry form were planned and arranged carefully in

advance so as to produce the right form of questions and to avoid

misunderstandings. The questionnaire was pre-tested inside VTT among

researchers, and based on the pre-test results, small modifications to the

questionnaire were made. After the pilot testing of the questionnaire, in the

summer of 2006, the questionnaire was sent to potentially interested contacts by

using purposive sampling (Nardi 2003), that is to companies assumed to have

experience of and interest in product roadmapping. An electronic mailing list was

prepared, and the questionnaire was emailed to over 600 respondents. The high

response rate can be partly explained by the fact the mailing list was not ranked,

for example, according to respondents’ roles, thus the questionnaire was also sent

to those respondents who were not actually involved with the scope of research.

As a result, a total of 59 responses were received, and seven of the respondents

lacked experience in product roadmapping and were hence unable to complete

the form. Though the resulting response rate of the questionnaire was quite low

(10%), the 52 replies from 34 different companies can be claimed to provide a

wide enough perspective for further analysis, especially for the selection of people

to be interviewed. One of the replies, however, was excluded from the analysis

due to an incompletely filled questionnaire form. The questionnaire respondent

companies originated from Finland, Sweden and the Netherlands. All companies

were involved in software products or service development in the field of ICT

industry. Their scopes varied from own product development to the development

of components for external partners. The size of the case companies, measured

as the number of overall employees, was distributed among the given categories

58

in the questionnaire (under 10 employees, 10–49 employees, 50–250 employees,

and over 250 employees) with an emphasis on medium and large companies.

After the questionnaire study, the interviews were planned. The purpose was to

gain in-depth knowledge of how product roadmapping was conducted in the

different companies. The interviews were semi-structured, since the interviews

included structured questions and proceeded according to certain vital themes of

the research. The vital themes of the research were selected based on the

literature analysis and findings of the questionnaire studies. Based on the

literature, the themes were related to roadmapping, collaborative development,

and requirements prioritisation. Additionally, based on the findings of the

questionnaire studies, the themes related to collaborative viewpoints to product

roadmapping and different phases of product roadmapping. Therefore, especially

the company experiences of creating product roadmaps in inter-company

collaborations were emphasised during the interviews. Additionally, questions

were asked relating to the benefits and problems of the product roadmapping. As

is characteristic of semi-structured interviews, the themes were the same for all

the interviewees, but the questions varied between the different interview

sessions. Equally, the interview questions were partly planned in advance, but not

phrased or arranged in detail. Moreover, the intention in the interviews was to

emphasize the interviewee’s experiences and their own opinions on the field of

study. Furthermore, the interviews could be considered focused interviews, since

the respondents were interviewed personally for a short period of time, i.e. not

more than an hour (Yin 1994). Altogether, nine people representing eight different

companies were selected to be interviewed. Two of the interviews were face-to-

face, and the other seven were conducted by phone. More detailed information

about the interviews conducted is presented in Appendix 3, and a list of interview

profiles is presented in Appendix 4.

3.4.3 Multiple-case study

After the first phase of the research (that is the initial inquiry) as previously

described, the actual case studies were conducted. The theme of the research

was broadened from product roadmapping to continuous planning (in which

product roadmapping was seen as part of the larger context). The research was

conducted as empirical research in which three case companies were selected. In

selecting the case companies, a purposeful sampling approach was used (Nardi

2003), similar to the initial inquiry. As explained, purposive sampling involves

designating a group of companies, projects or people for selection since they have

some traits that are important for the study (Nardi 2003). These case companies

were selected because they were large global ICT companies with multiple levels

of planning, and they had adopted agile and lean software development practices.

The main data collection method was interviews, which were either semi-

structured or narrative by nature. The list of interviews conducted for this research

is presented in Appendix 3. The semi-structured interviews were conducted similar

59

to the interviews in the initial inquiry. For example, the interviews included open-

ended questions (Runeson and Höst 2009) and dealt with certain vital themes of

the research. The vital themes of research were created based on the literature

review of roadmapping and continuous planning, as well as the findings of the

initial inquiry. The interview protocol was organised in four pre-defined themes, but

it allowed for openness and flexibility within the themes. The themes were 1)

definition and background of continuous planning (including planning practices in

general), 2) continuous planning process (including levels of planning and time

frames), 3) participants of continuous planning, and 4) lessons learned (including

benefits and barriers of continuous planning as experienced). The vital themes of

the research together with the research questions are presented in more detail in

Appendix 2. The themes were the same for all the interviewees, but the questions

varied between the different interview sessions. The interview questions were

partly planned in advance, but not in detailed phrasing or arrangement. The

interviews could also be considered to be focused interviews, since the

respondents were interviewed personally for a short period of time, ranging from

one to two hours (Yin 1994). In total, 26 interviews were conducted. More detailed

information about the interviews conducted is presented in Appendix 3, and a list

of interview profiles is presented in Appendix 4.

The interviews to the case companies were held in two different rounds and

research programmes. The first round was conducted in the Cloud software

research programme during the years 2011–2012, and the second round of

interviews was conducted in the N4S research programme during the years 2014–

2015. During the first round, representatives of two case companies (Case A and

Case B) were interviewed. After these interviews, it was noticed by the researcher

that the interviewees were selected based on their experience of continuous

planning, and thus the interviewees were from a totally different part of the

organisation. Therefore, it was clear that a wider perspective on continuous

planning practices was needed and that people from different levels of the

organisation should be interviewed in order for the researcher to understand

continuous planning throughout the organisation and also to be able compare the

interview results between the case companies and to draw conclusions.

In the second round of interviews, semi-structured interviews were conducted in

Case A and in Case C. At the same time as these interviews, the researcher also

sought to use narrative interviews in Case B, to discover how the terms and

practices of continuous planning would emerge from the interviews without

describing these to the interviewees. This was partly because the term of

continuous planning was quite new and not commonly known among the

interviewees. Further, the researcher did not wish to mislead the interviewees in

any way; instead, the researcher encouraged interviewees to discuss the

company’s planning practices openly. The interviewees were allowed to tell their

story from their own perspective and in their own words and ways of expression

without a predefined list of interview questions or structured interview agenda. The

same vital themes of the research as in semi-structured interviews were used

during the narrative interviews to guide the interviews, but without the list of

60

predefined questions. The research process for each case company that was

involved in this research is described in more detail hereafter.

In Case company A ten interviews were conducted altogether. The research

data from Case A began being collected during 2011–2012 via a series of

meetings and one interview as well as by analysing company specific material. In

2011, eight meetings were held altogether to exchange information about

continuous planning, in which three people were involved: two researchers from

VTT and one representative of the case company. During the meetings, for

example, the vital elements of continuous planning were discussed and drafts of

the continuous planning framework were drawn up, forming the vital elements of

continuous planning (presented in more detail in Paper III). Then, in 2012, one

semi-structured interview was held to clarify how continuous planning is conducted

and to discover how the information flows up and down between the different

levels of the organisation. The interview was recorded and subsequently

transcribed by an external consultant company. A summary report from the

interview was written based on the transcript and with the help of analysing

company specific material (including PowerPoint slides). The summary report was

commented on and corrected by the interviewee in order to validate the

correctness of the data. The interviews were continued from October 2014 until

June 2015. Altogether nine interviews were held involving various people with

different roles (for example the scrum master, project manager, product manager,

sales directors, president of a business segment, quality managers, business

developer, and director of defence). All these interviews were semi-structured,

having a mixture of predefined and free-form structure, and the interviews dealt

with the vital themes of the research. The interviews were held in Finnish, and

each interview lasted for one and a half hours. A minimum of two researchers

were present at the interviews so as to ensure that the relevant information was

correctly extracted. All the researchers participating took notes during the

interviews, and notes were compared after the interviews so as to ensure

consistency. The interview was recorded and then transcribed by an external

consultant company. Also, the researchers were provided with internal company

materials (e.g. PowerPoint slides) by the company representatives to be used in

the analysis.

In Case company B we conducted thirteen interviews altogether. The research

data for Case B began being collected in 2011 via a semi-structured interview and

by analysing the company’s internal data. After the interview, the case company’s

internal memos of continuous planning were analysed. The data included

information relating to continuous planning practices which were already

discussed during the interview, but were considered vital in order to clarify and

verify the practices and processes related to continuous planning. The interview

was organised as a semi-structured interview that proceeded along the vital

themes of the research. The interview lasted one hour and 40 minutes and

involved one interviewee and two interviewers. Thereafter, the interview was

transcribed and analysed. After the interview, internal memos pertaining to

continuous planning at the case company were analysed. This data included

61

information related to continuous planning practices that were discussed during

the interview, although this information was nonetheless considered vital in terms

of clarifying and verifying the practices and processes of the company related to

continuous planning. The research was continued up to October 2014, when

twelve interviews were conducted altogether. The interviews involved people from

various roles (e.g. senior product marketing managers, product marketing

managers, senior product managers, directors, an executive vice president, a

chief strategy officer, and a vice president of R&D). These interviews were

narrative by nature, proceeded along the vital theme of research (‘customer insight

in planning’). Two researchers were present in all the interviews, and both of the

participating researchers took notes during the interviews. Notes were compared

after the interviews to ensure consistency. The interviews were held in Finnish or

English and each interview lasted from one hour to one and a half hours. Also, all

the interviews were recorded and transcribed by an external consultant company

afterwards.

In Case company C altogether three interviews were conducted in January

2015. The interviewees represented the following roles: line manager, domain

manager, and product owner, from one of the company’s business areas. The

interviews were semi-structured and dealt with the vital themes of research. The

interviews were held in Finnish and each interview lasted from one to one and a

half hours. During the interviews, there were two researchers sharing the

responsibility; one of us asked the questions and one took notes. In addition to the

interview notes, all the interviews were recorded and then transcribed by an

external consultant company.

3.4.4 Empirical data collection methods

In this thesis, data collection was carried out in the form of a questionnaire study

and interviews, which pertain to the chosen case study research approach

(Järvinen 2001). These data collection methods were selected because with a

questionnaire study, the basic knowledge in companies using product

roadmapping could be revealed, and with interviews, more in-depth knowledge

about product roadmapping and continuous planning could be discovered. The

questionnaire study is considered an appropriate method when the number of

matters to be inquired into is relatively small and the number of respondents is

relatively large, as in this research. The questionnaire studies were extended with

interviews in order to specify the received information from the respondent.

Additionally, interviews were conducted, since they were expected to bring out

new aspects that would not be otherwise revealed (Järvinen 2001).

In a questionnaire study, the data were collected with an inquiry form. This

inquiry in a paper or electronic format contains a set of structured or unstructured

(that is open) questions intended to be answered by the people selected.

Structured questions are used when the subject of the questions holds a generally

accepted classification that is extensive. Hence, structured questions are used in

62

theory-testing studies. In contrast, unstructured questions are used when the

subject of the question is not yet structured. In that case, the questions are

expected to reveal experiences from practice. Thus, these questions are used in

theory-creating studies (Järvinen 2001). These phrasings of questions also apply

to interview studies.

In an interview, data are collected in a discussion between the interviewer and

interviewee, in which the purpose is to gather certain information from the

interviewee (Järvinen 2012). There are three types of interviews: structured, semi-

structured, and unstructured (e.g. Denzin and Lincoln 2000, Järvinen et al. 2014).

The interview type depends on the research approach used (Järvinen 2012) and

on the advance planning of the interviews (Järvinen 2001). In the structured

interview, questions are carefully planned and formulated before the interview,

based on the research framework and hypotheses. In an unstructured interview,

the themes for research guide the interview (Järvinen 2001). These interviews are

not planned in detail beforehand, and thus the interviewees are asked open-ended

questions. Additionally, the interviewees can be asked for the facts of a matter as

well as for their opinions about events (Yin 1994). The semi-structured interview

includes both structured questions and open themes of discussion (Järvinen

2001). A narrative interview is one type of open, unstructured interview. Narrative

interviews concern the production of stories that people tell spontaneously in

interview situations (Eriksson and Kovalainen 2008). Accordingly, a narrative

interview is open in two different ways: there is no prior hypothesis to be tested

and the interviewee is encouraged to talk openly. The interviewee is allowed to

talk about their study from their own perspective and in their own words without a

predefined list of interview questions or a structured interview agenda (Eriksson

and Kovalainen 2008). In a narrative interview, open-ended can either cover a

longer period of time or focus on a specific event. The questions are posed without

defining the content of what the story should be about, letting the interviewee

decide that; hence the interviewee is given the freedom to speak uninterrupted

(Eriksson and Kovalainen 2008).

In this research, the interviews were both semi-structured and narrative in

nature. The semi-structured interviews included structured questions, and

proceeded along certain vital themes of the research. The vital themes of research

were created based on the literature review and findings of the questionnaire

study. The themes of the research interviews are listed in Appendix 2. The

interview themes were the same for all the interviewees, but the questions varied

between the different interview sessions. Additionally, the interview questions

were partly planned in advance, but not with detailed phrasing or arrangement.

Moreover, the intention in the interviews was to emphasise the interviewee's

experiences and their own opinions of the field of study. The narrative interviews

were held to find out whether continuous planning would emerge from the

interviews without describing it to the interviewees in advance. The interviewees

were allowed to tell their story from their own perspective and in their own words

without a predefined list of interview questions, as in the semi-structured

interviews.

63

3.5 Data analysis

Data analysis consists of examining, categorizing, tabulating or recombining the

research evidence in order to address the initial research proposition (Yin 1994).

According to Yin (1994), the analysis of case study evidence should start with a

general analytic strategy yielding priorities for what to analyse and why. Within

such a strategy, four dominant analytic techniques could be used: pattern-

matching, explanation building, time-series analysis, and programme logic models

(Yin 1994). The ultimate goal is to treat the research evidence fairly, to produce

compelling analytic conclusions, and to rule out alternate interpretations. The role

of the general strategy is to help the researcher choose among different

techniques and to complete the data analysis successfully (Yin 1994). Yin (1994)

proposes two general strategies for analysing case studies: relying on theoretical

propositions and developing a case description. Developing case descriptions

from each case was the main analytical strategy applied in this thesis. Firstly, a

theoretical proposition was created (that is the literature review) which led to the

case studies. Based on the literature review, it was discovered that empirical

experiences from the field of research were difficult to find, and thus empirical

case research is needed. The case studies in that sense reflect the set of research

questions, reviews of the literature, and new insights (Yin 1994). Secondly, a

descriptive framework for organising the case studies was formed by creating a

case description from each of the cases.

During the data analysis, the generic process of data analysis presented by

Creswell (2003) was used both to analyse the data from the questionnaire study

and the interviews. Accordingly, the survey design begins with a discussion about

the purpose of the survey, the identification of the population and sample for the

study, the survey instruments to be used, the relationships between the variables,

the research questions, specific items of the survey and the steps to be taken

(Creswell 2003).

During the analysis of the questionnaire data, the information was presented as

a series of steps, which including the following information: response rate,

response bias (that is the effect of nonresponses of survey estimates), descriptive

analysis of data for all independent and dependent variables in the study,

developing scales and mentioning reliability checks for the scales, and identifying

the statistics. The questionnaire study provided a numeric description of trends,

attitudes and opinions for the sample population. From these sample results,

generalisations and claims about the population could be made. However, the

main intention of the questionnaire study was to reach the people to be

interviewed to acquire more detailed information about the roadmapping practices

used from the case companies.

All the interviews were digitally recorded as they were taking place and notes

were taken by the interviewee so that the responses could be verified afterwards

in order to obtain the correct information. After each interview, the digital recording

was transcribed by an external consultant company. Subsequently, all the

64

transcribed interview data were analysed with the help of a qualitative data

analysis tool called NVivo. During the data analysis, all transcribed data were

carefully read through in order to obtain a general sense of the data and to identify

recurring elements and concepts, as is common in open coding techniques

(Strauss et al. 1998). All the interviews were analysed using the generic process

of data analysis presented by Creswell (2003). A coding process was used to

categorise the data and label the categories. As with grounded theory (Strauss et

al. 1998), the researchers let coding categories and relationships emerge from the

data. Therefore, all interviews were read several times, and after going back and

forth in the empirical data, and applying the process of constant comparison, the

researchers reached a state in which no new significant categories or concepts

emerged, which is called ‘theoretical saturation’ by (Strauss et al. 1998). The

purpose of the coding process was also to generate descriptions for the categories

to generate in turn a small number of themes that represented the major findings

of the qualitative data. These descriptions and themes were then presented in

qualitative narratives in case descriptions (Creswell 2003). In addition to the

interviews, company-specific material including internal memos, documents and

slides and all corporate websites and brochures were used to complement the

case descriptions. The case descriptions were validated by the interviewees by

reading through them and making corrections if needed. Finally, based on the

empirical research, the current status of continuous planning at each case

company was decided upon. All the case descriptions were the result of our data

analysis and they reflect perceptions, experiences and beliefs as held by the

interviewees involved in the study.

65

4. Original publications

In this chapter, the original publications included in the thesis are introduced. The

purpose is to present the overall view of the papers and their key contributions.

Altogether, five publications are included. The topics of the publications are the

following:

I Challenges for product roadmapping in inter-company collaboration

II Software product roadmapping in a volatile business environment

III Continuous planning: an important aspect of agile and lean development

IV Defining continuous planning through a multiple-case study

V Continuous deployment of software intensive products and services: a

systematic mapping study.

Each publication gives answers or clarifies the research questions of the thesis

from different perspectives. Papers I and II describe the current state of

roadmapping, thus contributing to RQ1: How is roadmapping conducted in

software development? For example, by providing a definition for a roadmap and

roadmapping, identifying the process and its main participants in software

development context. Paper I also takes into account the collaboration perspective

for creating product roadmaps. Papers III and IV contribute to RQ2: How is

continuous planning conducted through roadmapping in agile and lean software

development? As an example, a response may be by providing a definition for

continuous planning in an agile and lean software development context.

Furthermore, Paper III identifies the vital elements of continuous planning, and

both Papers III and IV define the main levels of planning and their time frames.

Paper V contributes to RQ3: How is continuous planning conducted in CD-driven

software development? It describes the recent evolution of software development

towards CD and brings out both the benefits and challenges associated with it. In

the chapters that now follow, the focus and central conclusions of each paper are

defined in more detail.

66

4.1 Paper I: Challenges for product roadmapping in inter-

company collaboration

The paper focuses on product roadmapping, and highlights that it is a critical

activity in product development, since it provides a link between business aspects

and requirements engineering, and thus helps to manage a high-level view of the

company’s products. The paper points out that inter-company collaboration, such

as joint R&D partnerships, customer–supplier relationships (including

outsourcing), and technology exchange agreements and licensing are a common

way of developing software products. Through collaboration, organisations gain

advantages such as flexibility with in-house resources, savings in product

development costs and establish a physical presence in important markets. The

paper gives an overview of product roadmapping and then presents current

industry practices based on empirical research (presented in Subchapter 3.4.2

Initial inquiry). The paper presents key challenges to and opportunities for creating

product roadmaps through collaboration, including for example, the most important

activities to consider, the most typical problems, and how those problems can be

avoided.

Based on the findings given in the paper, creating a product roadmap in inter-

company collaboration depends on the product to be developed and on the form

of co-operation. Product roadmapping in inter-company collaboration is affected

by the following aspects: the period of the product’s life span, the closeness of the

relationships and the type of partnership, i.e. who is in control of the activities

taking place. In a customer–supplier relationship, such as outsourcing, the central

idea in creating product roadmaps together is to create a mutual understanding

and ensure the confidentiality of the roadmap. In joint R&D partnerships,

confidentiality was seen as important. However, the major difference compared to

the customer–supplier relationship was that one of the joint R&D partners is the

leading partner, who had the overall idea of the product to be developed and was

most likely the owner of the roadmap. In technology exchange or licensing

agreements, the relationship was considered as more of a matter of legal

agreements and contracts, and thus the roadmaps were not shared so freely as in

the other collaboration modes. Furthermore, the findings indicate that continuous

communication is important and, especially, at the beginning of the product

roadmapping process, face-to-face meetings are essential to avoid

misunderstandings. Also, openness between collaboration partners is important in

order to mutually share ideas and views. However, knowledge should be shared

without losing critical confidentiality. Hence, creating good and confidential

relationships with partners, as well as creating long-lasting customer relationships,

are of major importance. Instead, project management is challenging in a

collaboration situation, because in the case of multiple actors in the product

roadmapping process, problems are caused when dividing tasks between

partners. Therefore, the work should be transparent in order to avoid duplicate

work and grey areas.

67

4.2 Paper II: Software product roadmapping in a volatile

business environment

The paper focuses on roadmapping from the software development perspective.

The main goal of the paper is to increase the current empirical evidence on

product roadmapping by defining the main stakeholders and their roles during the

process, organising the product roadmapping process, establishing the main

benefits and challenges faced during the process and identifying the most critical

phases of the process. The empirical evidence is based on both quantitative and

qualitative data (presented in Subchapter 3.4.2 Initial inquiry). The paper presents

a research framework for software product roadmapping, which is created based

on the existing literature, so as to help structure and present the research results.

The main elements of the framework are as follows: stakeholders, process phases

and the perceived impact of product roadmapping.

Based on the results given in the paper, organisations view the roadmap mainly

as a tool for strategic decision-making, as their aim is to show the future directions

of the company’s products. However, only a few organisations appear to have an

explicit approach to handling the mechanisms for creating and maintaining such a

roadmap. Based on the key findings of the paper, product roadmapping is a

continuous process, since the roadmapping team has regular meetings (for

example biweekly, quarterly, or biannually) in order to create, update or review

roadmaps. The product roadmapping team consists of several stakeholders. At

least the following stakeholders are seen as important in the process: product

management, marketing, customer and partner representatives, and development.

Also, based on the empirical findings, feature management is seen as being the

key aspect in product roadmapping and accordingly the product roadmapping

process is proposed to consist of the following phases: capturing features,

analysing features, prioritising features, roadmap validation and agreement, and

change management of the roadmap. The most critical phase of product

roadmapping is prioritising features. Similarly, the most problematic areas of

product roadmapping are prioritising features, managing changes and maintaining

roadmaps, as well as sharing information, communication, and creating a

roadmap agreement. Finally, it is suggested that the strategic importance of

product roadmapping is likely to increase in the future and, as a new type of agility

is required in order to survive in the turbulent and competitive software business

environment.

4.3 Paper III: Continuous planning: an important aspect of

agile and lean development

The paper focuses on continuous planning, which is seen a relatively new and not

yet fully studied field of research, especially from the perspective of agile and lean

development organisations. To augment knowledge in this field, the paper

presents both a literature review and empirical findings from case studies (given in

68

Subchapter 3.4.3 Multiple-case study), which reveal how companies view and

conduct continuous planning. The findings given in the paper highlight the

importance of continuous planning throughout an entire organisation, including in

regards to the elements of continuous planning: organisational planning, strategic

planning and business planning, and their close interrelation. Organisational

planning serves to define a plan’s organisational level and its time frames;

strategic planning serves to set an overall plan for an organisation, and business

planning serves to establish the budgeting frame of a plan. Furthermore, the paper

points out that continuous planning is not currently conducted throughout an entire

organisation and may only engage a certain level of planning. While continuous

planning in agile and lean organisations commonly relates to release planning, the

paper sheds light on a broader perspective than this by defining continuous

strategic and financial planning, as well as continuous project- and team-level

planning. Based on the empirical findings of the paper, the majority of long-term

plans looked three years ahead. At the strategy, business, or project levels, plans

were reviewed quarterly, whereas at the team level plans were reviewed biweekly

or weekly. While continuous planning was mainly understood as short-term

planning, this did not remove the need for long-term planning, as strategic,

business, market and portfolio planning had to be constantly considered at the

higher levels of each organisation.

The paper also presents some background arguments for adopting continuous

planning. The motivation towards continuous planning has arisen from both

external and internal challenges that companies face in today’s volatile market

environments. There is a clear need for continuous planning, as organisations

face difficulties in developing long-term plans due to constant changes in their

customer and market-bases, as well as in product and technology development.

Moreover, recent financial crises have caused companies to rethink their

approaches to planning and to realise the importance of continuous planning both

from an operational and financial perspective. Therefore, it is suggested that the

importance of continuous planning will only increase dramatically in turbulent

business environments that include ever shorter planning cycles and the need to

improve transparency and knowledge-sharing in organisations.

4.4 Paper IV: Defining continuous planning through a

multiple-case study

The paper focuses on continuous planning throughout the organisation. It is

believed that continuity is required at all levels of an organisation, from business

strategy and planning to software development and operational deployment, as

well as between these levels. Continuous planning is seen as one of these

activities. The paper presents empirical evidence from a multiple-case study

(presented in Subchapter 3.4.3 Multiple-case study) in which the various levels of

planning, along with their time frames, are explored. The paper described how

planning is currently conducted in three different organisations. It describes the

69

main levels of planning: strategic, financial, business, product and team, as well as

their time frames.

The key findings of the paper highlight that none of the case companies utilised

the practices of continuous planning throughout the organisation. Furthermore, the

continuity of the activities was often based on conditionality, for example, on

whether the circumstances forced companies to update and review their plans.

The continuity of the activities was explained by both internal and external

changes in the companies. External changes, such as, the turbulent business

environment, forced the case companies to adopt continuous strategic and

financial planning practices. Internal changes, such as, the adoption of agile and

lean development practices, forced all the case companies to shorten their product

planning review cycles to months and team-level planning to weeks or days.

Business planning, in contrast, was the only activity that was not seen as

continuous in any of the case companies. In a similar way, regarding strategic

planning, continuity might also be needed in business planning in order to respond

and react to changes in the business environment. Both business and product

planning should be continuous and proactive, rather than reactive, in nature. With

the help of continuous business and product planning, companies may be able to

influence the markets by inventing and developing new products and services, as

well as being able to react to changing market requirements.

4.5 Paper V: Continuous deployment of software intensive

products and services: a systematic mapping study

The paper focuses on continuous deployment, as it is realised that software-

intensive industries are moving towards the adoption of a value-driven and

adaptive real-time business paradigm. Therefore, the traditional view of software

as an item that evolves through releases every few months is being replaced by

continuous evolution of software functionality. The paper presents results from a

systematic mapping study (presented in Subchapter 3.4.1 Literature review). It

classifies and analyses literature related to continuous deployment in the software

domain in order to scope the phenomenon, provide an overview of its state-of—

the-art, investigate the scientific evidence in the reported results, as well as

identify areas that are suitable for further research. As a result of the analysis,

altogether 50 primary studies published between 2001 and 2014 were identified.

An in-depth analysis of the primary studies revealed 10 recurrent themes (or

factors as referred to in the paper) that characterise continuous deployment.

These themes include: 1. fast and frequent release, 2. flexible product design and

architecture, 3. continuous testing and quality assurance, 4. automation, 5.

configuration management, 6. customer involvement, 7. continuous and rapid

experimentation, 8. post-deployment activities, 9. agile and lean software

development, and 10. organisational factors, including integrated corporate

functions, transparency and an innovative and experimental organisational culture.

The most relevant themes for this thesis are themes 1 and 9.

70

Based on the key findings of the paper, continuous deployment goes beyond

agile and lean software development; thus, agile and lean software development

methods and practices are the first steps the organisation can take toward CD.

Hence, ASD methods and practices can be considered as an enabler for

continuous deployment. Also, CD scales ASD practices throughout the whole

organisation instead of focusing only on team-level activities. CD also transforms

traditional ASD practices and methods into a continuous flow. Similarly, almost all

of the primary studies make reference in one way or another to accelerating the

release cycle by shortening the release cadence and turning it into a continuous

flow. The fast and frequent release means the ability to release software whenever

the organisation wishes, based on need, which may be weekly or daily. CD

requires that the planning activities should be done more frequently so as to

ensure alignment between the needs of the business context and software

development, as well as requiring tighter integration between planning and

execution. Continuous planning is discussed and presented in the paper as one of

the mechanisms to achieve faster release cycle. The paper also presents a set of

benefits and challenges for CD that are partly associated with continuous

planning. One of the most immediate benefits of applying CD is shorter time-to-

market through fast and frequent releases. For instance, it shortened their delivery

cycles from months or weeks to a continuous flow or daily deliveries. Shorter

release cycles enable companies to constantly develop, learn and improve their

offering based on instant customer feedback and thus, companies can quickly

learn what customers value and so focus on deploying relevant functionalities that

meet customers’ expectations. However, transformation towards CD is an

evolutionary process and requires investment in deployment processes, as well as

changes in people’s mind-set and organisations’ way of working. Furthermore, CD

also requires a change in organisational culture, buy-in from all key stakeholders,

and transparency in the organisation.

71

5. Discussion and conclusions

In this chapter, the main findings of this research are discussed and the

concluding words are provided. The chapter is divided into three subchapters.

Firstly, a summary of the research is presented. The research questions and the

main research problem posed at the beginning of this study are answered with

respect to the empirical findings given in the original publications. Secondly, the

research results are evaluated. The main theoretical contributions and empirical

implications are presented. Then, the reliability and validity of the research as well

as limitations of the results are discussed. Thirdly, the conclusions are set out and

recommendations for further work are discussed.

5.1 Summary of the research

In what follows, the answers to research questions are provided. All three sub-

questions are addressed separately based on the individual findings of the original

research papers. Then, the answer to the main research problem of this thesis is

given.

RQ1. How is roadmapping conducted in software development?

A roadmap is a plan or a leading map of the company’s future directions. A

roadmap also provides a high-level understanding of scoping the strategy, which

allows better planning and commitment to the set plans. The roadmap structure is

commonly presented as a multi-layered time-based chart. The structure

constitutes the levels of planning, and the time frame of a plan. In a software

development context, the roadmap typically relates to products. A product

roadmap helps to structure and arrange product development in order to know

how to use certain resources and what is to be done and when. Hence, product

development is somehow deterministic and enables steering of the product

implementation. With a roadmap, tasks to be done can be prioritised, and thus

resources can be allocated to the most profitable projects. It can even be verified

from the roadmap that the right things are being done at the right time.

Additionally, in software development with a good roadmap, the customers’ needs

72

can be met with a product that they really want, and hence providing a competitive

advantage. Also, a roadmap is a central tool for communication, and therefore it

should be shown to the company’s own staff as well as to partners. It gives a clear

idea of what is about to be done, and enables communication about forthcoming

strategic projects. Furthermore, in a collaboration situation, a roadmap is one of

the main documents describing what the parties have agreed to and what is about

to be done together, so that everybody knows the goals. From a roadmap, the

collaboration partners can see what others are currently doing and which phase

they should be in. Thus, a roadmap simplifies the synchronisation between

collaboration parties and also provides vigour, backbone and predictability of

product development for the partners.

Roadmapping describes the process of creating and revising roadmaps.

Roadmapping improves predictability, and hence reduces the occurrence of

surprises during the development. As roadmapping is a central method for

communication, it gives a clear idea of what is about to be done, and enables

communication in regards to forthcoming strategic projects. Roadmapping is a

continuous process in which roadmaps are updated and reviewed. The

roadmapping process is conducted by the roadmapping team which has meetings

biweekly, quarterly, or biannually, for instance. In addition, the product

roadmapping process commonly begins with customer requirements. These

requirements can, for example, be proposals for improvement or new product

features, as well as the customer’s goals or expectations. Furthermore, the

requirements can also come from the company’s internal research unit or through

competitor analysis.

In a software development context, the most important participants in the

product roadmapping process are: product management, marketing, customer and

partner representatives, and development including manufacturing and

engineering. Customer and partner representatives are the external participants to

be involved in the process. The participants in the roadmapping process have two

basic roles: a member of the roadmapping team and an owner of the roadmap.

The owner’s role is considered to be the most important, as this person has the

overall idea of the desired roadmap, and there should be someone responsible for

the roadmap. The role of the owner is also to include the collection of input to the

roadmap, holding the roadmap together, making the changes needed to the

roadmaps, and taking care of the information flow both within and outside the

company. On the other hand, the stakeholders of the roadmapping team are to

bring input from different viewpoints to the roadmap, for example, to schedules

and to product features.

RQ2. How is continuous planning conducted through roadmapping in agile

and lean software development?

Continuous planning involves creating and revising plans as needed, typically

more often than once a year. It is about implementing planning practices

continuously based on need, instead of on predefined and regular planning

73

occasions. Continuous planning reacts to environmental changes; thus, internal

and external changes trigger planning, and not only the predefined planning

rhythm. The time frame of planning varies between hours and months depending

on the level of planning. In terms of agile and lean software development,

continuous planning refers to the organisational capacity to conduct planning in

rapid cycles, in hours, days, weeks, or months. Continuous planning is not only a

project- or team-level activity as described in the current literature (e.g. Shalloway

et al. 2009). Rather, it involves higher-level planning as well as strategic planning,

for instance. The empirical findings highlight the importance of continuous

planning throughout an entire organisation. To this end, the vital elements of

continuous planning are presented as follows: organisational planning, strategic

planning, and business planning, and their close interrelation. Organisational planning

serves to define a plan’s organisational level and its time frames (that is the roadmap

structure); strategic planning serves to set an overall plan of an organisation, and

business planning serves to establish the budgeting frame of a plan.

In the light of the empirical findings based on the multiple-case study, the

following levels of planning are identified: strategic planning, financial planning,

business planning, product planning, and release planning. The main participants

in these planning activities are respectively top management, financial

management, business management, product management, and the R&D team.

These various levels of continuous planning together with the main planning

activities are briefly described next.

Continuous strategic planning means that the strategy process is constantly

rolling, that it is continuously planned and updated based on the market and

customer demand. Strategic planning is conducted annually by the top

management of the company, involving people such as a chief strategy officer, a

chief executive officer, president of the business area, vice presidents of the

business areas, head of sales and marketing, operations and engineering. The

strategy plans are reviewed and updated quarterly, or when needed by the top

management. In the quarterly strategy review, the following aspects are checked:

the current status, the latest updates to the strategy and the progression of the

strategy deployment. After the strategy review, the results are re-reviewed and

analysed by the company’s business areas, who explained how each business

area has progressed with the goals set in the strategy plan; where they have

lagged behind, and what they have finished or left unfinished. The main phases of

the strategy process are as follows. The first phase of the strategy process is the

strategy review. The main action of this phase is conducting a strategy health

check. During this period of time, the current status of the strategy is reviewed,

and the needs for major strategy updates (such as establishing a new business

area) are addressed. It involves also identification, discussion and analysis of

future possibilities, referred to as strategic themes or issues that might be relevant

to the company in ten years, but which should be acknowledged already now.

Subsequently, the strategic work is considered in relation to strategy elements

initiated that need to be updated, and plans are made regarding how to proceed

with the strategy, especially in terms of changed elements. The second phase is

74

strategy development and acceptance. One of the main actions in this phase is

creating a vision of the company’s strategy and its direction. It involves long-term

roadmapping both for strategic and financial planning within the time frame of the

next three years, plus the current year. The company’s strategy is at all times

understood as a whole, yet its various elements can be changed at any time. This

phase also involves an activity called the strategy creation and elements update,

in which changes to the strategy are reviewed. Then, new strategy element

updates are approved, which is then followed by the top management’s strategy

acceptance. This launches the third phase of the strategy process: strategy

communication and execution. The updated strategy is communicated to the

employees and strategy actions are executed.

Continuous financial planning means that there is a continuously available

financial forecast. The financial frame is created once a year by the financial

management. The frame is commonly created either at the end of each year (in

November) or at the beginning of the year (in January) and includes a budget

overview of the rest of the following year. The idea of continuous financial planning

is constant in that actual expenses are continuously considered and compared to

budgets. Thus, financial actions involve each of the budget items in the short-term

and initiatives for the long-term. The budget plan is created annually and

thereafter validated and analysed with a rolling review process. The annual budget

plan is first presented to the business management who decide how the budget is

divided into product domains. Then, the product management operates according

to the plan and the R&D team spends the money allocated for its implementation.

The budget plan is reviewed bi-annually by the business areas and quarterly by

the product management in order to check its current status. Minor changes to the

budget plan can be made by the product management, for example, by

transferring budget to a previous or forthcoming quarter, or between the product

domains in the event that some product domain does not use all the money

allocated to them. That is because the budget allocated to product domains is

easier to redirect than to increase. Major changes to budget plans requiring a

change in the whole business area are more difficult to make and require approval

from the financial management.

Continuous business planning means that the various plans relating to

business management are continuously available and up-to-date as well as

synchronised together. Business planning is conducted by the business

management involving, for example, vice presidents of the business area.

Business planning involves creating a business area strategy plan, which is

carried out together with business area teams, which may include, for instance,

also people from product management, product development, and research. The

business area strategy plan is quite strongly product- and technology-focused;

therefore, it is also known as a technology roadmap. It defines the business area’s

offering, meaning the products and their development, and how they are

implemented. However, it is a high level document without direct links to

requirements. The long-term time frame for the business area strategy plan is

around three years. The first year is more accurate than the other two years. It is

75

created annually and updated with a monthly review cycle. The monthly meetings

involve the business area team, and representatives from marketing and

operations. The discussions in the review relate to the business area and its

current and forthcoming products.

Commonly, company’s business areas are divided into different product

domains, which together form the company’s product portfolio. Each product

domain owner is responsible for creating plans for their own domain. The time

frame for the product domain planning is the same as with the product planning; it

has a one-year time frame with half of the year being more accurate and the rest

of the year having more tentative content. The product domain plan is updated

and input is collected through a quarterly review process. Also, the product

domain plans are discussed and input is collected through weekly business area

steering group meetings held by the business management, as well as through

weekly product portfolio meetings held by the product management and R&D

team. At the business area steering group meetings, the company’s product

portfolio is analysed; thus, the meeting is for creating a business update and

ascertaining that all business areas are in sync. The meetings are held more to

share information based on the product roadmaps (created by the product

management) rather than to make actual decisions. For example, issues relating

to product portfolios, market signals, business status, turnover, and number of

subscribers, are discussed and followed up. During the weekly product portfolio

meetings, the purpose is to check that the team is addressing the right issues and

that the issues are in line with the product domain or product portfolio plan. Also, it

reviews where the company is going with their products and what the main

investment areas are to be in the future. Also, the product’s focus areas are

discussed and analysed. If there is a need to make changes in the focus areas,

these inputs are gone through and, based on the discussions and decisions, the

future tasks and issues are changed. Thus, the weekly meetings are for

implementing the practical changes that need to be made.

Continuous product planning means that product roadmaps are reviewed and

updated continuously so that they are in sync with the company’s strategy plan,

business area plans and release plans. Also, the content of the product roadmap

is kept tentative, which helps to reduce external linkages needed for following and

implementing the roadmap. Then, for example, changing interest points, dropping

something out of the roadmap or dramatically changing the focus areas of the

roadmap is easier. The content of the roadmap may even change radically every

quarter, so the rolling forecast for the next year is considered to be the most

practical way of planning. The product planning is conducted inside the product

domain. The product management guides the actual R&D teams work by creating

product roadmaps. A product roadmap also relates to the business area strategy,

as the strategy is being implemented with the help of technology. The product

roadmaps include information relating to the products and their variants and

features as well as high-level descriptions of the user stories, and requirements.

The product roadmaps are created within the time frame of one year, in which the

first half year is a clearer, so-called high-confidence plan, and the second half of

76

the year involves more tentative content. Product roadmaps are revised on a

weekly, biweekly or quarterly review cycle. These review practices vary between

products as they are different in nature. For example, product maturity, the legacy

and complexity of the product and the customers and sales channels, all affect

product planning. Input to the product roadmaps comes from various sources, for

example, through the product managers and sales. The product management

review all the new feature requests, for example, whether it is a platform, product,

or customer specific asset. If the feature is considered to be vital, it will be

analysed further; what it means in relation to the schedules and costs, which also

requires the involvement of technical staff. Then the technical effect is analysed

together with the cost impact, for example, how much effort must be calculated,

and how much it affects the product’s timetable and all the costs. Also, at the

same time, market and customer needs are analysed, how much adding some

specific feature would be expected to increase sales, for instance.

Continuous release and feature planning means that release and feature plans

are reviewed continuously instead of on a predefined and exact date. However, it

does not mean that everything needs to be changed daily, all the time. If a change

is needed, a set of features may be fixed. Simply by monitoring progress and

recognising that the amount of work remaining matches with the capacity available

constitutes continuous planning. Release planning is conducted by the R&D team

who create a feature roadmap based on the current product roadmap. The time

frame for release planning or feature roadmapping is two months. It involves

practices relating to requirement management, such as prioritisation and

estimation. Features are typically implemented and verified with two-, four- or six-

week release cycles, depending on the team. The team can typically decide the

sprint length; three weeks is quite optimal, but weekly releases are suitable in

situations with many changes. Also, release plans or feature roadmaps are reviewed

within a daily review cycle, because they focus on implementation and verification

issues in daily work. As the products are managed by handling features in the

product roadmaps, the teams are managed through stories in the feature roadmap.

The features are split into stories to be implemented by the team. In addition, a

project plan is one of the team’s outputs, which is co-created so that everyone can

see the same artefact and suggest improvements. The project plan includes a

scope, resources and schedule. Continuous project planning by the team is

conducted as follows. First, the team makes estimates based on the scope; then

they make allocations of resources, and finally, they have a project plan. The main

activity of continuous project planning is balancing these three elements, which also

serves to establish the priority of the items in the scope. The main working method

of the team is ‘war-room workshopping’, which enables proper communication and

less confusion, as well as improving team spirit and enabling visual planning.

Continuous planning through roadmapping is applied to present the hierarchy

of several plans together with their time frames. The roadmap structure helps to

provide an integrated and shared picture of the whole organisation and its

planning activities. Figure 10 presents the empirical findings of the levels of

continuous planning and the associated activities through a roadmap structure.

77

Figure 10. Continuous planning through roadmapping.

78

In Figure 10 the roadmap structure on the horizontal axis describes the

roadmapping purpose on the organisational level, which refers to the level of

planning together with the main participants and their main activities. It forms a

higher-level view of the overall planning process as well as classifying the main

entities of planning, which are highlighted with different colours in the figure. The

planning activities outside the main entities of planning (highlighted with colour

frames) are so-called connecting activities between the levels of planning. The

vertical axis, in contrast, describes the content emphasis of the roadmap

positioning within a time frame, and identifies the main cycles of planning (that is

weekly, quarterly, and annual cycles). The activities associated with continuous

planning as well as their time frame are revealed as they are presented with the

help of the roadmap structure. Furthermore, the roadmap structure not only

highlights the masses of planning but also the lack of planning. The roadmap

structure brings out the synchronisation between levels of planning as well as

pointing out the most important and challenging activities associated with

organisational planning. These findings are discussed in more detail and

compared to the findings of related work next.

The figure presents the main levels of planning for an agile–lean organisation

as follows: strategic, financial, business, product, and release planning. These are

quite similar to the levels of planning presented in the related work (in Subchapter

2.3): strategic, business and financial, portfolio, product, and release planning.

The main participants of the planning activities are according to empirical findings

respectively: top management, financial management, business management,

product management, and the R&D team. The participants presented in the

related work (in Subchapter 2.4) are: the executive committee, business and

financial management, portfolio management, product management, and the agile

team. The biggest difference lies in the middle level of planning, which is called

portfolio planning according to the related work, and business planning according

to the empirical findings. Based on the related work, this middle level of planning is

purely related to portfolio management, whereas based on the empirical results it

is much more than that. In addition to portfolio planning it also involves business

area strategy planning and product domain planning, but also synchronisation

between the levels of planning both up to strategic planning and down to product

roadmapping. Thus, it is not only being one of the main levels of planning, but is

also one of the most challenging activities to conduct. This is because business

planning requires both technical and managerial skills from business management

as the business area strategy plans are quite strongly product and technology

focused, though they are also responsible for synchronising the plans between

product domains and seen that the product domains are progressing according to

the company’s strategy. Therefore, as a solution, the empirical results point out

that business planning is co-created together with business area teams that also

include people from product management and development in addition to

business management so as to get more knowledge involved in the process.

Similar to business planning, the empirical results also bring out the importance

of product management, as they also involve synchronisation between the

79

different levels of planning. Product planning provides information both up to

business and strategic planning and down to team-level planning through product

roadmaps. Product roadmaps improve the visibility of planning by providing

information on how product development is progressing along the company’s

strategy. Hence, the product roadmap is one of the main outputs of continuous

planning throughout the organisation. Therefore, especially product roadmapping,

should be done in a continuous manner in order to synchronise the company’s

strategy, business, and release plans. As with business planning, the product

roadmaps are commonly co-created together with product management and

development, and are then presented to business management so as to get more

perspectives involved in creating and validating the content.

Both business management and product management are also involved in

conducting the other so-called connecting activities between the levels of

planning, as presented in Figure 10. These connecting activities (outside the

colour frames) relate to reviewing budget or product portfolio plans. Both business

and product management will review and give feedback on the budget plans

created by the financial management, thus connecting the financial, business, and

product planning together. In addition, product management also reviews the

product portfolio plans created by the business management so that both the

product and business level plans are in line with each other.

Even though the planning activities (especially with regard to team, financial,

and strategic planning) share similarities between the related work and the

empirical findings, the time frames of the planning activities are different when

comparing the results. In the related work (in Subchapter 2.4), the time frame

constitutes days to eighteen months and planning is conducted in four main time

periods namely: a day to three months, three months to six months, six months to

one year, and a year to a year and a half. Instead, based on the empirical findings

presented in Figure 10, the time frame constitutes days to 36 months, as a

majority of long-term plans looked three years ahead. Thus, it was realised that

even though continuous planning is mainly understood as short-term planning, it

does not remove the need for long-term planning, as strategic, financial, and

business planning are required to steer the company in the right and desired

direction both in the short-term and long-term. Furthermore, in the light of the

empirical findings, planning is conducted in three main periods through weekly,

quarterly, and annual cycles. Commonly, strategic, financial, business, and

product plans are created annually, but the practices of how they are reviewed

vary. Where strategic plans are reviewed quarterly, budget plans are reviewed bi-

annually or quarterly, and business and product plans are reviewed weekly.

Instead, the team level plans are created within a time frame of less than two

months and reviewed even with a daily planning cycle.

The empirical findings summarised in Figure 10 also bring out the large amount

of planning well as the lack of planning. It seems that most of the planning

activities occur either within the time frame of three months to a one year or with

less than two months. The planning relating to strategy and business in particular

is typically conducted yearly and the plans are reviewed quarterly. In contrast,

80

most of the team- and product-level planning are conducted within two months

and the plans are even reviewed daily. In addition, the long-term plans relating to

strategy, finance, and business are made within a time frame of three years.

Instead, the lack of planning relates to the fact that there is no long-term planning

related to products or releases. Also, there is not much planning activity relating to

strategy or finance with less than a three months’ time frame. Even though yearly

planning is commonly used, it might not be the most appropriate type. For

example, yearly planning is quite inflexible and major changes are quite difficult to

make with regard to budgets, for instance. Therefore, it is realised that companies

need to be able to react and change plans in the course of the year.

RQ3. How is continuous planning conducted in continuous deployment-

driven software development?

There is no formal definition of CD in the current literature; however, there appears

to be some level of agreement amongst scholars that CD refers to the ability to

bring valuable product features to customers on demand and at will (deployment),

in series or patterns with the aim of achieving continuous flow (continuity) and in

significantly shorter cycles than traditional lead-times, from a couple of weeks, to

days or even hours (speed). Thus, CD builds on three major concepts: 1)

deployment, 2) continuity and 3) speed. Especially, in relation to continuous

planning, the difference between continuity and speed should be distinguished.

Deployment shows intention or the ability to bring a software product or system or

service to the production environment in order to be used by the customer. Hence,

CD means the ability to bring valuable product features to customers on demand

and at will. Continuity emphasises continuous series or patterns so that the

software is deployed at a specific time, repeatedly, providing a continuous

evolution of software functionality with the aim of achieving continuous flow.

Speed focuses on significantly shorter cycles than traditional lead-times,

preferably near to real time, at will or on-demand, for example, from a couple of

weeks to days or even hours.

CD challenges and changes traditional planning towards continuous planning,

whereas traditional software planning tends be performed cyclically and is usually

triggered by the annual financial year. In the context of CD, continuous planning is

mainly achieved through fast and frequent releases, hence relating to release

planning. Fast release is the ability to release software whenever the organisation

wishes, based on need, which can be weekly or daily. It is about accelerating the

release cycle by shortening the release cadence and turning it into a continuous

flow: that is, from months to weeks, or from six months or eight weeks to

continuous flow. However, achieving fast release in the form of continuous flow is

not free of charge. Shrinking the release cycles down to fortnightly, weekly, semi-

weekly and finally at-will, takes months of preparatory work to get the deployment

process streamlined and automated. Besides continuous planning, there are also

other mechanisms to achieve fast and frequent release, such as automation, close

81

interaction with customers, having a clear release process, a release management
workflow, and a continuous delivery workflow.

However, CD should not be confined to software development and planning
alone, and the flow should happen within the overall product development cycle,
where software and release planning is just one aspect. Therefore, continuous
planning in a CD context includes all the activities from strategic and business
planning to product, portfolio, and release planning. In all, the planning activities
should be done more frequently so as to ensure alignment between the needs of
the business context and software development, as well requiring tighter
integration between strategic and business planning and execution. The tighter
integration between planning and execution is required in order to achieve a more
holistic view in planning throughout the organisation. This is not yet a fully studied
area of research, as the related literature focuses mainly on release planning.
Further research is therefore required.

How has planning changed for agile and lean software development from
roadmapping to continuous planning?

The empirical findings are summarised in Figure 11. The figure shows the levels of
planning for an agile–lean organisation and defines their relation to roadmapping.
The figure also brings out the cycle of continuous planning and provides
information on the planning intensity at each level, together with their main
participants referred to in the figure as: planning, analysis, review and update, and
change prioritisation.

Figure 11. From roadmapping towards continuous planning.

The main levels of continuous planning are as follows: strategy and finance,
business, product, and release. Strategic and financial planning is conducted by
the top management with a yearly planning cycle. The content is planning-intense,
in which the company’s strategy is compared to product goals. Business planning
is conducted by the business management with a quarterly planning cycle. The

82

planning is analysis-intense, in which product goals are compared to results. The

analysed plans relating to technology or product roadmaps are communicated to

product management and those relating to budgets to financial management.

Product planning is conducted by the product management with the bi-weekly

planning cycle. This planning is review-intensive in nature, in which products are

compared with revised products. Release planning is conducted by the R&D team

with the daily planning cycle. It focuses on changed prioritisation and involves the

actual implementation work and re-prioritisation of features.

Business planning relates to the company’s strategy plan being implemented

with the help of technology. The main output of business planning is the

technology roadmap, which defines the company’s offering including the products,

their development and how they are implemented. However, it is a high level

document without direct links to requirements. Requirements are described at a

higher level in the product roadmap and thereafter in more detail in the feature

roadmap. The product roadmap is the main output of product planning. It includes

information relating to the products and their variants and features, as well as

high-level descriptions of the user stories and requirements. Also, it structures and

arranges product development in the order that they are to be done and when and

by whom. The R&D teams use product roadmaps to plan their work and to create

a feature roadmap. The feature roadmap is the main document in the release

planning, in which the features are split into stories to be implemented by the

team. It involves prioritisation and the change management of features. Even

though it seems that strategic and release planning are separated and the people

creating these plans are different, there is synchronisation and communication

between the levels of planning. In particular, the product roadmap is one of the

main documents of organisational planning as it provides information both up and

down, since it relates to the company’s strategy plan, business area plans, and

release plans. Hence, it is used both as a basis for business planning as well as

release planning. Product roadmaps help to synchronise information between the

levels of planning, but also provide a linkage between product management and

development, as well as between product management and business

management.

Change in planning practices

In the light of these results, it can be concluded that planning practices have

changed in the course of the study. The change has affected both the scope and

the schedule of planning.

With regard to the scope, when the research was started, roadmapping was an

emerging concept in software development. Back then, in so-called traditional

software development, roadmapping related to the development and planning of

products with the help of product roadmapping. It was commonly created by a

product manager, who was typically the owner of the roadmap, being responsible

for collecting input and making the required changes to the roadmap. Thereafter,

with agile and lean software development, the planning has moved downwards in

83

the organisation, closer to the actual implementation and team level planning. The

planning practices have changed towards cyclic planning in small and frequent

cycles and iterations. They are conducted as release and iteration planning with

the help of feature roadmapping, which is commonly created by a product owner

who is part of the R&D team. Now, as the software development practices are

moving towards continuous deployment with the ability to continuously develop

software functionality, continuous planning and transparency of information is

highlighted. It has been realised that a wider perspective on planning is required

than currently considered in the agile–lean organisation. Continuous planning

throughout the organisation is required in order to enable continuous software

engineering, including also such areas of roadmapping as strategic, financial and

business planning.

With regard to the schedule, the time frame of plans has shortened remarkably

in recent years. It has been realised that it is difficult to predict far into the future,

and making long-term plans with inaccurate content is useless and is actually

against lean principles. Based on empirical findings, none of the companies

created long-term plans for five or ten years ahead, as presented in the related

literature (e.g. Phaal and Muller 2009). Currently, the long-term strategic plans are

created for two or three years ahead. Also, the time frame of the short-term plans

such as product roadmaps has shortened radically during the course of the study.

When the research was started, it was common that product roadmaps were

created for three years (e.g. Lehtola et al. 2005). Similar results were received

through the empirical study (that is initial inquiry) showing that product roadmaps

were created for two to three years ahead. Currently, with the adoption of agile

and lean software development practices, the time frame of product plans has

shortened to a one-year view, in which the first half of the year is more accurate

and the rest of the year involves more tentative content. Some of the case

companies even clarified that making product plans for one year ahead is difficult

and some of them even pointed out that they would rather plan only for half a year

ahead.

In light of the empirical results, strategic and financial planning are still

considered rather project-based efforts, as they are done annually, instead of the

ideal continuous planning with planning purely based on need. Even though it is

recognised in the related work that some literature supporting practices of

continuous strategy or rolling budgeting exists (e.g. Koenigsaecker 2009, Rickards

and Ritsert 2012), it seems that it is not yet applied among the companies.

However, the companies have realised that strategic planning should be done

more often, and some companies have even adopted a continuous review process

while others are still considering adopting a quarterly review process. Similarly, the

results reveal that one year is too long a time frame to make budget plans. A half

year would be a more accurate time frame, but it is realised that biannual

budgeting can be really time-consuming, since it takes lot of effort to get it done

and approved. Therefore, creating a yearly budgeting frame with a rolling review

process might be more convenient than bi-annual budgeting. The team-level

planning is quite fast-paced already, as it is in the agile–lean organisation, where it

84

is conducted with less than a two-month time frame and with less than a week’s

review cycle. Actually, the empirical results point out that there is no need to make

the team level planning any faster, but instead the goal is to reach a freer release

cadence so that the team can decide the release and sprint length by themselves.

Reasons for the change in planning practices

The background of continuous planning lies in agile and lean software

development practices. A recent evolutionary step from agile and lean software

development is continuous deployment, which refers to the organisational

capability to develop, release and learn from software in rapid parallel cycles, such

as hours, days or a very few weeks. This phenomenon is a logical progression of

extending agile and lean approaches, where the step between development and

deployment is minimalized in order to deploy code immediately to the production

environment for customers to use. CD extends agile and lean practices by moving

from cyclic to continuous value delivery. This evolution requires not only agile

processes at the team level, but also integration of the complete R&D

organisation, parallelisation and automation of processes that are sequential in the

value chain and constant customer feedback. Where agile and lean practices

focus on speeding up the development process at the team level (with such

methods as Scrum), CD moves beyond the concept of agile and lean towards a

situation in which software functionality is continuously deployed to the final

customers. Therefore, continuous deployment goes beyond agile and lean

software development; thus, these methods and practices are the first steps the

organisation can take toward CD and hence are considered as an enabler for CD.

Also, CD scales agile and lean practices throughout the whole organisation

instead of focusing only on team-level activities. In other words, CD transforms the

traditional agile and lean practices and methods into a continuous flow.

The reasons for the change in planning towards continuous planning can be

explained by the external and internal challenges that companies face in today’s

volatile market environments. Both the unstable and turbulent business

environment and fast technology development have meant that the future is really

difficult to predict, which means that continuous planning is needed. Furthermore,

the need for continuous planning arises as the organisations have problems in

developing long-term plans due to constant changes in their customer and market

bases, as well as in product and technology development. Also, recent financial

crises have caused companies to rethink their approaches to planning and to

realise the importance of continuous planning from both an operational and

financial perspective. Various and sudden changes in the business environment

have forced companies to adopt continuous strategic and financial planning

practices. For example, large companies and important partners going bankrupt or

suddenly disappearing from the market area have caused companies to quickly

get new partners and redirect their product offering to these new customers.

Therefore, a strategy plan, for example, needs to be changed and redirected a lot

in the course of the year. Instead, the internal changes relate for example to the

85

adoption of agile and lean development practices, which force companies to

shorten their product planning and review cycles to months and to shorten team-

level planning to weeks or days. While going further towards continuous software

engineering, internal changes are required to enable continuous deployment, such

as the automation of the delivery pipeline from build and testing to deployment and

monitoring.

The reasons for the change can also be explained through the benefits that

continuous planning offers. From the strategic perspective, the management is

able to show staff the current status more clearly, for example, what they have

done and where they now want to be both in the mid-term time frame and in the

long-term time frame. Since the strategy is reviewed, followed up, communicated

and published quarterly, it leads to increased trust in management, as well as to

improved competitiveness and decreased fixed costs. From the financial

perspective, the main benefits of continuous planning are that the estimates

become more accurate. From the portfolio-level perspective, especially if the team

is using a visual Kanban board or wall, a key benefit is that the people in charge of

the portfolio level can come to the war-room and actually see what the team is

currently doing. The visual wall also makes it much easier to explain why things

have been done in a certain way, instead of trying to explain it using backlog excel

sheets. From the product management perspective, continuous planning enables

a better level of communication, as it brings more people into the planning

process. Furthermore, from the R&D project management perspective, a key

benefit of continuous planning is that it reduces work-in-progress as well as

improving quality levels. The team improves in writing features, since the project

performance time becomes much clearer. Thus, the feature level plan becomes

more reliable given that there are not so many modifications during the

implementation.

The reasons for change can be associated with the benefits achieved while

conducting continuous planning in CD-driven software development. These

benefits include shorter time-to-market; instant feedback, especially from

customers when using proper monitoring and experimentation systems; improved

release reliability, partially as a result of a narrower test focus; and improved

customer satisfaction and developer productivity. All in all, the most immediate

benefit of applying CD is a shorter time-to-market through fast and frequent

releases, which is achieved through continuous planning. These benefits are

received when the companies shorten their delivery cycles from months or weeks

to continuous flow or daily deliveries. Shorter release cycles enable companies to

constantly develop, learn and improve their offering based on instant customer

feedback and thus, companies can quickly learn what customers value and focus

on deploying relevant functionalities that meet customers’ expectations. Shorter

release cycles enable faster feedback about new features and bug fixes, which

makes release planning slightly easier. CD has also been found to increase

customer satisfaction and to enable continuous customer feedback. CD allows

continual product enhancement and immediate access to new features and bug

fixes, which increase customer satisfaction. By using continuous planning at the

86

release-level, users can adopt new versions of the product faster, bugs are fixed

faster and users do not experience significantly more post-release bugs in

comparison with traditional release planning. In addition, customers have a

chance to evaluate the enhancements and provide feedback immediately and in a

continuous way (that is continuous customer feedback), which improves

communication between the company and its customers. Furthermore, closer

interaction with customers enables enterprises to monitor and collect instant field

data on their customers and software’s behaviour. The main advantage is that

companies have the chance to rapidly sense, understand and improve their

offering based on actionable metrics and data. Closer relationships with customers

further facilitate rapid innovation. Continuous and instant customer feedback

allows companies to invest their resources in developing relevant functionalities

and innovation initiatives. Faster feedback can also mean cheaper development,

since the R&D organisation can then spend time developing the right things rather

than correcting mistakes in functionality, which is not necessarily what the

customer wants.

Effects of the change in planning practices

The change towards continuous planning has various effects. In order to achieve

continuous planning, organisations need to be capable of changing their

operations and adapting their mind-set towards continuous planning and

transparency throughout the whole organisation. Organisations need continuous

visibility of their development and operations in order to provide information to all

employees. On the one hand, operational transparency is related to increasing the

visibility of the performed work, to planning and executing actions in relation to the

fulfilment of one set of defined criteria. On the other hand, development

transparency is related to identifying the potential technological and cultural

barriers to implementing increased transparency and improving learning in

connection to needs that arise due to increased transparency. Also, knowledge

sharing has become increasingly important inside the organisations, as both push

(e.g. training courses) and pull type (e.g. publishing information via wikis and

articles) of knowledge sharing is needed. Furthermore, beyond this visibility,

continuous competency planning and development are needed. Employees’

competencies should be able to adapt constantly and change through continuous

analysis, development activities and evaluations as to the successfulness of

actions.

Continuous planning also has other challenging effects that relate both to

people, whether they are, for instance, willing to be engaged and involved, and to

transparency, how to make goals visible and suit a continuous setting, for

instance. People may view continuous planning as losing authority, and thus, for

example, the culture towards continuous planning needs to be embraced

throughout the organisation. The main expectations of continuous planning are

related to turning the goals into a continuous planning mode and how to fulfil long-

term issues. When the longer-term goals are taken into account, they should be

87

quite quickly optimised into shorter-term business productivity. Therefore,

companies need to consider whether they are sufficiently taking the longer-term

architecture and business strategies into account. But all in all, continuous

planning does not remove the need for long-term planning. Instead, it is realised

that company management needs to consider the long-term perspective of various

issues at the same time as the background, such as resourcing and competency

needs, as well as a location and technology strategy. Yet not all of these actives

might be visible to the team. Visibility could be improved by using a tool that would

present information relating to various levels of planning. In addition, one of the

main obstacles to continuous planning is that many parts of the organisation would

rather work with longer-term plans than three months. For example, the business

areas prefer to have a view from six months to one year, but in order to conduct

continuous planning, the teams might be only promised a three-month view, while

the longer view is only an outlook. The short-term planning cycle requires a major

mental shift for many actors, especially the outside R&D team, and the capability

of doing the work in a continuous manner must be visible all the time to the rest of

the company.

Furthermore, moving towards CD implies challenges for the whole organisation,

such as: customers’ unwillingness to receive continuous product updates,

increased quality assurance (QA) efforts, and difficulties applying CD in the

embedded domain. Similar to continuous planning, moving towards CD is an

evolutionary process and requires investment in deployment processes, as well as

changes in people’s mind-set and organisations’ way of working. Therefore, in the

context of continuous software engineering, where organisations are required to

develop, deliver and learn in fast and parallel cycles, it is profoundly important to

establish an agile thinking culture among individuals, teams, as well as upper

management levels. Furthermore, even though customers seem to be more

satisfied, customer unwillingness to accept CD is another challenge. For example,

customers are reluctant to accept new functionalities mainly because of the poor

quality of releases. Similarly, while rapid release has numerous benefits and

strongly supports shorter release length, at the same time it increases the test

efforts. This stems from the fact that more specialized testers are required to

sustain the testing effort in a rapid release model. In addition, CD requires

establishing an effective QA process and new mechanisms to ensure backward

compatibility of enhancements. In addition, further difficulties exist in release

planning and managing the roadmap in a fast-paced environment and risks

associated with gathering user feedback from a limited population that may

constrain the software’s evolution or even mislead product development.

5.2 Evaluation of the results

In this subchapter, the research results are evaluated. Firstly, theoretical

contributions and the empirical implications of the research are discussed. Then,

88

the reliability and validity of research are presented, and finally, the limitations of

the results are discussed.

Theoretical contributions

In this study, a literature review was conducted comprising the theories of agile

and lean software development (see Subchapter 2.1), roadmapping (see Chapter

2.2), and continuous planning (see Subchapter 2.3). Based on this literature

review, a figure describing the current planning practices through roadmap

structure in the agile and lean software development context is presented (see

Subchapter 2.4). The implications of the key findings are evaluated with respect to

these main theories.

With regard to the current literature of agile and lean software development,

Cohn (2006) has presented a planning onion consisting of the following levels of

planning: strategy, portfolio, product, release, iteration, and day. In this related

literature, the responsibility for planning is moved to agile teams, and thus

planning mainly relates to iterations or releases. The other levels of planning

outside the concern of agile teams (that is strategy, portfolio, product) are not

defined with the same level of detail. Hence, this thesis points out that the agile

team level planning is necessary but not sufficient and a wider perspective on

organisation planning in the agile and lean software development context is

required. Thus, this thesis collects all the empirical findings together and presents

the results with the same level of detail in all the following levels of planning:

strategy, finance, business, product, and release.

With regard to the current roadmapping literature, the current empirical

practices related to roadmapping are identified and presented in the thesis. These

practices focus especially on product roadmapping, as it has been seen as one of

main activities in software development. Furthermore, this thesis improves the

current understanding of roadmapping by defining the roadmapping process along

with the main participants, as well as the main elements of the roadmap structure

(i.e. the layers of knowledge). The roadmap structure not only enables the

company to present the same level of detail to the planning (i.e. the levels) but

also to go further with the planning onion theory and beyond the levels of planning

by revealing also the associated planning activities, as well as the time frames and

cycles of planning. Furthermore, even though it has been pointed out in the

current literature (Phaal et al. 2004b, Groenveld 2007) that the roadmapping

process is different between companies, and that there is not just one process

model to be adopted, this thesis demonstrates something different among Finnish

and Swedish ICT companies. Based on the empirical results, the case companies

had not only similar levels of planning and time frames, but also similar

participants conducting the planning.

The current literature on continuous planning lacks a definition and a more

profound understanding of the way continuous planning is conducted throughout

the organisation in the agile and lean software development. This is recognised

not only through the related literature (e.g. Fitzgerald and Stol 2014) but also

89

through empirical findings presented in the related original publications.

Accordingly, it is evident that continuous planning requires a wider perspective

than is currently considered. It should be examined from a broader, even more

continuous perspective than currently exists. It is realised that continuous planning

is not only a team-level activity, but rather it involves higher-level planning as well,

for example, strategic and financial planning. In the related literature, Fitzgerald

and Stol (2014), for example, emphasise continuously assessing and improving

the link between business strategy and software development, although they do

not define how such a link could be achieved or how a business strategy should

be done in a continuous manner in order keep it in line with the continuous

software development. Hence, this thesis addressed this research gap by

increasing knowledge of continuous planning in an agile–lean organisation.

Furthermore, as a unique contribution to the field of research, this thesis views

continuous planning through roadmapping. The roadmap structure brings out the

main levels of planning together with their time frames and the participants

involved. Thus, this thesis defines how continuous planning is conducted at

various levels of the agile–lean organisation (that is strategy, finance, business,

product, and release) as well as providing information on the planning intensity at

each level and identifying the main participants of that specific level of planning.

The roadmap structure also reveals the masses and lack of planning and reveals

the synchronisation between levels of planning, as well as points out the most

important and challenging activities associated with organisational planning, which

is currently missing in the related literatures.

The main theoretical contribution of this thesis is revealing the change in the

planning for agile and lean software development. It has been realised that the

current planning practices used in software development, such as product

roadmapping, are evolving towards continuous planning. Unique to this field of

research, this thesis reveals the reasons for this change and points out what kind

of challenges these new planning practices cause and what the associated

benefits are. Additionally, this research sheds light on the new and not yet fully

studied area of continuous deployment, which is believed to be the next

evolutionary step in agile and lean software development (e.g. Olsson et al. 2012).

This new research area is tackled with a wide systematic mapping study. Through

the lens of the systematic mapping study, is it recognised that continuous planning

is indeed part of the emerging new trend of continuous deployment and further it is

seen as one of the mechanisms to achieve continuous deployment. The thesis

provides further insights into the phenomenon of continuous planning and

development, which all in all enriches the current body of knowledge as well as

provides material for further research.

Empirical implications

This thesis provided results on the practical implications received through case

studies. The empirical implications relate to the recognition of change in the planning

practices among software development companies from roadmapping towards

90

continuous planning. Practical evidence is provided from both of these main areas of

research, namely roadmapping and continuous planning. In what follows, these

main aspects of the practical implications from this thesis are discussed.

The findings related to roadmapping help companies to improve their own

roadmapping practices by focusing their improvement efforts on the most critical

parts of the product roadmapping process, that is capturing and prioritising

features, and changing the management of the roadmap. The findings also

provide empirical understanding and experiences of the most important activities

in collaborative product roadmapping and bring out the challenges that inter-

company collaboration sets for the roadmapping process.

The findings related to continuous planning provide actual practices in how to

conduct continuous planning at the various levels of the organisation, such as

strategic, financial, business, product, and release planning. These practices are the

ones that companies can accommodate while seeking to develop or improve their

current planning processes and practices towards continuous planning. The empirical

implications also show how to use continuous planning through roadmapping in the

agile and lean software development context. The roadmap structure provides

information for the various levels of planning together with the main roles and planning

activities. Furthermore, it brings out the main activities associated with planning, but

also highlights the bottle necks as well as lack of planning.

Most importantly this research uncovers practical implications for software

development organisations that have recognised the need for continuous planning

or have already changed their planning practices towards continuous planning.

One of the main implications for practice stem from the reported reasons for why

change in planning has occurred, and what the main consequences of the change

are. These issues are vital for practitioners to consider while changing their current

planning or development practices. The findings also bring out other aspects

related to continuous planning, such as leadership, transparency and competency

development, which companies can consider while improving their current

planning practices. Also, the findings of this research help industrial companies to

better prepare for the internal and external challenges arising both from going

beyond agile and lean software development towards continuous deployment and

from the constant changes and surprising events in the business environment.

Reliability and validity of the research

This thesis builds on five original publications. Together, these publications form a

consistent body of knowledge bringing out the change in planning that the

software development industry is currently facing. The papers were published over

the course of a relatively long time frame, almost ten years, but this is reasonable

in order to describe the phenomenon of change. All the results presented in these

publications have been reviewed, evaluated and then published in high-quality

scientific forums; that is highly rated journals and conferences of repute. Also, the

reliability and validity issues are separately discussed in the original publications.

91

The research results presented in the original publications are based on

empirical data. Papers I and II present research results from the initial inquiry and

Papers III and IV are based on a multiple-case study involving three case

companies. The data in Papers I–IV were gathered through various sources such

as a questionnaire study, interviews, a series of meetings and workshops, and

through the analysis of company-specific internal memos and material. All these

empirical data were gathered through real industrial settings and the data together

with the results were reviewed and validated during the research process by the

case company representatives. The research results presented in Paper V are

based on a systematic mapping study. In order to provide reliable results, all non-

peer-reviewed scientific studies, books, book chapters, and short papers were

excluded from the study.

In order to establish the reliability of this research, triangulation of the study’s

qualitative data was performed as a validity procedure to increase the precision of

the empirical research. The purpose of triangulation is to approach a studied

object from various angles to provide an in-depth understanding of it (Runeson

and Höst 2009). Accordingly, four different types of triangulation may be used:

data (or so-called source) triangulation, observer triangulation, methodological

triangulation, and theory triangulation. The data triangulation of this research

project served to strengthen its research results, as more than one data source

was used (that is interviews, meeting and workshop as well as company-specific

material) and the same kind of data were collected on different occasions. The

results of this research were also strengthened by observer triangulation, as there

was more than one researcher involved in collecting the data, and the

representatives of the case companies played various different roles. The

methodological triangulation was strengthened by the fact that different types of

data collection methods, such as qualitative and quantitative methods, were

combined during the research, especially in the initial inquiry part of the research.

The research results are also bolstered via the triangulation of theory in this

research, as alternative theories or viewpoints were discussed in the presentation

of the research results.

In order to establish the validity of this research, commonly used criteria to

evaluate the validity of the empirical research (Yin 2003, Easterbrook et al. 2008)

were used. Four tests can be used to establish the quality of the research

including construct validity, internal validity, external validity, and reliability.

Construct validity focuses on whether the theoretical constructs are interpreted

and measured correctly. It reflects to what extent the measures studied represent

the intentions of the research and if what is being studied is according to research

questions. There is a threat to construct validity when the measured variables do

not correspond to the intended meanings of the theoretical terms. For example,

problems occur when the constructs discussed in the interview questions are not

interpreted in the same way by the researcher and the interviewees. There are

three tactics to increase construct validity (Yin 2003): using multiple sources of

evidence, establishing a chain of evidence, and having a draft case study report

reviewed by key informants. The research covered three case companies and

92

several other companies involved in the initial inquiry, thus having multiple sources

of evidence. Also, all the interview reports and case descriptions were reviewed by

the company representatives.

Internal validity focuses on the study design and particularly on whether the

results really do follow from the data. It is a criterion related to causal

relationships. For example, if one is studying whether a certain factor affects the

factor being studied, there is a risk that a third factor also affects the one under

study. There is a threat to internal validity if the researcher is not aware of this

factor and does not know to what extent this third factor affects the one that is

investigated. However, this logic is not applicable to descriptive or exploratory

studies that are not concerning with making causal statements, as is the situation

in this research. Furthermore, the research is conducted in a real-life setting

instead of a laboratory environment, and hence the factors affecting the results

cannot be isolated. As the research goal was to understand and discover the

current practices of roadmapping and continuous planning in practice, the real life

industrial projects were seen as necessary. The internal validity has been

supported in that the results have been analysed and validated by several people:

the author, co-authors of the original publications, company representative, and

the case participants.

External validity focuses on whether claims for the generalisability of the results

are justified. This depends on the nature of the sampling used in a study. In case

studies, the intention is to extend the results to similar cases in which the findings

would be relevant. Thus, during the analysis of external validity, the researcher

tries to analyse to what extent the findings are of relevance for other cases. In this

thesis, this is supported by using a multiple-case study approach to reveal similar

topics emerging from several companies.

Reliability focuses on whether the study would yield the same results if it were

to be conducted all over again by other researchers. Thus, it considers the extent

to which the data and the analysis are dependent on the researcher. There is a

threat to the reliability of the study if the case study research procedure is poorly

documented. Without proper documentation, the earlier case study is difficult to

repeat. Therefore, all the vital information related to conducting this research are

carefully documented, including the research, interview and questionnaire

questions, as well as storing all case material. Furthermore, the NVivo empirical

data analysing tool was used to store, analyse and classify the empirical data.

Also, the case studies included in this research were reviewed and analysed by

other researchers than the author, providing evidence of reliability.

Furthermore, in relation to case studies, Easterbrook et al. (2008) identify that

one major weakness of case studies is that the data collection and analysis are

more open to interpretation and researcher bias. For this reason, an explicit

framework is needed for selecting cases and collecting data. Even though an

individual case study often reveals deep insights, the validity of the results

depends on a broader framework of empirical induction (Easterbrook et al. 2008).

Hence, it was realised that the use of multiple case studies would offer greater

validity to the research. Thereafter, the case companies were carefully selected.

93

All the companies involved in this research are operating in the field of ICT product

and service development and are large companies with more than 1,000

employees. Also, all the case companies had transformed their organisational and

software development practices to use agile methods and a lean development

approach. Therefore, all the case companies involved in the multiple-case study

were believed to fit well to the overall research context.

Easterbrook et al. (2008) also point out that all research conducted in industrial

settings brings a number of challenges. It can be very hard to gather data to

ascertain what practitioners actually do or what needs to be improved in the

organisation, rather than what practitioners say they do or what they think requires

improvement. In return for access to the organisation, the researcher usually has

to give up some control. For example, it is difficult to observe and document

findings without interfering with the situation observed, especially when the

industrial partners want to know in advance what the expected outcomes are. It is

often difficult to know whether changes are made through involvement in the

research or whether they would have occurred anyway. Finally, obtaining

permission to publish the results can be a challenge. Delays in publication are

likely if the organisation has concerns about the inclusion of confidential data or

insights in the research.

Limitations of the results

A common argument regarding the case study research method is that

generalisation of its results is limited (Yin 2003). In general, generalisability refers

to the degree to which the original data are a representative of a larger population,

thus a multiple-case study research method was used to gather data from various

companies and sources. But, due to the fact that only three industrial companies

were analysed in more detail (referring to the multiple-case study), it cannot be

said that the results can be applied to industrial companies in general.

Furthermore, the results of this study are weakened due to the fact that almost all

the case companies involved in this research were Finnish companies, with the

exceptions of one of the case companies in the initial inquiry and one of the case

companies in the multiple-case study were Swedish companies. The research

results might have been different if the case companies would also have included

other European, Asian, or American companies. Thus, the research results cannot

be generalised to a larger context involving other countries and cultures, as the

research has been done in one country mainly. In addition, the results of this study

can only be applied to a certain extent to smaller companies, as all the multiple-

case study companies were considered to be large. Therefore, further research

will be needed in this field; not only to involve companies with different

geographical and cultural backgrounds, but also of various sizes.

The empirical data are mainly based on qualitative interviews. Thus, it is

possible that all the planning practices together with their impediments and

enablers have not been mentioned in the interviews and might play an important

role regarding the research results. The interviewees also possess subjective

94

perspectives as to the questions asked concerning how the continuous planning

process is viewed and defined within each case company. In addition, the

interviewees’ answers do not speak for the collective opinions of others in the

case companies. Furthermore, the limitations of the results are weakened due to

the fact that there were only three interviews and interviewees in Case C. Also, all

of the interviewees were from the same business area and none of them

participated to the company’s strategic planning.

5.3 Conclusions and future research

This thesis summarised five original publications in the field of research. The work

presented in this thesis contributes to the understanding of change in the planning

for agile and lean software development from roadmapping towards continuous

planning. This thesis provides empirical evidence on these two main topical areas

of the research, roadmapping and continuous planning, in the context of software

development.

This thesis defines a roadmap as a plan or a leading map of the company’s

future directions. Roadmapping, in contrast, is the process of creating and revising

roadmaps. Continuous planning is about implementing planning and roadmapping

practices continuously, so that plans are created and revised based on need,

instead of having predefined and regular planning occasions. The roadmap

structure consists of the levels of planning and the time frames of the plans. The

roadmap structure is applied to gaining an integrated and shared picture of the

whole organisation and its planning levels and activities. The horizontal axis

describes the roadmapping purpose on the level of planning, revealing also the

main participants and their main activities at each level of planning. The vertical

axis describes the content emphasis of the roadmap positioning within a time

frame, and identifies the main planning cycles. The levels of continuous planning

for the agile–lean organisation are defined in the thesis as follows: strategic

planning, financial planning, business planning, product planning, and release

planning. The main cycles of planning are conducted weekly, quarterly and

annually. More longer-term plans are created for three years ahead. The results of

this thesis focus on product planning, as it realised that roadmap-based planning

in a software development context focuses on product roadmapping. Product

roadmaps improve visibility in planning by providing information on how product

development is progressing in relation to the company’s strategy. Thus, a product

roadmap provides information both upwards to business and strategic planning

and downwards to team level planning. Hence, the product roadmap provides a

link between technology and feature roadmaps, but also synchronises the

information between these levels of planning.

Based on the findings of this thesis, it was realised that the planning practices

have changed both in regards to the scope and schedule of planning. Planning in

agile and lean software development is not restricted to release planning only;

instead planning is viewed from a wider perspective involving also strategic and

95

financial planning. Also, the time frame of the plans has shortened remarkably in

recent years from years to months, weeks, and days. The reasons for these

changes are both internal and external. Both the unstable and turbulent business

environment and the rapid development of technology and new product

development practices and shorter product development cycles are drivers for the

change in planning. Also, the recent financial crises and constant changes in the

business environment pave the way for adopting continuous practices. As a result,

it is also revealed that agile and lean software development companies broadly

speaking are not conducting continuous planning throughout the organisation.

However, it is believed this will change in the near future as it is realised that

software development companies are going beyond agile and lean software

development towards practices of continuous deployment and planning.

Based on the discussions in these research results, several suggestions for

future research on this and related topics can be made as follows:

Firstly, the empirical evidence could be extended by conducting more

interviews, especially in Case C. But, also more case companies could be

involved in the research in order to gain a more profound and in-depth

understanding of the research phenomenon at hand. Also, other research

methods, besides interviews and workshops, could be used to gather data. For

example, using observation could reveal interesting insights into the planning

occasions themselves that would not have been researched otherwise. The

existence of broader case data would allow for comparing and contrasting the

findings of different cases. As this research focused on large organisations, it

would be interesting also to collect data from small and medium-sized companies

in order to compare the results between the different sized companies. In

particular, there were indications that small companies would be facing the same

challenges as large companies even though the organisational structures are

much thinner and plans are done with a much smaller group of people. Thus, it

would be interesting to discover whether the problems in planning are caused by

human-related issues such as poor communication and personal characteristics,

or by the planning practices and processes themselves.

Secondly, as the majority of the case companies did not utilise the practices of

continuous planning throughout the organisation, it would be interesting to find out

what kind of problems would be encountered if they did. Also, it would be interesting

to ascertain what kind of tools would be needed to support continuous planning

throughout the organisation in order to improve transparency and real-time and

relevant data. Moreover, the research could be continued by defining more profound

strategic, financial, and business planning practices supporting also continuous

deployment to be used especially among software development companies. This

work could be continued by identifying the right time of planning so that the

continuous strategic planning would not interfere too often in product and team level

planning or vice versa. Furthermore, after a couple of years, when companies have

adopted the practices of continuous deployment, it would be interesting to see how

this has affected its organisational structures and planning practices.

96

References

Abrahamsson, P., Salo, O., Ronkainen, J. and Warsta, J., 2002. Agile software

development methods: Review and analysis. VTT Publications 478, VTT, Espoo,

pp. 107.

Agile Manifesto, Manifesto for Agile Software Development. Available:

http://agilemanifesto.org/ [Referenced 27.06.2016].

Albright, R.E., 2002. The Process: How to Use Roadmapping for Global Platform

Products. PDMA Visions, vol. 26, no. 4, pp. 19-23.

Albright, R.E., 2003. A Unifying Architecture For Roadmaps Frames a Value

Scorecard. Proceedings of the IEEE International Engineering Management

Conference, pp. 383-386.

Albright, R.E. and Kappel, T.A., 2003. Roadmapping in the Corporation. Research

Technology Management, vol. 46, no. 2, pp. 31-40.

Alreck, P.L. and Settle, R.B., 1995. The Survey Research Handbook. 2nd ed. Irwin

Professional Publishing, Chicago, 450 p.

Baskerville, R.L., Mathiassen, L. and Pries-Heje, J., 2005. Agility in fours: IT

diffusion, IT infrastructures, IT development and business, in: Baskerville, R.L.,

Mathiassen, L., Pries-Heje, J. and Degross, J.I. (Eds.), Business Agility and

Information Technology Diffusion. Springer, New York, pp. 3–10.

Beeton, D., Phaal, R. and Probert, D., 2008. Exploratory roadmapping for

foresight. International Journal of Technology Intelligence and Planning, vol. 4, no.

4, pp. 398-412.

Bekkers, W., van de Weerd, I., Spruit, M. and Brinkkemper, S., 2010. A

Framework for Process Improvement in Software Product Management.

Proceedings of the 17th European systems and software process improvement

and innovation conference (EuroSPI), Communications in Computer and

Information Science, vol. 99, pp. 1-12.

http://agilemanifesto.org/

97

Bellomo, S., Nord, R.L. and Ozkaya, I., 2013. A study of enabling factors for rapid

fielding combined practices to balance speed and stability. Proceedings of the

35th International Conference on Software Engineering (ICSE), pp. 982-991.

Bogsnes, B., 2008. Implementing beyond budgeting: unlocking the performance

potential. John Wiley & Sons, Hoboken, New Jersey, 216 p.

Bryson, J.M., 2011. Strategic planning for public and nonprofit organizations: A

guide to strengthening and sustaining organizational achievement. Jossey-Bass,

San Francisco, California, 325 p.

Butler, D., 2012. Business planning: a guide to business start-up. Butterworth-

Heinemann, Oxford, 288 p.

Carvalho, M.M., Fleury, A. and Lopes, A.P., 2013. An overview of the literature on

technology roadmapping (TRM): Contributions and trends. Technological

Forecasting and Social Change, vol. 80, no. 7, pp. 1418-1437.

Charette, R.N., 2003. Challenging the fundamental notions of software

development. Agile Product Management and Software Engineering Excellence,

Cutter Consortium, Executive Report, Arlington, Massachusetts, pp. 1-38.

Chong, J., 2005. Social Behaviors on XP and non-XP teams: A Comparative

Study. Proceedings of the Agile Development Conference (ADC), pp. 39-48.

Cohn, M., 2006. Agile Estimation and Planning. Prentice Hall, New Jersey, 330 p.

Conn, S.S., 2004. A New Teaching Paradigm in Information Systems Education:

An Investigation and Report on the Origins, Significance, and Efficacy of the Agile

Development Movement. Information Systems Education Journal, vol. 2, no. 15,

pp. 3–18.

Cosner, R.R., Hynds, E.J., Fusfeld, A.R., Loweth, C.V., Scouten, C. and Albright,

R., 2007. Integrating roadmapping into technical planning. Research-Technology

Management, vol. 50, no. 6, pp. 31-48.

98

Creswell, J.W., 2003. Research Design: Qualitative, Quantitative, and Mixed

Method Approaches. 2nd ed. Sage Publications, Thousand Oaks, California, 246

p.

Darke, P., Shanks, G. and Broadbent, M., 1998. Successfully Completing Case

Study Research: Combining Rigour, Relevance and Pragmatism. Information

Systems Journal, vol. 8, no. 4, pp. 273-289.

DeGregorio, G., 2000. Technology Management via a Set of Dynamically Linked

Roadmaps. Proceedings of the 2000 IEEE Conference, pp. 184-190.

Denzin, N.K. and Lincoln, Y.S., 2000. Handbook of Qualitative Research. 2nd ed.

Sage Publications, Thousand Oaks, California, 1065 p.

Dittrich, Y., Pries-Heje, J. and Hjort-Madsen, K., 2005. How to Make Government

Agile to Cope with Organizational Change. Proceedings of the IFIP TC8 WG 8.6

International Working Conference, pp. 333-351.

Dove, R., 2005. Agile Enterprise Cornerstones: Knowledge, Values, and

Response Ability, in: Baskerville, R.L., Mathiassen, L., Pries-Heje, J. and Degross,

J.I. (Eds.), Business Agility and Information Technology Diffusion. Springer, New

York, pp. 313-330.

Easterbrook, S., Singer, J., Storey, M.-. and Damian, D., 2008. Selecting empirical

methods for software engineering research, in: Shull, F., Singer, J. and Sjøberg,

D.I.K. (Eds.), Guide to advanced empirical software engineering. Springer,

London, pp. 285-311.

Eppler, M.J. and Platts, K.W., 2009. Visual strategizing: The systematic use of

visualization in the strategic-planning process. Long range planning, vol. 42, no. 1,

pp. 42-74.

Eriksson, P. and Kovalainen, A., 2008. Qualitative methods in business research.

Sage Publications, London, 337 p.

99

Evans, N.D., 2002. Business Agility: Strategies for Gaining Competitive Advantage

Through Mobile Business Solutions. Prentice Hall, New Jersey, 247 p.

Fitzgerald, B. and Stol, K., 2015. Continuous software engineering: A roadmap

and agenda. Journal of Systems and Software, pp. 1-14.

Fitzgerald, B. and Stol, K., 2014. Continuous software engineering and beyond:

trends and challenges. Proceedings of the 1st International Workshop on Rapid

Continuous Software Engineering, pp. 1-9.

Groenveld, P., 2007. Roadmapping integrates business and technology.

Research-Technology Management, vol. 50, no. 6, pp. 49-58.

Heikkilä, V., Paasivaara, M., Lassenius, C. and Engblom, C., 2013. Continuous

release planning in a large-scale Scrum development organization at Ericsson.

Proceedings of the Agile Processes in Software Engineering and Extreme

Programming Conference (XP), pp. 195–209.

Heikkilä, V., Rautiainen, K. and Jansen, S., 2010. A revelatory case study on

scaling agile release planning. Proceedings of the 36th EUROMICRO Conference

on Software Engineering and Advanced Applications, pp. 289-296.

Highsmith, J., 2002a. Agile software development ecosystems. Addison-Wesley,

Boston, 404 p.

Highsmith, J., 2002b. What is Agile Software Development? STSC CrossTalk, The

Journal of Defence Software Engineering, no. October, pp. 4-9.

Holmqvist, M. and Pessi, K., 2005. Agility through implementation. A case from a

global supply chain, in: Baskerville, R.L., Mathiassen, L., Pries-Heje, J. and

Degross, J.I. (Eds.), Business Agility and Information Technology Diffusion.

Springer, New York, pp. 173–183.

Hope, J. and Fraser, R., 2003. Beyond budgeting: how managers can break free

from the annual performance trap. Harvard Business School Press, Boston,

Massachusetts, 232 p.

100

Ivachtchouk, N., 2004. Agile Software Development. TR-CS-2005-01,

Contemporary Challenges in Information Technology. Results of the MSc-

Seminars in SS2004 and WS 2004/05, University of Applied Sciences,

Department of Computer Science, Augsburg, pp. 86-96.

Jantunen, S. and Smolander, K., 2006. Challenges of Knowledge and

Collaboration in Roadmapping. Proceedings of the International Workshop on

Software Product Management (IWSPM'06- RE'06), pp. 19-26.

Järvinen, J., Huomo, T., Mikkonen, T. and Tyrväinen, P., 2014. From Agile

Software Development to Mercury Business. Proceedings of the 5th International

Conference (ICSOB), pp. 58-71.

Järvinen, P., 2001. On Research Methods. Opinpajan kirja, Tampere, Finland, 190

p.

Järvinen, P., 2012. On Research Methods. Opinpajan Kirja, Tampere, Finland,

207 p.

Kameoka, A., Kuwahara, T. and Li, M., 2003. Integrated Strategy Development:

An Integrated Roadmapping Approach. Proceedings of the Portland International

Conference on Management of Engineering and Technology (PICMET), pp. 370-

379.

Kappel, T.A., 2001. Perspectives on Roadmaps: How Organisations Talk about

the Future. Journal of Product Innovation Management, vol. 18, no. 1, pp. 39-50.

Kettunen, P., 2009. Adopting key lessons from agile manufacturing to agile

software product development—A comparative study. Technovation, vol. 29, no.

6, pp. 408-422.

Kitchenham, B. and Charters, S., 2007. Guidelines for performing systematic

literature reviews in software engineering. Technical report EBSE 2007-001, Keele

University and Durham University, United Kingdom, pp. 57.

101

Kittlaus, H.B. and Clough, P.N., 2009. Software Product Management and Pricing:

Key Success Factors for Software Organizations. Springer-Verlag, New York, 231

p.

Koenigsaecker, G., 2009. Leading the Lean Enterprise Transformation. CRC

Press, Boca Raton, Florida, 121 p.

Kostoff, R.N. and Schaller, R.R., 2001. Science and Technology Roadmaps. IEEE

Transactions on Engineering Management, vol. 48, no. 2, pp. 132-143.

Kurapati, N., Manyam, V.S.C. and Petersen, K., 2012. Agile software development

practice adoption survey. Proceedings of the Agile Processes in Software

Engineering and Extreme Programming Conference (XP), pp. 16-30.

Kuusela, R. and Koivuluoma, M., 2011. Lean Transformation Framework for

Software Intensive Companies: Responding to Challenges Created by the Cloud.

Proceedings of the 37th EUROMICRO Conference on Software Engineering and

Advanced Applications (SEAA), pp. 378-382.

Lee, S. and Park, Y., 2005. Customization of technology roadmaps according to

roadmapping purposes: Overall process and detailed modules. Technological

Forecasting and Social Change, vol. 72, no. 5, pp. 567-583.

Leffingwell, D., 2007. Scaling software agility: best practices for large enterprises.

Addison-Wesley, Boston, Massachusetts, 349 p.

Leffingwell, D., 2011. Agile Software Requirements: Lean Requirements Practices

for Teams, Programs, and the Enterprise. Pearson Education, Boston,

Massachusetts, 518 p.

Lehtola, L., Kauppinen, M. and Kujala, S., 2005. Linking the Business View to

Requirements Engineering: Long-Term Product Planning by Roadmapping.

Proceedings of the 13th IEEE International Conference on Requirements

Engineering (RE), pp. 439-446.

102

Lehtola, L., Kauppinen, M. and Vähäniitty, J., 2007. Strengthening the link

between business decisions and RE: Long-term product planning in software

product companies. Proceedings of the 15th IEEE International Requirements

Engineering Conference (RE), pp. 153-162.

Lehtola, L., Kauppinen, M., Vähäniitty, J. and Komssi, M., 2009. Linking business

and requirements engineering: is solution planning a missing activity in software

product companies? Requirements engineering, vol. 14, no. 2, pp. 113-128.

Li, M. and Kameoka, A., 2003. Creating Added Value from Roadmapping Process:

A Knowledge-Creating Perspective. Proceedings of the International Engineering

Management Conference (IEMC), pp. 387-392.

Liker, J., 2004. The Toyota Way. McGraw Hill, New York, 330 p.

Lohan, G., Conboy, K. and Lang, M., 2010. Beyond Budgeting and agile software

development: A conceptual framework for the performance management of agile

software development teams. Proceedings of the International Conference on

Information Systems (ICIS), pp. 1-13.

Lohan, G., 2013. A Brief History of Budgeting: Reflections on Beyond Budgeting,

Its Link to Performance Management and Its Appropriateness for Software

Development. Proceedings of the 4th International Conference on Lean Enterprise

Software and Systems, pp. 81-105.

McCarthy, R.C., 2003. Linking Technological Change to Business Needs.

Research Technology Management, vol. 46, no. 2, pp. 47-52.

Middleton, P. and Sutton, J., 2005. Lean Software Strategies. Productivity Press,

New York, 432 p.

Middleton, P., Flaxel, A. and Cookson, A., 2005. Lean software management case

study: Timberline inc. Proceedings of the 6th International Conference on Extreme

Programming and Agile Processes in Software Engineering (XP), pp. 1-9.

103

Mintzberg, H., 1994. The fall and rise of strategic planning. Harvard business

review, vol. 72, no. January-February, pp. 107-114.

Myers, K.L., 1999. CPEF: A continuous planning and execution framework. AI

Magazine, vol. 20, no. 4, pp. 63-69.

Nardi, P.M., 2003. Doing survey research: a guide to quantitative methods.

Pearson Education, Boston, 228 p.

Nordqvist, M. and Melin, L., 2010. The promise of the strategy as practice

perspective for family business strategy research. Journal of Family Business

Strategy, vol. 1, no. 1, pp. 15-25.

Nuseibeh, B. and Easterbrook, S., 2000. Requirements Engineering: A Roadmap.

Proceedings of the Conference on the Future of Software Engineering, pp. 35-46.

Olsson, H.H., Alahyari, H. and Bosch, J., 2012. Climbing the "Stairway to

Heaven"--A Mulitiple-Case Study Exploring Barriers in the Transition from Agile

Development towards Continuous Deployment of Software. Proceedings of the

38th EUROMICRO Conference on Software Engineering and Advanced

Applications (SEAA), pp. 392-399.

Olsson, H.H., Bosch, J. and Alahyari, H., 2013. Towards R&D as innovation

experiment systems: A framework for moving beyond agile software development.

Proceedings of the IASTED International Conference on Software Engineering

(SE), pp. 798-805.

Oppenheim, A.N., 1992. Questionnaire Design, Interviewing and Attitude

Measurement. Printer Publishers, London, 303 p.

Overby, E., Bharadwaj, A. and Sambamurthy, V., 2005. A Framework for

Enterprise Agility and the Enabling Role of Digital Options. Proceedings of the

International Working Conference on Business Agility and Information Technology

Diffusion Conference (IFIP TC8 WG 8.6), pp. 295-312.

104

Papatheocharous, E. and Andreou, A.S., 2014. Empirical evidence and state of

practice of software agile teams. Journal of Software: Evolution and Process, vol.

26, no. 9, pp. 855-866.

Patton, M.Q., 2002. Qualitative Research & Evaluation Methods. Sage

Publications, Thousand Oaks, California, 598 p.

Petersen, K., 2010. Is lean agile and agile lean? A comparison between two

software development paradigms, in: Dogru, A.H. and Bicer, V. (Eds.), Modern

software engineering concepts and practices: advanced approaches. Information

Science Reference, New York, pp. 19-46.

Petersen, K., Feldt, R., Mujtaba, S. and Mattsson, M., 2008. Systematic mapping

studies in software engineering. Proceedings of the 12th International Conference

on Evaluation and Assessment in Software Engineering (EASE), pp. 68-77.

Phaal, R., Farrukh, C., Mills, J. and Probert, D., 2003. Customizing the

Technology Roadmapping Approach. Proceedings of the Portland International

Conference on Management of Engineering and Technology (PICMET), pp. 361-

369.

Phaal, R., Farrukh, C. and Probert, D., 2000. Fast-Start Technology

Roadmapping. Proceedings of the 9th International Conference on Management

of Technology (IAMOT), pp. 1-12.

Phaal, R., Farrukh, C. and Probert, D., 2004a. Customizing Roadmapping.

Research Technology Management, vol. 47, no. 2, pp. 26-37.

Phaal, R., Farrukh, C. and Probert, D., 2004b. Technology Roadmapping - A

Planning Framework for Evolution and Revolution. Technological Forecasting and

Social Change, vol. 71, no. 1-2, pp. 5-26.

Phaal, R., Farrukh, C. and Probert, D., 2005. Developing a Technology

Roadmapping System. Proceedings of the Portland International Conference on

Management of Engineering and Technology (PICMET), pp. 99-111.

105

Phaal, R., Farrukh, C. and Probert, D., 2009. Visualising strategy: a classification

of graphical roadmap forms. International Journal of Technology Management,

vol. 47, no. 4, pp. 286-305.

Phaal, R. and Muller, G., 2009. An architectural framework for roadmapping:

Towards visual strategy. Technological Forecasting and Social Change, vol. 76,

no. 1, pp. 39-49.

Phaal, R., Simonse, L. and Den Ouden, E., 2008. Next generation roadmapping

for innovation planning. International Journal of Technology Intelligence and

Planning, vol. 4, no. 2, pp. 135-152.

Pichler, R., 2010. Agile Product Management with Scrum: Creating Products that

Customers Love. Addison-Wesley, Upper Saddle River, New Jersey, 133 p.

Poppendieck, M. and Poppendieck, T., 2003. Lean Software Development: An

Agile Toolkit. Addison-Wesley, Boston, 203 p.

Poppendieck, M. and Poppendieck, T., 2007. Implementing Lean software

development: From Concept to Cash. Addison-Wesley Professional, Upper

Saddle River, New Jersey, 276 p.

Poppendieck, M. and Poppendieck, T., 2009. Leading Lean Software

Development: Results Are Not the Point. Addison-Wesley Professional, Upper

Saddle River, New Jersey, 278 p.

Radnor, Z. and Walley, P., 2008. Learning to walk before we try to run: adapting

lean for the public sector. Public Money and Management, vol. 28, no. 1, pp. 13-

20.

Rautiainen, K., Vuornos, L. and Lassenius, C., 2003. An Experience in Combining

Flexibility and Control in a Small Company's Software Product Development

Process. Proceedings of the International Symposium on Empirical Software

Engineering (ISESE), pp. 28-37.

106

Rickards, R.C. and Ritsert, R., 2012. Rediscovering Rolling Planning: Controller's

Roadmap for Implementing Rolling Instruments in SMEs. Proceedings of

Economics and Finance, the 2nd Annual International Conference on Accounting

and Finance (AF) and Qualitative and Quantitative Economics Research (QQE),

pp. 135-144.

Ruhe, G., 2010. Product Release Planning: Methods, Tools and Applications.

CRC Press, New York, 339 p.

Runeson, P. and Höst, M., 2009. Guidelines for conducting and reporting case

study research in software engineering. Empirical Software Engineering, vol. 14,

no. 2, pp. 131-164.

Shalloway, A., Beaver, G. and Trott, J.R., 2009. Lean-agile software development:

achieving enterprise agility. Addison-Wesley Professional, Upper Saddle River,

New Jersey, 262 p.

Staron, M., Meding, W. and Palm, K., 2012. Release readiness indicator for

mature agile and lean software development projects. Proceedings of the Agile

Processes in Software Engineering and Extreme Programming Conference (XP),

pp. 93-107.

Strauss, J.D., Radnor, M. and Peterson, J.W., 1998. Plotting and navigating a

non-linear roadmap: knowledge-based roadmapping for emerging and dynamic

environments. Proceedings of the East Asian Conference on Knowledge Creation

Management, pp. 1-26.

Suomalainen, T., Kuusela, R., Teppola, S. and Huomo, T., 2015. Challenges of

ICT Companies in Lean Transformation. ACSIJ Advances in Computer Science:

an International Journal, [Online], vol. 4, no. 2, No.14, pp. 49-56. Available from:

http://www.acsij.org/documents/v4i2/ACSIJ-2015-4-2-671.pdf. [29.06.2016].

Tabrizi, B. and Walleigh, R., 1997. Defining next-generation products: an inside

look. Harvard Business Review, vol. 75, no. 6, pp. 116-124.

http://www.acsij.org/documents/v4i2/ACSIJ-2015-4-2-671.pdf

107

Te Brömmelstroet, M., 2013. Performance of Planning Support Systems: What is

it, and how do we report on it? Computers, Environment and Urban Systems, vol.

41, pp. 299-308.

Vähäniitty, J., Lassenius, C. and Rautiainen, K., 2002. An Approach to Product

Roadmapping in Small Software Product Businesses. Proceedings of the 7th

European Conference on Software Quality (ESCQ) - Quality Connection, pp. 12-

13.

Van de Weerd, I., Bekkers, W. and Brinkkemper, S., 2010. Developing a Maturity

Matrix for Software Product Management. Proceedings of the 1st International

Conference on Software Business (ICSOB), pp. 76-89.

Van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J. and Bijlsma,

L., 2006. Towards a reference framework for software product management.

Proceedings of the 14th IEEE International Requirements Engineering Conference

(RE), pp. 319–322.

Van Oosterhout, M., Waarts, E. and Van Hillegersberg, J., 2005. Assessing

Business Agility: A Multi-Industry Study in the Netherlands. Proceedings of the

International Working Conference on Business Agility and Information Technology

Diffusion (IFIP TC8 WG 8.6), pp. 275-294.

Vidgen, R. and Wang, X., 2009. Coevolving systems and the organization of agile

software development. Information Systems Research, vol. 20, no. 3, pp. 355-376.

VTT Technical Research Centre of Finland Ltd, VTT homepage. Available:

http://www.vtt.fi/?lang=en [Referenced 27.06.2016].

Walsham, G., 1995. Interpretive case studies in IS research: nature and method.

European Journal of information systems, vol. 4, no. 2, pp. 74-81.

Ward, A.C., 2007. Lean product and process development. Lean Enterprises

Institute, Cambridge, 208 p.

http://www.vtt.fi/?lang=en

108

Wareham, T.L. and Majka, A.J., 2003. Best practice financing. Kaufman Hall

White Paper, Kaufman, Hall & Associates, Northfield, Illinois, pp. 1-35.

Wells, R., Phaal, R., Farrukh, C. and Probert, D., 2004. Technology Roadmapping

for a Service Organization. Research Technology Management, vol. 47, no. 2, pp.

46-51.

Westkamper, E. and Von Briel, R., 2001. Continuous improvement and

participative factory planning by computer systems. CIRP Annals-Manufacturing

Technology, vol. 50, no. 1, pp. 347-352.

Wiegers, K.E., 2003. Software Requirements. Practical Techniques for Gathering

and Managing Requirements throughout the Product Development Cycle. 2nd ed.

Microsoft Press, Redmond, Washington, 546 p.

Willyard, C.M. and McCless, C.W., 1987. Motorola's technology roadmap process.

Research Management, vol. 30, no. 5, pp. 13-19.

Womack, J.P. and Jones, D.T., 2003. Lean Thinking: Banish Waste and Create

wealth in Your Corporation, Revised and Updated ed. Free Press, New York, 400

p.

Yin, R.K., 1994. Applied social research methods series Vol 5; Case Study

Research: Design and Methods. 2nd ed. Sage Publications, Thousand Oaks,

California, 171 p.

Yin, R.K., 2003. Case study research: design and methods. Sage Publications,

Thousand Oaks; California, 181 p.

1/1

Appendix 1: Framework for the initial inquiry

The initial inquiry consists of both a questionnaire study and interviews. The

framework for both research data collection methods are presented as follows.

Framework for the questionnaire study used in the initial inquiry

1. General Information

(By providing us your contact information you will receive a report from on

questionnaire results)

Your name:

Company:

Department:

Address:

Title:

Primary Role:

Phone number:

E-mail:

2. Company Profile

What is the size of your company, i.e. total number of employees?

 <10 10-49 50-250

 >250 Other, what?

What is the life time of your company’s products? In use by customers:

 0-1 year 1-3 year 3-6 year

 6-10 year >10 year Other, what?

3. Product Roadmapping Process

Who should participate in product roadmapping?

 Product management Finance

 Engineering Marketing

 Manufacturing Services

 Development
Customer and partner

representatives

 Other, what?

1/2

How many persons participate in a roadmapping process in your company?

 1-5 6-10 11-20 21-30

 Other, what?

What is the most important phase in the roadmapping process? (Please rank most

to least significant, 1=most significant)

 Capturing features into roadmaps

 Analysing features

 Prioritising features

 Roadmap validation and agreement

 Change management of the roadmap

 Other, what?

What is the most difficult phase in the roadmapping process? (Please select one)

 Capturing features into roadmaps

 Analysing features

 Prioritising features

 Roadmap validation and agreement

 Change management of the roadmap

 Other, what?

How are product requirements captured in roadmaps?

 With prototyping With interviews

Gathering ideas over time

(e.g. to a tool)

In some kind of workshops,

what kind?

 Other, what?

How are requirements prioritised in product roadmapping?

 With formal methods

 With informal methods(Please describe the method / practice)

If formal methods are used for requirements prioritisation, what are the formal

methods?

1/3

Analytical Hierarchy Process

(AHP)

Quality Function Deployment

(QFD)

 EVOLVE Distributed Prioritisation

 Other, what?

If your company has experience of product roadmapping in collaboration, please

select the used collaboration mode.

Joint research and

development partnership
 Customer–supplier relationship

Technology exchange

agreement or licensing
 Other, what?

In your opinion, did the collaboration affect the roadmapping process?

 No

 Yes (Please describe more details)

Would you be willing to participate in an interview relating to product

roadmapping?

 No
Yes,

select the most suitable practice

Phone interview

(max. duration ½ hour)

Face-to-face interview

(max. duration 1 hour)

Framework for the Interviews used in the initial inquiry

Product Roadmapping Process

 How does the roadmapping process begin?

 What roles does the roadmapping process include?

 Who participates into the roadmapping process and to which activities in it?

 What do they do during the roadmapping process (what are their

responsibilities and what viewpoints are their concern)?

 How does the roadmapping process proceed? / What are the main phases of

the product roadmapping process?

Collaboration viewpoints

 What are the most important activities in roadmapping in a collaboration

situation?

 How is communication (e.g. about requirements, and change management)

arranged between collaboration partners?

1/4

 How are roadmaps created together with collaboration partners (e.g.

participants, responsibilities, tasks, decision-making, gaining mutual

understanding)?

 How does the collaboration change the product roadmapping process / the

content of the product roadmap?

Capturing features

 How are features captured?

 How does the collaboration mode affect capturing features?

Analysing features

 How are features analysed?

 What methods / practices are used when analysing features?

 How does the collaboration mode affect analysing features?

Prioritising features

 How are prioritisation methods selected (between collaboration partners)?

 How does the selected prioritisation method support collaboration (especially:

AHP, QFD, Distributed Prioritisation, EVOLVE)?

 How are requirements (functional and especially non-functional requirements)

prioritised when there are several stakeholders?

 How does the collaboration mode affect prioritising product features?

 Who makes the final decision about the priorities?

Roadmap validation and agreement

 How are roadmaps validated?

 How is the roadmap agreement made?

 How does the collaboration affect the roadmap validation and

agreement?

Change Management of the product roadmaps

 How are changes to product roadmaps managed in collaboration

networks?

 Who should participate in the impact analysis?

 How is the impact analysis carried out in collaboration environment?

 Who makes the final decision concerning the change in collaboration?

What are the benefits of product roadmapping?

What are the problems of product roadmapping?

2/1

Appendix 2: Themes and questions of the

research interviews

The original themes for the research interviews used both in semi-structured

interviews and in narrative interviews are listed as follows.

Semi-structured interview themes

Background of the interviewee

o Name:

o Role:

o Role relating to continuous planning:

o Responsibilities relating to continuous planning:

o Organisation unit:

o With whom do you collaborate with/how/what?

o Organisation

o Could you draw a picture of the case company organisation?

o What are the levels of planning?

o Who is involved?

o Who makes the decisions at these levels?

o How are you involved in decision making?

o How is customer feedback collected and included in planning?

o What are the used practices/methods/tools for working and communication?

For example:

o Are lean and agile practices/methods/tools used?

o Are Continuous Deployment practices/methods/tools used? What and

How?

o What is their relation to planning?

o How does information flow proceed and how is information

distributed?

1. Definition of continuous planning (CP)

o What does continuous planning mean (in our company or to you)?

o What does transparency mean to you – how it is related to CP?

2. Background for CP: Why CP?

o Why did you adopt / end up with continuous planning?

o What were the problems / drawbacks in the previous ways of planning?

o Could you draw a timeline for adopting CP? For example:

o When have you started continuous planning?

o When are you expecting to see the results of continuous planning?

2/2

o What are the issues that you have needed to do / change in order to achieve

continuous planning?

Continuous Planning Process

3. Levels of planning and time frame

o What are the levels of planning in your company?

o To which level(s) does continuous planning relate to?

o What is the time frame for each level of continuous planning?

o How often is continuous planning done / what is the cycle of planning?

o What triggers continuous planning?

o When are the plans updated? Why?

4. What is the continuous planning process?

o How do you conduct continuous planning (current status) AT EACH

LEVEL?

 Could you show or draw a picture about it?

o What are the main phases of continuous planning?

 Could you specify these phases in more detail?

o How / in which situation is continuous planning launched /started?

o How does the continuous planning process continue?

o How often is CP done?

o How is the status of the plans followed (progress vs. plans & updates)?

o How does continuous planning relate to other levels of planning?

o What kinds of methods for continuous planning are used?

o What kinds of tools for CP are used?

o Where are the plans stored?

o Who sees these plans?

o How can feedback to plans be given?

Continuous Planning Participants

5. Who participates in continuous planning?

o Who participates in continuous planning (at each level)?

 E.g. who are the stakeholders, internal and external?

o How many participants are involved?

o What are the main roles?

o What are the main tasks?

o Who makes decisions relating to the plans?

o How are the other levels of plans visible to the participants?

Continuous Planning Lessons Learned:

2/3

6. Expectations, Benefits, Challenges, Enablers and Obstacles and Impacts

o Expectations: What do you expect to achieve with continuous planning?

o Benefits: What are the benefits of continuous planning?

 What works especially well in your organisation?

o Risks / Challenges: What are the risks/challenges relating to continuous

planning?

 What causes these risks / challenges?

 How have you tried to solve these problems?

o Obstacles: What are the obstacles relating to continuous planning?

 What things are affecting e.g. to CP adoption?

o Impacts: What are the impacts of continuous planning?

o What are the improvement suggestions for adopting CP?

 How can companies improve their continuous planning practices?

Competencies and Transparency:

7. Competence Development, Learning, and Transparency

o What has been required so that the organisation can use continuous

planning?

o Has it required some new skills/tools? What kinds of skills/tools?

o Have the organisation / the organisation structures been changed,

and how?

o Have the ways of working been changes, and how?

o How have competencies bent to / grown through continuous

planning?

o Transparency: How important is transparency in your organisation?

o How development transparency is implemented in your

organisation?

o How learning is improved?

Narrative interview themes

Could you describe your current position and background in the case company?

Issues that could come up in the narrative:

- Role/ title, work description, responsibility

- When started working, previous roles/tasks, etc.

- Role especially from the planning perspective

What kind of an organisation is the case company? How does the case company

work as an organisation?

Issues that could come up in the narrative:

- Draw a picture of the case company organisation

- With whom do you collaborate with/how/what?

- How does information flow proceed and how is information distributed?

2/4

- Used practices/methods/tools for working and communication (e.g. are

lean and agile practices/methods/tools used, their relation to planning?)

How are operations planned in the case company? How is planning done in

practice?

Issues that could come up in the narrative:

- How does planning start/begin (e.g. what is the need/trigger at the

background)?

- How is planning conducted in practice e.g. what are the tools/methods for

planning (are e.g. continuous planning practices used)?

- What are the (main) phases /stages / levels of planning (e.g. the whole

organisation wide strategy, business areas, product portfolio, products,

features, etc.)?

- How do the different plans and levels of plans communicate with each

other?

- What is the time frame(s) of planning /plans (e.g. current situation, short-

term and long-term plans)?

- What triggers continuous planning OR when are the plans updated?

Why?

- Who participates in the planning; main roles, tasks, decision making?

- With whom are the plans created (naming the key contact persons)? Do

other participants outside the organisation also participate in the planning

(e.g. customers)?

- How is information used to support planning, e.g. is customer data used

somehow, if yes how and where is the customer data collected /received

from?

- How are the plans taken into practice? How is the information from the

plans / planning sessions distributed?

- Have the planning methods/ practices been changed recently, if yes

how?

- Current practices:

o Strengths (benefits)

o Weaknesses (risks and problems)

o Goals (if there is a need for the current practices to be changed,

e.g. improvement suggestions?)

3/1

Appendix 3: List of interviews conducted for

the study

Interviews conducted for the initial inquiry:

Date Duration Company

ID

Role of the

interviewee

Interview method

07.09.2006 35 min A Manager Semi-structured

phone interview

07.09.2006 68 min A Group manager Semi-structured

face-to-face

interview

07.09.2006 50 min B Chief

technology

officer

Semi-structured

phone interview

07.09.2006 31 min C Product planner Semi-structured

phone interview

08.09.2006 30 min D Program

director

Semi-structured

phone interview

08.09.2006 49 min E Group manager Semi-structured

phone interview

08.09.2006 65 min F Chief engineer Semi-structured

face-to-face

interview

13.09.2006 15 min G Senior

researcher

Semi-structured

phone interview

13.09.2006 61 min H Manager Semi-structured

phone interview

Interviews conducted for the case A:

Date Duration Role of the

interviewee

Interview method

27.11.2012 77 min Head of quality and

environment

Semi-structured

face-to-face interview

21.11.2014 86 min Scrum master

Semi-structured

face-to-face interview

21.11.2014 90 min Team leader /

project manager

Semi-structured

face-to-face interview

26.11.2014 93 min Sales director Semi-structured

face-to-face interview

3/2

27.11.2014 92 min Product manager Semi-structured

face-to-face interview

4.2.2015

67 min President of

business segment

Semi-structured

face-to-face interview

5.11.2014 122 min 2 Quality managers Semi-structured

face-to-face interview

23.3.2015 78 min Business developer Semi-structured

face-to-face interview

28.4.2015 78 Vice president of

business area

Semi-structured

face-to-face interview

17.6.2015 74 min Sales director Semi-structured

face-to-face interview

Interviews conducted for the case B:

Date Duration Role of the

interviewee

Interview method

08.06.2011 108 min Project manager Semi-structured

face-to-face interview

16.10.2014 79 min Senior product

marketing manager

Narrative face-to-face

interview

24.10.2014 71 min Senior product

marketing manager

Narrative face-to-face

interview

24.10.2014 81 min Chief strategy

officer

Narrative face-to-face

interview

27.10.2014 49 min Product marketing

management

Narrative face-to-face

interview

27.10.2014 68 min Senior product

manager

Narrative face-to-face

interview

6.11.2014 68 min Product marketing

management

Narrative face-to-face

interview

6.11.2014 57 min Director of product

management

Narrative face-to-face

interview

6.11.2014 69 min Director of product

management

Narrative face-to-face

interview

7.11.2014 64 min Director of product

management

Narrative face-to-face

interview

10.11.2014 50 min Executive vice

president

Narrative face-to-face

interview

10.11.2014 57 min Senior product

manager

Narrative face-to-face

interview

11.11.2014 41 min Vice president of

R&D

Narrative face-to-face

interview

3/3

Interviews conducted for the case C:

Date Duration Role of the

interviewee

Interview method

21.01.2015 55 min Line manager Semi-structured

face-to-face interview

21.01.2015 62 min Domain manager Semi-structured

face-to-face interview

21.01.2015 79 min Product owner Semi-structured

face-to-face interview

4/1

Appendix 4: List of interviewee profiles

Summary of interviewee profiles in the initial inquiry

Interviewee Company

Nationality

Company

ID

Company size

(employees)

Role of the Interviewee

1 Finnish A > 250 Manager

2 Finnish A > 250 Group Manager

3 Finnish B 50–250 Chief Technology Officer

(CTO)

4 Finnish C > 250 Product planner

5 Finnish D > 10 Program Director

6 Finnish E > 250 Group Manager

7 Finnish F > 250 Chief Engineer

8 Swedish G > 250 Senior Researcher

9 Finnish H 50–250 Manager

Summary of interviewee profiles in the multiple-case study

Interviewee Company

Nationality

Company

ID

Company size

(employees)

Role of the Interviewee

1 Finnish Case A ~1800 Head of quality and

environment

2 Finnish Case A ~1800 Scrum master

3 Finnish Case A ~1800 Team leader / project

manager

4 Finnish Case A ~1800 Sales director

5 Finnish Case A ~1800 Product manager

6 Finnish Case A ~1800 President of a business

segment

7 Finnish Case A ~1800 2 Quality managers

8 Finnish Case A ~1800 Business developer

9 Finnish Case A ~1800 Vice president of a

business area

4/2

10 Finnish Case A ~1800 Sales director

11 Finnish Case B ~1000 Project manager

12 Finnish Case B ~1000 Senior product marketing

manager

13 Finnish Case B ~1000 Senior product marketing

manager

14 Finnish Case B ~1000 Chief strategy officer (CSO)

15 Finnish Case B ~1000 Product marketing

management

16 Finnish Case B ~1000 Senior product manager

17 Finnish Case B ~1000 Product marketing

management

18 Finnish Case B ~1000 Director of product

management

19 Finnish Case B ~1000 Director of product

management

20 Finnish Case B ~1000 Director of product

management

21 Finnish Case B ~1000 Executive vice president

22 Finnish Case B ~1000 Senior product manager

23 Finnish Case B ~1000 Vice president of R&D

24 Swedish Case C ~110 000 Line manager

25 Swedish Case C ~110 000 Domain manager

26 Swedish Case C ~110 000 Product owner

PAPER I

Challenges for Product Roadmapping
in Inter-company Collaboration

Proceedings of the Third International Conference on
Software Engineering Approaches for Offshore and
Outsourced Development (SEAFOOD), pp. 66–80.

ETH Zurich, Switzerland on July 2–3, 2009.
Copyright 2009 Springer-Verlag.

Reprinted with permission from the publisher.

PAPER II

Software Product Roadmapping
in a Volatile Business Environment

The Journal of Systems and Software,
Vol. 84, Issue 6, pp. 958–975.

Copyright 2011 Elsevier Inc.
Reprinted with permission from the publisher.

Author's personal copy

The Journal of Systems and Software 84 (2011) 958–975

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

Software product roadmapping in a volatile business environment

Tanja Suomalainena,∗, Outi Salob, Pekka Abrahamssonc, Jouni Similäd

a VTT Technical Research Centre of Finland, Department of Software Technologies, P.O. Box 1100, FI-90571 Oulu, Finland
b Nokia Corporation, P.O. Box 300, FI-90401 Oulu, Finland
c Free University of Bozen-Bolzano, Italy
d Department of Information Processing Science, University of Oulu, Finland

a r t i c l e i n f o

Article history:
Received 27 August 2010
Received in revised form
17 December 2010
Accepted 13 January 2011
Available online 20 January 2011

Keywords:
Product roadmapping
Roadmapping process
Product development
Software product management

a b s t r a c t

Product roadmapping enhances the product development process by enabling early information and
long-term decision making about the products in order to deliver the right products to the right mar-
kets at the right time. However, relatively little scientific knowledge is available on the application and
usefulness of product roadmapping in software product development context. This study develops a
framework for software product roadmapping, which is then used to study the critical aspects of the
product roadmapping process. The collection of empirical evidence includes both quantitative and qual-
itative data which sheds further insight into the complexities involved in product roadmapping. Results
revealed that organizations view the product roadmap mainly as a tool for strategic decision making as it
aims at showing the future directions of the company’s products. However, only a few companies appear
to have an explicit approach for handling the mechanisms for creating and maintaining such a roadmap.
Finally, it is suggested that the strategic importance of product roadmapping is likely to increase in the
future and, as a conclusion, a new type of agility is required in order to survive in the turbulent and
competitive software business environment.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Nowadays, the cost, complexity and rate of technology change
are increasing while competition and sources of technology are
becoming more global (Phaal et al., 2000a,b). Companies are
expected to be more responsive to technological change and to
manage their technology assets more strategically because cor-
porate strategies often lack influence over or contact with those
who directly manage products (Kappel, 2001). The business envi-
ronment is characterized by ever-more-demanding customers,
increasingly shorter product life cycles and rapidly developing
technologies (Groenveld, 2007). The demand for an overall view
of the product and its future releases has become important
(Lehtola et al., 2005). Therefore, developing reliable and high
quality software products on time and within budget requires a
well-coordinated and executed software process (Jiang and Coyner,
2000).

Product roadmapping is an approach to manage a high-level
view and to link aspects of business to requirements engineer-
ing (RE) (DeGregorio, 2000). It aims at enabling developments in

∗ Corresponding author. Tel.: +358 405122610; fax: +358 207222320.
E-mail addresses: Tanja.Suomalainen@vtt.fi (T. Suomalainen),

Outi.Salo@nokia.com (O. Salo), Pekka.Abrahamsson@unibz.it (P. Abrahamsson),
Jouni.Simila@oulu.fi (J. Similä).

technology to be mapped and linked to product evolution and mar-
ket opportunities (Phaal et al., 2003a). Thus, roadmapping aims at
enhancing two main purposes in the context of software engineer-
ing: how to serve important markets with the right products at
the right time and how to improve the cross-functional processes
required for the creation of new products (Groenveld, 2007). Sev-
eral benefits have been claimed (McCarthy, 2003) to result from
the application of roadmapping in organizations. For one, it has
been claimed as a simple process for the presentation and cross-
functional understanding of complicated issues. It has also been
proposed (McCarthy, 2003), for example, to enable a faster and
superior assessment of emerging technologies and the contents
of products from the learning obtained during the roadmapping
process. Also, some difficulties relating to roadmapping have been
identified. Yoon et al. (2008) have expressed that many compa-
nies, especially medium and small companies, have difficulties in
implementing and sustaining roadmapping due to factors such as
maintaining the time, cost and effort estimations. A lack of qual-
ity input data on markets, competitors and technology, gathered
from workshops, complicates the adoption of the method. Further-
more, regular updating of roadmaps can be long and tedious, and
may require further workshops and repletion of the roadmapping
process (Yoon et al., 2008).

However, currently relatively little scientific knowledge is avail-
able on the usefulness and application of product roadmapping
in software product development organizations. Research findings

0164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2011.01.031

http://www.elsevier.com/locate/jss
mailto:Tanja.Suomalainen@vtt.fi
mailto:Outi.Salo@nokia.com
mailto:Pekka.Abrahamsson@unibz.it
mailto:Jouni.Simila@oulu.fi

Author's personal copy

T. Suomalainen et al. / The Journal of Systems and Software 84 (2011) 958–975 959

presented in this paper aim at defining a product roadmapping pro-
cess and by so doing, increase product roadmapping knowledge for
both science and industry. From industry viewpoint, this study aims
at increasing the product roadmapping knowledge in order to assist
companies in developing their own product roadmapping activi-
ties. From scientific perspective, the study aims at increasing the
body of knowledge in the area of product roadmapping while also
identifying future research and development work opportunities
on the most critical aspects of the product roadmapping process.
The research is structured and presented by using a research frame-
work for software product roadmapping, which is created based on
the current literature. The research framework provides the lenses
that guide the empirical analysis. These lenses are defined as fol-
lows: defining the main stakeholders and their roles during the
process, organizing the product roadmapping process, establish-
ing the main benefits and challenges faced during the process, and
identifying the most critical phases of the process. The research
provides empirical evidence from altogether nine interviews and a
questionnaire obtained from 34 different companies.

This article is structured as follows: in section two, product
roadmapping is defined based on the current literature including an
overview of roadmapping, stakeholders of the product roadmap-
ping process and product roadmapping phases. In section two,
a software product roadmapping framework is also presented
based on the existing literature including the central elements
of roadmapping, and the perceived impacts of software product
roadmapping and its main phases. Thereafter, in section three,
the research design of this study is presented, which includes the
research methods and goals as well as the research context and
data collection methods. In section four, the research evidence
from the empirical study is presented and aligned with the pre-
sented research framework. In section five, the research results are
discussed and, finally, in section six, conclusions are drawn.

2. Related work

In this section, we will outline the current knowledge on prod-
uct roadmapping based on the existing literature and research.
Additionally, in this section, a research framework for software
product roadmapping is proposed based on the existing litera-
ture. Firstly, the terminology of roadmapping is introduced (Section
2.1). Then, stakeholders (Section 2.2) of product roadmapping, and
the proposed main phases (Section 2.3) of product roadmapping
are specified. Finally, a research framework for software product
roadmapping (Section 2.4) is presented.

2.1. Overview

A roadmap is a layout of existing routes or paths, which is used
to decide among alternative directions towards a desired destina-
tion (Kostoff and Schaller, 2001). It is said by DeGregorio (2000)
that a roadmap is a visualization of a forecast, which can address a
number of key areas, such as technology, capability, platform, sys-
tem, environment, threat, and business opportunity. According to
Kappel (2001), roadmaps are also forecasts of what is possible or
likely to happen, and plans that express a course of action. Fur-
thermore, roadmaps are intended to be living documents, to be
reviewed and updated over time in order to remain useful (Albright,
2003). Roadmapping describes the process of creating and revising
roadmaps (Kostoff and Schaller, 2001). It is a strategic planning
and forecasting process with long-lasting future activities (Kappel,
2001). Roadmapping is also claimed (Li and Kameoka, 2003) to be
a decision-making and design process. On the other hand, Strauss
et al. (1998) describe roadmapping as a management activity that
links customer/market needs and opportunities, product quality

and competitive positioning as well as corporate capabilities such
as business and technology value chain attributes.

Roadmapping can be seen similar to strategic planning. How-
ever, strategic planning does not mean necessarily strategic
thinking, and thus it is claimed by Mintzberg (1994) that the most
successful strategies are visions, not plans. When the difference
between planning and strategic thinking is understood, the com-
pany can get back to the strategy making process: capturing what
the manager learns from all sources. Furthermore, according to
Mintzberg (1994) strategic planning is about breaking down a
goal or a set of intentions into steps, formalizing those steps to
be implemented almost automatically, and then articulating the
anticipated consequences or results of each step. On the contrary,
strategic thinking is about synthesis and involving intuition and
creativity. The strategic thinking results in an integrated perspec-
tive of the company, but not too precisely articulated vision of
direction (Mintzberg, 1994). For example, Beeton et al. (2008) have
classified roadmapping strategies into two categories. Either the
roadmapping may be exploratory, i.e. surveying future possibilities,
or goal-oriented, i.e. defining strategies to realise clearly defined
future targets.

Roadmaps can be expressed in various forms, types or with
different taxonomies (Kameoka et al., 2003). For example, accord-
ing to Kappel (2001) roadmaps can be categorized into science
or technology roadmaps, industry roadmaps, product-technology
roadmaps, and product roadmaps. Kappel (2001) describes the
interrelationships between these four types of roadmaps as fol-
lows. The purpose of the science or technology roadmaps is to set
industry targets and understand the future by identifying trends
and making accurate forecasts. The industry roadmap is a com-
bination of technology forecasts and industrial matters. Thus, the
purpose of the industry roadmap is to set industry expectations that
express for example a technical thrust and a competitive environ-
ment. The product-technology roadmap is a combination of specific
product plans with technology trends and marketplace. The pur-
pose of the product-technology roadmaps is to align product and
technology generations together. On the other hand, the product
roadmaps schedule product introductions, such as a direction and
schedule for product evolution, which are then communicated with
customer and internal audience (Kappel, 2001).

The taxonomy according to Kappel (2001) is presented in a chart,
in which the horizontal axis describes the roadmapping purpose
on the industry or company level, and the vertical axis describes
the content emphasis of the roadmap either on specific trends or
on positioning within an industry. In addition, Phaal et al. (2005)
claim that roadmaps commonly take a form of a multi-layered time
based chart that includes different layers of knowledge relating to
purposes, deliveries, and resources. On the contrary, Vähäniitty et
al. (2009) state that the product roadmap consists of five layers
with the four topmost depicting activities and the bottom layer
illustrating the estimate of human resource requirements. The
activities are such as performing services, preparing releases, devel-
oping product components and platforms. According to Albright
(2003) and Groenveld (2007) the multi-layered roadmap can be
constructed from a market-pull or from a technology-push per-
spective. From the market-pull point of view, a roadmap should
begin with defining the most important requirements of the mar-
ketplace and customers. This strategy includes defining product
development in the process of time and defining the required tech-
nologies for these products. From the technology-push viewpoint,
a roadmap should begin with defining the key or new technologies
and their market needs. This strategy describes how technology is
going to affect the functionality of the product (Albright and Kappel,
2003; Groenveld, 2007). Even though roadmaps may take vari-
ous forms or taxonomies, they all should answer a common set of
“why-what-how-when” questions that generally relate to markets,

Author's personal copy

960 T. Suomalainen et al. / The Journal of Systems and Software 84 (2011) 958–975

products, and technologies (Phaal et al., 2005). However, as Phaal
et al. (2004) emphasize, the form of the roadmap should be tailored
to the specific needs of the company and its business context.

A product roadmap provides a forecast of product family
evolution over time and views the whole platform or relation-
ships between the products in a platform (Albright and Kappel,
2003). Typically, product roadmaps are developed, reviewed and
improved iteratively. Often, this is achieved through close human
interaction such as face-to-face meetings and workshops with rele-
vant stakeholders (Phaal et al., 2005). Typically, product roadmaps
are owned by the business owner of the product, who is also
responsible for gathering all relevant stakeholders to obtain the
needed information for the roadmaps. Product roadmaps typi-
cally cover a scope of two to three years, during which time they
are to be frequently revised in order to ensure the currency of
the documentation (Tabrizi and Walleigh, 1997; Lehtola et al.,
2005). Documentation of features is an important part of prod-
uct roadmapping, since accurate documentation ensures that the
roadmaps can be read, analysed, redrawn, and validated (Nuseibeh
and Easterbrook, 2000). The information in the product roadmaps
incrementally describes how the product and its business environ-
ment changes yearly. The fields in the product roadmap define the
high-level functionality of the product and target customer group.
The high-level product functionality is a description of forthcom-
ing releases with basic mandatory information. The mandatory
information includes the release goal and high-level features for
each release. In addition, release time, localization, platforms, and
dropped topics, e.g. features that are not supported in the subse-
quent versions of the product, are recorded. Additionally, the fields
include information about positioning, market arguments, and the
geographical focus of the product for every year. This information
is represented with a few bullet points for each issue (Lehtola et al.,
2005).

Product roadmapping pertains to the software engineering (SE)
process as it is a method for planning and defining software prod-
uct requirements based on the market and needs of stakeholders.
Software systems requirements engineering (RE) is defined as a
process of discovering a system’s purpose, by identifying stake-
holders and their needs, and documenting these in a form that is
adequate to analysis, communication, and subsequent implemen-
tation (Nuseibeh and Easterbrook, 2000). Product roadmapping is
also closely linked to RE. For example, according to Jantunen and
Smolander (2006) product roadmapping deals with the different
releases of each product. In a product roadmap, the product is rep-
resented as product releases containing several product features.
According to Wiegers (2003), a product feature is a set of logi-
cally related requirements that provide a capability to the user and
enable the satisfaction of a business objective. Instead, a require-
ment is a statement of a customer need or objective. A requirement
can also be a condition, which a product must meet to satisfy such
a need or objective. In other words, a requirement is a property
that a product must have to provide value to a stakeholder. How-
ever, product roadmapping differs from RE in that it is a process
with long-lasting future activities, and in roadmapping, high-level
features are presented within a timeline and scheduled for dif-
ferent releases. On the contrary, in RE, the features are analysed
in more detail and defined as to what they mean from the per-
spective of the product development project. Also, Lehtola et al.
(2005) have pointed out that targets for the release roadmapping
and the product roadmapping are quite the same but the prod-
uct roadmapping is more high-level. The main objective of the
release roadmapping is to inform stakeholders about scheduled
future releases. Instead, the objective of the product roadmapping
is to help product managers create and maintain release roadmaps,
manage situations where the same technical product is included
in several products, and R&D to identify the needs for research

projects (Lehtola et al., 2005). Furthermore, product roadmapping
can be seen as a part of broader perspective to software prod-
uct management. According to a reference framework for software
product management (van de Weerd et al., 2006), the product man-
agement consists of portfolio management, product roadmapping,
requirements management, and release planning. In that frame-
work, product roadmapping includes theme identification, core
asset identification, and roadmap construction. Instead, require-
ment management includes activities of gathering, identifying and
organizing requirements, and release planning includes activities
such as requirements prioritisation, selection, definition, valida-
tion, scope change management and launch preparation.

2.2. Product roadmapping stakeholders

It has been suggested (Tabrizi and Walleigh, 1997) that product
roadmaps are created by senior management who are also respon-
sible for updating the roadmaps. However, it has been argued (Li
and Kameoka, 2003; Lehtola et al., 2005) that the roadmapping
team more usually consists of various stakeholders from different
functions of the organization or even from different organizations.
The team shares information and perspectives to make decisions
that are then presented in a roadmap (Lehtola et al., 2005). The
study of Lehtola et al. (2005) supports the latter approach, though
it does not propose who the participants are, and what their role in
the roadmapping process is. Nevertheless, the research of Lehtola et
al. (2005) indicates that the most important stakeholder groups to
which the contents of the roadmaps should be communicated and
with which they should be negotiated were product management,
sales and channel partners, and customers. The product developers
were not seen as an important stakeholder group in the roadmap-
ping process, yet they were considered important in estimating the
costs of future requirements.

According to McCarthy (2003), only the roadmapping team
participates in the roadmapping process while support from man-
agement is needed regarding personnel and budget investments.
The team should be formed at the beginning of the roadmap-
ping process, including the research and development (R&D) and
technology management personnel, members from business devel-
opment, representatives from finance, and core staff members from
the other functions. The first task of the team is to establish a com-
mon understanding of the process and the terminology to be used.
After that, the team should begin to develop a detailed analysis
of the process, and to decide factors and metrics required for the
process evaluation. The roadmapping team is also responsible for
analysing the required technologies as well as implementing and
reviewing the roadmaps.

On the other hand, Groenveld (2007) proposes that the
roadmapping process should be started with a small roadmap-
ping team in which the marketing, product management, research,
development, and engineering teams participate. Later, the team
looks for a leader who should become the owner of the drafted
roadmaps. The owner is responsible for the maintenance of the
roadmaps and for the initiation of appropriate updating actions
as well as providing additional information when needed. The
roadmapping team guides the process and organizes workshops
to ensure integral involvement of the organization and input by
the organization. The outcome of the workshops is used to prepare
draft roadmaps, or parts of them.

According Phaal et al. (2000a,b, 2003a), a multifunctional team
is needed in the roadmapping process in order to provide multiple
perspectives such as commercial, technical, research, development,
manufacturing, marketing, and finance. In addition, Phaal et al.
(2003a) believe that both the business owner and the process
owner should participate in the roadmapping process. The owners
should be involved in the planning phase and, thereafter, through-

Author's personal copy

T. Suomalainen et al. / The Journal of Systems and Software 84 (2011) 958–975 961

Table 1
Summary of the roadmapping process stakeholders.

Stakeholders Reference

Tabrizi and
Walleigh
(1997)

Lehtola et al.
(2005)

McCarthy
(2003)

Groenveld
(2007)

Phaal et al.
(2000a,b),
Phaal et al.
(2003a)

Albright
(2002)

Rautiainen et
al. (2003)

van de Weerd
et al. (2010)

Senior management X X
Product management X X X X X
Sales and channel partners X X
Customers X X X
Representatives of R&D X X X X X X
Technology management X
Representatives of business development X
Representatives of finance X X
Representatives of marketing X X X X
Representatives of engineering X
Representatives of manufacturing X X
Representatives of services X X X
Representatives of support X

out the roadmapping process. The business owner is proposed
to be responsible for the business outcome of the process, while
the process owner is responsible for the implementation of the
roadmapping (Phaal et al., 2003a; Wells et al., 2004). The owners are
also responsible for selecting the persons to the roadmapping team,
solving issues regarding the application, and having knowledge
about the roadmapping domain (Phaal et al., 2003a). In addition, a
facilitator is proposed for managing and facilitating the roadmap-
ping process (Phaal et al., 2003a; Wells et al., 2004). During the
different phases of the roadmapping, a facilitator can support and
guide the roadmapping team (Albright, 2002). Moreover, accord-
ing to Albright and Kappel (2003), facilitators have active roles in
appropriately scoping the roadmap, forming the team, setting up a
work plan, and assessing individuals with their tasks in the larger
effort. The facilitator should also challenge assumptions and force
rigour into the roadmap (Albright and Kappel, 2003).

Albright (2002) also suggests that the roadmapping process is
best performed as a cross-functional team led by an experienced
facilitator. Through the whole process, the facilitator steers the
team towards a realistic plan. The cross-functional team includes
many functions that contribute to the success of a product line or
business: central and regional marketing, product management,
R&D, manufacturing, services, etc. The purpose of the roadmap-
ping team is to lay out a possible future or multiple futures, set
objectives, and define a plan to achieve the objectives, as well as
make sure that the required capabilities and technologies are avail-
able at the right times (Albright, 2002). Furthermore, Jantunen and
Smolander (2006) have identified three types of roles that need to
be present in a roadmapping process: contributor, controller, and
distributor. Contributor is the one that brings valuable information
to a roadmapping context. Controller ensures that roadmapping
is done systematically, and distributor absorbs information at a
roadmapping context and disseminates the results of roadmapping
to those who need to act upon it. Contributor has similar tasks as
the previously mentioned member of a roadmapping team, and
controller acts in a quite similar role as a facilitator.

van de Weerd et al. (2006, 2010) have made a difference
between internal and external stakeholder groups. Their defini-
tion of the product management stakeholders is adopted from
(Gorchels, 2000; Lehtola et al., 2005). The internal stakeholders
are described as follows: product management, company board,
research and innovation, services, development, support, and sales
and marketing. The external stakeholders are defined as follows:
market (i.e. potential customers, competitors, and analysts), part-
ners (i.e. implementation, development, and distribution partners),
and customers.

Clearly, in literature there are differing views on how widely
and in what role relevant stakeholders should participate in the
roadmapping process. Just as clearly, the different views are largely
based on opinions or views and not on empirical research about
how the roadmapping process is actually carried out in practice and
what kinds of problems and challenges have been met in practice.
Table 1 provides a summary of the stakeholders of the roadmapping
process presented by different authors.

2.3. Product roadmapping process

The roadmapping process focuses on sharing perspectives,
involving interaction between people, leading to communication,
new understanding, insights, creativity, and learning (Phaal et al.,
2005). However, due to the different markets and cultures of com-
panies the roadmapping process varies between companies (Phaal
et al., 2004; Groenveld, 2007). According to Phaal et al. (2004), find-
ing a suitable roadmapping process depends on many factors such
as the level of available resources (e.g., people and time), issues
to be addressed (e.g., purpose and scope), information available
(e.g., market and technology), as well as other existing processes
and management methods (e.g., new product development, project
management and market research).

Actually, only a few process descriptions focusing on prod-
uct roadmapping seem to have been proposed in the literature.
Albright and Kappel (2003) define the roadmapping process to
include stages of initiation, maintenance, and restart, based on
an organisation’s specific needs. Phaal et al. (2003a) identify
three roadmapping phases: planning, facilitated roadmapping
workshop(s), and roll-out. A fairly similar three-phase prod-
uct roadmapping process has been proposed also by Lehtola et
al. (2005) including preparation, approval, and communication.
On the contrary, van de Weerd et al. (2010) define product
roadmapping process to consist of theme identification, core asset
identification, and roadmap construction. Alternately, McCarthy
(2003) adds two more phases to the roadmapping process that
consists of team formation, focus, technology or workflow analy-
sis, implementation, and review. Moreover, Vähäniitty et al. (2002)
propose a four-step model especially for creating and updat-
ing product roadmaps. The following steps are suggested: (1)
Define the strategic mission and vision of the company, and out-
line the product vision. (2) Scan the environment by identifying
major trends. (3) Revise and distil the product vision as product
roadmaps. (4) Estimate the product life cycle and evaluate the mix
of development efforts planned. The steps in the model should be
performed periodically to adjust the roadmap to new information

Author's personal copy

962 T. Suomalainen et al. / The Journal of Systems and Software 84 (2011) 958–975

Table 2
Summary of roadmapping processes.

Name Goal Main phases Reference

Roadmapping life cycle Goal is to define and communicate product and
technology strategy along with a longer,
smarter view of the future

Initiation Albright and Kappel
(2003)Maintenance

Restarts

T-Plan: fast-start technology
roadmapping (TRM)

Goal is to bring together key stakeholders
and experts to capture, share and
structure knowledge about the issue being
addressed, to identify strategic issues and
to plan the way forward

Planning Phaal et al. (2003a)
Facilitated workshop(s)
Roll-out

Product roadmapping (PRM) Goal is to help (1) product managers
create and maintain release roadmaps, (2)
managing situations where the same
technical product is included in several
products, and (3) R&D to identify the
needs for research projects

Preparation Lehtola et al. (2005)
Approval
Communication

Release roadmapping
(RRM)

Goal is to inform stakeholders
about scheduled future releases to
help R&D, for example, plan their
skills development and act as a
trigger for early feature
development, or marketing, to plan
their future activities

Data collection Lehtola et al. (2005)
Feature prioritisation
Release planning
Release roadmap validation

Roadmapping process Goal is to improve internal
processes which may need
improvement to increase R&D
productivity or to upgrade a step in
the drug discovery process that has
fallen behind “industry standards”

Team formation McCarthy (2003)
Focus
Technology/workflow analysis
Implementation
Review

Four-step model for
creating and updating
product roadmaps

Goal is to define and concretise the
company’s plans for technology
and product development

Define strategic mission and vision,
and outline product vision

Vähäniitty et al. (2002)

Scan the environment
Revise and distil the product vision as
product roadmaps
Estimate product life cycle and
evaluate the mix of development
efforts planned

Product roadmapping Goal is to handle the development
of the product roadmap, in which
the future releases are planned
based on themes and core assets

Theme identification van de Weerd et al.
(2010)Core asset identification

Roadmap construction

and changing market situations. Smaller updates to the roadmaps
are suggested to ensure up-to-date information (Vähäniitty et al.,
2002).

However, unlike the others, Lehtola et al. (2005) sepa-
rate the release roadmapping process as distinct from product
roadmapping. It is proposed to consist of data collection, feature
prioritisation, release planning, and release roadmap validation.
Similarly, van de Weerd et al. (2010) separate the require-
ments management and release planning as distinct from product
roadmapping. The requirements management consists of gath-
ering, identifying, and organizing requirements. The release
planning includes requirements prioritization, requirements selec-
tion, release definition, release validation, launch preparation, and
scope change management. In Table 2, a summary of the exist-
ing roadmapping processes is presented including their main focus
areas, i.e. goals and main phases.

2.3.1. Capturing features into roadmaps
According to van de Weerd et al. (2010), the product roadmap-

ping starts with identifying themes and core assets for the future
releases. Instead, according to Vähäniitty et al. (2002), the prod-
uct roadmapping process starts with defining or revising, and then
analysing the strategic mission and vision of the company. The

purpose is to clarify and communicate the company’s area of busi-
ness. This is because all companies should have a sufficiently clear
idea of their purpose and desired future to be written down before
their operations are planned in more detail. The company’s mission
and vision acts as a guideline for shaping the product vision and
choosing between strategic alternatives. Thereafter, major trends
in the business environment, such as potential customers, com-
petitors, the industry and developments in relevant technology, are
observed and identified. The purpose is to create an understanding
of the desired focus and position of the company and its products, as
well as examine and guide the selection of technology (Vähäniitty
et al., 2002).

According to Nuseibeh and Easterbrook (2000), capturing or
eliciting of features is regarded as the first step in the require-
ments engineering process. When capturing features, gathered
information often needs to be interpreted, analysed, modelled and
validated to be sure that a sufficiently complete set of features
of a product have been collected. Thus, capturing features closely
relates to other roadmapping activities.

One of the most important activities in the capturing features
phase is to find the problems that need to be solved, and hence
identifying the product boundaries. The boundaries define, on a
high level, where the final delivered product will fit, e.g. with

Author's personal copy

T. Suomalainen et al. / The Journal of Systems and Software 84 (2011) 958–975 963

which target markets and which potential customers. Identifying
and agreeing on the product’s boundaries affect all the following
feature-capturing activities. Therefore, the identification of stake-
holders, user classes, goals, tasks, scenarios, etc. all depends on
how boundaries are chosen. The identified stakeholders are per-
sons or companies who stand to gain or lose from the success
or failure of the product. Usually, the stakeholders include cus-
tomers or clients, developers, and users, for instance. In addition,
goals should be captured early in the product roadmapping process.
The goals should denote the objectives a product must meet, and
focus on the needs of the stakeholders (Nuseibeh and Easterbrook,
2000). Thereafter, the product features can be identified and gath-
ered by communicating with all stakeholders (Parviainen et al.,
2003).

There are several methods, which can be used during the fea-
ture capturing process. These methods include contextual inquiry,
observation, prototyping, and scenarios (Parviainen et al., 2003).
However, based on the literature, features are captured into prod-
uct roadmaps by using, for example, group elicitation techniques.
For instance, Nuseibeh and Easterbrook (2000) suggest that these
techniques aim at improving the stakeholder agreement and
buy-in, while exploiting the team dynamics to elicit a richer under-
standing of needs. According to Phaal et al. (2003a), the group
elicitation technique includes a workshop or series of workshops
which bring together a range of expertise, supporting the rapid
capture, structuring and sharing of knowledge, together with sim-
ulating and brainstorming participation. During the workshop, all
ideas for features in a product are collected in a roadmap template,
which is also called product backlog or product feature document.
The document provides a systematic way of collecting feature sug-
gestions continuously from all participants and stakeholders (Phaal
et al., 2003a; Rautiainen et al., 2003). There are also other tech-
niques used in capturing features into roadmaps, such as market
research, interviews, surveys and analysis (Phaal et al., 2003a). This
is because product roadmaps require a good understanding of the
markets and application in order to define the products in terms of
customer needs (Groenveld, 2007).

In the capturing features phase, companies can collect features
from several preferred sources for the product. Parviainen et al.
(2003) propose the following sources as inputs for this phase: busi-
ness requirements, customer requirements, user requirements,
constraints, in-house ideas and standards. In addition to these
perspectives, Albright and Kappel (2003) point out that the
roadmapping team can define a market section which includes an
analysis of competitors, a market research, and a product evalua-
tion.

2.3.2. Analysing features
When the product features have been collected, the roadmap-

ping team should begin to analyse the collected features. There are
several methods that can be used during the feature analysis, for
example knowledge-based critiquing (Fickas and Nagarajan, 1988),
and feature-oriented approach to model requirement dependen-
cies (Zhang et al., 2005). The purpose of the analysis is to remove
uncertainty, identify and resolve conflicts as well as to analyse the
feasibility of the gathered features, and make a resource and cost
estimation (Soffer et al., 2005). Also, the purpose is to reveal depen-
dencies between the requirements. Thus, the team should decide
the methods required to evaluate the features.

Other issues to be considered in feature analysis are pre-
dictability of outcome, internal competencies in the organization,
and opportunities for technology improvement (McCarthy, 2003).
Also, the company’s internal factors, such as human and financial
resources, competencies and infrastructure, should be taken into
account when analysing the features (Vähäniitty et al., 2002). Fur-
thermore, there might be some factors restricting or improving the

product features. For example, in the development of the mobile
phone, the amount of the memory affects the features that are
going to be included in the phone. This is because the memory
might not be sufficient to implement all the presented features.
Therefore, in the analysing phase, it should be analysed which fea-
tures can be included in the phone and which have to be excluded.
On the other hand, new technologies and development methods,
unavailable earlier, can improve the product development; thus,
these possibilities should also be analysed.

Thereafter, the gathered features and capabilities should be
mapped into groups (Phaal et al., 2003a). According to Albright
(2002), the features should be grouped by the product drivers that
the features most strongly affect. Instead, according to Phaal et al.
(2003b), the features should be first grouped, and then the groups
should be arranged in terms of impact on the market and business
drivers defined in the earlier phase.

The feature grouping is followed by feedback and discussion to
identify synergies and gaps. The purpose of this practice is to ensure
that all layers of the roadmap have been considered (Phaal et al.,
2003a). If gaps are found, the team should take actions to close
the gaps, e.g. by filling them with new product features. The gaps
may also include a key technology that must be included in the
product to meet a high-priority customer and market need. Hence,
it should be estimated whether to develop or acquire the needed
key technology (Albright and Kappel, 2003). Also, in this phase,
the impact on market and the business drivers of the gathered
product features are assessed, and alternative product strategies
are considered (Phaal et al., 2003b; Holmes et al., 2004). Based on
the feature analysis, the product vision is revised and captured as
product roadmaps (Vähäniitty et al., 2002).

2.3.3. Prioritising features
Prioritising features is difficult and time-consuming, since fea-

tures are related to each other. Therefore, it is complicated to
schedule features based on priority only. Hence, at this point inter-
dependencies between features should be explored, identified, and
managed (Carlshamre et al., 2001). In product roadmapping, the
product features should be prioritised so that the most important
features are implemented first and the less important features are
left until later, and the least important features are most likely
omitted if the schedule or budget is insufficient (Greer and Ruhe,
2004).

According to Albright and Kappel (2003), the most important
goal of roadmapping is to identify and focus strategy and prod-
uct development on the few most important elements for success.
Therefore, the roadmapping team should try to define the two or
three most important drivers, elements or issues. That is, iden-
tifying the highest priorities. Albright (2002) points out that to
achieve the main objectives, the team can define an action plan of
a roadmap. The action plan identifies the highest priority features,
and leads the team to schedule, budget, and staff them to accom-
plish the goals. With the action plan, the team can make sure that
all feature gaps are closed.

There are different methods and tools for use during prioriti-
sation. For instance, features can be prioritised by using informal
and formal prioritisation methods. From the informal prioritisation
method viewpoint, for example, Blotner (2004) suggests that ini-
tial feature prioritisation is done by the roadmapping team only
using the identity information. This means that each feature is pre-
sented and input from all team members is gathered. Then the
team attempts to agree on a spot for the product feature in the
feature priority list. If consensus cannot be reached, the project
manager either makes the final decision concerning the prioriti-
sation or gathers enough information for the team to come to a
consensus. Also, according to Phaal et al. (2003a), the roadmapping
team conducts the prioritisation of the product features. The priori-

Author's personal copy

964 T. Suomalainen et al. / The Journal of Systems and Software 84 (2011) 958–975

tisation of features is based on preparing an outline communication
roadmap so that the priorities can be identified through feedback
and discussion in a workshop session.

There are also theories that support the fact that formal fea-
ture prioritisation methods are used during product roadmapping.
For instance, Phaal et al. (2003b) refer to Quality Function Deploy-
ment (QFD1) (e.g. Griffin and Hauser, 1993) as an often-used
method for supporting product design in product roadmapping.
Also, according to Groenveld (2007), the roadmapping process
is quite frequently supported by methods such as QFD, because
it is a customer-oriented approach that guides the roadmapping
team at the beginning of the product roadmapping process. Typi-
cally, QFD is used because it is similar to roadmapping; they both
require multidisciplinary communication and decision-making.
QFD also helps to focus on the market requirements and trans-
late these requirements into appropriate product characteristics,
which facilitate feature prioritisation and, in consequence, prod-
uct roadmapping. Groenveld (2007) also points out that there is
one essential difference since roadmapping implies both current
and future new features whereas QFD is generally restricted to
available features. According to McCarthy (2003), the simplest way
to use QFD is to develop a matrix in which the product needs
are listed on the left side of the matrix and along the top are
listed the features used to address these needs. The degree of
alignment is rated pertaining to how well the feature meets the
needs.

After prioritising the features, when the relative priority of each
feature is established, product roadmap construction should start
from defining the major and minor release cycles (Vähäniitty et al.,
2002; Wiegers, 2003). The construction should be continued with
defining the business features and expectations for the upcoming
releases. When business features and their objectives are included
in the feature repository and their history is traced, the rationale
behind the roadmap evolution will become visible (Vähäniitty et
al., 2002). With feature prioritisation, the construction of the prod-
uct can be planned to provide the highest value at the lowest cost.
However, even the low priority features should be documented,
because their priority might change later and knowing them will
help developers to plan future enhancements (Wiegers, 2003). Pri-
oritisation is also important if features are dropped in case they
cannot be finished in time for the release (Rautiainen et al., 2002).

2.3.4. Roadmap validation and agreement
In the roadmap validation and agreement phase, the planned

product life cycle is estimated and the mix of development efforts
is evaluated. The purpose is to check the financial rationale and
assess whether the planned development is compliant with the
product and company vision (Vähäniitty et al., 2002). Also, missing
features and inconsistencies are discovered (Grynberg and Goldin,
2003). At the same time, the content of the roadmap and its key
messages are considered, and the gathered data is validated with
internal expert information (Wells et al., 2004). Thus, suggested by
McCarthy (2003), the roadmapping team should review the prod-
uct roadmaps to determine whether the goals of the roadmapping
effort have been met. If modifications to the roadmaps are required,
the roadmapping team should define a revised action plan.

There are different variations how product roadmaps can be val-
idated. For instance, according to Phaal et al. (2003a), the roadmap
validation happens by ensuring that all layers of the roadmap
are considered and all necessary information is included. Instead,
according to Nuseibeh and Easterbrook (2000), roadmap validation

1 Drs. Yoji Akao and Shigeru Mizuno originally developed QFD in the
early 1960s. They also co-founded the Quality Function Deployment Institute.
http://www.qfdi.org/.

is conducted by identifying the most important goals of each par-
ticipant and then ensuring that these goals are met in the roadmap.

Finally, all product releases within the scope of two to three
years and their content, i.e. features, are agreed and possible dis-
agreements among stakeholders are resolved. This phase calls
for effective communication on the product releases and features
between different stakeholders, especially if the stakeholders have
different goals (Nuseibeh and Easterbrook, 2000; Grynberg and
Goldin, 2003). Thereafter, when the strategic issues are identified,
discussed, and actions agreed the product roadmapping process
can be taken forward (Phaal et al., 2003a).

2.3.5. Change management of the roadmap
Change management is part of product development but it

also affects roadmapping, since product roadmaps should evolve
as the environment, in which the product operates, changes and
stakeholder needs change. Thus, managing the changes is a fun-
damental activity in the product roadmapping process. In product
roadmapping, changes are managed by using tools for configura-
tion management and version control, and exploiting traceability
links to monitor and control the impact of changes in different parts
of the roadmap documentation (Nuseibeh and Easterbrook, 2000).
Furthermore, Richey and Grinnell (2004) have suggested that main-
taining the roadmaps could be supported with building a composite
roadmap digitally. According to them, it is a fast and simple tech-
nique and it allows the owners of each portion of the roadmap to
maintain control of edits and changes.

Typically, changes to product roadmaps include adding or delet-
ing product features, and fixing errors. Features are added because
stakeholder needs change or because they were missed in the ini-
tial analysis (Nuseibeh and Easterbrook, 2000). When new features
are added to the roadmap, it means that some of the other features
must be excluded (Rautiainen et al., 2003). Usually, features are
deleted during development to prevent cost and schedule overruns
(Nuseibeh and Easterbrook, 2000). Fixing errors and improvement
suggestions are included in the product roadmap and planned
into future product releases. These re-prioritisations of the product
features are the responsibility of the product roadmapping team.
Further, the priorities are reformed in different sessions with inter-
nal experts and selected customers and partners (Rautiainen et al.,
2003).

The requirement change management process defined by Pozgaj
et al. (2003) constitutes the following phases: feature change iden-
tification, analysis of the change, definition of the change impact,
definition of the change actions, decisions, and implementation of
the feature change. The roadmapping team members are responsi-
ble for continuously tracking and supervising features in order to
discover features’ changes. When the indications for feature change
occur, the features should be carefully analysed and the feature
change identified. After the change identification, all consequences
of the change must be analysed (Pozgaj et al., 2003). Each pro-
posed change should be evaluated in terms of the existing features
and architecture so that the trade-off between the cost and bene-
fit of making a change can be assessed (Nuseibeh and Easterbrook,
2000). The feature change analysis should focus on the impact of
the feature change on other features and on the definition of the
features’ change actions (Pozgaj et al., 2003). The purpose of the
feature impact analysis is to identify what to modify to accom-
plish a change, or to identify the potential consequence of a change
(Arnold and Bohner, 1993). Traceability links help to scope a possi-
ble impact of change and to define which parts are related to which
other parts according to specific relationships (Arnold and Bohner,
1993; Nuseibeh and Easterbrook, 2000). The impact analysis is
important, since product features are frequently interdependent.
Thus, a small change could create a major impact because of the
many ripple effects (Ebert and Smouts, 2003). The feature change

http://www.qfdi.org/

Author's personal copy

T. Suomalainen et al. / The Journal of Systems and Software 84 (2011) 958–975 965

Fig. 1. Research framework for software product roadmapping.

actions should be defined for all development areas that are under
the impact of feature change to enable immediate response to the
feature change. The purpose is to provide sufficient information for
the decision about the realization of feature change (Pozgaj et al.,
2003).

Finally, a Change Control Board (CCB) makes all the decisions
concerning the change. The CCB can be the same as the roadmap-
ping team or the company can have a separate group of people
forming the CCB. On the other hand, the CCB can also be a part of
the roadmapping team. In that case, only the most important repre-
sentatives, e.g. the owner, participate in the decision-making. The
CCB decides on each feature change request according to the infor-
mation provided by the feature change analysis to implement or to
refuse the feature change (Pozgaj et al., 2003). Thereafter, the final
phase of the feature change process is the implementation, if the
feature change is to be carried out.

2.4. Research framework

A conceptual research framework is used in this study for theory
building. As presented by Miles and Huberman (1994), a concep-
tual research framework describes in graphical or narrative form
the main aspects to be studied meaning the key factors, constructs
or variables, as well as the relationships among them. They explain
that theory-building relies on a few general constructs that con-
tain a set of particulars. Elements are labels of the theory which
are put in intellectual “bins” including many distinct events and
behaviours. Bins are formed based on theory and experience as well
as from the general objectives of the study. A conceptual framework
is about setting out bins, naming them, and gaining clarity about
their interrelationships (Miles and Huberman, 1994).

The research framework for software product roadmapping is
created based on the existing literature. The purpose of the research
framework is to help to structure and present the research results of
this study. The research framework for software product roadmap-
ping is presented in Fig. 1.

The framework aims at providing answers to questions that
relate to the following elements in product roadmapping: stake-

holders and process phases. The research framework also includes
the perceived impacts of software product roadmapping, i.e., the
main benefits and challenges faced during product roadmapping
and the most critical phases of the process. The empirical results in
Section 4 are presented in accordance with the research framework
at hand.

It should be acknowledged, that there are also other frameworks
presented in the literature that include product roadmapping, for
example the reference framework for software product manage-
ment presented by van de Weerd et al. (2006). However, their
framework has broader perspective to the software product man-
agement than we do in our framework. Among other activities,
their framework includes portfolio management, and we focus
purely on the content of the product roadmapping activities and
stakeholders. According to van de Weerd et al. (2006) the product
roadmapping includes activities such as theme and core asset iden-
tification, and roadmap construction. These activities are included
in our framework in to the product roadmapping phases. For
example, theme and core asset identification are included in the
capturing features phase. In our framework, the roadmap construc-
tion is not seen as separate activity of the process; instead, the
product roadmap is created and revised through out the process.

3. Research design

In this section, the research methods and goals as well as
research context and data collection are defined. First, research
methods and goals (Section 3.1) are presented and then, the
research context and data collection (Section 3.2) are described.

3.1. Research methods and goals

The research is a multiple-case study. The purpose of the
multiple-case study is used either when the results from the ear-
lier case study are verified, i.e. similar results are predicted, or when
contrasting results are obtained, but for predictable reasons (Yin,
1994). This research approach was used, since the theory on the
product roadmapping was not yet well formulated. Therefore, this
study was started by conducting a literature review (Section 2). Its
purpose was to understand the current state and to find the gaps
in the literature. As a result, a conceptual framework was created
(defined in Section 2.4). It contains the essential elements of prod-
uct roadmapping and was used in designing the empirical part of
this study.

The empirical research was carried out as a qualitative research
conducted with a questionnaire-based survey study (Oppenheim,
1992) and semi-structured interviews (Järvinen, 2001). In the
questionnaire-based survey method, Alreck and Settle (1995)
classify three methods of data collection: personal interviewing,
telephone interviewing and mail data collection, of which all were
used during the research. In selecting the respondent organiza-
tions for the questionnaire survey and interviewees, a purposive
sampling (Nardi, 2003) was used. Purposive sampling involves des-
ignating group of people for selection because they have some traits
that are important for the study (Nardi, 2003). In this research,
the questionnaire respondents were selected based on VTT’s (VTT,
Technical Research Centre of Finland, 2009) electronic mailing lists.
Also, the questionnaire was sent to European-wide Merlin research
projects’ partner companies (MERLIN ITEA project 2004–2007),
since they were assumed to have knowledge about the field of
study. The interviewees were, then, selected based on the ques-
tionnaire respondent’s experience in product roadmapping. The
emphasis of the empirical research was put on the interviews. The
questionnaire was used to obtain data about product roadmapping
and to obtain the right persons to be interviewed.

Author's personal copy

966 T. Suomalainen et al. / The Journal of Systems and Software 84 (2011) 958–975

Table 3
Empirical research design.

Research method Research questions relating to each element

Stakeholders Process phases Critical process phases

Questionnaire Who should participate in product
roadmapping?

How product requirements are
captured into roadmaps?

What is the most important phase in
the roadmapping process?

How many persons participate in the
roadmapping process in your
company?

How requirements are prioritised
during product roadmapping?

What is the most difficult phase in the
roadmapping process?

Interviews What roles does the roadmapping
process include?

How does the roadmapping process
begin?

What are the benefits of product
roadmapping?

Who participates into the
roadmapping process and to which
activities in it?

What are the main phases of
roadmapping process?

What are the problems of product
roadmapping?

How each product roadmapping phase
is conducted?

The content of both the questionnaire and the interviews were
designed according to the research framework for software product
roadmapping, presented in Section 2.4. The questions were divided
along the framework into three elements: stakeholders, process
phases, and critical process phases. An example questions from
both research methods along with the elements are presented in
Table 3.

The goal of this study is to increase the current empirical
evidence on product roadmapping from three elements: (1) the
stakeholders of the product roadmapping (i.e. who the main
stakeholders are and what kind of role they have during the prod-
uct roadmapping process), (2) the product roadmapping process
phases (i.e. what are the main process phases and how they are con-
ducted), and (3) the benefits and challenges and critical points of
product roadmapping. In addition, a tentative research framework
for software product roadmapping is proposed (Section 2.4) based
on the current literature. The research framework is for designing
the research as well as ordering and presenting research results.

3.2. Research context and data collection

In this research, the empirical study was carried out in five
phases: (1) formulating the questionnaire, (2) pilot testing of the
questionnaire, (3) analysis of the questionnaire results, (4) inter-
views, and (5) analysis of findings. Fig. 2 illustrates the process of
the conducted empirical study.

Firstly, a literature research was conducted in order to under-
stand the state-of-the-art of product roadmapping. In addition, the
purpose of the literature review was to focus research on a few
of the most important issues from the field of research, and to pre-
pare the proposed questionnaire based on the literature review. The
data collection was carried out, firstly, in the form of a question-
naire study to collect background knowledge of the case companies
on the application of product roadmapping. The interviews, then,
were conducted to collect more in-depth knowledge about product
roadmapping in different companies.

The questionnaire was built in a structured form to provide the
respondent with specific alternatives for each question. However,
in order to get more in-depth information, a respondent could also
reply with an open answer to each of the questions. Thus, the ques-
tionnaire included both structured and unstructured questions. The
structured questions were selected to attain a brief response time
and therefore to receive more replies. Also, the structured questions

were chosen to make analysis easier and conclusions stronger. The
questions for the inquiry were planned and arranged carefully in
advance to attain the right form of questions and to avoid misunder-
standings. Thus, the questionnaire was pre-tested inside VTT (VTT,
Technical Research Centre of Finland, 2009) among researchers,
and based on the pre-test results, small modifications to the ques-
tionnaire were made.

After the pilot testing of the questionnaire, in summer 2006,
the questionnaire was sent to potentially interested contacts by
using purposive sampling (Nardi, 2003), i.e., to companies assumed
to have experience and interest in product roadmapping. An
electronic mailing list was prepared and the questionnaire was e-
mailed to over 600 respondents. The high receiver rate can be partly
explained by the fact the mailing list was not ranked, e.g. accord-
ing to respondents’ roles, thus the questionnaire was also sent to
those respondents that were not actually involved with the scope of
research. As a result, a total of 59 responses were received, seven of
which lacked experience in product roadmapping and were hence
unable to fill the form. Though the resulting response rate of the
questionnaire was quite low (10%), the 52 replies from 34 different
companies can be claimed to provide a wide enough perspective
for further analysis, especially for selection of persons to be inter-
viewed. One of the replies, however, was excluded from the analysis
due to an incompletely filled questionnaire form.

The respondent companies originated from Finland, Sweden
and the Netherlands. All companies were involved in software
product or service development in the field of information and
communications technology (ICT) industry. Their scopes varied
from own product development to the development of components
for external partners. The size of the case companies, measured
as the number of overall employees, was distributed among
the given categories in the questionnaire (under 10 employees,
10–49 employees, 50–250 employees, and over 250 employees)
with an emphasis on medium and large companies. The distri-
bution of answers according to company size is illustrated in
Fig. 3.

After the questionnaire study, the interviews were planned.
The purpose was to gain in-depth knowledge on how product
roadmapping was conducted in case companies. The interviews
were semi-structured, and as Järvinen (2001) describes, the semi-
structured interviews include structured questions and proceed
along certain vital themes of the research. The vital themes of
research were selected based on the literature analysis, presented

Fig. 2. Empirical research process.

Author's personal copy

T. Suomalainen et al. / The Journal of Systems and Software 84 (2011) 958–975 967

Fig. 3. Size of the case companies.

in Fig. 1, and findings of the questionnaire studies. As is charac-
teristic of semi-structured interviews, the themes were the same
for all the interviewees, but the questions varied between the dif-
ferent interview sessions. Equally, the interview questions were
partly planned in advance, but not in a detail formed or arranged.
Moreover, the intention in the interviews was to emphasize the
interviewee’s experiences and their own opinions on the field of
study. Furthermore, the interviews could be considered focused
interviews, since the respondents were interviewed personally for
a short period of time, i.e. not more than an hour (Yin, 1994).

Altogether, nine persons representing eight different compa-
nies were selected to be interviewed. Two of the interviews were
face-to-face, and the other seven were conducted by phone. All the
interviews were recorded and transcribed. Table 4 provides a sum-
mary of the conducted interviews indicating company nationality,
company size, and the role of the interviewee.

4. Results

In this section, the research evidence from the empirical study
is presented and aligned with the research framework developed
in Section 2.4. Firstly, in Section 4.1, the empirical evidence to
identify the main identified stakeholders of the product roadmap-
ping process is defined. In Section 4.2, the findings related to the
roadmapping process and its suggested phases are presented. In
Section 4.3, the perceived impact of software product roadmap-
ping is disclosed meaning e.g. the research evidence revealing the
critical phases in product roadmapping and the main benefits and
challenges of product roadmapping.

4.1. Stakeholders of the product roadmapping process

In order to clarify different definitions in the literature about
the stakeholders of the roadmapping process, the questionnaire
respondents were asked to select different functions of the organi-
zation that should take part in the product roadmapping process.
Also, the purpose was to find out the most important stakeholders.

The stakeholders were divided into the following categories: prod-
uct management, finance, engineering, marketing, manufacturing,
services, development, customer and partner representatives, and
other. Fig. 4 illustrates the questionnaire replies relating to the
stakeholders of the roadmapping process.

According to the respondents, the following were considered to
be the most important stakeholders of the product roadmapping
process: product management, marketing, customer and partner
representatives, and development including manufacturing and
engineering. From these stakeholders the customer and partner
representatives were the only external stakeholders to be involved
in product roadmapping based on the questionnaire results. How-
ever, all the categories received a number of responses and, thus,
can be considered somehow important. Additionally, 21% of the
respondents thought that other groups of representatives were also
needed during the process as well. These groups included various
management stakeholders, e.g., top management, senior manage-
ment, and human resource management, as well as final end-users
and sales personnel.

When several different functions from organization(s) partici-
pate in the roadmapping process, the number of participants can
become quite large. Therefore, the questionnaire respondents were
asked to describe how many persons typically participate in the
roadmapping process in their company from the given categories
(1–5 persons, 6–10 persons, 11–20 persons, 21–30 persons, and
other). In total, 50 responses were received for this question.

It may be considered surprising that the category “1–5 persons”
was selected by 34% of the respondents, even though most of the
companies were considered large. Thereafter, the second highest
rate was given to the category “6–10 persons” with 30% of the
replies. The third largest category was “Other” with 16% of the
replies, in which the respondents explained that more than thirty,
fifty, or hundred persons participate in the roadmapping process.
Additionally, some of the respondents described that hundreds or
several hundreds, or more than two hundred persons take part in
the roadmapping process. The two last categories were not very
common, since the category “11–20 persons” received 14% and the
category “21–30 persons” received only 6% of the total number of
replies.

The questionnaire data also implicated that the company’s size
and the number of participants in the roadmapping process clearly
correlate. According to the majority of the small companies with
fewer than 50 employees, one to five persons participate in the
product roadmapping process. Instead, in medium sized compa-
nies with employees from 50 to 250, the number of participants in
the roadmapping process was from six to ten. Furthermore, in case
of large companies with more than 250 employees the number of
participants was more than 30, and could be even several hundreds,
which made the process very complex, as one of the respondents
explained.

The interviewees emphasized that not all the participants were
necessarily present during each phase of the process. Instead, the
participants only participated in those phases that affected their

Table 4
Summary of interviewee profiles.

Interviewee Company nationality Company Company size (employees) Role of the interviewee

1 Finnish A >250 Manager
2 Finnish A >250 Group manager
3 Finnish B 50–250 Chief technology officer (CTO)
4 Finnish C >250 Product planner
5 Finnish D >10 Program director
6 Finnish E >250 Group manager
7 Finnish F >250 Chief engineer
8 Swedish G >250 Senior researcher
9 Finnish H 50–250 Manager

Author's personal copy

968 T. Suomalainen et al. / The Journal of Systems and Software 84 (2011) 958–975

Fig. 4. Stakeholders of the product roadmapping process.

work or knowledge. Especially, when the company was large, there
were different types of roles from different kinds of companies that
were involved in different phases of roadmapping. Thus, differ-
ent meetings were reported to be held with different groups of
participants to focus on specific areas of the product. One of the
interviewees pointed out:

“Separate feedback or prioritisation sessions should be held, and
joint meeting are held to discuss all issues.” [Manager, company
H]

Instead, in smaller companies when the process included fewer
participants, all the participants could be present in each phase and
meeting of the process.

According to the interviews, the product roadmapping process
participants had only two basic roles: as a member of the product
roadmapping team and as a product or solution owner. In addition,
there was a third role mentioned in the literature, the facilitator’s
role, which was not considered to be important by the intervie-
wees. According to the interviews, the most important role was
considered the owner’s role as this person had the overall idea of
the desired roadmap, and there should be someone in possession of
the roadmap. The role of the owner was also considered to include
the collection of input, holding the roadmap together, making the
needed changes to the roadmaps, and taking care of the information
flow both within and outside the company. Instead, the stakehold-
ers of the roadmapping team were to bring input from different
viewpoints to the roadmap, e.g. to schedules and to product fea-
tures. The team was also responsible for evaluating and prioritising
features as well as reviewing created roadmaps.

4.2. Product roadmapping process

Among the interviews, product roadmapping was identified as
a continuous process where the roadmapping team has meetings
biweekly, quarterly, or biannually, in which roadmaps are updated
and reviewed. The majority of the interviewees replied that the
product roadmapping process begins with customer requirements.
These requirements could be, for instance, proposals for improve-
ment or new product features as well as the customer’s goals or
expectations. The requirements could also come from the com-
pany’s internal research unit or through competitor analysis. In
some cases, changes in the standards were reported to cause the
trigger for a product roadmapping. The product roadmapping pro-
cess could also begin with:

“By defining what product features were emphasised in the mar-
kets.” [Group Manager, company A]

Fig. 5. Methods for capturing features.

The product roadmapping process consisted of three to six
phases according to the interviews. Although the number of phases
varied, in almost all the companies the same tasks could still be
identified as elements of the product roadmapping process.

4.2.1. Capturing features
As mentioned in the literature, there are several methods, which

can be used during capturing features. To find out what kind of
feature capturing methods were used in the case companies, the
questionnaire respondents were asked to select the used method(s)
from the given categories (with prototyping, with interviewing,
gathering ideas over time, in some kind of workshops, and other).
All 52 responses were included in the analysis; most of the respon-
dents selected more than one alternative.

Although the literature in the field of the study recommends
using workshops for capturing features, the questionnaire replies
revealed that some other procedures were used more often than
workshops. Accordingly, the most commonly used method was
gathering ideas over time with 65% of the replies and after that,
interviews with 46% of the replies. Only 40% of the respondents
used workshops to gather features, and 31% of the respondents used
prototyping. Additionally, 21% of the respondents used some other
methods to capture features. These methods included, for instance,
market and technical research, following market development and
standards, as well as analysing the distribution channels and their
requirements. The most commonly used methods for capturing
features are presented in Fig. 5.

According to the interviews, during capturing features, the fea-
tures originated from several sources of information such as from
current market trends and standards. Thus, knowledge of different
participants was combined. The stakeholders of capturing features
were typically the collaborators, sales, management, or product

Author's personal copy

T. Suomalainen et al. / The Journal of Systems and Software 84 (2011) 958–975 969

architects, as well as from a company’s own research, for exam-
ple, through customer and competitor analysis. In addition, one of
the interviewee’s replied:

“Features are typically captured and feedback is collected through
trade shows and by distributing a free evaluation version through
the internet”. [CTO, company B]

In some case companies, the idea of the product was created
together with collaboration partners, e.g. through brainstorming.
In the other case companies, possible participants and co-operation
partners were clarified after a product idea was created inside the
company. However, as one of the interviewees noted:

“Capturing features has two phases: someone has an idea for a
product feature and another one writes down what the feature
actually means. Based on that information it can be verified that
everyone has understood the idea of the product feature correctly.”
[Chief Engineer, company F]

4.2.2. Analysing features
Various methods were used for analysing features in the case

companies based on the interviews. Some of the case companies
used domain-specific knowledge and experience as well as inter-
viewed experts during the analysis phase. Further, in one case
company, the major features (i.e. features requiring more effort
to be implemented) were analysed through a feasibility study, as
suggested in the literature. The feasibility study included both a
technical and cost analysis. Based on the analysis estimations for
the revenues, sales and implementation could be made. Minor fea-
tures were not analysed, but rather were further defined in order to
make the decision whether they fit into the product content or not.
In the latter case, they were dropped or postponed as candidates
for the next product release. Usually, the analysis of features was
conducted by the experts from different stakeholder groups, e.g.
from the viewpoint of sales, technical or strategic value. However,
in one case company:

“Analysing features is the responsibility solely of the product man-
ager or person in charge of the product.” [Product Planner, company
C]

Typically, the three most important factors in analysing features
were identified as: (1) the estimated cost, (2) technical require-
ments (e.g., specific hardware needs), and (3) the central use cases
(e.g. when and how the functionality is being used, and what else
should function at the same time).

In more detail, analysing features was found to consist of three
phases. Firstly, it was verified whether the features were under-
stood correctly, for example, whether the features were recorded
exactly, and if the feature description included information con-
cerning the feature’s functionality and limitations. Secondly, it was
figured out what kind of technology would support the implemen-
tation of the features. This was typically done by the architects
and technical persons and could involve prototyping or sketching
the software architecture. This was reported to help in under-
standing the implementation of the features from a technical
viewpoint. Thirdly, after creating basic knowledge and under-
standing, it was estimated how much it would cost in terms
of time, money, and external recourses to implement the fea-
tures.

4.2.3. Prioritising features
According to the literature, the product features can be pri-

oritised both with formal or informal methods. To find out what
kind of prioritisation methods were typically used, the question-
naire respondents were asked to select either formal, informal or
both methods. The clear majority of the 52 respondents selected

informal methods with 69% of the total amount of replies. There-
after, 23% of the respondents used formal methods only, and 8%
of the respondents used both methods for prioritising features.
The formal prioritisation methods included Analytic Hierarchy
Process (AHP) (Saaty, 1986), Quality Function Deployment (QFD)
(Griffin and Hauser, 1993), EVOLVE (Greer and Ruhe, 2004), and
Distributed Prioritisation (Regnell et al., 2001). Additionally, in one
case company, formal methods contained business cases, proba-
bility analysis (win/lose), and customer and market importance
balancing.

Moreover, two of the interviewees had experience on the use of
formal prioritisation methods; Distributed Prioritisation and AHP.
Distributed Prioritisation was used:

“. . .when it was supported with tools allowing simulation of mul-
tiple approaches and weighting of answers.” [Manager, company
H]

It was also used to support distributed knowledge, since within
a global company it was important to gather distributed priori-
ties from all perspectives. Instead, AHP was used to find out focal
points, for instance. Accordingly, also AHP was reported to sup-
port distribution. That was partly because the case company’s user
interface supported sharing and distributing information between
companies.

According to the interviews, both functional and non-functional
requirements were prioritised at the same time. In addition,
there were no special methods for prioritising non-functional
requirements. Prioritisation was typically informal, and the infor-
mal prioritising methods varied among the case companies. For
instance, the priorities could be created by using a calculation sys-
tem. In that case, each feature was given a point, which could also be
a weighting factor, work contribution, or incurring costs. After giv-
ing the points, it could be seen which of the features had won. Based
on the points, the order of priority was formed. Instead, in some
case companies, the number of customerships per feature or values
related to technical importance, market value, or ease with return
on investment (ROI), guided prioritisation. On the other hand, in
some cases, more information relating to the features was needed
to be considered during the prioritisation. For example, customer
preferences, legislative or release specific features, and real world
matters guided prioritisation.

Typically, the order of priority of the features was a result
of a collective decision in the roadmapping team. In some
cases, the decision could be made also by the product man-
ager, CTO, the owner, or the person in charge of the product.
Usually, minor problems concerning the priorities were han-
dled inside the roadmapping team and the major problems were
resolved by the management team of the company or compa-
nies. Additionally, in some case companies, the customer made
the final decision concerning the priorities, especially, when
intermediate versions from the product were important to the cus-
tomer.

4.2.4. Roadmap validation and agreement
Commonly, there were two means for performing validation

according to the interviews. The roadmaps were either validated
through reviews or through the unit’s business improvement and
customer feedback.

According to the first group of interviewees, roadmaps were
validated through negotiations, meetings, or reviews. Accordingly,
reviews were considered the most efficient way of performing vali-
dation, especially when roadmaps were reviewed with an adequate
number of persons. During the review process, inputs as well as
comments were collected, and if there was any essential new infor-
mation, the necessary changes to the roadmaps were made. Hence,

Author's personal copy

970 T. Suomalainen et al. / The Journal of Systems and Software 84 (2011) 958–975

in order to widely spread and review the roadmaps:

“Roadmaps are kept in either paper or electronic format.” [Program
Director, company D]

Additionally, the roadmap validation could be manifested in
contracts. It could even be a legal contract, if financial matters
were involved. Moreover, when roadmaps were created together
with collaborators, validation of the roadmap was also performed
in mutual meetings with the partner. Typically, the customer con-
firmed that the roadmap was good.

Instead, according to the other group of interviewees, vali-
dation took place when the customers started to buy or not to
buy the product. Thus, validation came through the unit’s busi-
ness improvement and customer feedback. If negative results were
obtained they were analysed, for instance to reveal why product
development had gone in an unprofitable direction or why the
newest version did not answer to the customer’s needs. Roadmap
validation could also come through commercial success, e.g. as a
function of the number of sold products.

The roadmap agreement was often made in a meeting together
with the roadmapping team. The agreement could also be made by
the product owners, the product managers, or CTO, depending on
the case company, and if needed, the management participated in
the meetings as well. In such a meeting, the product roadmapping
team was reported to make a mutual decision about the roadmap
from which point onwards the development work would then pro-
ceed. The roadmap agreement was made in order to have a mutual
understanding about the product that was being developed. The
agreement also made the roadmap official. Thus, with the agree-
ment, it could be ensured that commitment existed and everybody
knew the decided matters.

4.2.5. Change management of the roadmap
According to the interviews, changes to the roadmaps came

from delays in the product implementation as well as when new
or unnecessary product features were discovered during prod-
uct development. Additionally, when partners or customers were
informed about the new solutions, they typically brought up mat-
ters that might not have been taken into account earlier. These new
matters had to be either brought out with the ongoing releases
or left at the roadmap stage for forthcoming product releases. The
case companies reported having meeting practices for change man-
agement, in which change requests were handled and decisions
concerning the change were made. One of the interviewees high-
lighted:

“We try to manage changes that affect schedules or money in joint
meeting, from which meeting memos are created.” [Chief Engineer,
company F]

Thus, it was found important to record the meetings, e.g. create
notes or meeting memos, in case there would be a need to verify
the change decisions later on.

The roadmap change process typically went as follows. First,
either one of the collaboration partners noticed the change request.
Secondly, the effects of the change were analysed, i.e. an impact
analysis was conducted. Third, changes were approved together
with the partners, or a customer was requested to approve the
changes. That was because all the decisions had to be conscious
and those that were mostly affected by the change had to be able
to affect the change decisions. Thereafter, it was verified that every-
one had understood the changes. Finally, the changes were added
to the rest of the features, i.e., a new roadmap or updated version
of a roadmap was created.

The decision-maker of the change was reported to depend on
the importance of the matter to be changed. Minor changes could

be made by the product manager or CTO. Major changes were man-
aged by the roadmapping team. Major changes were largely related
to schedules, deleting important or key features from the roadmap,
or adding bigger features to the roadmap, etc. Thus, these changes
had to be communicated and approved by the same forum that had
approved the roadmap. Instead, when the customer was financing
the product, then the final decision was made by the customer.
Moreover, in other collaboration situations, the first, preliminary
decision concerning the change was made inside the company.
Thereafter, the change decision was negotiated together with the
collaboration partners in meetings, and they tried to reach an agree-
ment. When unsolvable problems occurred during meetings, then
management of the companies made the final decisions concern-
ing the change. Therefore, in collaboration, the changes could not
be unilaterally decided, instead they had to be approved mutually.
Usually, the rules concerning the change management were known
and approved before cooperation, for example, in the cooperation
agreement.

4.3. Perceived impact of software product roadmapping

The interviewees had convergent ideas about product roadmap-
ping. Based on the interviews, a roadmap is a plan about the
company’s future directions; in other words, it is a leading map
where the company is going with its products. Thus, it is the
means of structuring and arranging the product development, in
order to know how to use certain resources. A roadmap holds the
product development together by guiding what is to be done and
when. Hence, product development is somehow deterministic and
enables steering of the product implementation. A roadmap also
gives a clear focus in the product development, and provides high-
level understanding of scoping the strategy. On the other hand, one
of the interviewees pointed out:

“Clear strategy allows better planning and commitment to the set
plans.” [Manager, company H]

Product roadmapping also improves predictability, and reduces
surprises during product development. With a roadmap, tasks to
be done can be prioritised, and thus resources can be allocated
to the most profitable projects. It can even be verified from the
roadmap that the right things are done at the right time. Addi-
tionally, with a good roadmap the customers’ needs can be met
with a product that they really want. Hence, roadmaps offer a
competitive advantage. Moreover, a roadmap is a central tool for
communication, and therefore it should be shown to the company’s
own staff and to partners. It gives a clear idea what is about to
be done and enables communication about forthcoming strategic
projects.

4.3.1. Importance of the phases
The questionnaire respondents were asked to rank the

roadmapping phases from the most important to the least impor-
tant (1 = most important and 5 = least important). The phases to
be ranked were divided into the following categories: capturing
features into roadmaps, analysing features, prioritising features,
roadmap validation and agreement, change management of the
roadmap, and other. Two of the replies were left outside the analysis
since several “most important” alternatives were selected. Hence,
the total number of replies was 50. It should be noticed that not all
of the respondents ranked all the categories. Instead, some of the
respondents only selected one to three phases that were considered
the most important, and left the other phases outside the ranking.
Thus, some of the categories have fewer replies. Fig. 6 illustrates the
phases of the product roadmapping process and the ranking order
given by the respondents.

Author's personal copy

T. Suomalainen et al. / The Journal of Systems and Software 84 (2011) 958–975 971

Fig. 6. The most important phases in product roadmapping.

The majority of the most important replies, 47% altogether, were
given to the capturing features phase. After this came the prioritis-
ing features phase with 42% of the most important replies. Since
none of the respondents thought that prioritising features was the
least important phase in roadmapping, the prioritising product fea-
tures was considered the most important phase in the product
roadmapping, and then the capturing features. The roadmap val-
idation and agreement was considered the third most important,
and the analysing features phase was the fourth most important.
The change management of the roadmap was not considered so
important, since none of the respondents ranked this phase as the
most important. Instead, the majority of replies gave this phase the
rating of least important. This can be explained by the fact that the
change management will not help, if all the other phases have gone
wrong.

4.3.2. Difficulties of the phases
Thereafter, the respondents were asked to select one of the prod-

uct roadmapping phases that was the most difficult. According
to the clear majority of replies, the most difficult phase was pri-
oritising features with 46% of the replies. The other phases were
distributed quite equally among the replies; capturing features
with 19% of the replies, validation and agreement with 17% of the
replies, analysing features with 10% of the replies, and change man-
agement of the roadmap with 8% of the replies.

In order to find whether the company’s size affects the most
difficult phase in roadmapping, the companies were divided into
the three size groups (small: fewer than 49 employees, medium:
50–250 employees, and large: over 250 employees). Based on the
replies, both the medium and the large sized company groups
thought that the most difficult phase of roadmapping was the pri-
oritising features phase. Instead, according to small companies, the
most difficult phase in the product roadmapping was the roadmap
validation and agreement phase. Additionally, large companies
faced difficulties during all the phases of roadmapping unlike the
small and medium sized companies that faced difficulties only dur-
ing prioritising features, roadmap validation and agreement, and
capturing features into product roadmaps.

Furthermore, it was analysed whether the lifetime of the com-
pany’s products had an effect on the most difficult phases of the
roadmapping. The product service lives in use by customers were

divided into the following categories: a lifetime from one to six
years, a lifetime over six years, and another that included prod-
ucts with varying lifespans from one to more than 10 years. The
companies with a product lifetime between one and six years
had difficulties during all the phases of roadmapping except dur-
ing the change management phase. Additionally, the companies
with a product lifetime over six years did not face difficulties dur-
ing the roadmap validation and agreement. Instead, companies
that selected the category “Other” faced only difficulties during
the roadmap validation and agreement, and the capturing features
phase.

According to the interviews, there are problems relating to
almost every phase of the product roadmapping process. Most com-
monly, the problems seem to relate to prioritising the features,
managing changes, and maintaining roadmaps. Also, sharing infor-
mation, communication, and making the roadmap agreement were
considered difficult.

Collecting input was considered difficult, and more pre-
cisely, getting the right information and accurate knowledge was
problematic. Also, background research and finding out both com-
petitors’ and customers’ opinions was difficult. Hence, uncertain
predictions about the future were attempted to be avoided by col-
lecting feedback on the prediction accuracy. Additionally, it was
highlighted that at the beginning of the product, the roadmaps
could be more accurate which meant that a more precise product
design could be created right from the beginning of the process.

In prioritisation, problems were caused by uncertainty about
which features should be taken into which product version. It was
also described that the strongest opinion may not offer the best
understanding of the values, and thus prioritisation should be done
carefully. Relating to prioritisation one interviewee revealed:

“If not done with clear vision and with strategic thinking it will
lead to changes in plans and results in frustration very ineffective
product release cycles.” [Manager, company H]

Also, prioritising customer requirements was considered a con-
tinuous problem and a challenge in the roadmapping process.
Making an agreement was also considered difficult, since combin-
ing and processing different viewpoints was complex. Especially,
consolidation of different wishes, needs, and technical imple-
mentation possibilities in an economical frame was considered

Author's personal copy

972 T. Suomalainen et al. / The Journal of Systems and Software 84 (2011) 958–975

hard. Moreover, managing and maintaining product roadmaps was
thought difficult. The problems were caused by a large number of
changing matters, and the more precise the roadmaps were the
harder they were to maintain.

Communication about features across organizational borders
to ensure that everyone involved understands the meaning of
the features was considered difficult. Additionally, communica-
tion in large companies was considered problematic. Thus, it was
suggested that sharing information and its visibility should be
improved. Moreover, it was feared that information would get into
the wrong hands, since it was problematic to verify persons who
should know about the roadmap, and that they were well aware of
the content of the roadmap. Thus, it was a matter of concern, how
to get the information without the danger of data leakage. Hence,
the purpose was to prevent the information from the roadmap from
being passed on to competitors.

5. Discussion

In this section, the research results are discussed. The litera-
ture review findings are compared against the empirical research
results. In Section 5.1, the empirical findings from the product
roadmapping stakeholders are compared against the literature
findings presented in Table 1 and, in Section 5.2, the empirical
findings from the product roadmapping process are compared
against the literature findings presented in Table 2. Also, at the
end of this section, common practices in product roadmapping are
summarized. In Section 5.3, the critical process phases of product
roadmapping are discussed.

5.1. Product roadmapping stakeholders

Based on the empirical research findings, the product roadmap-
ping process only seemed to involve two main actors: the roadmap
owner and members of the roadmapping team. Empirical evidence
did not support the use of a facilitator, as proposed in the litera-
ture (e.g. Phaal et al., 2003a; Wells et al., 2004). Furthermore, in the
literature (e.g. McCarthy, 2003), it is suggested that the roadmap-
ping team is, among others, responsible for creating the roadmaps.
However, the research results indicate that the roadmaps are cre-
ated by the owner, while the main task of the team is to give input
to the roadmap.

As presented in Table 1 several different stakeholders were men-
tioned in the literature to participate in the roadmapping process,
the empirical findings exposed the following main actors: product
management, marketing, customer and partner representatives,
and development including manufacturing and engineering. There-
fore, for example, participants from finance were not seen as
important as suggested in the literature (Phaal et al., 2000a,b, e.g.
McCarthy, 2003; Phaal et al., 2003a). The customer and partner rep-
resentatives were the only external stakeholders to be involved in
product roadmapping. Instead, according to van de Weerd et al.
(2010) the external stakeholders include representatives from the
market, partners, and customers. Additionally, based on the empiri-
cal findings, the number of participants in the roadmapping process
was directly connected to the size of the company. In larger compa-
nies, more stakeholders participate in the process. However, not all
the participants were necessarily present at each phase of the pro-
cess. Instead, they only participated in the phases that affected their
work or where their particular knowledge was needed or relevant.

It was suggested in the literature (presented in Table 2), that the
roadmapping process is different in every company (Phaal et al.,
2004; Groenveld, 2007). However, the empirical evidence suggests
that the contents of the roadmapping processes are still almost the
same. The tasks to be done during the roadmapping process were

the same in spite of the fact that the case companies had identified
a different number of phases and different names for the phases.
As a result, the following phases of a common product roadmap-
ping process are proposed in this paper, i.e., capturing features,
analysing features, prioritising features, roadmap validation and
agreement, and change management of the roadmap.

5.2. Product roadmapping process

According to the empirical findings, the product roadmapping
process was considered a continuous process that was a part of the
product development process. Unlike what is suggested in the liter-
ature (Vähäniitty et al., 2002) that roadmapping process starts with
defining or revising, and then analysing the strategic mission and
vision of the company, the results of this research propose that the
product roadmapping process seems to begin with the customer
requirements. In some cases, the process also begins from product
requirements emerging from the company’s internal research, or
through competitor, market or standard analysis.

It was presented in the literature (e.g. Phaal et al., 2003a)
that workshops were most commonly used for capturing features.
Instead, the questionnaire study revealed that gathering ideas over
time was the most commonly used method for capturing features
and interviews after that. Furthermore, the features could come
from several sources of information, e.g. market trends and stan-
dards. Combining knowledge from different participants was seen
important, and therefore several stakeholders were advised to be
involved in capturing features, e.g. collaborators, sales, manage-
ment, product architects, and market researchers.

The methods for analysing features were almost alike in the lit-
erature (e.g. Fickas and Nagarajan, 1988; Zhang et al., 2005) and the
empirical results. For example, the features were analysed by using
domain-specific knowledge and experience as well as interviewing
experts. However, during the interviews it was noted that there is
a difference between analysing the major and minor features. The
major features were analysed by using such methods as mentioned
in the literature, e.g. feasibility study. Instead, the minor features
were not analysed; on the contrary, they were only planned and
then considered whether they would fit into the product’s content
or not. Furthermore, the empirical evidence revealed that analysing
features includes following important factors to be noticed: (1)
verify understanding, (2) clarify implementing technology, and (3)
create cost, time, and work estimations. Analysing features was typ-
ically conducted by the experts from different stakeholder groups,
e.g. sales and people with technical or strategic perspective.

According to the literature, the product features could be pri-
oritised with formal (e.g. McCarthy, 2003; Phaal et al., 2003b;
Groenveld, 2007) and informal (e.g. Phaal et al., 2003a; Blotner,
2004) prioritisation methods. Empirical evidence suggests that
features are typically prioritised by using informal prioritisation
methods and both functional and non-functional requirements
were prioritised at the same time. However, the methods used for
informal prioritising differed from the ones proposed in literature.
For instance, Blotner (2004) suggests using identity information
for initial feature prioritisation in which each feature is presented
and input from all team members is collected. According to the
interviews, the priorities could be created by using a calculation
system; or via a number of customerships per feature or values
related to technical importance, market value, or ease with return
on investment (ROI), guided prioritisation. Based on the interviews,
more information relating to the features was considered during
the prioritisation. For example, customer preferences, legislatively
or release specific features, and real world matters guided priori-
tisation. As suggested in the literature (Phaal et al., 2003a), the
roadmapping team prioritised the features. However, it was also
pointed out in the interviews that the decision could also be made

Author's personal copy

T. Suomalainen et al. / The Journal of Systems and Software 84 (2011) 958–975 973

Table 5
Essential factors influencing product roadmapping.

Phase Essential factors

Capturing features Gathering ideas over time and performing interviews to capture features
Features come from several sources of information, e.g. market trends and standards
Stakeholders include, e.g. collaborators, sales, management, product architects, and market researchers

Analysing features Using domain-specific knowledge and experience, and interviewing experts
Analysing and conducting feasibility study for major features
Making a decision whether minor features fit into the product content or not
Important factors: (1) verify understanding, (2) clarify implementing technology, and (3) create cost, time, and work
estimations
Stakeholders include, e.g. a sales representative, and people with technical or strategic perspective

Prioritising features Using informal prioritisation methods, e.g. a calculation system
Prioritising functional and non-functional requirements at the same time
Several factors guide prioritisation, e.g. customer preferences, legislative and/or release specific features
Stakeholders include, e.g. roadmapping team, product manager, CTO or the person in charge of the product

Roadmap validation and agreement Validating roadmaps: (1) through negotiations, meetings or reviews to collect input and comments, or (2) through
unit’s business improvement, customer feedback or product’s commercial success
Making a roadmap agreement: in a meeting to have a mutual understanding about the product and to make the
roadmap official
Stakeholders include, e.g. roadmapping team, product owner, product manager, or CTO

Change management of the roadmap Changes come from delays in product implementation or discovering new or unnecessary product features during
product development
Using meeting practices to handle change requests and making decisions concerning the change
Roadmap’s change management process: (1) change request, (2) impact analysis, (3) approve changes and verify
understanding, and (4) revise roadmap
Stakeholders of a minor change: product manager or CTO
Stakeholders of a major change: roadmapping team

by the product manager, CTO or the person in charge of the product.
Additionally based on interviews, if consensus could not be reached
in the team, the management team of the company or companies
made the final decision.

According to both literature (e.g. McCarthy, 2003) and empir-
ical findings, the roadmaps were typically validated and agreed
on in meetings. However, according to some of the case compa-
nies, the validation occurred when the customers started to buy
or not to buy the product. Hence, the validation could also be
based on the unit’s improvement, customer feedback, or a prod-
uct’s commercial success. The empirical evidence also revealed
that the roadmap agreement was made in a meeting together with
the roadmapping team to have a mutual understanding about the
product and to make the roadmap official. The roadmap agreement
could also be approved by the product owner, product manager, or
CTO.

Empirical evidence pointed out that the changes to the product
roadmaps come from delays in product implementation or when
new or unnecessary product features were discovered during prod-
uct development. It was suggested to use meeting practices to
handle change requests and make decisions concerning the change.
Moreover, based on the empirical findings, the change manage-
ment process of the product roadmap consisted of four phases
instead of the six phases as proposed in the current literature
(Pozgaj et al., 2003). These phases were: (1) change request, (2)
analysis of the changes’ effects, i.e. impact analysis, (3) approving
changes, and (4) creating a new roadmap or revising a roadmap.
Additionally, the findings revealed that in the product roadmapping
process there was no official CCB during the change management
phase as suggested in the literature (Pozgaj et al., 2003). Instead, the
decisions concerning the change were made based on the impor-
tance of the matter to be changed. Minor changes were made by
the product manager or CTO, while major changes were managed
by the roadmapping team.

The findings of the empirical research relating to common prac-
tices in product roadmapping are summarized in Table 5. The table
presents essential factors influencing the different phases of the
roadmapping process.

5.3. Critical process phases

The empirical findings indicate that the most important phase of
product roadmapping is prioritising features and then the captur-
ing features. The most problematic areas of product roadmapping
are prioritising features, managing changes and maintaining
roadmaps as well as sharing information, communication, and
making a roadmap agreement. The problems in prioritising fea-
tures were caused by uncertainty about which features should
be included in the product or which features should be excluded
or left for the forthcoming product releases. To solve this prob-
lem, the empirical evidence revealed that prioritisation should
be done carefully, with a clear vision in mind and with strate-
gic thinking. Mintzberg (1994) also highlights the importance of
strategic thinking by stating that the most successful strategies
are visions, not plans. Thus, the difference between planning and
strategic thinking should be noticed in order to be productive. The
interviewees also suggested some informal prioritisation meth-
ods to solve difficulties in prioritising features, e.g. a calculation
system. Reaching an agreement was considered difficult, since
combining and processing different viewpoints was hard. Meet-
ing practices were suggested to solve this problem. Managing and
maintaining roadmaps was though troublesome because of a large
number of changing matters. It was suggested that more time
should be used in the first phases of product roadmapping (i.e.
capturing and analysing features) to reduce changing matters at
the end. Also, it was noticed that the more precise the product
roadmaps were the harder they were to maintain. Thus, the product
roadmaps should only contain the needed information and nothing
extra.

6. Conclusions

This article provided an empirical understanding and offered
experiences about product roadmapping, which have not been
thoroughly explored previously. The main goals of the study were
to increase the current empirical evidence on product roadmapping
by defining the main stakeholders and their roles during the pro-

Author's personal copy

974 T. Suomalainen et al. / The Journal of Systems and Software 84 (2011) 958–975

cess, organizing the product roadmapping process, establishing the
main benefits and challenges faced during the process, and identi-
fying the most critical phases of the process. A research framework
for software product roadmapping was created based on the exist-
ing literature in order to help to structure and present the research
results. The framework provides answers to the research questions
and relates to the following elements in product roadmapping:
stakeholders, process phases, and the perceived impact of product
roadmapping. The research findings increase the product roadmap-
ping knowledge and help companies to develop their own product
roadmapping processes. For example, the study identifies the
essential factors influencing product roadmapping (Table 5). The
findings of the study also help the companies to focus research
and development work on the most critical parts of the product
roadmapping process, i.e., prioritising and capturing features as
well as the change management of the product roadmap. From
scientific perspective, the study aims at increasing the body of
knowledge in the area of product roadmapping while also identi-
fying future research opportunities in the field of software product
roadmapping.

Results of the research indicate that a roadmap is a plan about
the company’s future directions. It is a leading map where the com-
pany is going with its products. Thus, it is the means of structuring
and arranging the product development, in order to know how to
use certain resources. A roadmap holds the product development
together by guiding what is to be done and when. Hence, prod-
uct development is somehow deterministic and enables steering of
the product implementation. Furthermore, product roadmapping
is a continuous process, since the roadmapping team has meetings
regularly (e.g. biweekly, quarterly, or biannually) in order to cre-
ate, update or review roadmaps. The product roadmapping team
consists of several stakeholders, e.g. at least the following stake-
holders are seen as important in the process: product management,
marketing, customer and partner representatives, and develop-
ment. Also, based on the empirical findings, feature management
is seen as the key aspect in product roadmapping and accord-
ingly the product roadmapping process is proposed to consist of
the following phases: capturing features, analysing features, pri-
oritising features, roadmap validation and agreement, and change
management of the roadmap. The most critical phase of product
roadmapping is prioritising features. The most problematic areas of
product roadmapping are prioritising features, managing changes
and maintaining roadmaps as well as sharing information, commu-
nication, and making a roadmap agreement.

The research results apply to companies that are involved in
software product or service development in the field of ICT indus-
try. In this research, it has not been analysed how, for instance,
the products and procedures of the case companies differ from
each other and if these have effect on the interviewees opinions
or cause some external validity threats for the study. However, all
the companies of the study were selected from ICT sector to pro-
vide diverse views from the same field. For example, the analysis
criteria for analysing features of different types of software prod-
ucts can vary as well as the methods for prioritising features. Also, it
should be noticed that the research framework for software prod-
uct roadmapping is created based on the existing literature at the
time of research. Thus, the framework could have been different if
it would have been created now, for instance. The limitations of the
study also relate to the fact that most of the case companies were
large companies with more than 250 employees, thus the results
may be applied only to an appropriate extent to smaller compa-
nies. Hence, limitations of the study suggest directions for future
research, for example the product roadmapping research could be
extended to small, and medium sized companies. Additionally, it
should be noticed that both the interviewees and the questionnaire
respondents have subjective perspectives to the issues asked, thus

the answers reveal only the replier’s opinions and not the whole
opinion of the company.

The product roadmapping research is going to be continued by
combining the product roadmapping and agile development meth-
ods. That is because a new type of agility is seen important in order
to survive in the turbulent and competitive software business envi-
ronment. Furthermore, as in this research, we have identified that
prioritising features and capturing features are the most critical
phases of product roadmapping they could be investigated in a
more detailed way in the light of agility as well as global software
development in the future. Also, through the questionnaire study,
topics for the future research were found, for example why and
what are the reasons that the change management of the roadmap
was considered the least important phase in product roadmap-
ping by the respondents. In this research, this was out of the scope
because the focus of the research was set differently, i.e. interviews
focused on the most important and problematic areas of the prod-
uct roadmapping. Also, the aim is to research factors relating to
the product roadmapping process itself in order to find out if the
process of creating and updating product roadmaps is as straight-
forward as is typically suggested. For example, McCarthy et al.
(2006) have proposed new product development to be regarded as
a complex adaptive system (CAS) of decisions. According to them,
new product development is seen as more complex than most of
the models present it. The intention of further research is also to
get more in-depth knowledge of product roadmapping in industry
by observation, for instance.

Acknowledgements

This article was written within the Merlin (MERLIN ITEA project
2004–2007, 2007) project, which is an ITEA project. Thus, the
authors would like to thank the support of ITEA (ITEA, Information
Technology for European Advancement, 2010) and Tekes (Tekes,
Finnish Funding Agency for Technology and Innovation 2010). Also,
the present authors would like to acknowledge the participants of
the survey as well as the reviewers for their comments on the early
version of the article.

References

Albright, R.E., 2003. A unifying architecture for roadmaps frames a value scorecard.
In: Proceedings of the IEEE International Engineering Management Conference
, pp. 383–386.

Albright, R.E., 2002. The process: how to use roadmapping for global platform prod-
ucts. PDMA Visions 26, 19–23.

Albright, R.E., Kappel, T.A., 2003. Roadmapping in the corporation. Res. Technol.
Manage. 46 (2), 31–40.

Alreck, P.L., Settle, R.B., 1995. The Survey Research Handbook, 2nd ed. Irwin Profes-
sional Publishing, The Irwin Series in Marketing, Chicago.

Arnold, R.S., Bohner, S.A., 1993. Impact analysis—towards a framework for compar-
ison. In: Proceedings of the IEEE Conference on Software Maintenance (CSM) ,
pp. 292–301.

Beeton, D.A., Phaal, R., Probert, D.R., 2008. Exploratory roadmapping for foresight.
Int. J. Technol. Intell. Plann. 4 (4), 398–412.

Blotner, J.A., 2004. PIP: a product planning strategy for the whole family or how we
became the Brady bunch. In: Proceedings of the 19th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Languages, and Applications
, pp. 253–259.

Carlshamre, P., Sandakh, K., Lindvall, M., Regnell, B., Natt och Dag, J., 2001. An indus-
trial survey of requirements interdependencies in software release planning. In:
Proceedings of the 5th IEEE International Symposium on Requirements Engi-
neering , pp. 84–91.

DeGregorio, G., 2000. Technology management via a set of dynamically linked
roadmaps. In: Proceedings of the 2000 IEEE Conference , pp. 184–190.

Ebert, C., Smouts, M., 2003. Tricks and traps of initiating a product line concept
in existing products. In: Proceedings of the 25th International Conference on
Software Engineering , pp. 520–525.

Fickas, S., Nagarajan, P., 1988. Critiquing software specifications. IEEE Soft. 5 (6),
37–47.

Gorchels, L., 2000. The Product Manager’s Handbook: The Complete Product Man-
agement Resource, 2nd ed. NTC Business Books, USA.

Author's personal copy

T. Suomalainen et al. / The Journal of Systems and Software 84 (2011) 958–975 975

Greer, D., Ruhe, G., 2004. Software release planning: an evolutionary and iterative
approach. Inform. Soft. Technol. 46 (4), 243–253.

Griffin, A., Hauser, J.R., 1993. The voice of the customer. Market. Sci. 12 (1), 1–27.
Groenveld, P., 2007. Roadmapping integrates business and technology. Res. Technol.

Manage. 50 (6), 49–58.
Grynberg, A., Goldin, L., 2003. Product management in telecom industry—using

requirements management process. In: Proceedings of the IEEE International
Conference on Software—Science, Technology & Engineering (SwSTE) , pp.
63–70.

Holmes, C.J., Ferrill, M.B.A., Phaal, R., 2004. Reasons for roadmapping: a study of
the Singaporean SME manufacturing sector. In: Proceedings of the IEEE Interna-
tional Engineering Management Conference (IEMC) , pp. 292–296.

ITEA, Information Technology for European Advancement, ITEA homepage. Avail-
able: http://www.itea2.org/ (accessed 18.11.2010).

Jantunen, S., Smolander, K., 2006. Challenges of knowledge and collaboration in
roadmapping. In: International Workshop on Software Product Management
(IWSPM’06- RE’06 Workshop) , pp. 19–26.

Järvinen, P., 2001. On Research Methods. Opinpajan kirja, Tampere, Finland.
Jiang, T.M., Coyner, M., 2000. Software process disturbances. In: Proceedings of

the 24th Annual International Computer Software and Applications Conference
(COMPSAC) , pp. 167–168.

Kameoka, A., Kuwahara, T., Li, M., 2003. Integrated strategy development: an inte-
grated roadmapping approach. In: Proceedings of the Portland International
Conference on Management of Engineering and Technology (PICMET) , pp.
370–379.

Kappel, T.A., 2001. Perspectives on roadmaps: how organisations talk about the
future. J. Prod. Innovation Manage. 18 (1), 39–50.

Kostoff, R.N., Schaller, R.R., 2001. Science and technology roadmaps. IEEE Trans. Eng.
Manage. 48 (2), 132–143.

Lehtola, L., Kauppinen, M., Kujala, S., 2005. Linking the business view to requirements
engineering: long-term product planning by roadmapping. In: Proceedings of
the 13th IEEE International Conference on Requirements Engineering (RE’05) ,
pp. 439–446.

Li, M., Kameoka, A., 2003. Creating added value from roadmapping process: a
knowledge-creating perspective. In: Proceedings of the International Engineer-
ing Management Conference (IEMC) , pp. 387–392.

McCarthy, I.P., Tsinopoulos, C., Allen, P., Rose-Anderssen, C., 2006. New product
development as a complex adaptive system of decisions. J. Prod. Innovation
Manage. 23 (5), 437–456.

McCarthy, R.C., 2003. Linking technological change to business needs. Res. Technol.
Manage. 46 (2), 47–52.

MERLIN ITEA project 2004–2007, MERLIN (Embedded Systems Engineering in
Collaboration) Project Homepage. Available: http://virtual.vtt.fi/virtual/proj1/
projects/merlin/ (accessed 18.11.2010).

Miles, M.B., Huberman, A.M., 1994. An Expanded Sourcebook: Qualitative Data Anal-
ysis, 2nd ed. Sage Publications, Thousand Oaks, CA.

Mintzberg, H., 1994. The fall and rise of strategic planning. Harv. Bus. Rev. 72
(January–February), 107–114.

Nardi, P.M., 2003. Doing Survey Research: A Guide to Quantitative Methods. Pearson
Education, Inc., Boston.

Nuseibeh, B., Easterbrook, S., 2000. Requirements engineering: a roadmap. In:
Proceedings of the Conference on the Future of Software Engineering,
pp. 35–46.

Oppenheim, A.N., 1992. Questionnaire Design Interviewing and Attitude Measure-
ment. Printer Publishers Ltd., London.

Parviainen, P., Hulkko, H., Kääriäinen, J., Takalo, J., Tihinen, M., 2003. Requirements
Engineering: Inventory of Technologies. VTT Publications 508, Espoo, Finland.

Phaal, R., Farrukh, C., Probert, D., 2000a. Technology roadmapping: linking technol-
ogy resources to business objectives. In: Proceedings of the 4th International
Conference on Management Innovative Manufacturing (MIMZOOO).

Phaal, R., Farrukh, C., Mills, J., Probert, D., 2003a. Customizing the technology
roadmapping approach. In: Proceedings of the Portland International Confer-
ence on Management of Engineering and Technology (PICMET) , pp. 361–369.

Phaal, R., Farrukh, C., Mitchell, R., Probert, D., 2003b. Starting-up roadmapping fast.
Res. Technol. Manage. 46 (2), 52–59.

Phaal, R., Farrukh, C., Probert, D., 2005. Developing a technology roadmapping sys-
tem. Technol. Manage.: Unify. Discipline Melt. Bound., 99–111.

Phaal, R., Farrukh, C., Probert, D., 2004. Technology roadmapping—a planning frame-
work for evolution and revolution. Technol. Forecast. Soc. Change 71 (1/2),
5–26.

Phaal, R., Farrukh, C., Probert, D., 2000b. Fast-start technology roadmapping. In: Pro-
ceedings of the 9th International Conference on Management of Technology
(IAMOT) , pp. 1–12.

Pozgaj, Z., Sertic, H., Boban, M., 2003. Effective requirement specification as a pre-
condition for successful software development project. In: Proceedings of the
25th International Conference on Information Technology Interfaces (ITI) , pp.
669–674.

Rautiainen, K., Lassenius, C., Vähäniitty, J., Pyhäjärvi, M., Vanhanen, J., 2002. A
tentative framework for managing software product development in small com-
panies. In: Proceedings of the 35th Hawaii International Conference on System
Sciences (HICSS-35) , pp. 3409–3417.

Rautiainen, K., Vuornos, L., Lassenius, C., 2003. An experience in combining flexibility
and control in a small company’s software product development process. In:
Proceedings of the International Symposium on Empirical Software Engineering
(ISESE) , pp. 28–37.

Regnell, B., Hösta, M., Natt och Dag, J., Beremark, P, Hjelm, T., 2001. An industrial case
study on distributed prioritisation in market-driven requirements engineering
for packaged software. Require. Eng. 6 (1), 51–62.

Richey, J.M., Grinnell, M., 2004. Evolution of roadmapping at motorola. Res. Technol.
Manage. 47 (2), 37–41.

Saaty, T.L., 1986. Axiomatic foundation of the analytic hierarchy process. Manage.
Sci. 32 (7), 841–855.

Soffer, P., Goldin, L., Kuflik, T., 2005. A unified RE approach for software product
evolution: challenges and research agenda. In: Proceedings of the Situational
Requirements Engineering Processes (SREP)—Methods, Techniques and Tools to
Support Situation-Specific Requirements Engineering Processes , pp. 200–210.

Strauss, J.D., Radnor, M., Peterson, J.W., 1998. Plotting and navigating a non-linear
roadmap: knowledge-based roadmapping for emerging and dynamic environ-
ments. In: Proceedings of the East Asian Conference on Knowledge Creation
Management , pp. 1–26.

Tabrizi, B., Walleigh, R., 1997. Defining next-generation products: an inside look.
Harv. Bus. Rev. 75 (6), 116–124.

Tekes, Finnish Funding Agency for Technology and Innovation, Tekes homepage.
Available: http://www.tekes.fi/eng/ (accessed 18.11.2010).

Vähäniitty, J., Lassenius, C., Rautiainen, K., Pekkanen, P., 2009. Long-term planning
of development efforts by roadmapping—a model and experiences from small
software companies. In: 35th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA’09) , p. 300.

Vähäniitty, J., Lassenius, C., Rautiainen, K., 2002. An approach to product roadmap-
ping in small software product businesses. In: Proceedings of the 7th European
Conference on Software Quality (ESCQ)—Quality Connection.

van de Weerd, I., Bekkers, W., Brinkkemper, S., 2010. Developing a maturity matrix
for software product management. In: Proceedings of the 1st International Con-
ference on Software Business (ICSOB 2010) , pp. 76–89.

van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L., 2006.
Towards a reference framework for software product management. In: Pro-
ceedings of the 14th IEEE International Requirements Engineering Conference
(RE’06) , pp. 319–322.

VTT, Technical Research Centre of Finland, VTT homepage. Available:
http://www.vtt.fi/?lang=en (accessed 1.11.2010).

Wells, R., Phaal, R., Farrukh, C., Probert, D., 2004. Technology roadmapping for a
service organization. Res. Technol. Manage. 47 (2), 46–51.

Wiegers, K.E., 2003. Software Requirements. Practical Techniques for Gathering and
Managing Requirements throughout the Product Development Cycle, 2nd ed.
Microsoft Press, Redmond, WA.

Yin, R.K., 1994. Applied Social Research Methods Series Vol. 5; Case Study Research:
Design and Methods, 2nd ed. Sage Publications Inc., Thousand Oaks, CA.

Yoon, B., Phaal, R., Probert, D., 2008. Morphology analysis for technology roadmap-
ping: application of text mining. R&D Manage. 38 (1), 51–68.

Zhang, W., Mei, H., Zhao, H., 2005. A feature-oriented approach to modeling require-
ments dependencies. In: Proceedings of the 13th IEEE International Conference
on Requirements Engineering (ICRE) , pp. 273–282.

Tanja Suomalainen has received her M.Sc. (2006) degree from University of Oulu,
Department of Information Processing Science. She received Laudatur from her Mas-
ter’s Thesis about Product Roadmapping in Collaboration. She began her work at VTT
Technical Research Center of Finland in 2005 where she worked first as a research
trainee and then after graduation as a research scientist. Her research interests
include product roadmapping, requirement management, global software develop-
ment engineering, and agile software development. Currently she is a PhD student
in the Faculty of Information Processing Science at University of Oulu.

Outi Salo has received her M.Sc. (2000) and Ph.D (2007) degrees from University
of Oulu, Department of Information Processing Science. She first started her career
in IT industry as a software analyst (1998–2000). She began her research work at
VTT Technical Research Centre of Finland in 2001 where she worked as a research
scientist and as a senior research scientist (2001–2008). Her focal research inter-
ests focus in software processes, software process improvement, metrics and agile
software engineering. After finalizing her Ph.D, she decided to continue building her
expertise in industry sector and, since 2008, has been working at Nokia Corporation.
She is currently also carrying out studies in order to become a qualified vocational
teacher in software engineering.

Pekka Abrahamsson is a full professor of computer science at Free University of
Bozen-Bolzano in Italy. He has held academic positions in University of Oulu, VTT
Technical Research Centre of Finland and most recently in University of Helsinki.
His research interests are centered on empirical software engineering, agile/lean
development and cloud computing. He is the recipient of the Nokia Foundation
Award in 2007. He currently serves in the advisory board of IEEE Software. He is a
member of the IEEE, ACM and ISERN. His practical experience involves five years in
the software industry as a software developer and a quality manager.

Jouni Similä is full professor of Software Engineering at the Department of Infor-
mation Processing Science, University of Oulu and recently until 2010 a Visiting
Scholar at International Computer Science Institute and Center for Open Innovation,
UC Berkeley. His present research interests include software process assessment and
improvement, empirical software engineering, product roadmapping, agile software
development, requirements engineering, global software engineering and open
innovation. He has authored more than 80 research publications in the Information
Systems and Software Engineering fields. Prior to assuming an academic position,
he worked in software industry close to 20 years.

http://www.itea2.org/
http://virtual.vtt.fi/virtual/proj1/
http://www.tekes.fi/eng/
http://www.vtt.fi/?lang=en

PAPER III

Continuous Planning:
An Important aspect of Agile

and Lean Development

International Journal of Agile Systems and Management,
Vol. 8, No. 2, pp. 132–162.

Copyright 2015 Inderscience Enterprises Ltd.
Reprinted with permission from the publisher.

 132 Int. J. Agile Systems and Management, Vol. 8, No. 2, 2015

 Copyright © 2015 Inderscience Enterprises Ltd.

Continuous planning: an important aspect of agile
and lean development

Tanja Suomalainen*, Raija Kuusela and
Maarit Tihinen
VTT Technical Research Centre of Finland Ltd,
Kaitoväylä 1, P.O. Box 1100, FI-90571 Oulu, Finland
Email: Tanja.Suomalainen@vtt.fi
Email: Raija.Kuusela@vtt.fi
Email: Maarit.Tihinen@vtt.fi
*Corresponding author

Abstract: Continuous planning is a relatively new and not yet fully studied
field of research, especially from the perspective of agile and lean development
organisations. To augment the knowledge in this field, this article presents both
a literature review and empirical findings from three case studies that reveal
how companies conduct continuous planning. The results indicate that
continuous planning is not commonly adopted and applied throughout these
organisations and that it currently involves only a certain kind of planning (e.g.,
release planning). The results of this study bring to light that the main elements
of continuous planning (i.e., organisational, strategic and business planning) are
tightly related to each other and thus should be considered when companies
seek to improve their planning processes and practices. The importance of
continuous planning will only increase dramatically in turbulent business
environments that include ever shorter planning cycles and the need to improve
transparency and knowledge-sharing in organisations.

Keywords: continuous planning; strategic planning; business planning;
roadmapping; agile; lean; leagile; software development.

Reference to this paper should be made as follows: Suomalainen, T.,
Kuusela, R. and Tihinen, M. (2015) ‘Continuous planning: an important aspect
of agile and lean development’, Int. J. Agile Systems and Management, Vol. 8,
No. 2, pp.132–162.

Biographical notes: Tanja Suomalainen received her MSc (2006) degree from
the University of Oulu, Department of Information Processing Science. She has
worked at VTT (Technical Research Centre of Finland Ltd) since 2005. She
began her career as a research trainee and upon graduation became a Research
Scientist. Currently, she is also a PhD student in the Faculty of Information
Processing Science at the University of Oulu, Finland. Her research interests
include continuous planning rating, particularly strategic and business planning,
product planning, roadmapping and release planning, as well as agile and lean
software development methods and practices.

Raija Kuusela has almost 30 years of experience in the ICT sector. She has
been working as a Senior Scientist at VTT since 2009. Prior to this, she worked
at Nokia for 14 years in several roles, including software development roles,
engineering manager, quality manager, scrum master and product owner.
Before her career at Nokia, she worked with other software-intensive

mailto:Tanja.Suomalainen@vtt.fi
mailto:Raija.Kuusela@vtt.fi
mailto:Maarit.Tihinen@vtt.fi

 Continuous planning: an important aspect of agile and lean development 133

companies for 13 years in software development roles. She received her PhD in
Industrial Engineering and Management from the University of Oulu, Finland,
in 2007.

Maarit Tihinen is a Senior Scientist at VTT. She graduated in 1991 from the
Department of Mathematics at the University of Oulu. She worked as a teacher
(mainly mathematics and computer sciences) at the University of Applied
Sciences before coming to VTT in 2000. She wrote her secondary subject
thesis in 2001 and received her PhD in 2014 in Information Processing Science
from the University of Oulu, Finland. She has worked in several national and
international research and customer projects and written scientific publications
both for international software engineering conferences and journals. Her
research interests include various topics related to software processes, global
software development, measurement and metrics and quality management.

1 Introduction

Since the mid-1990s, agile methods have assisted software-intensive companies to
achieve targets such as decreasing lead times and improving the quality of products. It
has been claimed that agile development methods increase the ability of software
organisations to respond to dynamic market changes (Highsmith, 2002; Kettunen, 2009).
Alternatively, business agility is about changing businesses and business processes, as
well as sensing environmental changes and responding appropriately (Overby et al.,
2005; Van Oosterhout et al., 2005). Yet another business method, lean thinking (e.g.,
Womack and Jones, 2003), has been introduced in several industries, including software
development (Poppendieck and Poppendieck, 2003, 2007) and in public sector
organisations (e.g., in healthcare especially) (Radnor and Walley, 2008). Lean
development aims at achieving a continuous and smooth flow of production in pursuance
of removing waste in processes and increasing customer value (Womack and Jones,
2003; Petersen and Wohlin, 2010). Charette (2003) argues that lean development means
creating a change-tolerant organisation that can survive and succeed in times of
uncertainty, change and complexity. Both agile development and lean development
concepts have been introduced in the software industry to aid companies in turbulent
business environments to achieve shorter lead times (Middleton and Sutton, 2005).

Given that the current business environment of information technology (IT)
organisations is very unstable and constantly changing, organisations are increasingly
adopting agile and lean development practices. Bellomo et al. (2013) state that both
industries and governments have been increasingly adopting agile-based incremental
software development practices due to their ability to improve speed. Furthermore, lean
development has been proposed as away to achieve substantial cost savings and quality
improvements (Radnor and Walley, 2008). Both agile and lean practices have been seen
to complement each other. Petersen (2010) compared these two practices and found that:

a both practices share the same goals (i.e., they focus on the customer)

b both practices are defined by similar principles (with the principle of ‘seeing the
whole’ being unique to lean)

 134 T. Suomalainen et al.

c both practices have unique as well as shared principles

d lean does not define processes while agile defines various processes such as Scrum.

Naylor et al. (1999) have defined the term ‘leagility’ to describe when principles from
both agile and lean development are combined in a supply chain strategy. We here use
the term ‘leagile software development’ to denote software development processes that
include both agile and lean principles and practices (e.g., Abrahamsson et al., 2002;
Womack and Jones, 2003; Petersen, 2010).

The adoption of leagile practices has encouraged organisations to change the way
they execute product and service development and business development. Organisations
are affected both by external changes (e.g., economy, competition and political
interference) and internal changes (e.g., management systems, organisational culture and
employee morale). External changes are caused by the above-mentioned agile and
lean developments, which have led in many organisations to continuous and iterative
product development. Internal changes are caused, for example, by managers’
willingness to continuously improve transparency (i.e., the visibility of information to
support decision-making in an organisation). Such developments within organisations
have led to business environments with more streamlined process structures and
continuous competency development. The organisations strategy process also has begun
to align more toward a value-oriented and continuous-based planning. Therefore,
strategic and financial plans are not created on an annual basis anymore. Instead, the
organisations strategy changes based on customer and market needs, execution and the
identification of new opportunities. In order to eliminate disconnection between
important activities in the organisation, Fitzgerald and Stol (2014) emphasise that the
continuous integration of software development and its operational deployment, as well
as the connection between business strategies and software development, should be
continuously assessed and improved upon. Furthermore, Olsson et al. (2013) argue that
software development companies need to move beyond the concept of agile development
toward a situation in which software functionality is continuously deployed and customer
feedback is the main driver of innovation. Continuous deployment (CD) is the term used
to refer to this phenomenon. Although the concept of deploying software to customers as
soon as new code is developed is not new and is based on leagile principles, CD expands
upon leagility by moving from cyclic to continuous value delivery. CD is about
developing the ability to deliver the smallest added value to the customer, which requires
automating all processes that must be executed to deliver software to customers (Järvinen
et al., 2014). New and innovative approaches that support continuous practices
throughout organisations are needed, continuous planning being one of them, to remove
disconnection between organisation’s important activities.

Continuous planning is about developing planning practices continuously, not just
once or twice a year (e.g., Hope and Fraser, 2003). Rickards and Ritsert (2012) point out
that even though organisations are expected to have continuous planning practices (e.g.,
quarterly rolling forecasts and budgets),only a minority of enterprises use them. They
suggest using continuous planning instruments instead of traditional, static tools in the
belief that environmental changes trigger planning instead of the financial year and thus,
that plans should be adjusted according to internal and external events (Rickards and
Ritsert, 2012). In order to achieve continuous planning, organisations need to be capable
of changing their operations and adapting their mind-sets toward continuous planning and
transparency throughout entire organisations.

 Continuous planning: an important aspect of agile and lean development 135

This article focuses on continuous planning, which is a relatively new and
poorly-studied field of research. Hence, the literature on continuous planning is currently
inadequate. This research topic is relevant both from the perspective of a leagile
organisation, in terms of providing information on methods and techniques for planning
and from an agile systems design and evolution perspective, in terms of the creation of
content and strategies. The main goal of this article is to identify the current methods and
practices of continuous planning in three information and communication technology
(ICT) companies. The research questions for this research are as follows:

• How is continuous planning being conducted in agile and lean software development
context?

• What are the main benefits and challenges of continuous planning?

This article provides evidence from multiple case studies from which data was collected
via interviews, a series of meetings and workshops, as well as through the analysis of
company-specific internal memos. The case studies were based on the experiences of
three ICT companies: Elektrobit (EB), F-Secure and Tieto. Each of the companies is a
large, Finnish-based company with more than 1,000 employees. EB and Tieto operate in
the domain of IT products and services, whereas F-Secure operates in the domain of data
security. Each of the companies has transformed their organisational practices first in
terms of an agile method and then with a lean approach.

In examining continuous planning, this article will focus on its main elements:
organisational planning, strategic planning and business planning. Each of these elements
is vital and tightly related to one another. Organisational planning defines the
organisational level and timeframe of a plan, strategic planning forms the overall plan of
an organisation and business planning forms the budgeting frame of a plan. This article
will also discuss the implications of continuous planning, including the motivation to
implement it and the main benefits and challenges of continuous planning. Companies
seeking to develop or improve their continuous planning processes and practices should
take all of the components of continuous planning into account to understand how
adopting continuous planning can yield significant benefits for an organisation.

This article is structured as follows: in Section 2, continuous planning is defined
based on the current literature, including an overview of continuous planning,
organisational planning in terms of levels of planning and time frames (i.e.,
roadmapping), strategic planning and business planning. In Section 3, the research design
of this article is presented and the backgrounds of the case companies are described. In
Section 4, the research evidence of the empirical studies is given in terms of how
continuous planning is conducted in each of the case companies. In Section 5, the
research results are discussed, followed by a validation of the study and the limitations of
its research results. Finally, Section 6 concludes the paper and directions for future
research are given.

2 Related work

In this section, we will outline the current knowledge on continuous planning based on
the existing literature and research. This literature review was undertaken to define the
current state of continuous planning research and to offer a context for the case studies of

 136 T. Suomalainen et al.

this paper. First, a background on continuous planning is given, followed by the main
elements of continuous planning, including organisational planning, strategic planning
and business planning. Thereafter, roadmapping is described in greater detail. Finally, the
main findings of this section are summarised in relation to a definition of continuous
planning.

2.1 Overview

Planning can be understood as consisting of two things: actions and forecasts (i.e.,
expected outcomes).Whereas forecasting can relate to technology or market trends,
planning can relate to products, product lines, resources, or an entire company (Van de
Weerd et al., 2010). Continuous planning involves implementing planning practices
continuously, not just as part of a top-down annual event (e.g., Hope and Fraser, 2003).
Planning should be done continuously so that the full scope of development can be
presented at any time (Westkamper and von Briel, 2001). Fitzgerald and Stol (2014)
define continuous planning as a holistic effort that involves multiple stakeholders from
business and software areas. Planning is understood as a dynamic, open-ended process
that evolves in response to changes in a business environment and thus involves the tight
integration of planning and execution. In terms software development, continuous
planning refers to the organisational capacity to conduct planning in rapid parallel cycles
(in hours, days, weeks, or months) depending on the level of planning.

Myers (1999) has stated that continuous planning is required in today’s organisations
and that it will be increasingly important in the future. The continuous operations of
organisations have necessitated the ability to produce open-ended plans that develop and
evolve in relation to the dynamics of an environment. Furthermore, incremental planning
techniques have also been required to respond to changing situations. In response to these
requirements, Myers’s (1999) developed the continuous planning and execution
framework (CPEF), which sought to combine plan-generation and plan-use capabilities to
solve complex tasks in unpredictable and dynamic environments. Continuous planning is
taken in the CPEF to be driven by the two following notions: first, plans should be
understood as dynamic and open-ended which evolve in response to ever-changing
environments. Second, users are understood as integral to the overall planning process in
terms of providing inputs that will influence the type of plan that is generated, the number
of options to consider, failure assessments and plan-repair strategies.

With the adoption of agile and lean development practices, the practice of continuous
planning has evolved toward constant planning in small increments and with more people
than is typical of traditional software development methods. Shalloway et al. (2009) have
presented a continuous planning process related to software releases performed before
each iteration and during daily stand-up meetings. Continuous planning at the project
level is done in relation to what is known (e.g., looking two to four weeks forward), the
plan is for the next iteration and the work that will be for today. Various industrial
experiences (e.g., Lehtola et al., 2007, 2009) of companies have shown that they perform
open-ended planning with a pre-defined rhythm. However, while planning can be
undertaken at regular intervals, the horizon of the future is not fixed. Company planning
is often performed looking only one to two releases ahead, with planning for the near
future given greater detail than for the remote future, which is only roughly outlined.
Open-ended planning is an effective form of market-driven planning that understands

 Continuous planning: an important aspect of agile and lean development 137

decisions as involving various trade-offs between now and later (Lehtola et al., 2007,
2009).

It has only been recently realised that planning should be examined from a broader,
even more continuous perspective. Continuous planning is not only a project- or
team-level activity, but involves higher-level planning as well (e.g., strategy level
planning). In the software development context, according to Fitzgerald and Stol (2014),
the only forms of continuous planning have emerged from agile development approaches
and are related to sprint iterations, or at best, software releases. They conclude that
continuous planning is not widespread throughout organisations in the context of
software development. Recently, Heikkilä et al. (2013) adopted a three-level planning
model, including strategic planning, release planning and operational planning for a
large-scale agile software development organisation. Strategic planning involves
interaction between business and management and development and is performed over
the long-term. Release planning refers to the feature content of the next release and to
planning aiming to create content efficiently. Operational planning concerns the
implementation of features on day-to-day basis. Heikkila et al. focus on release planning,
however, without going into detail on strategic or operational planning. Thus, their
understanding of continuous planning lacks a broader perspective.

Several factors of continuous planning can be found in the literature. Koenigsaecker
(2009) discusses governance as one of the key issues in a lean organisation’s planning
process. An organisation’s planning process should cycle through each level of leadership
returning to the first level of the organisation. Bogsnes (2008) considers organisational
planning to be about leadership and creating conditions for good performance to take
place, which require an environment of trust and transparency. Accordingly, leaders
should work to establish clarity, capability and commitment among their employees.
Cosner et al. (2007) emphasise the ability of roadmapping (i.e., a process for
documenting the evolution of a company’s markets and the product and technology
development plans to address those future markets) to link different levels of plans (i.e.,
portfolio management and finance processes). Roadmaps can be used as guides for skill
and competency development as well as for human resources in terms of building
competencies that are beneficial to a company’s future. In summary, the factors of
continuous planning found in the literature include governance, leadership, transparency
and competency development.

2.2 Organisational planning

The most important aspects of organisational planning are the required planning levels
and timeframes (Lehtola et al., 2007). A planning level relates to items that are being
planned, whereas a timeframe refers to the time periods of a plan. A company developing
and improving its planning practices should define these aspects before initiating aspects
of planning. Long-term planning, known as roadmapping, is one solution to bridge the
gaps between different levels of planning. According to Cosner et al. (2007) roadmapping
should be seen as part of a company’s overall business processes and be integrated into
its planning cycles. In this section, an overview of organisational planning based on the
literature will be discussed in further detail. Roadmapping will be discussed in more
detail in Section 2.5.

One of the most important aspects of organisational planning are required planning
levels. However, there is no simple answer as to how many levels of planning a company

 138 T. Suomalainen et al.

should have, as both company size and organisational structure play a role in this
decision (Lehtola et al., 2007). Agile at the enterprise level requires examining an
organisation’s entire value stream, management and delivery team planning levels
(Shalloway et al., 2009). Cohn (2006) has presented an agile approach to planning called
the ‘planning onion’ that describes the hierarchical relationships between different facets
of planning. The planning onion (shown in Figure 1) consists of the following levels of
planning: strategy, portfolio, product, release, iteration and day.

Figure 1 Planning onion

Source: Modified from Cohn (2006)

According to Cohn (2006), planning should not extend beyond a planner’s horizon.
Instead, it should allow time for a planner to pause, examine a changing horizon and
make adjustments with a progressively evolving plan. Agile teams achieve this by
planning for three distinct horizons: the release, the iteration and daily planning. Release
planning considers user stories or themes in relation to a new release with the goal of
determining the scope, schedule and required resources for a project. A release plan
should be updated throughout a project so that it will always reflect the current
expectations as to what will be included in the release. During iteration planning, which
takes place at the start of each product iteration, a product owner identifies the work that
a team should address for a new product iteration. Daily planning meetings are meant for
organising work and synchronising daily efforts. Cohn (2006) explains that product,
portfolio and strategic planning commonly exist outside of the concern of most agile
teams. While product planning involves looking further ahead than the immediate release
and planning for the evolution of are leased product or system, portfolio planning
involves the selection of products that will best implement the vision of a company’s
strategy. In terms of daily and operational planning, Ruhe (2010) has pointed out that
both can become difficult without a proper release plan that is well-aligned with the
product and portfolio strategy of a company.

Leffingwell (2011) has presented a framework called agile enterprise big picture,
which considers both organisational and process models for agile practices. This
framework consists of three levels: the team level, the program level and the
portfolio level (Leffingwell, 2007, 2011). According to Leffingwell’s framework, from
an organisational planning point of view, agile development affects, among others,
planning and scheduling in software development and in software project management.

 Continuous planning: an important aspect of agile and lean development 139

The team level planning happens in relation to two aspects of product development:
iterations and releases. At the team level, agile team members define, build and test user
stories in a series of sprints or iterations (i.e., short time-boxed events) to combine larger,
system-wide functionality for release of products, features, or architectural components to
external users. Many teams have four to five iterations of development with the cadence
of each potentially shippable increment coming roughly every 90 days, which creates a
quarterly planning rhythm for an entire company. Furthermore, the responsibility for
planning is transferred to the teams. At the program level, planning is accomplished by
the release planning function. Release planning is done on a regular basis independent of
a project’s status and release commitments. At the portfolio level, investment themes
relate to the strategic planning horizon, with timeframes spanning from 12 months to over
18 months. Investment themes are used to drive the investment priorities of the company.
Therefore, investment themes drive the portfolio vision that is expressed in a series of
larger, epic-scale initiatives that will be allocated to various releases over time. Epics
express the highest level expression of customer or business needs. Prior to release
planning, epics are divided into specific features which in turn are converted in more
detailed stories for implementation. Epics are planned in timeframes of 6 to 12 months.

2.3 Strategic planning

A generic strategy process can be divided into four stages: analysis, development,
planning and implementation (Eppler and Platts, 2009). Bryson (2011) defines strategic
planning as follows: “deliberative, disciplined approach to producing fundamental
decisions and actions that shape and guide what an organisation (or other entity) is, what
it does, and why”. Strategic planning means accounting for where you are, where you
want to be, how to get there and how these are connected (Bryson, 2011). It also includes
the development of timelines, resource allocations, responsibilities and deliverables
(Eppler and Platts, 2009). Many similarities have been recognised between strategic
planning and roadmapping. For instance, the definition of roadmapping is quite similar to
that of strategic planning (Kappel, 2001) as one element of a strategic planning process
(Cosner et al., 2007).

Strategy processes vary across companies, but at the group level, they are commonly
continuous and issue-driven (Bogsnes, 2008). The various components of a given
strategy commonly consist of specific routines and work patterns that vary from firm to
firm and between different types of firms (Nordqvist and Melin, 2010).
Te Brömmelstroet (2013) states that strategic planning phases can vary widely in terms of
how they are organised, be they bottom-up or top-down. However, all strategic planning
processes can be seen as part of a multilevel group process in which planning actors work
together toward a shared outcome. Furthermore, Bogsnes (2008) states that during the
strategy process, strategic objectives are often defined in what is known as a strategy
map. Strategic themes are then commonly addressed as needed, or bi-annual executive
committee strategy sessions will be held. When there is a major change in an
organisation’s strategic direction, its strategic objectives are often renewed or revised.

From a leagile organisation’s perspective, Mavengere (2013) discusses strategic
agility, which he deems especially important in a competitive business environment. He
states that supply chain participants should have their own strategic plans that relate to an
entire supply chain’s plan, yet he does not go into detail on how such plans are created
(i.e., the planning process in detail). Koenigsaecker (2009) details a lean strategic

 140 T. Suomalainen et al.

organisational process in which strategic planning is typically done once per year and is
intended as a learning experience. In addition, monthly strategy deployment meetings are
held to review progress and create opportunities to share knowledge about lessons
learned. The existence of monthly strategy-deployment reviews helps to get a company
thinking about how to make its work fundamentally better with each passing month.

2.4 Business planning

Every business should have clearly defined objectives and parameters within which to
operate. The business planning process provides an opportunity to assess the range of
skills needed for a business to succeed and to identify potential gaps within this range.
Financial planning and the preparation of marketing plans help to determine whether or
not objectives are being achieved. Wareham and Majka (2003) claim that continuous
financial planning processes are commonly based on goals formulated in strategic plans,
such as the establishment of capital structures appropriate to an organisation’s current
competitive and strategic position. They also point out that continuous financial planning
should involve a capital allocation process that forces an organisation to prioritise capital
spending decisions in a way that will improve services provided while also protecting
long-term financial capacity (Wareham and Majka, 2003). Furthermore, marketing plans
provide measurable targets to compare and monitor progress, as well as set achievements
on a continuous basis (Butler, 2012).

In relation to business planning, Rickards and Ritsert (2012) have discussed rolling
forecasts and budgets. The most important characteristics of rolling plans compared to
traditional forecasts and budgets are as follows:

• a constant horizon independent of the financial year

• periodicity (the rule of quarterly preparation)

• planning is more detailed in early periods and less detailed in later periods

• planning focuses mainly on monetary and non-monetary business drivers that
influence monetary results (revenues and costs).

According to Rickards and Ritsert (2012), rolling forecasts and plans (relating mainly to
budgets) are commonly performed over a time period typically spanning five quarters (or
13 months) to eight quarters (or 24 months). Furthermore, they claim that many
enterprises that utilise rolling forecast and budgets use them in combination with a
traditional budget plan. This approach determines to use the lower boundary of five
quarters (or 13 months), because at latest, at the beginning of the fourth quarter (or
twelfth month), forecasts and budget values must completely cover the next financial
year. Rolling revisions of plans ensure that, the length of the time period covered is
constantly evaluated so that new information is integrated into plans. By doing so, more
detailed forecasts and budgets can be made for upcoming quarters both near and far in the
future.

Hope and Fraser (2003) have presented the ‘beyond budgeting management model’,
in which they define budgeting in a much broader way than is commonly understood.
One of the highlights of this model is that it understands budgeting, planning and
improvement as a continuous and customised process, not just as parts of an annual event
(Hope and Fraser, 2003). According to Bogsnes (2008), similar to the rolling forecasts

 Continuous planning: an important aspect of agile and lean development 141

and plans presented by Rickards and Ritser (2012), five-quarter rolling forecasts have
become a standard in ‘beyond budgeting’ implementations. However, Bogsnes (2008)
clarifies that even though a five-quarter rolling horizon is better than stopping planning at
the year-end, planning is still done in a fixed period. Hence, a more dynamic planning
process that is more event-based than calendar-driven with no fixed update frequency and
with no fixed time horizons should be developed (Bogsnes, 2008).

From an agile organisation perspective, Leffingwell (2011) has pointed out that a set
of strategic investment themes drive the organisations vision of all products, systems and
services and the responsibility of investment decisions generally lies with a portfolio
management team. In most enterprises, investment decisions occur at the business
unit-level based on an annual or bi-annual budgeting process. During the budgeting
process, the amount of funds available for each business unit or product to invest in
development is determined (Leffingwell, 2011). It has been shown (Cosner et al., 2007)
that budgeting process should be aligned with the key milestones and events of an
organisation’s roadmap. More specifically, a budgeting process should include the
following three elements; first, research and development (R&D) categories for
development resources in each major capability of a roadmap; second, categories of
resources for operations that support different capabilities; and third, life-cycle funding
plans that forecast necessary ‘ramp-ups’ as well as simultaneous ‘ramp-downs’ in
operational funding related to different types of capabilities shown on a roadmap.

2.5 Roadmapping

In general, a roadmap is a layout of existing routes or paths that is used to decide among
different directions toward a desired destination (Kostoff and Schaller, 2001). Roadmaps
are forecasts of what is possible or likely to happen and plans that express a course of
action (Kappel, 2001). Roadmaps are also intended to be living documents, to be
reviewed and updated over time in order to remain useful (Albright, 2003). Roadmapping
describes the process of creating and revising roadmaps (Kostoff and Schaller, 2001).
Roadmaps can be expressed in various forms, types and with different taxonomies
(Kameoka et al., 2003) and should answer a common set of ‘why-what-how-when’
questions that generally relate to markets, products and technologies (Phaal et al., 2005).
A more detailed summary of existing roadmapping processes along with their main areas
of focus (i.e., goals and main phases) is presented in Suomalainen et al. (2011).

A roadmap’s architecture consists of two dimensions: timeframes and layers and
sub-layers (Phaal and Muller, 2009), with each layer of information providing input for
the next level (Cosner et al., 2007). Cosner et al. (2007) describe enterprise roadmap
development as being divided into the following layers: strategic roadmap, market
roadmap, product roadmap, technology roadmaps and enterprise roadmap. Figure 2
describes the interrelationships between these roadmaps. A strategic roadmap deals with
the long-term objectives of senior management. A market roadmap presents known and
predicted customer needs along with, for example, competitive strategies, the regulatory
environment, complementary product evolution, substitute products and innovations. In a
roadmap strategic goals and market targets are defined as milestones or in terms of target
dates for certain events. Product roadmaps are for documenting performance and feature
evolution, as well as presenting new-to-the-company products and new-to-the-world
products. Technology roadmaps include expected R&D products, their availability dates,
driving factors for R&D and related information. An enterprise roadmap combines these

 142 T. Suomalainen et al.

different types of roadmaps across an entire enterprise. While each roadmap presents
existing plans, the enterprise roadmap may suggest alternate, unfunded plans that could
be considered.

Figure 2 Enterprise roadmap development

Source: Modified from Cosner et al. (2007)

Five broad time periods have been recommended for inclusion in roadmaps: the past (and
current situation), short-term, medium-term, long-term and vision (Phaal and Muller,
2009). The past-timeframe helps to understand key influences and events that have led to
the current situation, as well as highlights learning points that will influence the success
of future plans. A short-term consideration typically looks at a one-year period and is the
most important output of a roadmap, including tangible plans and committed actions.
This timeframe can be understood as a budget horizon for resources to be committed so
that actions can be fulfilled. Medium-term periods are typically around three years and
are linked to strategic planning projections that highlight the broader direction and
options that influence short-term directions and plans. A long-term timeframe is typically
a ten-year timeframe that represents a bridge between the medium-term strategy and the
vision of an organisation. This time frame includes the articulation of key uncertainties
and scenarios, as well as the exploration of long-term shifts in technology, business
and market environments. In addition, it allows an organisation to capture and assess
longer-term issues that may affect current decisions and plans. Lastly, a company’s vision
relates to knowing where it is going and setting long-term goals.

2.6 Summary

In conclusion, continuous planning involves the continuous implementation of planning
practices in rapid, parallel cycles instead of predefined and regular planning occasions.
Continuous planning reacts to environmental changes, with internal and external changes
triggering planning in addition to a predefined planning rhythm. The timeframe of a plan
can vary from hours to months depending on the level of planning. The main elements of
continuous planning are as follows: defining the organisational level and timeframes of a
plan (i.e., roadmapping), strategic planning to form the overall plan of an organisation
and business planning to establish a budgeting frame for a plan.

Examining the literature on the subject, continuous planning is a relatively new and
insufficiently studied field of research. The current literature focuses mainly on certain
specific levels of planning in an organisation exclusively and lacks a broader perspective

 Continuous planning: an important aspect of agile and lean development 143

of continuous planning. In relation to what is stated in the current literature, the cases of
this study were found not to be applying continuous planning throughout their entire
organisations, instead applying it only at certain levels of planning (e.g., release planning,
especially in the leagile context). In addition, since strategic and business planning is of
less concern to most agile teams, these are not described in detail either in the literature.
Literature pertaining to continuous strategic or business planning in from a leagile
perspective is particularly lacking at present. In addition, based on the literature review of
this study, there is very little empirical research of continuous planning that describes
how continuous planning is conducted at different levels of planning. Therefore, this
study argues that continuous planning requires greater research with a broader
perspective than it has previously been given. The intention of this research is to increase
the current empirical evidence on continuous planning and roadmapping both for
industries and the field of science to develop improved planning practices.

3 Research design

In this section, the research design of this article is described. The research goals,
methods and process will first be introduced, followed by a description of the case
companies and data collection methods.

3.1 Research methods and process

The goal of this research was to identify current methods and practices of continuous
planning. The research aimed to define what continuous planning means and to determine
how industry players perceive it in order to increase the current empirical evidence on
continuous planning for players in the fields of industry and science to further research.
The research questions of this study are as follows:

• How is continuous planning being conducted in agile and lean software development
context?

• What are the main benefits and challenges of continuous planning?

This research includes a multi-case study (Yin, 1994). A case study research approach
was decided upon because the literature on the continuous planning is not yet
well-formulated and statements on practical experiences in the field of research were
difficult to find. Järvinen (2001) emphasises the ability of case studies to examine very
complicated circumstances and, in this way, to gather information for the creation of new
knowledge. In addition, the case study methodology has been stated to be well-suited for
software engineering research, as it involves the study of contemporary phenomena in its
natural context (Runeson and Höst, 2009). Furthermore, case studies are especially
appropriate when context is expected to play a role in the phenomena of focus (e.g., if the
stresses of a given project affect developers’ behaviours), or when effects are expected to
be wide-ranging or to take a long time (e.g., weeks, months, or years) to appear
(Easterbrook et al., 2008), the latter of which was the case in this research.

The research was processed as follows. First, the current state of continuous planning
was discerned for each case. Second, empirical research was carried out in which
qualitative data was collected through semi-structured interviews (e.g., Järvinen, 2001), a

 144 T. Suomalainen et al.

series of meetings (with case company A) and workshops (in case company C), as well as
the analysis of company-specific internal memos in cases A and B (described in more
detail in Section 3.2). As described, for example, by Yin (1994), such data collection
methods align with the selected case study research method quite well. The interviews
were conducted in all the three case companies. The interviews were analysed using the
generic process of data analysis presented by Creswell (2003). After each interview, a
digital recording was transcribed and thereafter, all data was read through in order to
obtain a general sense of the data. A coding process was used to categorise the data and
label the categories. The purpose of the coding process was also to generate descriptions
for the categories to generate a small number of themes that represented the major
findings of the qualitative data. These descriptions and themes were then presented in
qualitative narratives in case descriptions (presented in Section 4). The case descriptions
were validated by the interviewees by their reading them through and making corrections
to them if needed. Finally, based on the empirical research, the current status of
continuous planning at each case company was decided upon.

3.2 Case companies

The research included three global ICT companies: EB, Tieto and F-Secure. One of the
main reasons for selecting these case companies was because they had transformed their
organisational practices to use an agile method (more precisely, the Scrum method (e.g.,
Abrahamsson et al., 2002) and then complemented this later on with a lean approach
(e.g., Middleton et al., 2005). The case companies and the study’s respective data
collection methods are presented in Table 1.
Table 1 Case companies

Case id Company Role of the
interviewee

Number of
employees Industry Start of agile/lean

transformation
Data collection

method
Case A EB Head of

quality and
environment

1,800 IT,
products

and
services

2007 Series of meetings
and an interview
with the case
company
representative;
analysing company
internal data

Case B F-Secure Project
manager

1,000 Data
security

2005 An interview and
analysing company
internal data

Case C Tieto Scrum team
roles

18,000 IT
services

2006 Six interviews, nine
workshops and three
follow-up meetings
between workshops

3.2.1 Case A (EB)

Elekrobit (EB) is a global company with roughly 1,800 employees that provides
cutting-edge technological solutions to the automotive and wireless industries. The
company operates in more than ten countries and has 12 subsidiaries. The company
provides development services for wireless products, including mobile phones and

 Continuous planning: an important aspect of agile and lean development 145

navigation systems, as well as sells radio channel emulators for testing wireless products.
EB also offers software for designing and implementing infotainment systems for the
automotive market. The EB research data was collected during 2011–2012 via a series of
meetings and one interview. In 2011, eight meetings were held to exchange information
on continuous planning in which three persons were involved: two researchers from VTT
and one representative of the case company. During the meetings, the vital elements of
continuous planning were discussed and drafts of the company’s continuous planning
framework were drawn up. Then, in 2012, a semi-structured interview was held to clarify
how continuous planning is conducted at EB, as well as how information is transferred
between different levels of the organisation.

3.2.2 Case B (F-Secure)

F-Secure is an anti-virus, computer security and computer software company with
approximately 1,000 employees in 20 offices around the world. The company provides
software products for digital content protection, such as internet security, antivirus,
mobile security and anti-theft software, as well as a range of free online tools as a service
through operators. The company has partnerships with more than 200 operators and it
operates 22 wholly-owned subsidiaries. The research data on F-Secure case was collected
in 2011 during an interview and by analysing the company’s internal data. The interview
was organised as a semi-structured interview that sought to process the vital themes of
the research. The interview lasted one hour and 40 minutes and involved one interviewee
and two interviewers. Thereafter, the interview was transcribed and analysed. After the
interview, internal memos pertaining to continuous planning at F-Secure were analysed.
This data included information related to continuous planning practices that were
discussed during the interview, yet this information was nonetheless considered vital in
terms of clarifying and verifying the practices and processes of the company related to
continuous planning.

3.2.3 Case C (Tieto)

Tieto is an IT service company that provides IT, R&D and consulting services. With
approximately 18,000 experts, it is among the leading IT service companies in Northern
Europe and is a global leader in certain areas of the field. In this case, the study focused
on the sustainability intelligence R&D team (SI team) at Tieto. The research data of the
Tieto case was collected mainly in 2010–2012. During 2010–2011, six one-day
workshops and three follow-up meetings that used the value-stream mapping
(Abdulmalek and Rajgopal, 2007) method were conducted. In the workshops, the team
members chose the most critical processes from their perspective, described the current
state, as well as identified bottle-necks and improvement actions for their chosen
processes. Based on their identified improvements, they then drew a future-state map of
the selected processes. In the follow-up meetings, which were conducted between the
value-stream mapping workshops, the selected processes and practices were modified by
the team when needed. Additionally, six team members were interviewed in the spring of
2011. These interviews focused on exploring what the development methods of the team
were and how the team developed the new cloud service. The interviews also revealed
underlying needs for continuous planning. Finally, in the beginning of 2012, three

 146 T. Suomalainen et al.

two-hour workshops were organised in which the team members improved the processes
to align with the idea of continuous planning.

4 Research results

In this section, the research evidence from the empirical study is presented and the
continuous planning processes of each case company are introduced. The research results
are presented in terms of Cohn’s planning onion framework (presented in Section 2.2.1).
By different line styles, Figure 3 illustrates the level of continuous planning
predominantly used by each of the case companies.

Figure 3 Continuous planning at the case companies

As can be seen in Figure 3, the continuous planning process in case A begins at the
strategic layer. Case B focuses on project and team-level planning in beginning at the
portfolio layer and case C focuses on team-level planning beginning at the release layer.
Case C’s team, however, only verbally communicates at the portfolio and strategy level.
The team layer represents the core of the planning onion, with agile teams performing
planning at the release, iteration and day layers. The product, portfolio and strategy layers
are commonly of lesser concern, because they commonly exist outside the concern of
most agile team according to Cohn (2006).

4.1 Continuous strategic planning

In case A, the chief executive officer (CEO) of the company is responsible for the entire
company’s strategy process and the heads of the company’s business segments are
responsible for strategy in their respective fields. There were two facilitators at the case
company, one for the automotive segment and one for the wireless segment. The
motivation for continuous planning at the company stems from the fact that plans cannot
be fixed for one year ahead anymore. Instead, plans must be able to change continuously,
as the business environment is constantly changing. Thus, the evolution of planning
toward continuously iterated and updated product and service planning and roadmaps
was needed. Furthermore, even though a strategy exists at all times within the company,
it is now iteratively and continuously updated based on market and customer demands.
Past financial crises have also caused the company to realise the importance of
continuously planning ahead both from an operational and financial perspective.

 Continuous planning: an important aspect of agile and lean development 147

The need for continuous planning practises also relates to transparency in order to
share information. It had been realised by the interviewee that the transparency and
continuous planning of all the activities throughout the organisation were needed. The
company needs continuous visibility of its development and operations in order to share
and provide information with all employees. On the one hand, operational transparency is
related to increasing the visibility of the performed work, plan and executed actions in
relation to the fulfilment of one set of defined criteria. On the other hand, development
transparency is related to identifying the potential technological and cultural barriers to
implementing increased transparency and improving learning in connection to needs that
arise due to increased transparency. Also, knowledge sharing had become increasingly
important inside the company. The representative for case A defined in one of the
meetings that “both push (e.g., trainings) and pull type (e.g., publishing information via
wikis and articles) of knowledge sharing is needed”. Furthermore, the representative
clarified that, beyond this visibility, continuous competency planning and development
are needed. Employees’ competencies had to be able to adapt constantly and change
through continuous analysis, development activities and evaluations as to the
successfulness of actions.

The continuous planning process was launched in November 2010 at case A,
including financial and strategy planning that adopted many of the ‘beyond budgeting’
model’s principles. At first, the strategic actions were walked through, defined and
reviewed on a quarterly basis. Next, the intention of the company was to have a
continuous strategy that would be continuously connected to the goals established in
bi-weekly reviews with different teams. Based on the interview data, two main levels of
continuous planning were recognised: financial planning and strategic planning. Each of
these levels involves approximately one fourth of the personnel in the business segments
in the irrespective planning processes.

The financial planning means that the financial framework is conducted only once a
year. Thereafter, the planning is continuous. The case company’s change toward
continuous financial planning began in 2012 and there has not been bi-annual budgeting
since then. Continuous financial planning means that there is a continuously available
financial forecast. For example, currently the company has a rolling forecast for
budgeting until the end of the next year. The framework is created at the end of each year
(in November), which includes a budget overview of the rest of the following year. The
idea of the financial planning is constant in that actual expenses are continuously
considered and compared to budgets. Thus, financial actions involve each of the budget
items in the short-term and initiatives for the long-term. For example, planning training,
which constitute expenses (e.g., common and travel), are budgeted and forecasted.

Strategic reviews are done quarterly and are visible at different levels of the
company (e.g., business, market, technology, processes, roadmaps, operational modes,
partnerships and action plans). These different levels also have a financial perspective.
Strategic planning and financial planning are closely tied together because they both are
visible at different levels of the company.

Currently, the strategy process is constantly rolling, which means that the strategy is
continuously planned. The main phases of the strategy process are as follows:

1 strategy review

2 strategy development and acceptance

 148 T. Suomalainen et al.

3 strategy communication and execution.

The main actions of the business segment’s strategy process are as follows:

1 a strategy health check

2 vision and strategy guidance and direction, which includes strategy and roadmap
planning, as well as long-range financial planning for the next three years, plus the
current year

3 communication of the strategy and execution of the action of the strategy.

The timeframe for the long-term strategy, roadmap and financial planning is
the approaching three years plus the current year. The strategic or financial framework
for the next year is established prior to the end of the year in a short planning cycle.
Thereafter, the framework along with the plans is reviewed quarterly and monthly.
The continuous strategy process, along with the phases and their actions, are shown in
Figure 4, which was drawn based on both the data from the interview and the
company-specific memos.

Figure 4 Continuous strategic planning (case A) (see online version for colours)

A strategy health check is done annually at the end of the year from December to
January, during which period of time the current status of the strategy is reviewed. Needs
for major strategy updates (e.g., establishing a new business area) are addressed in
January. At the end of January, strategic work is considered in relation to initiated
strategy elements that need to be updated and plans are made regarding how to proceed
with the strategy, especially in terms of changed elements.

The vision and strategy guidance and directions are planned for a timeframe of the
forthcoming three years plus the current year. The strategy, roadmap planning and
financial planning are done from a three-years plus one-year perspective. Thus, the
company’s strategy is always understood at all times as a whole, yet its various elements
can be changed at any time. In the beginning of the year, changes to the strategy are
reviewed in a phase known as the strategy creation and elements update. New strategy
element updates are approved in April (by the segment board), followed by board
strategy acceptance. The updated strategy is communicated to the employees in May. The

 Continuous planning: an important aspect of agile and lean development 149

strategy communication is the only action that is performed as an exact time yearly.
Otherwise, planning was considered continuous.

To summarise, the strategy frame is reviewed annually and roadmaps are updated
quarterly. Plans are reviewed quarterly and at the same time strategy-related outcomes
are reviewed. Management reviews the strategy goals quarterly or when needed. In the
quarterly strategy review, the following aspects are checked: the current status, the latest
updates to strategy and progression of the strategy deployment. After the strategy review,
the review results are re-reviewed by the company’s business areas. Then, as the
interviewee put it, “it is explained how we have progressed with the goals, where we
have lagged behind, and what we have unfinished”.

There are two perspectives to the strategy. First, the strategy divides into several
roadmaps that are made public and available as online information. Therefore, the
strategy is visible to all within the organisation. The business roadmap defines, for
example, what new information management services are planned to be released and in
which quarter and what their status is. These roadmaps are constantly updated. Second,
all the issues and goals related to the strategy are made visible via a tool called Jira™ (a
commercial software product). Therefore, outcomes can be reviewed in real-time.

4.2 Continuous portfolio and product planning

In the case B, the interviewee was involved in a global project operating in three sites.
The project was seeking to come up with an overall solution that involved background
systems and several clients in close cooperation. The interviewee’s role was project
manager. The need for continuous planning was recognised in the company given the fact
that its business and R&D units did not work together as well as expected and tensions
between the primes could be pinpointed. Furthermore, it had been R&D’s long-term wish
to achieve shorter planning cycles. Therefore, in the beginning of 2010, Dean Leffingwell
(author of the agile enterprise big picture, presented in Section 2.1) was invited to coach
the company’s planning.

Based on the data from the interview and the company’s internal memos, the
following levels of planning could be defined as existing at case B: portfolio, project (i.e.,
features) and team (i.e., stories). For smaller projects, only the portfolio and project
levels exist. Projects are managed by handling features and teams are managed through
feature stories. The team is comprised of a two-levelled backlog: a feature level and a
story level. The higher level of the two, the feature level, is defined during planning and
involves features being split into stories for implementation in teams. Continuous
planning in case B means planning in terms of three-month intervals. However, the
company does extend its foresight forwards up to six months in terms of some kind of
deliverable and scope.

Continuous planning at the project level is conducted as follows. The most important
issue for the team is the work amount, which can range from one to four sprints (i.e.,
time-boxed effort). Another important issue is customer value, which means that a
customer can understand what the team is doing. A project plan is one of the team’s
outputs, which is co-created so that everyone can see the same artefact and suggest
improvements. The project plan includes a scope, resources and schedule. The schedule
for the project includes a scope and resources that are each separately planned. The
interviewee explained as follows: “So, first, we make estimates, then we make allocations
to resources, and finally, we have a plan. That is, all the important parts of the project:

 150 T. Suomalainen et al.

scope, schedule, and resources”. The main activity of continuous project planning is
balancing these three elements, which also serves to establish the priority of the items in
the scope. The main working method of the team is ‘war-room workshopping’, which
enables proper communication and less confusion, improves team spirit and enables
visual planning. The main phases of continuous project planning include scoping,
planning and kick-off preparation and sharing, all of which are illustrated in Figure 5.

Figure 5 Continuous project planning (case B) (see online version for colours)

The phases of continuous project planning (Figure 5) areas follows:

1 In scoping, the features are described and listed and then available teams are
identified. The next step involves the estimation of the effort required for specific
work items, where the team estimates how many sprints are required for each item.

2 In planning, the actual feature level is created. The team discusses the features,
organises them on the wall of the workshopping war-room, complements their
descriptions and then prioritises them. The left side of the wall shows the most
important features and the right side the less important features. The priorities are
also divided according to required competencies and the project manager then plans
the required resources for the project. The resourcing is then negotiated in relation to
the portfolio and human resource management and the planning office is responsible
for ensuring all of the teams’ allocations to projects. Teams are selected based on a
given project’s business cases. The planning also considers constraints related to
resourcing and more explicitly, associated risks and priorities. Risks are identified on
separate areas of the war-room walls. Anyone in the team is allowed to post risks as
well as to resolve them. Risks are discussed continuously, with the main idea being
to continuously change the project plan to eliminate risks. In sum, in order to
eliminate risks the team either includes mitigation as part of the scope of a project or
changes its approach so that risk probability is reduced. Thus, the interviewee
pointed out that risks feed planning actions and changes to the plan. The team is
openly invited (during a specified timeslot) to see the content and resources of the
next project, which calls for team evolvement.

 Continuous planning: an important aspect of agile and lean development 151

3 In kick-off preparation and sharing, the project plan, including features and risks, is
presented by a team member to the portfolio owners (i.e., project business directors
and vice presidents), which calls for portfolio evolvement. The team then asks for
approval or requests changes from the steering group. If changes to project plan are
needed, another meeting is held after one or two weeks, or otherwise, the team
progresses with the plan. The project portfolio steering group includes all of the
required persons, including those at the executive team level. Finally, once the plan
is approved by all involved, the plan can be shared with other teams.

4.3 Continuous team-level planning

In case B, the team performs continuous feature planning on a weekly basis to keep its
priorities and visibility of the team’s status up to date. The continuous planning of
features is performed in the form of a feature priority queue, which involves the creation
of a row (or queue) of features in order of priority (with the most important features on
the left) and the address of these features, primarily to acquire an understanding of a
feature’s size. This planning is then completed with resourcing capacity so that each
feature is matched in terms of size from left to right, starting with the highest priority.
Size is determined by ‘team sprints’ (i.e., how many full sprints by a single team will be
required to complete a feature). This team level planning focuses on the essence of
planning prioritising and estimating. When an understanding of this is achieved, planning
can be conducted continuously and iteratively. As features are completed on the left, they
are removed from the queue. New items are entered in a specific position into the priority
queue according to the priority they are assigned. This can be planned and re-planned at
any time to any degree. Continuous feature planning does not mean that you need to
change everything all the time. If a change is needed, a set of features may be fixed.
Simply by monitoring progress and recognising that work remaining in the queue
matches with the capacity available constitutes continuous planning. The team level
continuous planning of case B is presented in Figure 6.

Figure 6 Continuous team-level planning (case B) (see online version for colours)

 152 T. Suomalainen et al.

In case C, continuous planning was done at the team level. The team used an agile
method (Scrum) and later adopted lean principles. After adopting these leagile
practices, the team recognised that the time-boxed and static backlog for sprints was not
working optimally. When it was realised that urgent tasks were continuously being
presented to the team, this forced it to consider root causes for this and what to do in
order to control its work. As a consequence, the team headed toward implementing
continuous planning; in parallel with their development activities, the team members also
contributed to business planning and strategic planning by introducing new and
innovative services to the company’s portfolio. The team level planning in case C is
illustrated in Figure 7.

Figure 7 Continuous team-level planning (case C) (see online version for colours)

The continuous planning approach in case C was comprised of the following main
activities: business iteration, consumer value analysis, the project’s management and
planning by a project steering group and implementation. Additionally, some dedicated
team members actively participated in business iteration and consumer value analysis,
which helped the team to keep up-to-date in terms of service development. While, the
team were informed of new requirements in terms of businesses’ and consumers’ values
and preferences, they could merge the team’s new ideas into business plans. Most team
members also participated in the project steering group meetings.

Business iteration activities involve a series of sprints (i.e., it considers a timeframe
that is long enough to enable the production of a release plan that is useful to a business).
Business iterations aim at fulfilling business goals and involve results being reviewed and
adapted to a larger, business-oriented plan. Consumer value analysis contains three
phases:

 Continuous planning: an important aspect of agile and lean development 153

1 The survey of consumer values and preferences in a given business context. The
intended output of this phase is to create persona dimensions (i.e., personas) and
customer profiles. Additionally, descriptions of the main consumer profiles/personas
can be used as criteria for tailoring value proposition, fine-tuning marketing
messages and improving user experiences.

2 Design implications (i.e., design for end users), which aims at understanding what
personas and market segmentation (based on values) mean for a company’s design
processes, marketing messages and experience creation.

3 Mapping product-related customer value (i.e., design with end users), which aims to
understand end users’ desired, expected and received value related to a service under
development.

A project steering group is a governing body of a project that meets once during each
quarter of the year. The group reviews and accepts/rejects the products of business
iterations and consumer value analysis. Participants in the group include a product owner,
a user-experience specialist, a solution manager, a technical manager, a agile/lean
mentor, a consumer value analysis team and a Scrum master. The project steering group
organises its activities in order of greatest effectiveness for the project. The group
performs problem-solving by informing upper levels in a company of possible problems
if the group itself cannot solve them itself. Lastly, implementation work is conducted in
two-week sprints following general Scrum practices, such as sprint planning, daily
meetings, sprint reviews and demos, sprint retrospectives and continuous integration.

4.4 Benefits and challenges of continuous planning

With regard to case A, from a financial perspective, the main benefits of continuous
planning were that financial estimates will become more accurate. From a strategic
perspective, the interviewee highlighted “we are able to show to the staff current stages
of the status, for example, what we have done and where we want to be now, at the
mid-term, and in the long-term”. Since case A’s strategy became reviewed, followed-up,
communicated and published quarterly, it has led to increased trust in management, as
well as to improved competitiveness and decreased fixed costs. Alternatively, in case B,
in terms of R&D project management, a key benefit of continuous planning has been that
it has decreased work-in-progress as well as improved quality levels. The team has
learned how to write features because project performance times are now much clearer
than they were before. Feature level planning has also become more reliable given the
features have not been much modified during the implementation of the product. Second,
from a product management perspective, continuous planning has enabled a better level
of communication and brought many more people into the planning process. Third, from
a portfolio level perspective, a key benefit has been that the people in charge at the
portfolio level are now able to come to the war-room and actually see what their team is
currently doing because the team progress is presented in the war-rooms wall. This visual
wall also makes it much easier to explain why e.g., features and sprints have been done a
certain way instead of trying to explain them using a backlog on an Excel spreadsheet in
which context, including risks and resources and other additional information, is lost.
Furthermore, according to the interviewee, it is quite easy to put additional information
on the war-rooms visual wall.

 154 T. Suomalainen et al.

In case A, the main challenges of continuous planning relate to people (e.g., their
willingness to be engaged and involved) and to transparency (e.g., how to make goals
visible and place them in a continuous setting). Some people may view continuous
planning as leading to a loss of authority among employees. However, it is less about
authority or control and more about transparency of information. The general attitude
toward continuous planning needs to be embraced throughout an organisation. The main
expectations of continuous planning are related to transforming goals into a mode of
continuous planning. In case B, the interviewee named several challenges related to
continuous planning. For example, one challenge was how to fulfil long-term issues.
When long-term goals are taken into account by the management, they should be quickly
optimised into short-term business productivity by the team. Due to this, the interviewee
posed the following question: “are we taking the longer term architecture and business
strategies enough into account?” It was pointed out that continuous planning does not
remove the need for long-term planning when the interviewee stated the following: “We
need all the time to think of our resourcing needs and our competency needs and location
strategy, technology strategy, and all those are of course going on in the background”.
The portfolio level, for example, was not clearly visible to the team. Only once every
three months does someone specify what kinds of projects are about to begin and there
were not any tools being used for presenting portfolio-level plans. One of the main
obstacles of continuous planning was that many parts of the firm would rather work with
long-term plans than three-month plans. For example, the business areas in the case
company B wanted a view from six months to one year, but in order to conduct
continuous planning, the team needed to state that they could only promise a three-month
view, with the long-term view representing only a rough outlook. It was noted that a
short-term planning cycle requires a significant mental shift for many actors, especially
for those outside the field of R&D. It was pointed out that a team needs to be aware of
incremental development practices in general and their capability to do work must be
visible at all times to the rest of the company.

5 Discussion

In this section, the research results are discussed and compared with the existing
literature. First, the empirical findings from the organisational, strategic and business
planning are presented. Second, roadmapping from the perspectives of the case
companies will be discussed. Finally, the implications of continuous planning are
presented along with the validations and limitations of the research.

5.1 Organisational, strategic and business planning

Continuous planning is comprised of organisational, strategic and business planning. As
pointed out in literature (Lehtola et al., 2007), the most important aspects of
organisational planning are established levels of planning and timeframes and the number
and different levels of planning within companies will vary according to size and
organisational structure. Evidence of these points was found out in this research. In
comparing the three case companies of this study, it can be concluded that they each are
relatively different: continuous planning was considered at different organisational levels
in each of the cases, which played a role in the differing timeframes of each case’s plan.

 Continuous planning: an important aspect of agile and lean development 155

Continuous planning was not applied throughout any entire organisation, but was rather
focused at a specific level of planning. In case A, two main levels of continuous planning
were recognised: strategic planning and financial planning. In case B, three levels of
organisational planning were defined: portfolio, project (i.e., features) and team (i.e.,
stories). However, smaller projects focused only at the portfolio and project levels. The
continuous planning process was mainly described as existing at the project and team
levels. In case C, continuous planning was mainly at the team level. However, team
members contributed to business and strategic planning when introducing new and
innovative services to the company’s portfolio. In both cases B and C, continuous
planning was conducted by team members, whereas in case A it was more of a
management effort.

Both the literature and the empirical findings of this study find strategic and financial
planning to be closely related. According to the literature, a continuous financial planning
process is based on goals formulated in a strategic plan (Wareham and Majka, 2003).
According to the case studies of this paper, strategic planning is visible throughout an
entire organisation, as each of the different levels of plans (e.g., business, market and
technology) have a financial perspective on the plans. In case A, long-term strategic and
financial planning (as well as roadmapping) were done for a projected three-year
timeframe that included the current year. The strategic and financial frame for the
following year was developed prior to the turn of the year and thereafter was reviewed on
a monthly and quarterly basis. Wareham and Majka (2003) have stated that companies
understand financial planning as a capital allocation process in which actual expenses are
considered and compared to budgets, where actions are involved in each budget item in
the short-term and as initiatives in the long-term.

In order to achieve continuous planning, the case company A adapted many of the
‘beyond budgeting’ (Hope and Fraser, 2003) principles. They realised that budgeting,
planning and improvement had to be recognised as a continuous process, not just an
annual event. Financial planning had to be seen in broader context, as suggested by Hope
and Fraser (2003), as part of a performance management process. In fact, in this case,
financial planning also had to involve continuous roll-over periods rather than biannual
assessments. The financial framework of this case was assessed only once a year, yet
thereafter its planning was continuous. The continuous financial planning process in case
A became similar to the budgeting and financial planning process presented by Rickards
and Ritsert (2012).

In case A, the company also changed its strategic actions toward continuous planning
in terms of planning and reviewing strategies on monthly or quarterly basis. According to
Koenigsaecker’s (2009), planning should be done once per year and strategy deployment
meetings should be held monthly thereafter. The strategy process at the case company
had three phases: review, development and acceptance and communication and
implementation. Respectively, four phases of strategic planning were mentioned in the
literature (Eppler and Platts, 2009): analysis, development, planning and implementation.
The communication and continuity of the planning process (e.g., how often the plans are
reviewed and revised) were not highlighted in the literature as they appeared in the case.
The literature discusses how strategic plans should be adaptable to internal and external
changes (Nordqvist and Melin, 2010) and that when there is a major change in strategic
direction, strategic objectives should be renewed or revised (Bogsnes, 2008). As shown
in the case studies, benefits (e.g., more accurate estimates, improved competencies,
decreases work-in-progress) can be achieved at all levels of planning. Therefore,

 156 T. Suomalainen et al.

organisations should identify their own continuous planning practices (in relation to the
planning onion framework) and at what levels to implement them in order to yield greater
benefits.

In conclusion, as a somewhat new and insufficiently studied field, the literature on
continuous planning is inadequate as it exists today, especially from a leagile
development perspective. The current literature focuses mainly on a specific or single
level of planning in an organisation while overlooking a wider perspective of continuous
planning. In reference to the current literature, this study found that continuous planning
is not being implemented throughout the entirety of organisations but rather applied only
at a certain level of planning (e.g., release planning). In addition, product, portfolio,
strategic and business planning were found to be of little concern to most agile teams.
This study thus highlights that continuous planning should be examined from a broader
perspective.

5.2 Roadmapping

The case studies reveal different timeframes for plans, with each timeframe directly
related to the level of a plan in question. Continuous planning could be linked to
long-term planning in only one of the cases, namely, case A, in which long-term plans
projected three years ahead. Otherwise, the plans of the cases were reviewed on a
quarterly or monthly basis at the strategy level and reviewed quarterly at the project level.
However, team level plans were reviewed biweekly or weekly. Continuous planning was
predominantly considered as short-term planning, though long-term planning (e.g.,
strategic, business, market and portfolio plans) was consistently considered at the higher
levels of the enterprises.

In case A, the timeframe for long-term strategy, roadmap and financial planning
projected three years forward, including the current year. The strategic or financial frame
for the following year was established prior to the turn of the year and thereafter, along
with further plans and roadmaps, was reviewed on a quarterly and monthly basis. Similar
to Rickards and Ritsert (2012) discussion, planning was found to be more detailed in
early periods at the beginning of the year and less detailed in later periods of the year.
The continuous planning in case A also related to the strategic roadmap layer presented
by Cosner et al. (2007). Furthermore, as pointed out by Phaal and Muller (2009), the
strategic planning horizon was found to consist of mid-term planning (roughly three years
into the future), which highlights the broader direction and options that influence the
short-term directions and plans. The short-term plans are in this case the quarterly and
monthly reviews. In the case A, the planning strategy was divided into several roadmaps
and as a business roadmap been one of them it defined company’s current services and
their status. Both the strategies and roadmaps of the organisations were made visible and
available as public information via a tool called Jira, which allowed them to be reviewed
in real-time.

In cases B and C, the timeframe for continuous planning at the project level was three
months. In case B, there was also visibility for the forthcoming six months, including
deliverable(s) and scope. In case B, continuous planning did not remove the need for
long-term planning, as resourcing and competency needs, as well as location and
technology strategies, had to be considered at all times. Continuous planning at the
project level in cases B and C related to the product roadmap layer presented by Cosner
et al. (2007), as it mainly involved documenting performance and feature evolution, as

 Continuous planning: an important aspect of agile and lean development 157

well as presenting new products to the company and the world. According to Phaal and
Muller (2009), short-term roadmaps are commonly set using one-year projections, yet in
this case the timeframe was even shorter at three months. As highlighted by Phaal and
Muller (2009), short-term roadmap is the most important layer because it includes
tangible plans and committed actions. Furthermore, short-term roadmaps can be called
the budget horizon, as resources need to be committed so that actions can be fulfilled.
Case B also showed that the main tasks of project level planning involved making
estimates in terms of scope and schedule and afterwards allocating resources. At the team
level, the team of case B employed an even tighter planning cycle of continuous feature
planning than case C, which was done on a weekly basis to keep priorities and visibility
up-to-date. Such priority planning in terms of features can be linked to the technology
roadmap layer presented by Cosner et al. (2007), as it included expected R&D products,
their availability dates, motivating factors for R&D and related information. Similarly, in
case C, the timeframe of continuous feature planning and development was set at the
team level and involved two-week sprints, relating it to the same layer of enterprise
roadmap development as case B.

5.3 Implications of continuous planning

According to both the literature (e.g., Hope and Fraser, 2003; Rickards and Ritsert, 2012)
and the empirical evidence of this study, the motivation for continuous planning arises
from the fact that organisational plans increasingly cannot hold a fixed-focus of one year
ahead anymore. Instead, plans need to be revised continuously according to consistent
changes throughout the financial year. According to Rickards and Ritsert (2012),
environmental changes trigger enterprise planning, not the financial year and thus
planning frameworks need to be constantly adjusted to internal and external events. The
interviews of case A speak to the fact that business environments are in constant flux.
Thus, enterprises must adapt to change and look to benefit from the opportunities such
changes may offer. Financial crises of the past decade have also caused companies to
rethink approaches to planning and lead to their realisation of the importance of
continuously planning both from an operational and financial perspective. Furthermore,
an enterprise’s internal problems (e.g., tensions between business and R&D, as well as
developers’ long-term goals to achieve shorter planning cycles) were found to drive the
need for continuous planning. In the workshops of case C, the development team realised
that a time-boxed and static backlog for sprints was not the best way of working, as
certain priority tasks would emerge during the sprints of which a standard model of
working could not accommodate. The development team was interrupted with urgent
tasks that forced it to consider new ways of managing its work. The team realised that its
plans needed to evolve into a continuous planning approach.

Based on the meetings and the interview of case A, motivations to implement
continuous planning were also found to stem from the need to improve transparency and
knowledge sharing. Continuous visibility of development and operations was found to be
needed in order to share and provide information more effectively. Operational
transparency was found to increase the visibility of the performed work, plans and
executed actions and development transparency was found to identify potential barriers to
both the technological and cultural implementation of transparency and improving
learning. With increased visibility, the need for continuous competency planning and
development became apparent. It was found that competencies had to be able to adapt

 158 T. Suomalainen et al.

constantly and change via continuous analysis, development activities and evaluating the
successfulness of actions.

The results of the empirical study confirm the findings of the literature (Cosner et al.,
2007; Bogsnes, 2008; Koenigsaecker, 2009) that there are several components of
continuous planning, including governance, leadership, transparency and competency
development. Based on the empirical evidence of this study, the factors of continuous
planning were found to include transparency and knowledge sharing, competency
development and human aspects. While mentioned in the literature, governance and
leadership issues were not found in the case studies, although it was pointed out in one of
the cases that continuous planning had improved trust toward management.

5.4 Validations and limitations of the research

The case companies of this study are companies involved in IT product and service
development that have transformed themselves into agile and lean enterprises. Each of
the case companies is a large company with more than 1,000 employees. In order to
establish the reliability of this study, triangulation of the study’s qualitative data was
performed as a validity procedure. The purpose of triangulation is to approach a studied
object from various angles to provide an in-depth understanding of it (Runeson and Höst,
2009). The research results are based on three case studies in which data was gathered
through interviews, a series of meetings and workshops and through the analysis of
company-specific internal memos. The data (i.e., source) triangulation of this study
served to strengthen its research results, as more than one data source was used and the
same kind of data was collected on different occasions. The results of this study were also
strengthened by observer triangulation. There were altogether two researchers involved in
this research and the representatives of the case companies possessed various different
roles. The research results are also bolstered via the triangulation of theory in his study,
as alternative theories were discussed in the presentation of the research results.

The limitations of the study are as follows. The results of this study can only be
applied to a certain extent to smaller companies, as all the study’s case companies are
considered to be large. Furthermore, the reliability of the results is weakened due to the
fact that there was only one interviewee per company. The interviewees also possess
subjective perspectives as to the questions asked concerning how the continuous planning
process is viewed and defined within each case company. Lastly, the interviewees’
answers do not speak to the collective opinions of others in the case companies.

6 Conclusions

This article has sought to draw attention to continuous planning, which is a relatively new
and poorly studied field of research. During this paper’s literature review, it was
determined that there are only a few articles on continuous planning that can currently be
found and few of these are written from an agile and lean development perspective. Thus,
the main goal of the study was to increase continuous planning knowledge in terms of
both the literature and empirical evidence. The empirical evidence of this study was

 Continuous planning: an important aspect of agile and lean development 159

formed drawn from the experiences of three case companies in terms of how they viewed
and conducted continuous planning.

The research findings highlight the importance of continuous planning throughout an
entire organisation including the elements of continuous planning (organisational
planning, strategic planning and business planning) and their tight interrelation.
Organisational planning serves to define a plan’s organisational level and the timeframes
of a plan, strategic planning serves to set an overall plan of an organisation and business
planning serves to establish the budgeting frame of a plan. Furthermore, it has been here
discussed that continuous planning may not be possible throughout an entire organisation
and may only engage a certain level of planning. While continuous planning in agile and
lean organisations commonly relates to release planning, this research has shed light on a
broader perspective than this by defining continuous strategic and financial planning as
well as continuous project and team-level planning. Companies seeking to develop or
improve their continuous planning processes and practices should take each of the
elements of continuous planning into account from a broader perspective to better
understand the benefits it can yield for an organisation. The results of this research also
reveal that companies should consider other aspects related to continuous planning, such
as leadership, transparency and competency development in order to enable and succeed
in their continuous planning efforts.

The motivation toward continuous planning has arisen from both external and internal
challenges that companies face in today’s volatile market environments. There is a clear
need for continuous planning, as organisations face difficulties in developing long-term
plans due to constant changes in their customer and market-bases, as well as in product
and technology development. Moreover, recent financial crises have caused companies to
rethink their approaches to planning and to realise the importance of continuous planning
both from an operational and financial perspective. Continuous planning involves
creating and revising plans as needed, typically more often than once a year. Based on the
empirical findings of this study, the majority of long-term plans looked three years ahead.
At the strategy, business, or project levels, plans were reviewed quarterly, whereas at the
team level plans were reviewed biweekly or weekly. While continuous planning was
mainly understood as short-term planning, this did not remove the need for long-term
planning, as strategic, business, market and portfolio planning had to be constantly
considered at the higher levels of each enterprise.

Future research on continuous planning should seek to collect more and broader case
data from several different companies at different organisational levels. The cases of this
study defined continuous planning at the strategy and financial levels, as well as project
and team levels, yet continuous planning at business and portfolio levels was not
discussed at length. Hence, continuous planning research should further examine these
levels. Furthermore, future research could examine how continuous planning is
conducted at each layer of each organisation in this research (e.g., how is continuous
planning conducted at the product and team levels at the company of case A, which in
this research focused mainly on the strategic and financial planning levels. Lastly,
research methods other than interviews and workshops (e.g., observation) should be used
to gather more in-depth knowledge of continuous planning in industries. The existence of
broader case data would allow for comparing and contrasting the attributes of different
cases.

 160 T. Suomalainen et al.

References
Abdulmalek, F.A. and Rajgopal, J. (2007) ‘Analyzing the benefits of lean manufacturing and value

stream mapping via simulation: a process sector case study’, Int J Prod Econ, Vol. 107, No. 1,
pp.223–236.

Abrahamsson, P., Salo, O., Ronkainen, J. and Warsta, J. (2002) Agile Software Development
Methods: Review and Analysis, VTT Publications 478, VTT Technical report, Espoo.

Albright, R.E. (2003) ‘A unifying architecture for roadmaps frames a value scorecard’,
Proceedings of the IEEE International Engineering Management Conference, pp.383–386.

Bellomo, S., Nord, R.L. and Ozkaya, I. (2013) ‘A study of enabling factors for rapid fielding
combined practices to balance speed and stability’, 35th International Conference on Software
Engineering (ICSE), pp.982–991.

Bogsnes, B. (2008) Implementing Beyond Budgeting: Unlocking the Performance Potential, John
Wiley & Sons, Hoboken, New Jersey.

Bryson, J.M. (2011) Strategic Planning for Public and Nonprofit Organizations: A Guide to
Strengthening and Sustaining Organizational Achievement, Jossey-Bass, San Francisco, CA.

Butler, D. (2012) Business Planning: A Guide to Business Start-Up, Butterworth-Heinemann,
Oxford.

Charette, R.N. (2003) Challenging the Fundamental Notions of Software Development, Cutter
Consortium, Executive Rep, p.4, USA.

Cohn, M. (2006) Agile Estimation and Planning, Prentice Hall, NJ, US.
Cosner, R.R., Hynds, E.J., Fusfeld, A.R., Loweth, C.V., Scouten, C. and Albright, R. (2007)

‘Integrating roadmapping into technical planning’, Research-Technology Management,
Vol. 50, No. 6, pp.31–48.

Creswell, J.W. (2003) Research Design: Qualitative, Quantitative, and Mixed Method Approaches,
2nd ed., Sage Publications, Thousand Oaks, California.

Easterbrook, S., Singer, J., Storey, M. and Damian, D. (2008) ‘Selecting empirical methods for
software engineering research’, in Shull, F., Singer, J. and Sjøberg, D. (Eds.): Guide to
Advanced Empirical Software Engineering, Springer, London.

Eppler, M.J. and Platts, K.W. (2009) ‘Visual strategizing: the systematic use of visualization in the
strategic-planning process’, Long Range Plann., Vol. 42, No. 1, pp.42–74.

Fitzgerald, B. and Stol, K. (2014) ‘Continuous software engineering and beyond: trends and
challenges’, Proceedings of the 1st International Workshop on Rapid Continuous Software
Engineering, pp.1–9.

Heikkilä, V.T., Paasivaara, M., Lassenius, C. and Engblom, C. (2013) Continuous Release
Planning in A Large-Scale Scrum Development Organization at Ericsson, Springer, Berlin
Heidelberg.

Highsmith, J. (2002) Agile Software Development Ecosystems, Addison-Wesley, Boston.
Hope, J. and Fraser, R. (2003) Beyond Budgeting: How Managers Can Break Free from the Annual

Performance Trap, Harvard Business School Press, Boston, Massachusetts.
Järvinen, J., Huomo, T., Mikkonen, T. and Tyrväinen, P. (2014) ‘From agile software development

to mercury business’, Proceedings of the 5th International Conference (ICSOB), Springer,
pp.58–71.

Järvinen, P. (2001) On Research Methods, Opinpajankirja, Tampere, Finland.
Kameoka, A., Kuwahara, T. and Li, M. (2003) ‘Integrated strategy development: an integrated

roadmapping approach’, Proceedings of the Portland International Conference on
Management of Engineering and Technology (PICMET), pp.370–379.

Kappel, T.A. (2001) ‘Perspectives on roadmaps: how organisations talk about the future’, J. Prod.
Innovation Manage., Vol. 18, No. 1, pp.39–50.

Kettunen, P. (2009) ‘Adopting key lessons from agile manufacturing to agile software product
development – a comparative study’, Technovation, Vol. 29, No. 6, pp.408–422.

 Continuous planning: an important aspect of agile and lean development 161

Koenigsaecker, G. (2009) Leading the Lean Enterprise Transformation, CRC Productivity Press
Taylor & Francis Group, USA.

Kostoff, R.N. and Schaller, R.R. (2001) ‘Science and technology roadmaps’, IEEE Trans. Eng.
Manage., Vol. 48, No. 2, pp.132–143.

Leffingwell, D. (2007) Scaling Software Agility: Best Practices for Large Enterprises, Addison-
Wesley, Boston, MA.

Leffingwell, D. (2011) Agile Software Requirements: Lean Requirements Practices for Teams,
Programs, and the Enterprise, Pearson Education, Inc., Boston, MA, USA.

Lehtola, L., Kauppinen, M. and Vähäniitty, J. (2007) ‘Strengthening the link between business
decisions and RE: long-term product planning in software product companies’, 15th IEEE
International Requirements Engineering Conference (RE’ 07), pp.153–162.

Lehtola, L., Kauppinen, M., Vähäniitty, J. and Komssi, M. (2009) ‘Linking business and
requirements engineering: is solution planning a missing activity in software product
companies?’, Requirements Engineering, Vol. 14, No. 2, pp.113–128.

Mavengere, N.B. (2013) ‘Information technology role in supply chain’s strategic agility’,
International Journal of Agile Systems and Management, Vol. 6, No. 1, pp.7–24.

Middleton, P. and Sutton, J. (2005) Lean Software Strategies: Proven Techniques for Managers
and Developers, Productivity Press, New York.

Middleton, P., Flaxel, A. and Cookson, A. (2005) ‘Lean software management case study:
Timberline inc’, Proceedings of the 6th International Conference on Extreme Programming
and Agile Processes in Software Engineering (XP), pp.1–9.

Myers, K.L. (1999) ‘CPEF: a continuous planning and execution framework’, AI Magazine,
Vol. 20, No. 4, pp.63–69.

Naylor, J.B., Mohamed, M.N. and Berry, D. (1999) ‘Leagility: integrating the lean and
agile manufacturing paradigms in the total supply chain’, Int J Prod Econ, Vol. 62, No. 1,
pp.107–118.

Nordqvist, M. and Melin, L. (2010) ‘The promise of the strategy as practice perspective for family
business strategy research’, Journal of Family Business Strategy, Vol. 1, No. 1, pp.15–25.

Olsson, H.H., Bosch, J. and Alahyari, H. (2013) ‘Towards R&D as innovation experiment systems:
a framework for moving beyond agile software development’, IASTED Multiconferences-
Proceedings of the IASTED International Conference on Software Engineering, SE 2013,
pp.798–805.

Overby, E., Bharadwaj, A. and Sambamurthy, V. (2005) ‘A framework for enterprise agility and
the enabling role of digital options’, International Working Conference on Business Agility
and Information Technology Diffusion, Vol. 180, pp.295–312.

Petersen, K. (2010) ‘Is lean agile and agile lean? A comparison between two software development
paradigms’, in Dogru, A.H. and Bicer, V. (Eds.): Modern Software Engineering Concepts and
Practices: Advanced Approaches, IGI Global, USA.

Petersen, K. and Wohlin, C. (2010) ‘Software process improvement through the lean measurement
(SPI-LEAM) method’, J. Syst. Software, Vol. 83, No. 7, pp.1275–1287.

Phaal, R. and Muller, G. (2009) ‘An architectural framework for roadmapping: towards visual
strategy’, Technological Forecasting and Social Change, Vol. 76, No. 1, pp.39–49.

Phaal, R., Farrukh, C. and Probert, D. (2005) ‘Developing a technology roadmapping system’,
Proceedings of the Portland International Conference on Management of Engineering and
Technology (PICMET), pp.99–111.

Poppendieck, M. and Poppendieck, T. (2003) Lean Software Development: An Agile Toolkit,
Addison-Wesley, Boston, MA.

Poppendieck, M. and Poppendieck, T. (2007) Implementing Lean software development: From
Concept to Cash, Addison-Wesley Professional, Massachusetts, USA.

Radnor, Z. and Walley, P. (2008) ‘Learning to walk before we try to run: adapting lean for the
public sector’, Public Money and Management, Vol. 28, No. 1, pp.13–20.

 162 T. Suomalainen et al.

Rickards, R.C. and Ritsert, R. (2012) ‘Rediscovering rolling planning: controller’s roadmap for
implementing rolling instruments in SMEs’, Procedia Economics and Finance of 2nd Annual
International Conference on Accounting and Finance (AF 2012) and Qualitative and
Quantitative Economics Research (QQE 2012), Vol. 2, pp.135–144.

Ruhe, G. (2010) Product Release Planning: Methods, Tools and Applications, CRC Press, USA.
Runeson, P. and Höst, M. (2009) ‘Guidelines for conducting and reporting case study research in

software engineering’, Empirical Software Engineering, Vol. 14, No. 2, pp.131–164.
Shalloway, A., Beaver, G. and Trott, J.R. (2009) Lean-Agile Software Development: Achieving

Enterprise Agility, Addison-Wesley Professional, Upper Saddle River, NJ.
Suomalainen, T., Salo, O., Abrahamsson, P. and Similä, J. (2011) ‘Software product roadmapping

in a volatile business environment’, J. Syst. Software, Vol. 84, No. 6, pp.958–975.
Te Brömmelstroet, M. (2013) ‘Performance of planning support systems: what is it, and how do we

report on it?’, Comput., Environ. Urban Syst., September, Vol. 41, pp.299–308.
Van de Weerd, I., Bekkers, W. and Brinkkemper, S. (2010) ‘Developing a maturity matrix for

software product management’, Proceedings of the 1st International Conference on Software
Business (ICSOB 2010), pp.76–89.

Van Oosterhout, M., Waarts, E. and van Hillegersberg, J. (2005) ‘Assessing business agility:
a multi-industry study in the Netherlands’, Business Agility and Information Technology
Diffusion, Vol. 180, pp.275–294.

Wareham, T.L. and Majka, A.J. (2003) Best Practice Financing, Kaufman Hall White Paper,
Kaufman, Hall & Associates, Northfield, IL.

Westkamper, E. and von Briel, R. (2001) ‘Continuous improvement and participative factory
planning by computer systems’, CIRP Annals-Manufacturing Technology, Vol. 50, No. 1,
pp.347–352.

Womack, J.P. and Jones, D.T. (2003) Lean Thinking: Banish Waste and Create Wealth in Your
Corporation, Revised and Updated, Free Press, USA.

Yin, R.K. (1994) Applied Social Research Methods Series Vol 5; Case Study Research: Design and
Methods, 2nd ed. Sage Publications, Inc. Yin, R.K, Thousand Oaks, California.

PAPER IV

Defining Continuous Planning
through a Multiple-Case Study

Proceedings of the 16th International Conference of
Product-Focused Software Process Improvement

(PROFES). LNCS 9459, pp. 288–294.
Bolzano, Italy, December 2–4, 2015.

Copyright 2015 Springer.
Reprinted with permission from the publisher.

PAPER V

Continuous deployment of software
intensive products and services:

A systematic mapping study

Journal of Systems and Software, in press.
Copyright 2016 Elsevier Inc.

Reprinted with permission from the publisher.

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

The Journal of Systems and Software 000 (2016) 1–29

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Continuous deployment of software intensive products and services:

A systematic mapping study

Pilar Rodríguez a,∗, Alireza Haghighatkhah a, Lucy Ellen Lwakatare a, Susanna Teppola b,
Tanja Suomalainen b, Juho Eskeli b, Teemu Karvonen a, Pasi Kuvaja a, June M. Verner c,
Markku Oivo a

a Department of Information Processing Sciences, 90014 University of Oulu, Box 3000, Finland
b VTT Technical Research Centre of Finland, P.O. Box 1100, FI-90571 Oulu, Finland
c Keele University, UK

a r t i c l e i n f o

Article history:

Received 17 January 2015

Revised 15 October 2015

Accepted 7 December 2015

Available online xxx

Keywords:

Continuous deployment

Software development

Systematic mapping study

a b s t r a c t

The software intensive industry is moving towards the adoption of a value-driven and adaptive real-

time business paradigm. The traditional view of software as an item that evolves through releases every

few months is being replaced by the continuous evolution of software functionality. This study aims to

classify and analyse the literature related to continuous deployment in the software domain in order to

scope the phenomenon, provide an overview of the state-of-the-art, investigate the scientific evidence in

the reported results and identify areas suitable for further research. We conducted a systematic mapping

study and classified the continuous deployment literature. The benefits and challenges related to contin-

uous deployment were also analysed. RESULTS: The systematic mapping study includes 50 primary stud-

ies published between 2001 and 2014. An in-depth analysis of the primary studies revealed ten recurrent

themes that characterize continuous deployment and provide researchers with directions for future work.

In addition, a set of benefits and challenges of which practitioners may take advantage were identified.

CONCLUSION: Overall, although the topic area is very promising, it is still in its infancy, thus offering a

plethora of new opportunities for both researchers and software intensive companies.

© 2016 Elsevier Inc. All rights reserved.

1

d

2

b

a

a

v

f

i

w

w

e

(

t

p

i

a

i

p

2

m

s

d

w

fl

s

b

c

i

o

h

0

. Introduction

The software intensive industry is evolving towards a value-

riven and adaptive real-time business paradigm (Järvinen et al.,

014). The Age of Information (Castells, 2011), which is strongly

ased on the Internet speed-of-things, has shaped a digital economy

nd a knowledge-based society. Digital resources are constantly

vailable for everyone, information flows are accelerated and indi-

iduals can explore their personal needs more easily. Consequently,

ast-changing and unpredictable markets have shifted the compet-

tive software development landscape. The traditional view of soft-

are as a static item that can be bought and owned is giving

ay to software services in which customers expect a continuous

volution of product functionality that provides additional value

Bosch, 2012). These market features enable new business oppor-

unities. However, they also exert pressure to develop dynamic ca-

abilities (Eisenhardt and Martin, 2000). To maintain their compet-
∗ Corresponding author. Tel.: +358 40 1602 179.

E-mail address: pilar.rodriguez@oulu.fi (P. Rodríguez).

c

p

l

/

ttp://dx.doi.org/10.1016/j.jss.2015.12.015

164-1212/© 2016 Elsevier Inc. All rights reserved.

Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
tive advantage, software intensive companies need to deliver valu-

ble product features to customers considerably faster than before,

f not near to real-time, while embracing business changes and

ursuing economic efficiency.

Agile software development (ASD) emerged in 2001 (Beck et al.,

001) as a ground breaking foundation for new software develop-

ent processes. Iterative development, continuous integration and

hort feedback cycles were advocated as a replacement for the tra-

itional engineering stage-gate models. The ultimate aim of ASD

as to improve the organization’s capability to adapt to market

uctuations and customer needs. Although ASD was initially con-

idered a fad, and caused some controversies (Boehm, 2002), it

ecame progressively mainstream. Software practitioners have in-

reasingly adopted ASD (Rodríguez et al., 2012), and the research

n the area has become well-established (Dingsøyr et al., 2012).

A recent evolutionary step from agile and lean software devel-

pment is rapid and continuous software engineering. Rapid and

ontinuous software engineering refers to the ‘organizational ca-

ability to develop, release and learn from software in rapid paral-

el cycles, such as hours, days or very few weeks’ (ICSE 2014, http:

/continuous-se.org/). ASD is extended to approaches where the
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:pilar.rodriguez@oulu.fi
http://continuous-se.org/
http://dx.doi.org/10.1016/j.jss.2015.12.015
http://dx.doi.org/10.1016/j.jss.2015.12.015

2 P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

t

t

2

p

t

2

b

v

d

p

l

f

t

h

t

(

c

a

e

n

m

b

i

i

l

e

G

d

2

a

a

t

t

t

c

t

c

t

t

c

r

r

2

I

e

e

C

c

S

1 https://www.facebook.com/notes/facebook-engineering/

ship-early-and-ship-twice-as-often/10150985860363920 (accessed 09, 2015).
2 http://www.ibm.com/developerworks/rational/library/

continuous-deployment-rational-alm/ (accessed 09, 2015).
3 http://blogs.msdn.com/b/bharry/archive/2012/06/07/announcing-continuous-

deployment-to-azure-with-team-foundation-service.aspx (accessed 09, 2015).
4 https://air.mozilla.org/continuous-delivery-at-google/ (accessed 09, 2015).
5 http://steveblank.com/2014/01/06/15756/ (accessed 09, 2015).
6 http://steveblank.com/2014/01/06/15756/ (accessed 09, 2015).
7 http://timothyfitz.com/2009/02/10/continuous-deployment-at-imvu-doing-the

impossible-fifty-times-a-day/ (accessed 09, 2015).
8 International Conference on Software Engineering, http://icse-conferences.org/ .
step between development and deployment is minimalized in or-

der to deploy code immediately to production environment for

customers to use. Continuous deployment (CD) is the term used to

refer to this phenomenon (Humble and Farley, 2010; Olsson et al.,

2012; Fitzgerald and Stol, 2014; Järvinen et al., 2014; Claps et al.,

2015). Although the concept of deploying software to customers as

soon as new code is developed is not new and is based on ASD

principles, CD extends ASD by moving from cyclic to continuous

value delivery. This evolution requires not only agile processes at

the team level but also integration of the complete R&D organiza-

tion, parallelization and automation of processes that are sequen-

tial in the value chain and constant customer feedback.

Leading organizations, such as Facebook, Microsoft and IBM,

have provided examples of CD implementation (Claps et al., 2015),

which has led to the emergence of studies related to CD in the

scientific literature (e.g. Olsson et al., 2012; Cukier, 2013; Feitelson

et al., 2013; Krusche et al., 2014). Mäntylä et al. (2014) recently

published a semi-systematic literature review as part of their re-

search on rapid releases and testing. Although their findings are

significant and shed light on the grey area of CD, the CD research

field remains dispersed among different research areas and a struc-

tured understanding of the main factors that characterize CD is not

provided. Therefore, the goal of this study is to identify the state of

the art of the phenomenon of CD in the context of software devel-

opment. This systematic mapping study (Kitchenham et al., 2011)

aims at the following:

1. To establish the body of knowledge of CD by identifying and

categorizing the available research on the topic

2. To assess the quality of the existing research in terms of in-

dustrial relevance and research rigour

3. To identify the most relevant articles in the field of CD

4. To determine the underlying factors that characterize CD as

both a concept and a phenomenon

5. To provide baselines to assist with further research

This study combines the process of a systematic literature re-

view (SLR), as established by Kitchenham and Charters (2007),

with the mapping study, as suggested by Petersen et al. (2008).

We wish to present a logical organization of the CD literature in or-

der to provide researchers with a structured body of knowledge on

which to base their studies. We also want to furnish practitioners

with the main factors they should consider when deciding whether

or not to migrate to CD, the benefits that they can expect, as well

as the potential risks and challenges they might face with CD.

The remainder of this paper is organized as follows: background

and related work are presented in Section 2. Section 3 describes

the research methodology, including a discussion on threats to

validity and countermeasures taken to minimize their effects. In

Section 4, we present the results of the mapping study. Sections 5

and 6 provide an analysis of the factors, benefits and challenges

characterizing CD. Opportunities for future research are discussed

in Section 7. Section 8 presents a comparison of our findings with

related work and, concretely, to the semi-systematic literature re-

view conducted by Mäntylä et al. (2014). Finally, we present our

conclusions in Section 9.

2. Background and related work

The roots of CD began fifteen years ago with the formulation of

the Agile Manifesto (Beck et al., 2001). Some argued that ASD was

just old wine in new bottles (Merisalo-Rantanen et al., 2005), in ref-

erence to the roots of ASD in iterative models, such as the spiral

model (Boehm, 1988). Undoubtedly, today’s software engineering

is the result of the evolutions of previous software development

models (Boehm, 2006). This section describes the phenomenon of

CD, providing a historical view and identifying its core ideas. We
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
hen summarize previous literature reviews related to CD and jus-

ify the need for this review and its research questions.

.1. Continuous deployment

The Internet-speed of things has changed the way software com-

anies deliver value to their customers. The widespread adop-

ion of lean principles and agile methodologies (Rodríguez et al.,

012) has provided evidence of the need for and value of flexi-

ility and adaptation in the current environment of software de-

elopment (Fitzgerald and Stol, 2014). ASD established some foun-

ations for CD. For example, agile principles, such as ‘our highest

riority is to satisfy the customer through early and continuous de-

ivery of valuable software’ and ‘deliver working software frequently,

rom a couple of weeks to a couple of months, with a preference to

he shorter timescale’ make clear reference to CD. However, ASD

as mainly focused on speeding up the development process at

he team level through methods such as eXtreme Programming

Beck, 2000) and Scrum (Schwaber, 2004). CD moves beyond the

oncept of ASD towards a situation in which software function-

lity is continuously deployed to the final customers (production

nvironment), and where customer input is the main driver for in-

ovation (Olsson et al., 2013). Instead of working for months on a

ajor new release, companies limit their cycle time (i.e., the time

etween two subsequent releases) to a couple of weeks, days or,

n some cases, even hours (Mäntylä et al., 2014). A plethora of ev-

dence related to CD exists in organizational white papers and on-

ine blogs, where practitioners have voiced their experiences and

xpectations in moving to CD (e.g. Facebook,1 IBM,2 Microsoft,3

oogle,4 Adobe,5 Netflix6 and IMVU7). Accordingly, a body of aca-

emic literature is also emerging on this topic.

Humble and Farley (2010), in their book on CD published in

010, state that continuous delivery provides enterprises with the

bility to deliver rapidly, reliably and repeatedly value to customers

t low risk with minimal manual overhead. While continuous in-

egration, which is a core ASD practice, mainly focuses on the au-

omation of the build process (the code is built, and a set of unit

ests are run when it is checked into version control repository),

ontinuous delivery is a logical progression that automates the en-

ire workflow simplifying the rapid release of software. The central

oncept in Humble and Farley’s approach is a deployment pipeline

hat establishes an automated end-to-end process to ensure that

he system works at technical level, executes fairly automated ac-

eptance tests and lastly deploys to a production or staging envi-

onment.

The concepts underlying CD have also attracted the attention of

esearchers. Recent editions of the ICSE8 conference (2013, 2014,

015) have offered workshops focused on the topic such as the

nternational Workshop on Release Engineering (RELENG), which

mphasized ‘the recent trend to reduce the release cycle to days or

ven hours’, as well as the International Workshop on Rapid and

ontinuous Software Engineering (RCoSE). Drawing upon the con-

ept of rapid and continuous software engineering, Fitzgerald and

tol (2014) propose a conceptual model that presents a set of con-
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

https://www.facebook.com/notes/facebook-engineering/ship-early-and-ship-twice-as-often/10150985860363920
http://www.ibm.com/developerworks/rational/library/continuous-deployment-rational-alm/
http://blogs.msdn.com/b/bharry/archive/2012/06/07/announcing-continuous-deployment-to-azure-with-team-foundation-service.aspx
https://air.mozilla.org/continuous-delivery-at-google/
http://steveblank.com/2014/01/06/15756/
http://steveblank.com/2014/01/06/15756/
http://timothyfitz.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
http://icse-conferences.org/
http://dx.doi.org/10.1016/j.jss.2015.12.015

P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29 3

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

t

a

t

m

y

r

a

t

n

t

p

b

a

p

c

f

i

t

o

c

b

fi

c

p

i

(

d

t

p

a

a

s

e

m

w

s

g

d

u

i

2

h

H

t

D

p

t

s

m

p

s

g

g

p

s

s

s

O

t

s

m

f

o

2

d

g

E

d

i

i

w

m

t

m

t

B

w

w

t

i

t

t

t

o

e

t

a

t

n

o

t

c

r

t

t

a

t

fi

a

s

c

i

t

i

s

t

p

M

2

F

u

p

3

o

t

t

m

i

inuous activities across the software development lifecycle with

holistic view of business, development, operations and innova-

ion activities. In a similar vein, Järvinen et al. (2014) propose a

odel to characterize the evolution of enterprises towards and be-

ond real-time value delivery. The model is based on concepts bor-

owed from the Elastic Enterprise (Vitalari and Shaughnessy, 2012)

nd the Lean Startup framework (Ries, 2011). The authors argued

hat in the current economic climate, software companies require

ew capabilities to: (1) deliver value in real-time; (2) increase cus-

omer insight through active customer involvement and rapid ex-

erimentation; and (3) seek new ways of executing their existing

usinesses to enable them to move into completely new business

reas when needed. The last stage is called mercury business.

According to Olsson et al.’s model (Olsson et al., 2013), com-

anies evolve from traditional development to ASD through the

areful adoption of agile practices and a shift to smaller cross-

unctional teams. When an organization matures in the use of ag-

le, and uses automated system integration and verification, then

hat organization can take the next step, which is the adoption

f continuous integration. When continuous integration is in place,

ustomers often express an interest in receiving enhancements and

ug fixes more frequently, so the organization migrates to CD. The

nal step occurs when the organization not only releases software

ontinuously but also develops mechanisms to conduct rapid ex-

erimentation in order to drive innovation.

Although similarities and differences exist among the emerg-

ng models of CD, three major themes characterize the models:

1) deployment, (2) continuity and (3) speed. Hence, continuous

eployment means the ability to bring valuable product features

o customers on demand and at will (deployment), in series or

atterns with the aim of achieving continuous flow (continuity)

nd in significantly shorter cycles than traditional lead-times, from

couple of weeks, to days or even hours (speed). In addition,

ome authors distinguish between delivery and deployment. For

xample, Humble and Farley (2010) describe continuous deploy-

ent as the automatic deployment of every change to production,

hilst continues delivery is an organizational capability that en-

ures that every change can be deployed to production, if it is tar-

eted (however, the organization may choose not to do it, usually

ue to business reasons). However, most of the scientific literature

ses the terms continuous deployment and continuous delivery

nterchangeably.

.2. Related work

This section clarifies the need for our CD study. Several studies

ave systematically analysed the literature on areas related to CD.

owever, no review has specifically focused on actually structuring

he body of CD knowledge (Zhang and Ali Babar, 2013).

ASD and its practices have been the topics of diverse SLRs.

ybå and Dingsøyr (2008) conducted a well-known SLR on em-

irical studies of ASD published up to and including 2005. In

his review, 33 relevant primary studies were identified and clas-

ified into four thematic groups: introduction and adoption, hu-

an and social factors, perceptions of agile methods and com-

arative studies. They found a steady increase in the number of

tudies on ASD. However, they also observed poor quality with re-

ard to the research methods used in most studies, and they sug-

ested an increase in both the number and the quality of em-

irical studies on ASD. However, the focus in Dybå and Ding-

oyr (2008) is different from a review of CD as most primary

tudies included focus on agile methods at the team level in-

tead of integration of the complete R&D organization. As noted by

lsson et al. (2013), transition to CD involves evolving agile prac-

ices beyond the R&D organization to ensure that other functions
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
uch as product management and sales are functioning in an agile

anner as well.

As the body of knowledge on ASD has matured, other authors

ocused their analyses on specific ASD practices. Test-driven devel-

pment (TDD) is one of the most reviewed areas (Causevic et al.,

011; Turhan et al., 2010). However, the described benefits and

rawbacks of TDD were inconclusive. Similarly, continuous inte-

ration was the subject of several SLRs (Ståhl and Bosch, 2014;

ck et al., 2014). Ståhl and Bosch (2014) performed a SLR in or-

er to investigate how the practice of continuous integration was

mplemented in practice. Twenty-two descriptive themes, includ-

ng build duration, build frequency, and pre-integration procedures

ere extracted from 46 publications. The authors concluded that a

ultitude of continuous integration variants exists in practice, but

here was no consensus on continuous integration as a single ho-

ogeneous practice. Similarly, Eck et al. (2014) conducted a SLR

o examine how organizations assimilate continuous integration.

ased on 43 studies, the authors presented a conceptual frame-

ork illustrating the assimilation stages of continuous integration,

hich included acceptance, routinization and infusion. Again, al-

hough continuous integration is a key aspect of CD (as our find-

ngs also confirm), continuous integration merely focuses on au-

omating the build process. In general, although ASD and its prac-

ices are within the scope of this research, because they represent

he origins of CD (Mäntylä et al., 2014), we are interested in ASD

nly as far as it explicitly supports CD.

Recently, Mäntylä et al. (2014) published a semi-systematic lit-

rature review as part of a study focused on rapid releases and

esting. They analysed the current tendency towards rapid releases,

s well as its benefits, enablers and problems. This review showed

hat rapid release is a prevalent practice in industry that origi-

ated with the agile, open source, lean and Internet speed devel-

pment movements. Parallel development, strong tool infrastruc-

ure for automatic deployment and testing, as well as pro-active

ustomers and product managers, were found to be enablers of

apid release, whilst time pressure, increased technical debt, cus-

omer un-willingness to update, as well as conflicting goals be-

ween rapid release and achieving high reliability and test cover-

ge, were found to potentially cause problems. In addition, shorter

ime-to-market, rapid feedback, customer satisfaction, increased ef-

ciency, improved quality focus and easier monitoring of progress

nd quality were identified as benefits. Although Mäntylä et al.’s

tudy sheds light on the grey area of CD, what characterizes and

onstitutes the phenomenon of rapid releases was unclear.

In summary, CD has attracted a lot of interest from the software

ndustry within a short time, and the notion of CD among practi-

ioners is growing. In addition, research related to CD is emerg-

ng in the scientific literature. However, the literature is not well

tructured, and there is no clear understanding of the main factors

hat characterize CD. The existing literature reviews, which were

resented in the previous section (i.e., ASD literature reviews and

äntylä et al.’s semi-systematic literature review (Mäntylä et al.,

014)), only partially cover the existing scientific studies on CD.

urthermore, the validity of the evidence in the CD literature is

nclear because no previous review evaluated the quality of the

ublished studies.

. Research methodology

A systematic mapping study was conducted to obtain an

verview of the research on CD. The main difference between sys-

ematic mapping studies and SLRs is that while SLRs aim to ‘iden-

ify best practice with respect to specific procedures, technologies,

ethods or tools by aggregating information from comparative stud-

es’, mapping studies focus on ‘classification and thematic analysis of
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

4 P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

Fig. 1. Mapping study steps.

a

t

a

a

3

c

(

2

r

t

o

t

t

t

i

fi

s

R

t

i

i

a

p

s

t

3

2

d

p

r

m

2

d

s

s

p

t

s

t

K

t

t

[

t

e

o

o

a

a

a

p

literature on a software engineering topic’ (Kitchenham et al., 2011).9

In the case of CD, although the term is frequently used in industrial

and academic circles (see Section 2), its meaning and the main fac-

tors that are part of CD have remained undefined. Therefore, before

aggregating information in terms of research outcomes, we need to

provide a comprehensive definition of CD, that is, identify, catego-

rize and analyse the available research on the topic of CD in order

to describe the phenomenon, obtain an overview of its state-of-

the-art, determine the scientific evidence in the reported results

and determine areas that are suitable for more detailed study.

In our mapping study, we followed the process of a SLR as es-

tablished by Kitchenham and Charters (2007), but we adapted it

to a mapping study, as suggested by Petersen et al. (2008). The re-

search process is outlined in Fig. 1. The process was iterative, with

feedback loops between the steps that helped to focus the map-

ping study as we learned more about the phenomenon itself. For

example, the search string was piloted until we found one that en-

sured the most complete access to the body of knowledge about

CD. Furthermore, additional research questions were incorporated

when we learned more about the data available in the primary

studies. However, in order to achieve a legible description of how

the research was conducted, the research process is described in

a sequential manner, emphasizing the important design decisions

taken during the process.
9 A more detailed description of when to use systematic mapping studies and

a discussion of its main differences from SLRs is presented by Kitchenham et al.

(2011).

i

m

Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
This section describes the design and execution of our system-

tic mapping study. The complete research package, which includes

he research protocol that helped maintain the chain of evidence

nd the transparency between each step in the process, is avail-

ble on request.

.1. The need for the study and definition of research questions

The need for this mapping study (step 1, Fig. 1) emerged in the

ontext of the large Finnish research programme, Need for Speed

N4S, 85 M€ , 2014–2017).10 The main objective of this study (step

, Fig. 1), which is mentioned in Section 1, is to identify the

elevant CD literature in order to: (1) create a knowledge base in

he area; (2) understand the factors that characterize the nature

f CD in the software intensive industry; (3) critically determinate

he scientific evidence reported in the CD literature; and (4) iden-

ify areas that should be addressed in future research. Our objec-

ives are expressed in the form of the research questions presented

n Table 1 (step 4, Fig. 1). The research questions (RQ) were de-

ned from a broad perspective. RQ1 concerns the state of the re-

earch pertaining to CD; RQ2 concerns the main factors of CD; and

Q4 concerns the research gaps in the area of CD. After reading

he entire set of primary studies and gaining a better understand-

ng of the data (step 9, Fig. 1), we discovered that different def-

nitions of CD were present in the literature, as well as benefits

nd challenges regarding its adoption. Accordantly, RQ2 was sup-

lemented with RQ2.1 and RQ3 was formulated to complete the

et of research questions. The research questions defined the data

o be extracted from the primary studies (see Section 3.5).

.2. Search strategy and databases

Several experimental searches were piloted from April to June

014 (Fig. 1, step 3) in order to better scope the research and

etermine the search string that most appropriately describes the

henomenon. The following search string was the first used in the

eview:

Pilot search string: (“continuous delivery” OR “continuous deploy-

ent”) AND “software”

Using this string, 28 hits were found in Scopus, and 17 of the

8 were closely studied. Eleven were excluded because they were

uplicated, did not focus on the software domain or were non-

cientific. Based on an initial reading of the 17 studies, the search

tring was revised to include the keywords that best described the

henomenon of CD. Table 2 presents the final search string used

o retrieve the primary studies together with the rational for the

election of those terms. The search string is composed of terms

hat represent the population AND intervention, as proposed by

itchenham and Charters (2007). Our research focus is on scien-

ific studies that discuss software (population) AND have the in-

ention of deployment [OR closely related terms] in a continuous

OR closely related terms] manner (intervention).

To increase publication coverage, we decided to use the broad

erm software to ensure that we would not miss relevant refer-

nces. In addition, during the pilot study, we discovered that vari-

us terms referred to the concept of continuous, such as real-time

r rapid; therefore, we added these terms to the search string. We

lso learned that relevant studies, such as Eklund and Bosch (2012)

nd Humble et al. (2006) were missed when the terms continuous

nd delivery or deployment were used together (e.g. ‘continuous de-

loyment’). Therefore, we decided to allow the term continuous (or

ts closely related terms) to be separated from the terms deploy-

ent, delivery and release. These design decisions, together with
10 http://www.n4s.fi/en/.

f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://www.n4s.fi/en/
http://dx.doi.org/10.1016/j.jss.2015.12.015

P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29 5

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

Table 1

Research questions for the mapping study.

ID Question Aim

RQ1 What is the current state of the research pertaining to CD in

the context of software intensive products and services?

Providing an overview of the studies on CD in the context of software

intensive products and services.

RQ1.1 What research methods have been used in studies related

to CD?

To categorize available CD research according to research type (industry

report, case study, experiment, survey questionnaire, theory

development, etc.).

RQ1.2 What kinds of contributions are provided by studies

related to CD?

To categorize available CD research according to its contribution facet

(model, theory, framework/method, guidelines, lessons learned,

advice/implication or tool).

RQ1.3 What are the publication channels used to publish studies

related to CD?

To gain an overview of the publication channels used for CD studies

(conference or journal) and publication years’ frequency distribution.

RQ1.4 What are the levels of relevance and rigour in the

published articles?

To assess the quality of the CD studies by examining two perspectives:

their industrial relevance and scientific rigour.

RQ2 What are the main factors that characterize CD in the context

of software intensive products and services?

To structure the state of the art of CD by identifying and analysing the

underlying themes associated to this phenomenon discussed in the

literature and that, therefore, define it.

RQ2.1 What do researchers mean when they refer to the term CD

in the context of software intensive products and

services?

To identify and analyse the different definitions of CD available in the

literature.

RQ3 What are the reported benefits and challenges in association

with CD in the context of software intensive products and

services?

To identify the reported benefits and challenges experienced when using

CD.

RQ4 What are the research gaps in the area of CD in the context

of software intensive products and services?

To identify research gaps in the field of CD and opportunities for further

research.

Table 2

Search keywords.

Search term Rational

Population software Studies discussing software, software

development, software engineering

or software intensive

products/services/systems.

AND

Intervention deploy∗ Studies discussing “deployment” in the

context of software (e.g. deploy,

deployment, deploying).

deliver∗ Studies discussing “delivery” in the

context of software (e.g. deliver,

delivery, delivering).

releas∗ Studies discussing “releas” in the

context of software (e.g. release,

releasing).

AND

continuous∗ Studies discussing “continuous” in the

context of software delivery or

deployment (e.g. continuous,

continuously).

rapid∗ Rapid is a closely related term to

“continuous” (e.g. rapid, rapidly).

fast∗ Fast is a closely related term to

“continuous” (e.g. fast, faster).

real time Real-time is a closely related term to

“continuous” (e.g. “real-time

delivery”).

agil∗ Agile is a closely related term to

“continuous” (e.g. agile, agility).

iterat∗ Iterative is a closely related term to

“continuous” (e.g. iterative, iteration,

iterations).

increment∗ Incremental is a closely related term to

“continuous” (e.g. incrementally,

increment, incremental).

t

b

r

s

a

Table 3

Selected databases and retrieved papers.

Database Filter Papers

ACM Digital Library None 933

Scopus Only conference papers and journal

articles in English in the

following subject areas:

computer science, engineering,

business management and

accounting

7997

IEEE Xplore Only conference papers and journal

articles

5303

ISI Web of Science Only articles in the following

research areas: engineering,

computer science and

telecommunications

5215

Science Direct Only conference papers and journal

articles

1934

Total 21,382

t

d

e

p

3

p

t

c

a

i

v

d

r

s

m

d

11 Performed on 27 June 2014.
he extensive usage of closely related terms, increased the num-

er of studies retrieved (i.e., introduced noise in the search) but

educed the risk of missing relevant studies. We used this search

tring to search within keywords, titles and abstracts.

The selected databases in which we performed the search

re shown in Table 3, in addition to the number of studies re-
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
rieved from each database (up to and including June 2014).11 The

atabases were selected considering their coverage of the software

ngineering literature. The individual search strings in the study

rotocol are available by request.

.3. Primary study selection criteria

Studies were eligible for inclusion in the mapping study if they

resented a scientific contribution to the body of CD knowledge in

he context of the software-intensive industry. Concretely, the in-

lusion criteria were defined as ‘any study that is a scientific article

nd clearly states that it focuses on software development or software

ntensive products, systems or services AND includes any software de-

elopment activity as primary subject with the intention of continuous

eployment or delivery of a software product, system or service’.

Because our goal was to analyse trends in the area of CD

ather than aggregate empirical evidence gathered from individual

tudies, both theoretical and empirical studies were included in the

apping study (Kitchenham et al., 2011). Similarly, studies con-

ucted in both industry and in academia were included. Three
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

6 P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

Fig. 2. Screening of papers.

Table 4

Data extraction form.

ID Property Research question(s)

P1 General type of paper RQ1.1

P2 Research method RQ1.1

P3 Contribution RQ1.2

P4 Domain RQ1.2

P5 Pertinence RQ1.2

P6 Publication year and forum RQ1.3

P7 Quality – rigour RQ1.4

P8 Quality – relevance RQ1.4

P9 CD factor RQ2

P10 CD definition RQ2.1

P11 Benefit from using CD RQ3

P12 Challenge for adopting CD RQ3

w

o

r

t

p

s

p

3

p

N

aspects were considered during the screening process used to eval-

uate whether the content of an article was relevant to CD: de-

ployment, continuity and speed. To be included in the review, the

study had to include the following: (1) show intention/ability of

bringing a software product/system/service to the production envi-

ronment in order to be used by the customer (deployment); (2)

emphasize continuous series or patterns so that the software is

deployed repeatedly, providing a continuous evolution of software

functionality (continuity); and (3) focus on significantly shorter cy-

cles than traditional development lead-times, preferably near to

real time, at will or on-demand (speed).

We excluded search results that:

1. Did not clearly discuss the continuous deployment or deliv-

ery of software intensive product/systems/services.

2. Were not related to the software domain (e.g., medicine, bi-

ology, physics, etc.).

3. Were not peer-reviewed scientific articles (e.g. presentations,

call for papers, keynote speeches, prefaces, etc.) or were

book and book chapters.

4. Were short papers.

5. Were not written in English.

6. Were duplicate articles.

For example, because the focus of this mapping study is on the

phenomenon of CD, general discussions about ASD, lean software

development or any of their practices and tools without an explicit

application to CD were excluded. In addition, we imposed no lim-

itations with regard to quality (rigour and relevance) in selecting

primary studies.

3.4. Primary study selection procedure

To screen the retrieved publications (steps 5 and 6, Fig. 1) we

followed the process shown in Fig. 2. Due to the high number

of publications found (21,382) and the inconsistency between the

meta-data format stored in different databases, we decided to use

the reference management system RefWorks12 that automated the

task of aggregating papers into a consistent list of candidate papers

in a unified format. The selection procedure comprised the follow-

ing steps:

First, two researchers together went through the list of 21,382

candidate publications in order to eliminate duplicate, non-English

publications, non-relevant software engineering studies and non-

peer review scientific articles (exclusion criteria 2–6). Non-relevant

software engineering studies were identified by checking the pub-

lication forum and the publication title. Obviously non-scientific

peer review publications, such as those titled ‘A call for …’ or ‘Pro-

ceedings of …’ as well as introductions of workshops and editori-

als were also identified and removed. At the end of this stage, the

number of remaining papers was 9924. In the second stage, based

on exclusion criterion 1, we screened candidate papers by conduct-

ing a conservative in-depth review. We excluded papers only when

it was clear that they were not within the scope of our research. In

unclear cases, the paper was passed to the next screening phase.

First, two researchers (simultaneously) read the titles of the re-

maining papers. Generally, it was difficult to identify whether the

focus of the study was on CD based only on its title. Therefore, pa-

pers that clearly did not focus on CD were excluded in this step;

7217 papers were excluded. Then two researchers (individually)

went through the list of remaining publications (2707) to screen

their abstracts. When they crosschecked the outcome, they agreed

to exclude 2377 papers and include 16 papers. However, based on

abstracts they could not decide on 314 papers, which were cate-

gorized as ‘unsure’. Introduction, conclusions an, when needed, the
12 http://www.refworks.com/.

Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
hole paper was read in order to resolve ‘unsure’ cases. In cases

f conflict between two researchers a third researcher helped to

esolve the conflict. Finally, 34 studies were added to the list of

he 16 papers already included (based on title). Therefore, 50 pa-

ers remained in the final pool of primary studies. The primary

tudies (PS) are included in the reference list at the end of this

aper (identified by the symbol ∗[PS]).

.5. Data extraction

Table 4 lists the properties collected during the data extraction

hase. Based on the RQs and using the qualitative analysis tool

Vivo,13 three categories of data were extracted from the primary
13 http://www.qsrinternational.com/.

f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://www.refworks.com/
http://www.qsrinternational.com/
http://dx.doi.org/10.1016/j.jss.2015.12.015

P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29 7

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

s

m

T

3

w

t

3

a

S

c

t

t

o

i

2

a

f

t

s

e

i

a

w

A

i

t

o

p

i

s

d

l

s

s

d

O

f

r

r

r

t

a

t

c

t

m

p

f

T

a

t

i

d

t

r

t

p

t

t

l

t

m

j

3

r

c

c

a

i

d

w

w

S

p

t

R

f

d

3

s

t

q

w

f

y

tudies: (1) primary study properties (P1–P6); (2) quality assess-

ent information (P7 and P8); and (3) recurrent themes (P9–P12).

he next subsections describe each extracted property.

.5.1. Primary study properties: P1–P6

Six primary study properties, which are briefly described below,

ere defined in order to answer RQ1.1–RQ1.3. The detailed defini-

ions of these categories are presented in Table A.9, Appendix A.

1. General type of paper: represents the type of research (em-

pirical, theoretical or both). Definitions of these values were

adapted from Kitchenham (2010).

2. Research method: categorizes the studies according to the ap-

plied research method. Ten categories were considered: case

study, industry report, experiment, survey, action research,

mixed methods, grounded theory, design science, opinion

paper and not stated. When possible, we used the defini-

tions provided by Unterkalmsteiner et al. (2012). Otherwise

we created our own definition.14

3. Contribution: maps different types of study outcomes (in-

spired by Paternoster et al., 2014). Seven categories of contri-

bution (adapted from Shaw, 2003) were chosen: model, the-

ory, framework or method, guidelines, lessons learned, ad-

vice or implications, and tools.

4. Domain: maps the different types of domain in which CD

is used. Four categories were used to classify the domains

of the primary studies: ‘embedded systems’, ‘web/internet

based applications or services’, ‘desktop applications’ and

‘not stated/not clear’ (to indicate that the domain was not

clearly stated in the paper).

5. Pertinence: this property (inspired by Paternoster et al.,

2014) was designed to distinguish between studies entirely

devoted to CD and studies with a broader perspective.

The values of pertinence were defined as fully, partially or

marginally focused on CD.

6. Publication year and channel: categorizes primary studies ac-

cording to publication channel (conference or journal) and

provides the frequency distribution of the publication years.

.5.2. Primary study quality assessment: P7 and P8

Primary study quality assessment (e.g. evaluating how reliable

nd relevant the study is) is critical in SLRs because the aim of

LRs is to aggregate the results of primary studies in order to dis-

over whether the research outcomes are consistent or contradic-

ory. Therefore, ensuring that results are comparable and based on

he best evidence is critical in SLRs. However, analyzing the quality

f the primary studies is not essential in the case of mapping stud-

es, which aim to classify the relevant literature (Kitchenham et al.,

011). In our case, we analyzed the quality or our primary studies

s one characteristic of the state of the art of CD (RQ1.4). There-

ore, the primary studies were not filtered (excluded) based on

heir quality but all primary studies were considered in the analy-

is phase independently of the quality assessment results (i.e., cat-

gorizing the topic area according to their meta-data [RQ1], count-

ng the number of studies in those categories and identifying and

nalysing the factors that characterize CD [RQ2 and RQ3]).

To assess the quality of our primary studies (Fig. 1, step 8),

e applied the method proposed by Ivarsson and Gorschek (2011).

ccordingly, we considered two perspectives: scientific rigour and

ndustrial relevance. Three aspects were used to evaluate scien-

ific rigour: (1) context description: to what degree the context

f the study is described so that it can be understood and com-

ared to another context, allowing the replication of the study; (2)
14 For those research methods that (Unterkalmsteiner et al., 2012) did not consider

n their classification.

t

(

a

t

Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
tudy design: to what degree the design of the study is properly

escribed and guarantees the rigour of the research; and (3) va-

idity discussion: to what extent the validity of the study is con-

idered and evaluated. Rigour was evaluated using a three-point

cale: strong description (1), medium description (0.5) and weak

escription (0). Thus, the assessment of rigour ranged from 3 to 0.

n the other hand, industrial relevance was evaluated according to

our aspects: (1) subjects: whether the subjects of the study were

epresentative of CD practitioners (i.e., they were not students or

esearchers); (2) context: whether the study was performed in a

epresentative setting (i.e., industrial setting); (3) scale: whether

he study size was realistic (i.e., not based on a ‘toy’ example);

nd (4) research method: whether the research method used in

he study contributes to an investigation of real situations (typi-

ally empirical research conducted in representative settings con-

ributes in this sense). In accordance to Ivarsson and Gorschek’s

ethod, relevance was measured using two values: 1 if the as-

ect contributed to industrial relevance and 0 otherwise. There-

ore, the assessments of industrial relevance ranged from 4 to 0.

o analyse the quality of theoretical papers, we adapted Ivarsson

nd Gorschek’s model (Ivarsson and Gorschek, 2011) to the charac-

eristics of theoretical studies. Industrial relevance was measured

n the same way. Therefore, most theoretical papers had low in-

ustrial relevance if they did not include any empirical evalua-

ion of their proposed model, framework or tool. The criteria for

igour were adapted as follows: (1) context description: descrip-

ion of the context in which the theory or model could be ap-

lied; (2) study design: the degree to which the theoretical con-

ribution used sound theoretical bases to guarantee the quality of

he research; and (3) validity discussion: the extent to which the

imitations of the theoretical approach were discussed. For a de-

ailed discussion of the criteria used in Ivarsson and Gorschek’s

odel, the reader is referred to their extensive study on this sub-

ect (Ivarsson and Gorschek, 2011).

.5.3. Continuous deployment factors: P9 - P12

We used the concept ‘factor’ (P9) to identify and categorize the

ecurrent themes in the literature related to CD and create our

lassification schema (RQ2). During the primary study coding pro-

ess (see Section 3.6), we identified factors defining aspects that,

ccording to our primary studies, are relevant in achieving CD. That

s, aspects that are frequently considered in the literature in or-

er to implement CD in practice. The classification schema grew

ith the extraction of the data from the primary studies, and it

as consolidated in workshops attended by the first seven authors.

imilarly, we identified diverse definitions of CD (P10) and com-

ared them in order to understand what researchers meant when

hey refer to the concept of CD (RQ2.1). Finally, in order to answer

Q3, we coded the benefits that the studies claimed were gained

rom the use of CD (P11), as well as challenges or aspects that were

ifficult to implement in the context of CD (P12).

.6. Data analysis and interpretation

Descriptive statistics were used to answer RQ1. Quantitative de-

criptions of frequencies were used to analyse research methods,

ypes of contributions, publication channels, publication years, and

uality of primary studies.

In addition, thematic synthesis (Cruzes and Dyba, 2011)

as used to answer RQ2 and RQ3. In order to identify CD

actors and create a reliable classification schema, we anal-

sed each primary study in two phases, adapting the five

hematic synthesis steps recommended by Cruzes and Dybå

2011). Both inductive and deductive coding were used in the

nalysis. First, primary studies were coded using an induc-

ive approach (Fig. 1, step 9). The goal of this step was to
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

8 P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

5

r

c

i

p

t

s

s

i

c

c

n

3

i

i

c

d

n

d

a

l

fi

p

s

p

w

a

a

s

a

t

d

s

l

w

c

r

fi

e

o

i

w

o

t

t

a

s

s

c

3

o

(

t

b

t

t

c

o

l

i

c

w

identify key CD aspects. Codes emerged from labelling relevant

segments of text that referred to factors important in the context

of CD. For example, many papers made reference to automating the

deployment and a correspondent code was created. Each primary

study was coded by one researcher. Then two full-day workshops

were conducted in order to review the generated codes and the

coding process itself. After a stable list of ‘free-codes’ was created,

the codes of all primary studies were compared and then orga-

nized into higher-order interpretation themes in order to form a

high-level set of categories (descriptive themes). For example, we

found codes that referred to automating different activities in the

development process such as test automation, build automation, in-

tegration automation, deployment automation, automation and con-

figuration management, and we created the theme automation in

order to consider this aspect of CD. Two full-day workshops were

held in order to translate the codes into themes. When the themes

were defined, the second coding phase, which was deductive, was

implemented (Fig. 2, step 10). The goal of this phase was to check

the themes back to the original primary study data. The 50 pri-

mary studies were read again and coded according to the themes

identified in order to ensure that each theme was taken into ac-

count in the analysis of each primary study. During this phase, the

themes were consolidated and organized according to the classifi-

cation schema described in Section 4.5. The themes then were syn-

thesized (results presented in Sections 5 and 6). A theme owner

was nominated for each theme, which was the researcher respon-

sible for synthesizing the content of that theme. A second re-

searcher reviewed the synthesis of the theme to improve its relia-

bility. Definitions, benefits and challenges were identified and anal-

ysed in a similarly deductive manner.

3.7. Validity threats and limitations of the study

A strength of this study is that a number of researchers were

closely involved, allowing for triangulation in all phases of the re-

search. Seven researchers (the first seven authors) actively partici-

pated in the review, and three researchers with experience in con-

ducting SLRs (the last three authors) acted as external reviewers

to validate the research protocol and guide the research process.

Nonetheless, there are some potential threats to the validity of this

mapping study and these need to be considered when interpreting

the results (Fig. 1, step 11b). We next describe these threats to-

gether with the strategies that were applied in order to mitigate

their effects.

3.7.1. Identification of primary studies

The process of identifying the primary studies that constitute a

mapping study is critical for the success of the research. The search

string was built on three main attributes: deployment, continuity

and speed in the context of the software industry (and their closely

related terms). Nonetheless, the threat of missing relevant articles

remains. The attempt to identify the entire body of knowledge in

an emerging topic, such as CD, is very challenging. Inconsistency or

the use of different terminology with respect to the search string

(see Table 2) might have biased the identification of primary stud-

ies. This, however, is a minor threat because of the large volume of

retrieved studies (21,382). In addition, the search string was used

to search in keywords, titles and abstracts. We did not attempt

to design a very precise search string that avoided noise because

of the blurred nature of the phenomenon itself and because we

were able to manage the number of retrieved studies. Thus, our

strategy focused on retrieving as many documents as possible that

were related to CD. For example, as explained in Section 3.2, we

decided to separate the terms deployment and continuous, which

created noise in the studies retrieved. From 15,062 publications

(after the removal of duplicates and non-English documents), only
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
0 were selected as final primary studies. This low precision rep-

esents a moderate threat to the validity of the mapping study be-

ause it induced a significantly higher level of effort when select-

ng the final primary studies. However, seven researchers actively

articipated in the research, which minimizes the influence of this

hreat. In addition, three researchers individually piloted the inclu-

ion and exclusion criteria in order to check their validity. Every

tep in the selection process was conducted by pairs of researchers

n order to minimize subjectivity. When opinions within the pair

onflicted, a third researcher helped to find agreement. In unclear

ases, we were conservative and always included the paper in the

ext screening step.

.7.2. Data extraction

When the primary studies were selected, they were subject to

n-depth analysis. The analysis phase also posed threats to valid-

ty, which also need to be considered. These threats are largely be-

ause of researcher bias. The main countermeasures taken to ad-

ress this threat were researcher triangulation and explicit defi-

itions of the data to be extracted. Three aspects were analysed

uring the data extraction: study properties, quality assessment

nd factor analysis (including definitions of CD, benefits and chal-

enges). Regarding the properties, each property was explicitly de-

ned in the protocol, as indicated in Section 3.5. In addition, each

aper was analysed by one researcher and then reviewed by a

econd researcher, who double-checked that the properties were

roperly collected. In cases of disagreement, a third researcher

orked to achieve a resolution. The same process was applied in

ssessing both aspects of the study’s quality: industrial relevance

nd scientific rigour. It is important to note that in the case of

tudy quality, the evaluation depended on the reporting quality

nd not on the intrinsic quality of the study itself. With regard to

he factor analysis, different countermeasures were used in the in-

uctive coding, deductive coding and study synthesis. A single re-

earcher inductively coded each primary study. This phase was de-

iberately unrestricted to produce‘free-codes’. However, two full-day

orkshops consolidated the inductive coding to generate a reliable

lassification schema (themes identification), which involved seven

esearchers. Once themes were identified, they were formally de-

ned for inclusion in the protocol by two researchers in order to

nsure that all researchers involved had the same understanding

f the themes. Based on the themes identified, the primary stud-

es were deductively coded at the theme level. Deductive coding

as conducted by a single researcher, who was nominated as the

wner of that specific theme with a second researcher reviewing

he theme level coding. When the primary studies were coded at

he theme level, synthesis was carried out by the theme owner

nd then reviewed by two other researchers. In addition, one re-

earcher, who had a global vision of the study, reviewed every

tep in the analysis in order to consolidate the results and ensure

onsistency of the analysis.

.7.3. Publication bias

Publication bias refers to ‘the problem that positive research

utcomes are more likely to be published than negative ones’

Unterkalmsteiner et al., 2012). This problem occurs in any litera-

ure review or mapping study. In our case, its effect was moderate

ecause our study does not aim to compare research outcomes but

o draw a map of the state of the art of CD. Nonetheless, publica-

ion bias may have affected our results regarding the benefits and

hallenges experienced when migrating to CD. The benefits may be

veremphasized, compared to the possible risks. In addition, pub-

ication bias is affected by the sources of information considered

n the study. However, we did not restrict publishers, journals or

onferences. We also used five electronic databases, of which two

ere specialized in the field (ACM Digital Library and IEEE Xplore)
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29 9

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

Fig. 3. Publication distribution-research method.

a

S

i

a

e

a

v

4

s

s

o

t

S

c

t

f

(

o

T

S

d

4

m

t

s

i

m

t

o

(

p

I

t

o

r

r

m

(

Fig. 4. Distribution of research method and publication year.

Fig. 5. Publication distribution-contribution.

c

o

c

g

o

f

a

s

p

r

F

m

4

M

t

i

a

i

c

a

2

m

a

i

e

l

m

nd three offered wide coverage of diverse sciences (ISI Web of

cience, Scopus and Science Direct). Although our results were lim-

ted by scientific studies published in these databases, they covered

wide range of the software engineering literature. In addition, we

xcluded non-peer reviewed scientific studies, book, book chapters

nd short papers because we did not consider that they would pro-

ide reliable information for our study.

. Results: overview of the state-of-the-art of CD

From the initial set of 21,382 publications (see Table 3), 50

tudies were identified as contributing to the topic of CD in the

oftware domain. This section presents an overview of the body

f CD knowledge found from their review. We structure this sec-

ion according to the research questions presented in Table 1.

ections 4.1–4.4 present the research methods used, the kind of

ontributions provided, publications channels and the results of

he quality assessment. Section 4.5 then presents a list of the main

actors (i.e., recurrent themes in the literature) that characterize CD

classification schema). Finally, Section 4.6 presents an overview

f the benefits and challenges of CD identified in the literature.

he main factors, benefits and challenges are further elaborated in

ections 5 and 6, respectively. Table B.10 in Appendix B presents a

etailed overview of each primary study.

.1. RQ1.1: research methods

The primary studies were classified according to the research

ethod used in the study, as defined in Appendix A. Fig. 3 shows

he distribution of the research methods. Most studies on the

tate-of-the-art of CD were empirical in nature (72%, compris-

ng case study, action research, grounded theory, design science,

ixed methods, experiment as well as industry report.). However,

heoretical studies (painted area in the chart), mainly in the form

f models and frameworks, and methods, were also significant

24%, from which 16% were also empirically evaluated). Opinion

apers completed the distribution of the research methods (4%).

nterestingly, a high percentage of primary studies shared practi-

ioners’ experiences regarding the application of CD in the form

f industry reports (36%). Even so, 48% of the studies used quite

igorous empirical research methods such as case studies, action

esearch, grounded theory, design science, experiments and mixed

ethods. Case studies constituted a clear majority of this group

36%, of which 70% were pure empirical research that applied the
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
ase study research method, and 30% were combinations of the-

retical research, mainly frameworks and models, evaluated by

ase studies). Action research (4%), mixed method, design science,

rounded theory and experimentation (2% each) completed the list

f empirical research methods. In general, the results showed that

rom a scientific point of view, the body of CD knowledge is still

t an exploratory stage as a high percentage of the studies pre-

ented the views of practitioners regarding CD. This is natural in a

henomenon that has been especially driven by industry instead of

esulting from the context of a research lab. However, as shown in

ig. 4, the percentage of studies that apply more rigorous research

ethods has been increasing in recent years.

.2. RQ1.2: contributions

Fig. 5 shows the distribution of the research contributions.

any contributions were in the form of CD advice and implica-

ions (16%), lessons learned (27%) and guidelines (5%) when apply-

ng CD. Nonetheless, 48% of the contributions provided concrete

pproaches that could be used to support CD. These approaches

ncluded methods and frameworks for implementing CD (21%) (e.g.

ontinuous Scrum (Agarwal, 2011) and methods for identifying risk

reas in the context of CD (Comas et al., 2011; Antinyan et al.,

014)), models representing relevant concepts of CD (20%) (e.g.,

odels for continuous experimentation (Fagerholm et al., 2014)

nd (Eklund and Bosch, 2012)), and tools supporting the technical

nfrastructure of CD (7%) (e.g. Gamma tool for assisting develop-

rs to monitor deployed systems (Orso et al., 2002)). The complete

ist of frameworks and methods, models and tools identified in the

apping study is listed in Table B.11, Appendix B.
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

10 P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

Fig. 6. Publication distribution by year.

Fig. 7. Distribution by publication year and domain.

Fig. 8. Rigour-relevance overview.

o

p

s

i

w

(

n

e

t

t

t

m

e

q

4

t

r

C

a

i

T

r

i

a

r

s

s

c

d

e

v

b

s

t

s

4.3. RQ1.3: publication years’ frequency distribution and publication

channels

As showed in Fig. 6, the papers reviewed were published

between 2001 and 2014, which indicates the novelty of the

phenomenon. Hence, the research on CD is still in its infancy when

compared with the history of the software engineering discipline.

Although some studies were published between 2001 and 2011,

most were published within the last three years (68%). The pub-

lication of the book on CD by Humble and Farley (2010) has prob-

ably influenced the emergence of scientific studies on the topic.

Still, the large number of recently published studies indicates an

increasing interest in CD and points to the relevance of the area.

An interesting result was the distribution of the study domain

by year (see Fig. 7) which was categorized in embedded systems,

web/Internet based applications or services, and desktop applica-

tions. The category ‘not stated’ (N/S) was used for cases in which

the domain was not clearly defined (see Section 3.5.1). As shown

in Fig. 7, a clear majority of the primary studies were conducted

in the web applications/services domain (42%). 24% of the studies

were in the embedded systems and four studies (8%) were con-

ducted in the context of desktop applications (i.e. Firefox). Finally,

a high percentage of studies (26%) did not clearly describe the do-

main in which the research was conducted. Interestingly, the study

domain and their frequency distribution by year indicated that the

first studies published in the area focused only on web applica-

tions or services (primary studies published between 2001 and

2009). Thus, the first of our primary studies in the embedded do-

main was not published until 2011. Furthermore, the results of the

pertinence of these studies (whether the study was devoted to CD

or had a broader perspective, see Section 3.5.1), showed that 66%

of studies conducted in the web domain fully focused on CD (14

studies), whereas this number decreased to 41% in the case of em-

bedded systems (5 studies). These results indicate that CD is used

more often in web-based applications. Some organizations in the

area of web applications are currently able to deploy many new

versions per day (see the references to organizational white pa-

pers and on-line blogs in Section 2.1). However, this goal is still a

challenge for systems and services in other domains and
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
rganizations, such as in the field of embedded systems. Hence,

rimary studies in the embedded domain are more dedicated to

pecific aspects of CD. The challenges encountered in applying CD

n embedded systems are further elaborated in Section 6.

Regarding publication channels, 84% of the primary studies

ere published in conference proceedings (42 papers), while 16%

8 papers) were published in journals or magazines. Overall, jour-

al publications are subject to a more rigorous review process to

nsure the quality of the research. However, they also take a longer

ime to be published and, this might discourage authors in a field

hat is developing rapidly and is largely driven by industry. Al-

hough the publication channels cannot be used to provide direct

easure of the quality of the studies, it can be interpreted as an

arly indicator. The next section further elaborates on the scientific

uality of the primary studies.

.4. RQ1.4: primary study quality

An assessment of the primary studies’ quality regarding scien-

ific rigour and industrial relevance, as described in Section 3.5.2,

esulted in Fig. 8. The two opinion papers (Poppendieck and

usumano, 2012 and Benefield, 2009) were excluded from this

nalysis as they do not suit the assessment dimensions considered

n Ivarsson and Gorschek’s approach (Ivarsson and Gorschek, 2011).

he raw data for this figure is available in Table B.10, Appendix B.

Regarding industry relevance, 37 primary studies (74%) had a

elevance rating higher than two. Accordingly, most of the stud-

es were conducted in industrial settings involving practitioners on

n industrial scale. From these studies, 14 (28%) lie in the upper

ight quadrant of the chart (rigour ≥2, relevance ≥3). However, 23

tudies (46%) exhibited high industry relevance (relevance ≥3) but

howed low scientific rigour (rigour < 2). In addition, theoretical

ontributions without any empirical evaluation and research con-

ucted with students constituted most of the studies with low rel-

vance. Overall, it can be said that the topic of CD is highly rele-

ant from the perspective of the industry; therefore, CD appears to

e a promising research area because in an applied research field

uch as software engineering, it is the industry that ultimately de-

ermines the relevance of the research results.

Regarding scientific rigour, as many as 28 of the 50 primary

tudies have a rigour value of < 2 (56%). Consequently, the global

scientific evidence of the body of CD knowledge can be considered

as medium-low. With regard to context description, in the major-

ity of the studies, the context in which the research is performed

is not described to a degree such that it can be fully understood

and compared with other contexts. Study design, data collection

and data analysis were, in general, not well described, as many
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29 11

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

Table 5

Continuous deployment factors – mapping study recurrent themes.

Factor Description Frequency Primary studies

1. Fast and frequent

release

Ability to release software whenever the

organization wants to (on demand or at will)

based on need and with preference given to

shorter cycles or even continuous flow

(weekly or daily).

28 (Bellomo et al., 2013b; Trimble and Webster, 2013, 2012; Van

Der Storm, 2005; Nagy et al., 2010; Brown et al., 2013, 2011; Eklund

and Bosch, 2012; Agarwal, 2011; Feitelson et al., 2013; Fitzgerald and

Stol, 2014; Goodman and Elbaz, 2008; Antinyan et al., 2014; Krusche

and Alperowitz, 2014; Krusche et al., 2014; Lacoste, 2009; Ludwig

et al., 2014; Marschall, 2007; Neely and Stolt, 2013; Olsson et al.,

2013; Poppendieck and Cusumano, 2012; Cantor and Royce, 2014;

Comas et al., 2011; Feitelson et al., 2013; Kalantar et al., 2014;

MacCormack, 2001; Middleton and Joyce, 2012; Khomh et al., 2012;

Lavoie and Merlo, 2013; Mantyla et al., 2013; Staron et al., 2012)

2. Flexible product

design and

architecture

CD requires evolutionary and robust software

architecture with the aim of balancing speed

and stability.

9 (Antinyan et al., 2014; Bellomo et al., 2013a, 2013b; Bosch and Eklund,

2012; MacCormack, 2001; Olsson et al., 2013; Van Der Storm, 2005;

Brown et al., 2013; 2011)

3. Continuous testing

and quality assurance

Ensuring the quality of the software at all

times without compromises despite the need

for fast and continuous deployment.

31 (Agarwal, 2011; Antinyan et al., 2014; Bellomo et al., 2013b; Blotner,

2002; Bosch and Eklund, 2012; Comas et al., 2011; Feitelson et al.,

2013; Fitzgerald and Stol, 2014; Goodman and Elbaz, 2008; Humble

et al., 2006; Kalantar et al., 2014; Krusche et al., 2014; Lacoste, 2009;

MacCormack, 2001; Marschall, 2007; Middleton and Joyce, 2012;

Meyer et al., 2013; Neely and Stolt, 2013; Olsson et al., 2012; Trimble

and Webster, 2012, 2013; Ard et al., 2014; Benefield, 2009; Brown

et al., 2013, 2011; Khomh et al., 2012; Mantyla et al., 2013; Nilsson

et al., 2014; Staron et al., 2012; Lavoie and Merlo, 2013; Baysal et al.,

2012)

4. Automation Automating the delivery pipeline from building

and testing to deployment and monitoring.

24 (Agarwal, 2011; Antinyan et al., 2014; Blotner, 2002; Feitelson et al.,

2013; Fitzgerald and Stol, 2014; Goodman and Elbaz, 2008; Humble

et al., 2006; Kalantar et al., 2014; Krusche et al., 2014; Lacoste, 2009;

MacCormack, 2001; Marschall, 2007; Middleton and Joyce, 2012;

Meyer et al., 2013; Neely and Stolt, 2013; Olsson et al., 2012, 2013;

Trimble and Webster, 2013, 2012; Van Der Storm, 2005; Benefield,

2009; Poppendieck and Cusumano, 2012; Ard et al., 2014; Scacchi

and Alspaugh, 2013)

5. Configuration

management

Version control branching strategies and

system configuration management

approaches to enable CD.

12 (Goodman and Elbaz, 2008; Krusche and Alperowitz, 2014; Krusche

et al., 2014; Marschall, 2007; Neely and Stolt, 2013; Feitelson et al.,

2013; Meyer et al., 2013; Humble et al., 2006; Kalantar et al., 2014;

Benefield, 2009; MacCormack, 2001; Van Der Storm, 2005)

6. Customer

involvement

Mechanisms to involve customers in the

development process and collect customer

feedback from deliveries as early as possible

(even near real-time) to drive design

decisions and innovation.

12 (Van Der Storm, 2005; Eklund and Bosch, 2012; Bosch and Eklund,

2012; Feitelson et al., 2013; Ko et al., 2011; Krusche and Alperowitz,

2014; Krusche et al., 2014; MacCormack, 2001; Marschall, 2007;

Olsson et al., 2013; Lavoie and Merlo, 2013; Zade and Choppella,

2012)

7. Continuous and rapid

experimentation

Systematical design and execution of small

field experiments to guide product

development and accelerate innovation.

10 (Bosch and Eklund, 2012; Fagerholm et al., 2014; Feitelson et al., 2013;

Neely and Stolt, 2013; Olsson et al., 2012, 2013; Benefield, 2009;

Eklund and Bosch, 2012; Poppendieck and Cusumano, 2012; Goel

et al., 2014)

8. Post-deployment

activities

Activities that are conducted once the product

(or a new feature or enhancement of the

product) has been deployed to support fast

business and technical decision making.

12 (Agarwal, 2011; Cukier, 2013; Feitelson et al., 2013; Fitzgerald and Stol,

2014; Ko et al., 2011; Krusche and Alperowitz, 2014; MacCormack,

2001; Neely and Stolt, 2013; Olsson et al., 2012; Orso et al., 2002;

Benefield, 2009; Goel et al., 2014)

9. Agile and lean Extending agile and lean software development

towards continuous flow to support CD.

22 (Bellomo et al., 2013a, 2013b; Trimble and Webster, 2013, 2012;

Blotner, 2002; Brown et al., 2013; Agarwal, 2011; Fagerholm et al.,

2014; Goodman and Elbaz, 2008; Gotel and Leip, 2007; Antinyan

et al., 2014; Krusche and Alperowitz, 2014; Krusche et al., 2014;

Marschall, 2007; Neely and Stolt, 2013; Olsson et al., 2013;

Poppendieck and Cusumano, 2012; Ard et al., 2014; Cantor and

Royce, 2014; Feitelson et al., 2013; Middleton and Joyce, 2012; Cantor

and Royce, 2014)

10. Organizational

factors

Organizational factors that enable CD

(integrated corporative functions,

transparency and innovative and

experimental organizational culture).

17 (Bellomo et al., 2013a; Cukier, 2013; Feitelson et al., 2013; Fitzgerald

and Stol, 2014; Gotel and Leip, 2007; Kalantar et al., 2014; Krusche

and Alperowitz, 2014; Krusche et al., 2014; Ludwig et al., 2014;

Marschall, 2007; Middleton and Joyce, 2012; Neely and Stolt, 2013;

Olsson et al., 2013; Brown et al., 2013; Poppendieck and Cusumano,

2012; Papatheocharous et al., 2014; Staron et al., 2012)

o

p

o

t

s

f

t

r

4

i

c

t

a

Section 5.
f the publications were industry reports. In addition, only twelve

rimary studies included a proper validity discussion (i.e. issues

f bias, validity and reliability), whilst four primary studies men-

ioned validity, it was not described in detail. Thus, there is no de-

cription of threats to validity in 34 of the primary studies. There-

ore, it can be concluded that there are important limitations to

he scientific quality of the studies we retrieved and this inevitably

educes the reliability of the results.
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
.5. RQ2: continuous deployment factors

The 50 primary studies cover a wide range of research top-

cs. We categorized them into ten main themes, which together

haracterize the phenomenon of CD. A brief description of each

heme and the primary studies that make reference to each theme

re presented in Table 5. These factors are further elaborated in
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

12 P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

Table 6

Benefits of continuous deployment.

Benefit PS

Shorter time-to-market (Agarwal, 2011; Blotner, 2002; Feitelson

et al., 2013; Goodman and Elbaz, 2008;

Krusche and Alperowitz, 2014; Ludwig

et al., 2014; Middleton and Joyce, 2012;

Olsson et al., 2012, 2013; Neely and Stolt,

2013; Trimble and Webster, 2013, 2012;

Benefield, 2009; Lacoste, 2009;

Marschall, 2007; Neely and Stolt, 2013;

Poppendieck and Cusumano, 2012;

Fagerholm et al., 2014; Khomh et al.,

2012; Lavoie and Merlo, 2013)

Continuous feedback (Gotel and Leip, 2007; Krusche and

Alperowitz, 2014; Krusche et al., 2014;

Ludwig et al., 2014; MacCormack, 2001;

Neely and Stolt, 2013; Trimble and

Webster, 2012; Olsson et al., 2013, 2012;

Cukier, 2013; Feitelson et al., 2013;

Fitzgerald and Stol, 2014; Benefield,

2009; Khomh et al., 2012)

Improved release reliability (Agarwal, 2011; Humble et al., 2006;

Krusche and Alperowitz, 2014; Neely and

Stolt, 2013; Benefield, 2009)

Increased customer satisfaction (Agarwal, 2011; Blotner, 2002; Neely and

Stolt, 2013; Trimble and Webster, 2013;

Khomh et al., 2012)

Improved developer

productivity

(Agarwal, 2011; Gotel and Leip, 2007;

Humble et al., 2006; Benefield, 2009)

Rapid innovation (Feitelson et al., 2013; Goodman and Elbaz,

2008; Olsson et al., 2012, 2013)

Narrower test focus (Comas et al., 2011; Feitelson et al., 2013;

Neely and Stolt, 2013; Khomh et al.,

2012)

Table 7

Challenges of continuous deployment.

Challenge PS

Transforming towards CD (Brown et al., 2013; Marschall, 2007;

Blotner, 2002; Middleton and Joyce,

2012; Neely and Stolt, 2013; Olsson et al.,

2012; Papatheocharous et al., 2014)

Customer unwillingness (Olsson et al., 2013, 2012; Blotner, 2002;

Agarwal, 2011; Orso et al., 2002; Zade

and Choppella, 2012)

Increased QA effort (Agarwal, 2011; Kalantar et al., 2014;

Krusche and Alperowitz, 2014; Marschall,

2007; Meyer et al., 2013; Neely and Stolt,

2013; Khomh et al., 2012; Mantyla et al.,

2013)

CD in embedded domain (Trimble and Webster, 2012; Ard et al.,

2014; Bosch and Eklund, 2012; Lavoie

and Merlo, 2013)

c

d

e

r

5

m

d

t

d

p

r

a

f

W

i

t

s

t

5

r

s

w

a

r

b

o

2

m

t

o

w

d

t

d

(

o

s

t

r

5

f

2

v

e

t

t

a

o

2

q

c

b

p

c

h

t

i

4.6. RQ3: benefits and challenges

The benefits and challenges reported in the primary studies

were identified and synthesized, as reported in Tables 6 and 7.

The benefits experienced when applying CD include shorter

time-to-market, instant feedback, especially from customers when

using proper monitoring and experimentation systems, improved

release reliability, partially as a result of narrower test fo-

cus, and improved customer satisfaction and developer pro-

ductivity. Overall, CD benefits are more often mentioned in

the primary studies than are the challenges; this may be a

consequence of authors and practitioners willingness to re-

port positive rather than negative results. Still, important chal-

lenges were identified regarding the change that moving to-

wards CD implies to the whole organization. These include
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
ustomers’ unwillingness to receive continuous product up-

ates, increased QA efforts and difficulties applying CD in the

mbedded domain. CD benefits and challenges are further elabo-

ated in Section 6.

. Analysis of continuous deployment factors (RQ2)

First, we were interested in understanding what researchers

ean when they refer to the term ‘CD’ (RQ2.1). Table 8 shows

escriptions of continuous deployment and continuous delivery as

hey appear in the primary studies. We did not find any formal

efinition of CD in any of the primary studies; however, there ap-

ears to be some level of agreement amongst authors that CD

efers to the ability of an organization to release software function-

lity directly to customers on demand and at will (deployment),

aster and more frequently than traditional software development.

e observed that there exists a tendency to use the two concepts

nterchangeably (except Fitzgerald and Stol, 2014).

In addition, the CD literature encompasses diverse recurrent

hemes or factors, as listed in Section 4.5. In the remainder of this

ection, we analyse each of the identified factors based on a syn-

hesis of the primary studies.

.1. Fast and frequent release

Several papers in the mapping study discuss fast and frequent

elease as shown in Table 5. Fast release is the ability to release

oftware whenever the organization wants to, based on their need,

hich could be weekly or daily (Neely and Stolt, 2013; Krusche

nd Alperowitz, 2014). Almost all of our primary studies make

eference in one way or another to accelerating the release cycle

y shortening the release cadence and turning it into a continu-

us flow e.g. from months to weeks (Trimble and Webster, 2012;

013; Khomh et al., 2012; Lavoie and Merlo, 2013), or from six

onths (Marschall, 2007) or eight-weeks (Neely and Stolt, 2013)

o a continuous flow. However, achieving fast release in the form

f a continuous flow is not free of charge. For example, Rally Soft-

are (Neely and Stolt, 2013) began to shrink the release cycles

own to fortnightly, weekly, semi-weekly and finally at-will, which

ook months of preparatory work to streamline and automate the

eployment process. In addition, a case study at Mozilla Firefox

Khomh et al., 2012) points out the question whether the quality

f the software product improves as the shorter release cycles re-

ults in shorter testing periods. Also, Lavoie and Merlo (2013) claim

hat accelerating the release cycle can make it harder to perform

e-engineering activities.

.1.1. Continuous planning

The CD literature emphasizes two aspectsrelated to planning

ast and frequent releases: continuity (e.g. Fitzgerald and Stol,

014; Poppendieck and Cusumano, 2012) and taking a holistic

iew of planning (Fagerholm et al., 2014; Nagy et al., 2010; Brown

t al., 2011; Bellomo et al., 2013b; Krusche et al., 2014). Tradi-

ional planning tends to be performed cyclically and is usually

riggered by the annual financial year. However, CD challenges

nd changes traditional planning towards continuous planning in

rder to achieve fast and frequent releases (Fitzgerald and Stol,

014). CD requires that planning activities are done more fre-

uently to ensure alignment between the needs of the business

ontext and software development, requiring tighter integration

etween planning and execution. Fitzgerald and Stol (2014) define

lans as dynamic open-ended artefacts that evolve in response to

hanges in the business environment and require multiple stake-

olders to be involved both from business and software func-

ions. Hence, tighter integration between planning and execution

s required in order to achieve a more holistic view of planning.
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29 13

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

Table 8

Descriptions of continuous delivery and continuous deployment available in the primary studies.

PS Description

Krusche and Alperowitz (2014) ‘Continuous delivery is a set of practices and principles to release software faster and more frequently’.

Neely and Stolt (2013) ‘Officially, we describe continuous delivery as the ability to release software whenever we want. This could be weekly or daily

deployments to production; it could mean every check-in goes straight to production. The frequency is not our deciding factor.

It is the ability to deploy at will’.

Olsson et al. (2012) ‘The concept of continuous deployment, i.e. the ability to deliver software functionality frequently to customers and subsequently,

the ability to continuously learn from real-time customer usage of software’.

Feitelson et al. (2013) ‘ . . . the practices that Internet companies use are known as continuous deployment. This reflects the habit of deploying new

code as a series of small changes as soon as it is ready’.

Olsson et al. (2013) ‘Continuous deployment is the idea that you push out changes to the code all the time instead of doing large builds and having

planned releases of large chunks of functionality’.

Kalantar et al. (2014) ‘ . . . continuous delivery [1] that is, to continuously deploy the environment in a test environment that is reasonably similar to

the actual production environment as part of development and testing efforts and to promote it to production when

appropriate’.

Fitzgerald and Stol (2014) ‘These concepts are related in that continuous deployment is a prerequisite for continuous delivery, but the reverse is not

necessarily the case. That is, continuous delivery refers to releasing valid software builds to users automatically, whereas

continuous deployment refers to the practice of deploying the software to some environment, but not automatically delivering

to customers’.

Agarwal (2011) ‘SaaS products provide an opportunity to provide consumers with continuous deployment of new features, as opposed to

scheduled version upgrades as is the norm for products installed on-premise . . . continuous deployment of new versions of a

software product in production’.

P

a

l

d

c

a

l

p

w

a

a

t

p

r

a

p

5

i

m

r

a

i

2

w

2

e

(

a

a

n

w

i

a

b

t

t

b

b

b

t

l

o

5

d

t

n

F

f

b

r

T

v

w

(

t

c

K

e

t

e

p

(

a

s

c

t

i

i

m

5

a

B

V

s

f

m

t

c

m

b

i

m

oppendieck and Cusumano (2012) suggest considering software

s a flow system where software is designed, developed, and de-

ivered with a steady flow of small changes. A view that is fun-

amentally different from thinking of software development as a

ompleted project, or even thinking about software as a series of

nnual or semi-annual releases. Rapid delivery should not be iso-

ated to the software development alone, and the flow should hap-

en within the overall product development cycle, of which soft-

are is just one aspect. Therefore, continuous planning includes all

ctivities from strategic and business planning to product, portfolio

nd release planning. Similarly, Fagerholm et al. (2014) point out

hat according to software development based on continuous ex-

erimentation (common in CD, see Section 5.7), the experimental

esults should be continuously linked with the product roadmap

s well as managed within a flexible business strategy in order to

rovide guidance for planning activities.

.1.2. Mechanisms for achieving fast and frequent release

Besides continuous planning, other mechanisms are proposed

n the literature to achieve fast and frequent release. Many of these

echanisms are important enough to become themes in their own

ight and are further developed in the following sections. For ex-

mple, most studies highlight automation as essential to achiev-

ng fast and frequent release (e.g. Agarwal, 2011; Neely and Stolt,

013; Marschall, 2007; Van Der Storm, 2005). Close interaction

ith customers (e.g. Trimble and Webster, 2012; Eklund and Bosch,

012; Nagy et al., 2010), having a clear release process (e.g. Ludwig

t al., 2014; Krusche et al., 2014), a release management workflow

Krusche et al., 2014) or a continuous delivery workflow (Krusche

nd Alperowitz, 2014; Krusche et al., 2014) appear also in the liter-

ture as enablers of CD. Staron et al. (2012) present a release readi-

ess indicator, a mechanism to predict in which week the release

ould be possible, given the defect history. In addition, some stud-

es discuss fast release in the context of ASD. For example, Krusche

nd Alperowitz (2014) distinguish between time-based and event-

ased delivery. They claim that fast release, as the teams’ ability

o deliver a potentially shippable product increment at any time in

he project, is particularly useful at the end of the sprint (time-

ased delivery) when delivering the increment to the customer,

ut it also helps to obtain rapid feedback during the sprint (event-

ased delivery). In a similar vein, Agarwal (2011) proposes Con-

inuous Scrum as a mechanism to achieve and sustain a rapid re-

ease cycle (one week product deployment) through parallel devel-

pment.
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
.1.3. Effects of fast and frequent release on product quality

The effects of fast and frequent release on the quality of the

elivered software are also a focus in the literature. The CD litera-

ure highlights that a faster and more frequent release cycle should

ot compromise quality (e.g. Agarwal, 2011; Neely and Stolt, 2013;

eitelson et al., 2013; Khomh et al., 2012). Thus, it is important

or the engineering and QA teams to ensure backward compati-

ility of enhancements, so that users perceive only improvements

ather than experience any loss of functionality (Agarwal, 2011).

hus, the ability to release quickly does not mean that the de-

elopment should be rushed into without a full understanding of

hat is actually being done (Neely and Stolt, 2013). Neely and Stolt

2013) advises monitoring everything to know the exact state of

he system at every moment. Furthermore, based on a case study

onducted on the effect of rapid releases upon quality at Firefox,

homh et al. (2012) found that even though users do not experi-

nce significantly more post-release bugs in comparison with the

raditional release model, program crashes occur earlier and users

xperience bugs earlier during execution. In another similar em-

irical study in the context of Mozilla Firefox, Lavoie and Merlo

2013) suggest that the rapid release model makes re-engineering

ctivities harder to achieve and even though the code changes are

maller, they become a more important risk with a fast release

ycle. In addition, the authors found that code change activities

end to focus more on bug fixing and maintenance than functional-

ty expansion. However, there is no significant difference concern-

ng the volume of changes among rapid release and a traditional

odel.

.2. Flexible product design and architecture

Several primary studies make reference to product architecture

nd design (Antinyan et al., 2014; Bellomo et al., 2013a, 2013b;

osch and Eklund, 2012; MacCormack, 2001; Olsson et al., 2013;

an Der Storm, 2005; Brown et al., 2013, 2011). CD demands a

oftware architecture in which the product and its underlying in-

rastructure continuously evolve and adapt to changing require-

ents (Brown et al., 2013; MacCormack, 2001). Thus, it is essen-

ial that the underlying architecture is flexible and is able to ac-

ommodate rapid feedback (Bellomo et al., 2013a, 2013b; MacCor-

ack, 2001). However, at the same time, the architecture must

e robust enough to allow the organization to invest its resources

n offensive initiatives (e.g. new functionality, product enhance-

ents and innovation) rather than defensive efforts (e.g. bug fixes)
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

14 P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

r

2

s

C

t

g

M

t

s

c

w

t

i

t

w

s

o

g

2

5

t

(

M

a

e

2

a

c

u

2

a

e

(

s

c

s

c

a

c

(

s

M

e

s

e

c

a

m

S

d

a

m

B

N

i

m

u

d

m

i

(

(Bellomo et al., 2013b, 2013a; MacCormack, 2001; Brown et al.,

2013). To achieve this, the software architecture and design have to

be highly modular and loosely coupled (MacCormack, 2001; Ols-

son et al., 2013; Bellomo et al., 2013b). In addition, what seems

essential in the context of CD is that the software architecture

accommodates mechanisms to rollback unsuccessful deployment

(Olsson et al., 2013), supports independent deployment of a partic-

ular component rather than the entire system (Olsson et al., 2013;

Van Der Storm, 2005) and enables experimentation through run-

time variation of functionality as well as data collection mecha-

nisms (Bosch and Eklund, 2012; Olsson et al., 2013).

The main challenge with regards to software design and archi-

tecture in the context of CD is the ability to maintain the right bal-

ance between speed (quickly delivering functionality to the users)

and stability (providing reliable and flexible architecture) (Bellomo

et al., 2013b; Brown et al., 2011). To overcome this challenge,

some approaches propose a focus on measuring and monitoring

source code and architectural quality. For instance, Bellomo et al.

(2013a; 2013b) suggest extending prototyping to include quality at-

tributes, such as performance or security-related issues (i.e. proto-

typing with a quality attribute focus), as a method of incorporat-

ing both functional and non-functional requirements in the con-

text of CD. Rapid architecture trade-off analysis to accommodate

rapid feedback and evaluate design options (Bellomo et al., 2013a),

quantifying architectural dependencies by combining Design Struc-

ture Matrix (DSM) and Domain Mapping Matrix (DMM) techniques

(Brown et al., 2011) and identifying and assessing risky areas of the

source code based on diverse metrics (Antinyan et al., 2014) are

also mechanisms proposed to maintain speed and stability. These

mechanisms provide systematic feedback, bring more visibility and

awareness to stakeholders and finally trigger re-factoring and re-

architecture initiatives when needed (Bellomo et al., 2013b; Brown

et al., 2011; Antinyan et al., 2014).

5.3. Continuous testing and quality assurance

Empirical evidence shows that most companies typically per-

form testing activities late in the development process causing un-

predictable additional development efforts (Nilsson et al., 2014)

and significant delays in releases (Staron et al., 2012). Many

primary studies emphasize the importance of employing testing

and quality assurance (QA) practices throughout the whole de-

velopment process in the context of CD, as features are rolled

out, and not just at the end of the development (e.g. Agarwal,

2011; Neely and Stolt, 2013; Blotner, 2002; Fitzgerald and Stol,

2014; Trimble and Webster, 2012; Goodman and Elbaz, 2008;

Marschall, 2007). Thus, continuous testing aims to bring test-

ing practices as close as possible to developers in order to

avoid leaving testing activities only at the end of development

(Fitzgerald and Stol, 2014).

In addition, a common problem in the testing activities is that

many individual developers do not have an end-to-end overview

of all the testing activities that are conducted during the soft-

ware development process, other than their own individual activ-

ities (Nilsson et al., 2014; Baysal et al., 2012). As a consequence

several problems such as duplication of test efforts and slow feed-

back loops are further testing challenges. To help alleviate these

problems in the particular context of CD, authors emphasize the

need to make all testing activities transparent to individual devel-

opers (Baysal et al., 2012) and using different techniques that help

to describe and give a holistic overview of all testing activities such

as CIViT – Continuous Integration Visualization Technique (Nilsson

et al., 2014).

An important observation from studies conducted in open

source software, particularly Firefox, was a slight increase on

the number of reported bugs observed during testing in rapid
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
elease mode compared to traditional development (Khomh et al.,

012; Mantyla et al., 2013; Lavoie and Merlo, 2013). These

tudies on Firefox’s transition to rapid releases also revealed that

D allows less time for testing activities but enables fast and

horough investigation of software features with the highest re-

ressions risk at a relatively narrower scope (Khomh et al., 2012;

antyla et al., 2013). The implication of the latter is that when

ransitioning to CD tremendous changes in terms of testing re-

ources and strategies need to take place to make the testing pro-

ess more sustainable in CD. Therefore, it remains crucial to assess

hether such changes have significant impacts to the quality of

he product (Mantyla et al., 2013).

On the other hand, improvements to existing testing practices

n terms of fast feedback of code changes to developers during

esting activities is expected in CD regardless of whether the soft-

are is open source or not (Baysal et al., 2012; Trimble and Web-

ter, 2013). Reported strategies to continuously ensure the quality

f the software in the context of CD include not only testing strate-

ies but also creating a company culture of quality (Feitelson et al.,

013).

.3.1. Test automation

Well-known testing techniques in ASD, such as test automa-

ion, are also crucial in CD in order to achieve continuous testing

Agarwal, 2011; Feitelson et al., 2013; Goodman and Elbaz, 2008;

arschall, 2007; Neely and Stolt, 2013; Olsson et al., 2012; Fitzger-

ld and Stol, 2014; Humble et al., 2006; Krusche et al., 2014; Meyer

t al., 2013; Lacoste, 2009; Trimble and Webster, 2013; Benefield,

009; Nilsson et al., 2014). According to our primary studies, test

utomation ensures: (a) quality of software through extensive test

overage (Goodman and Elbaz, 2008; Marschall, 2007), (b) contin-

ous integration and release of quality software (Neely and Stolt,

013; Humble et al., 2006; Krusche et al., 2014; Lacoste, 2009)

nd (c) provide early feedback to the development team (Humble

t al., 2006) so that issues are resolved and root causes eliminated

Fitzgerald and Stol, 2014). In test automation, a variety of test

uites: unit, functional, integration, and performance tests are exe-

uted at different phases (Humble et al., 2006) and with different

cope: component, subsystem, partial product, product, release and

ustomer (Nilsson et al., 2014). These test suites use practices such

s automated execution of test scripts on a build server after each

ode commit to test and check the status of the code or the build

Agarwal, 2011; Lacoste, 2009; Marschall, 2007; Trimble and Web-

ter, 2013), automating acceptance testing (Humble et al., 2006;

iddleton and Joyce, 2012), automatic testing of the production

nvironment in non-embedded software (Kalantar et al., 2014) and

imulation to demonstrate and test the quality of software much

arlier for embedded software (Ard et al., 2014). In addition, effi-

ient prioritization and the ordering of automated test execution

re emphasized in order to ensure fast feedback to the develop-

ent team as well as the proper use of resources (Fitzgerald and

tol, 2014; Humble et al., 2006).

Two primary approaches that facilitate test automation, code

riven testing (e.g. TDD and test planning (Neely and Stolt, 2013))

nd GUI testing are discussed. Code driven testing practices are

ostly preferred by practitioners working in CD (Agarwal, 2011;

ellomo et al., 2013b; Middleton and Joyce, 2012; Blotner, 2002;

eely and Stolt, 2013; Brown et al., 2013). However, due to lim-

tations such as high costs and the effort required to train and

anage test-programs, Agarwal (Agarwal, 2011) recommends the

se of automated GUI testing. GUI testing is seen as a lead in-

icator of bugs that typically appear in a production environ-

ent (Neely and Stolt, 2013). More details on how GUI testing

s implemented in practice are given in the Automation theme

Section 5.4).
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29 15

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

5

t

(

a

a

a

b

F

e

e

i

b

f

t

a

m

(

i

l

p

(

f

5

c

r

w

e

t

t

b

5

i

I

d

i

t

e

d

m

(

t

n

m

i

A

e

a

i

s

p

i

c

E

r

s

e

5

t

w

p

(

t

t

H

d

t

a

c

5

(

a

A

2

m

t

a

r

2

A

t

i

a

p

e

p

E

t

d

2

i

e

w

d

o

p

A

L

e

p

o

c

i

e

w

g

i

b

L

t

H

d

F

p

(

fi

p

F

a

p

i

.3.2. Testing with users

Testing new features while in real use and using a small frac-

ion of actual end users, is also emphasized when aiming to CD

Feitelson et al., 2013; Lacoste, 2009; Neely and Stolt, 2013; Bosch

nd Eklund, 2012; MacCormack, 2001; Khomh et al., 2012). This

pproach provides immediate feedback about the feature quality

s perceived by users, allowing developers to quickly discover new

ugs to fix (Lacoste, 2009; MacCormack, 2001; Khomh et al., 2012).

or example, Facebook reports testing new features internally by

mployees and later by a subset of real world users (Feitelson

t al., 2013), before making them available to all users. Similarly,

n Lacoste (2009) testing new features in real use is done with

eta users who are also actual users. When the result of testing

eatures in real use is satisfactory, features are deployed to the en-

ire user base. Otherwise, alternative mechanisms such as rollback

re executed (Feitelson et al., 2013; Neely and Stolt, 2013). Further-

ore, although this approach is mainly used in web applications

Feitelson et al., 2013; Lacoste, 2009), there is also evidence of test-

ng in real use in the embedded domain, but with the aim of estab-

ishing a proof-of-concept as the system is not intended for mass

roduction (Bosch and Eklund, 2012). See Customer involvement

Section 5.6) and Post-deployment activities (Section 5.8) themes

or more details.

.3.3. Creating a culture of quality

It is also suggested that continuous testing and QA embody a

ulture of developer responsibility in which developers bear the

esponsibility for writing good code, perform thorough tests as

ell as support the operational use of their software (Feitelson

t al., 2013; Marschall, 2007; Trimble and Webster, 2013). As sys-

ems become larger and more complex, such culture complements

est automation systems and allows the quality of the software to

e maintained at scale.

.3.4. Technical debt

Finally, another important aspect observed and related to qual-

ty assurance in the context of CD is the concept of technical debt.

t was noted that as a consequence of trade-offs between the fast

eployment of software and poor development, testing and qual-

ty assurance practices, organizations acquire technical debt over

ime (Middleton and Joyce, 2012; Bellomo et al., 2013b; Brown

t al., 2011). As technical debt causes architecture quality degra-

ation over time, organizations applying CD need to continuously

onitor and measure the quality of the degrading architecture

Bellomo et al., 2013b; Brown et al., 2011). Interestingly, two au-

hors in our review have separately studied measurement tech-

iques to determine risky files in embedded software develop-

ent (Antinyan et al., 2014) and the risk associated with deploy-

ng certain features (Comas et al., 2011). The method proposed by

ntinyan et al. (2014) is based on measuring a set of code prop-

rties, such as McCabes cyclomatic complexity, in order to identify

reas of source code that may be faulty and difficult to maintain

n order to provide quick feedback to developers. Risk assessment

coring heuristics for software deployment is another method pro-

osed by Comas et al. (2011). The method proposes decompos-

ng web application into different functionality tiers to identify

hanges and the requirements needed to implement the changes.

ach change implemented in the software is analysed along with

isk. The result of the analysis is used to provide information to

ystem integrators about the risky areas on which to focus their

fforts e.g. testing in appropriate places.

.4. Automation

In the context of CD, the focus is on automating the en-

ire delivery pipeline. Prior to CD only parts of the pipeline
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
ere automated. However, the CD literature highlights the im-

ortance of eliminating all manual steps from build to deploy

Goodman and Elbaz, 2008; Neely and Stolt, 2013)extending con-

inuous integration with release and deploy automation, and au-

omated configuration management of deployment environments.

umble et al. (2006) recommend automating build, testing, and

eployment in the early stage of the project and to evolve the au-

omation along with the application. Furthermore, automation is

lso needed for measuring and improving the work, which con-

erns the whole delivery pipeline.

.4.1. Continuous integration

Continuous integration (CI) is one of the main enablers of CD

Olsson et al., 2012, 2013; Goodman and Elbaz, 2008; Fitzger-

ld and Stol, 2014; Trimble and Webster, 2012; Ard et al., 2014;

garwal, 2011; Humble et al., 2006; Krusche et al., 2014; Lacoste,

009; Marschall, 2007). The main advantage of CI is that it auto-

ates tasks such as compiling code, running unit and acceptance

ests, monitoring and validating code coverage, checking compli-

nce with coding standards, static code analysis, automatic code

eview and building deployment packages (Fitzgerald and Stol,

014; Agarwal, 2011; Marschall, 2007; Trimble and Webster, 2013;

rd et al., 2014). Therefore, CI provides mechanisms to ensure that

here is always a shippable product that has passed all of the test-

ng phases (Fitzgerald and Stol, 2014; Olsson et al., 2013). Fitzgerald

nd Stol (2014) report that the frequency of integration is as im-

ortant as automation itself. Thus, the frequency should be high

nough to ensure quick feedback to developers. CI is usually cou-

led with feedback mechanisms (e.g. dashboards) (Goodman and

lbaz, 2008; Humble et al., 2006; Lacoste, 2009; Marschall, 2007)

hat enable rapid feedback on source code and triggers for imme-

iate problem resolutions (Fitzgerald and Stol, 2014; MacCormack,

001). Regarding the application domain, the main challenge of us-

ng CD in embedded systems is that physical assets and hardware

quipment should also support CI in order to benefit from CD as a

hole. To overcome this problem, Ard et al. (2014), in the avionics

omain, propose a simulated integrated system that facilitates CI

f embedded systems.

The level of automation of CI system varies depending on the

rimary study (Trimble and Webster, 2013, 2012; Blotner, 2002;

garwal, 2011; Goodman and Elbaz, 2008; Humble et al., 2006;

acoste, 2009; Marschall, 2007; Neely and Stolt, 2013; Feitelson

t al., 2013; Middleton and Joyce, 2012; Benefield, 2009; Pop-

endieck and Cusumano, 2012). Guidance and working practices

n structuring the CI pipeline and what possible stages and tools

an be used in the pipeline are reported in several primary stud-

es (Goodman and Elbaz, 2008; Humble et al., 2006; Feitelson

t al., 2013; Trimble and Webster, 2013, 2012; Lacoste, 2009; Agar-

al, 2011; Antinyan et al., 2014). Goodman and Elbaz (2008) sug-

est automating quick builds in order to provide developers with

nstant feedback. Trimble and Webster (2013); Goodman and El-

az (2008) perform nightly builds. In Trimble and Webster (2012);

acoste (2009), the CI-system automatically closes the source con-

rol repository from further commits in case of a build failure.

umble et al. (2006) suggest using several testing stages in which

ifferent types of testing should be independent from each other.

acebook (Feitelson et al., 2013) integrates a code review stage as

art of the build process using the tool Phabricator. Antinyan et al.

2014) develop an automatic measurement system to identify risky

les that may need refactoring.

Automated GUI-testing seems to be a popular practice in our

rimary studies (Agarwal, 2011; Trimble and Webster, 2012, 2013;

eitelson et al., 2013; Neely and Stolt, 2013). In GUI testing ‘test-

utomation software is used to record mouse movements and key-

resses, and replay these when needed’ (Agarwal, 2011). However,

mplementing automated GUI testing in practice is challenging
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

16 P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

i

t

e

m

a

r

u

P

e

m

(

a

j

5

r

t

5

c

m

a

(

(

a

i

a

a

a

a

o

t

m

i

r

t

t

m

a

m

s

w

i

e

o

t

c

5

b

d

c

g

a

T

d

a

c

r

(Agarwal, 2011) because it needs to be flexible enough to test

different scenarios (Trimble and Webster, 2013) and do so at a

fast-pace (Neely and Stolt, 2013). Agarwal (2011) also notes the

need for manual observation during automatic GUI testing because

the testing software is not able to identify the occurrence of (unex-

pected) errors due to difficulties in identifying errors automatically.

Watir and Webdriver are used in Facebook for automated GUI test-

ing (Feitelson et al., 2013).

5.4.2. Release and deploy automation

Many of our primary studies extend beyond traditional CI into

release and deploy automation (Agarwal, 2011; Goodman and El-

baz, 2008; Humble et al., 2006; Neely and Stolt, 2013; Feitelson

et al., 2013; Van Der Storm, 2005). As an example Agarwal (2011)

suggest an automation system to integrate the configuration man-

agement, build, release and testing processes. The system provides

developers with a means to migrate changes from one environ-

ment to another (e.g. development to production). Thus, the sys-

tem would allow a release manager to perform a release with se-

lected content, and to upgrade the software in the target environ-

ment. In a similar vein, Facebook (Feitelson et al., 2013) has a tool

for deployment (Gatekeeper) that allows the developers to turn

features on and off in the code, and to select which user groups

see which features.

Various type of guidance, working practices, and tools for

automated deployment and monitoring are provided in Humble

et al. (2006); Kalantar et al. (2014); Meyer et al. (2013); Feitelson

et al. (2013); Neely and Stolt (2013); Scacchi and Alspaugh (2013).

Humble et al. (2006); Kalantar et al. (2014); Meyer et al. (2013)

support automated deployment to all types of environments (de-

velopment, test, staging, production). Feitelson et al. (2013) report

on how Facebook performs multi-stage deployment where inter-

nal testing and performance testing are performed before deploy-

ment to production. Neely and Stolt (2013) report the experiences

of Rally Software when mimicking test environments to production

environment. This lowers the risk in deployment and provides ad-

vice to identify barriers that prevent delivery from a commit. De-

vOps also provided practices for automatically linking operations

with development and QA functions. For example, with DevOps

configuration management becomes another form of source code

that can be automatically managed using standard source devel-

opment techniques (Meyer et al., 2013). In addition, deployment

monitoring tools for global deployment are discussed in Neely and

Stolt (2013); Feitelson et al. (2013) (e.g. Feitelson et al., 2013 use

BitTorrent). Although most of the primary studies acknowledge

the benefits that automation brings in the context of CD, there

were also studies that noted the possible limitations that automa-

tion might imply in terms of flexibility for adapting and config-

uring systems to particular organizations or development contexts

(Scacchi and Alspaugh, 2013).

5.4.3. Automation of configuration management for deployment

environments

The configuration management system (CM) is also automated

in CD, which enables automated provisioning and deployment to

various target environments. Meyer et al. (2013) describe an auto-

mated CM tool that specifies configuration actions using a high-

level declarative language stored on a central server. Using this

tool, client machines compare their configuration state to the cen-

tral configuration specifications after which configuration actions

are applied as necessary to bridge the gap between the cur-

rent configuration and the desired configuration. Kalantar et al.

(2014); Humble et al. (2006); Benefield (2009) also describe auto-

mated CM systems. For example, Kalantar et al. (2014) developed

Weaver, a system to manage the configuration of an entire environ-

ment, including software components that span systems and the
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
nfrastructure elements that are needed to support them. To do

his, they defined a Domain Specific Language to specify blueprint

nvironments, and at runtime execute the blueprints to create or

odify environments. The system allows validation of blueprints

t design, deployment, and runtime. However, it is not intended to

eplace low level automation building blocks to install and config-

re individual software components (e.g. scripting languages, Chef,

uppet). Benefield (2009) suggests a similar system to Kalantar

t al. (2014) in which they can manage configuration and deploy-

ent to a system. In addition, Humble et al. (2006); Kalantar et al.

2014); Meyer et al. (2013) treat deployment scripts (or blueprints)

s code which is stored under version control and can also be sub-

ect to automated tests as noted in Meyer et al. (2013).

.5. Configuration management

Besides automating CM, two main topics emerge in the review

egarding CM and CD: version control branching strategies and sys-

em configuration management.

.5.1. Version control branching strategies

Version control branching strategies aim for regular and in-

remental delivery, lower integration risk (due to more frequent

erges) and improved coordination between teams. Goodman

nd Elbaz (2008); Krusche and Alperowitz (2014); Krusche et al.

2014); Marschall (2007); Neely and Stolt (2013); Feitelson et al.

2013) discuss version control branching strategies that are suit-

ble for CD. Using a single branch, without any private branches,

n order to keep the continuous deployment of new function-

lity simple is reported in Goodman and Elbaz (2008); Neely

nd Stolt (2013). However, most studies in the review report

s using both main (or master) and separate branches. For ex-

mple, Marschall (2007); Feitelson et al. (2013) report the use

f a main branch that is kept releasable all the time. In addi-

ion, separate branches are used for each user story, which are

erged into the main branch after passing quality gates. In a sim-

lar vein, Krusche and Alperowitz (2014); Krusche et al. (2014)

eport experiences with a branching model called git-flow.15 In

heir variation of git-flow, features are developed in separate fea-

ure branches, after which they are merged into the develop-

ent branch to be shared with other developers. Internal releases

re triggered when developers merge feature branches into the

ain development branch (under the release manager’s supervi-

ion). Neely and Stolt (2013) describe the use of a master branch,

hich encourages small size stories in order to make merges eas-

er. Thus, long running branches or feature branches are rarely

mployed in this case. However, instead of feature branches the

rganization uses feature toggle through an administration in-

erface to switch the toggles and clean them after a story is

ompleted.

.5.2. System configuration

Meyer et al. (2013); Humble et al. (2006); Kalantar et al. (2014)

ase CM on automation as described in Section 5.4.3. In addition,

ifferent strategies are proposed in the literature to manage system

onfiguration in CD.

In order to make system CM easier, Humble et al. (2006) sug-

est deploying the same software binaries in every environment

nd maintaining runtime configuration separately from binaries.

o facilitate the identification of problems and solutions, frequent

eployments, where each deployment introduces only a limited

mount of new code, characterize the software development pro-

ess at Facebook (Feitelson et al., 2013). In case of problems they

oll back single commits and any of their dependencies, or if that
15 http://nvie.com/posts/a-successful-git-branching-model/ .

f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://nvie.com/posts/a-successful-git-branching-model/
http://dx.doi.org/10.1016/j.jss.2015.12.015

P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29 17

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

i

b

e

o

m

h

r

g

p

V

c

i

c

5

d

b

t

E

i

d

e

a

t

c

o

c

d

f

m

i

f

a

s

c

i

t

(

c

d

l

c

o

b

R

t

a

b

f

(

G

a

e

t

f

t

n

M

m

s

u

i

2

u

a

u

s

f

h

c

s

p

t

c

m

s

c

i

t

p

e

a

u

w

r

o

v

c

t

e

p

5

e

2

p

2

2

a

a

p

b

a

e

m

o

e

c

a

o

c

2

t

a

(

t

m

(

m

(

b

2

i

s not possible, they revert the whole binary (consisting of possi-

ly multiple commits) to the previous working version (Feitelson

t al., 2013). They also suggest reverting back commits of devel-

pers who are not present during the delivery in order to mini-

ize deployment problems. In a similar vein, MacCormack (2001)

ighlights the importance of being able to trace feedback from a

elease to a particular revision of software. Benefield (2009) sug-

ests an atomic packaging scheme where versioned self-contained

ackages can be independently released and rolled back. Finally,

an Der Storm (2005) develops a theoretical model for upgrading

omponent-based software in which every release references all of

ts dependencies, and where releases can be tracked back to source

ode.

.6. Customer involvement

One characteristic of CD is collecting customer feedback from

eliveries as early as possible (even near real-time) in order to

ase design decisions on real customer usage and thus use cus-

omer input as the main driver for innovation (Olsson et al., 2013;

klund and Bosch, 2012). The importance of customer feedback

s highlighted not only in requirements elicitation, prioritization,

efinition of user stories and ‘definition of done’ (DoD) (Krusche

t al., 2014; Bosch and Eklund, 2012; Feitelson et al., 2013) but

lso in other phases of the product development such as accep-

ance testing. For example, Marschall (2007) suggests developing

ustomer tests in a way that the customer is required to sign off

n each user story (or product feature) before it can be considered

omplete.

Customer involvement in CD concerns the following tasks: (1)

etermining from whom feedback is collected, (2) what issues

eedback addresses, (3) how feedback is collected and in which for-

at, (4) how feedback is processed and (5) how feedback is taken

nto account in the development process. Some approaches can be

ound in the CD literature regarding the three first items; however,

pproaches for processing feedback and taking it into account are

carce.

Regarding the first task, determining from whom feedback is

ollected, it depends on the kind of feedback that is required or

nteresting to gather. Olsson et al. (2013) propose locating lead cus-

omers who serve as role models for other customers. MacCormack

2001) suggests that a valuable avenue for identifying lead (beta)

ustomers is through exploring the company’s customer-support

atabase. Ko et al. (2011) also warn about the importance of se-

ecting a sample of customers that is representative of the user

ommunity and discusses challenges when using a vocal minority

f existing users.

The second and third tasks refer to how to get customer feed-

ack and limit it so that it targets only the specific issue at hand.

egarding getting feedback for bug fixes, Van Der Storm (2005) in-

roduces a component-based system in which specific components

re automatically delivered after fixing the bug and customer feed-

ack is accurately collected. This allows for getting fast feedback

or a specific issue on which a developer is focused at the time

Krusche and Alperowitz, 2014; Krusche et al., 2014). In Facebook,

atekeeper is used to control which parts of the code are actu-

lly active for customers (Feitelson et al., 2013). With Gatekeeper,

ngineers can turn tests on and off at will and also apply them

o selected user groups. In this way, the feedback is collected only

rom the active parts of the code. Gatekeeper can also be used to

urn off new code that is causing problems, thereby reducing the

eed to immediately deploy a correction (Feitelson et al., 2013).

oreover, automated tools such as a delivery server or deploy-

ent pipeline allow customers to give feedback directly within the

oftware in a structured way (Krusche and Alperowitz, 2014; Kr-

sche et al., 2014). In addition, monitoring customer usage scenar-
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
os (even without the user knowing about it) (Bosch and Eklund,

012); A/B testing as an experimental approach to find out what

sers want (Feitelson et al., 2013); and prototypes and mock-ups

s the first visualization of user interface (MacCormack, 2001) are

seful for collecting feedback and helping with an accurate under-

tanding of customer expectations.

However, the literature does not provide significant solutions

or tasks four and five, i.e., how the feedback is processed and

ow the feedback is taken into account in the development pro-

ess. When collecting customer feedback, especially when using

tructured feedback channels, there needs to be mechanisms in

lace to process incoming feedback and to interpret the informa-

ion quickly. Excepting MacCormack (2001), which proposes a pro-

edure where the first thing that developers have to do in the

orning is to check if there are problems in their latest submis-

ion regarding feedback for daily builds, mechanisms for systemati-

ally processing feedback were not elaborated in the primary stud-

es. Nevertheless, the literature does emphasize close collabora-

ion with the customer, especially during requirements elicitation,

rioritization and the definition of user stories and DoD (Krusche

t al., 2014; Bosch and Eklund, 2012). Moreover, there are warnings

bout the effects that continuous changes in a product might have

pon customers. For example, Lavoie and Merlo (2013) notes that

hen doing fast releases, how much and what to change between

eleases must be seriously considered, as this has a direct impact

n the interactions between users and developers. In the same

ein, Zade and Choppella (2012) highlight that in fast releases,

hanges in user interfaces need to be provided with serious atten-

ion. If the way a user interacts with the software changes consid-

rably between releases, then a negative impact on customer ex-

erience is likely.

.7. Continuous and rapid experimentation

Ten primary studies, published during recent years, make ref-

rence to continuous and rapid experimentation (Feitelson et al.,

013; Eklund and Bosch, 2012; Bosch and Eklund, 2012; Pop-

endieck and Cusumano, 2012; Olsson et al., 2012, 2013; Benefield,

009; Fagerholm et al., 2014; Neely and Stolt, 2013; Goel et al.,

014). Although the literature lacks a unified definition, continuous

nd rapid experimentation in the context of CD refers to system-

tically designing and executing small field experiments to guide

roduct development and accelerate innovation; thus, it aims to

ase the business and design decisions of product enhancements

nd new functionality on data rather than on stakeholder opinions,

ven if they are experts in the area (Eklund and Bosch, 2012).

The ‘Stairway to Heaven’ model suggested R&D as an experi-

ental system as the last step of its evolutionary path of software

rganizations from traditional methods to CD and beyond (Olsson

t al., 2013, 2012). It describes a situation where the organization

onstantly conducts experiments to guide product development

nd accelerate innovation and decision-making. To achieve this

bjective, companies need to adopt a short-cycle innovation pro-

ess centred on customer feedback and usage data (Olsson et al.,

012, 2013). This information is used to guide the evolution of

he system and the actual deployment of new software function-

lity (Olsson et al., 2012, 2013). For example, Facebook uses A/B

split) testing as an experimental approach to immediately iden-

ify user needs and values rather than trying to elicit require-

ents following the traditional requirements engineering approach

Feitelson et al., 2013). When using A/B testing, randomized experi-

ents are conducted over two or more variants of an enhancement

or similar feature) in order to compare how they are perceived

y end-users through statistical hypothesis testing (Feitelson et al.,

013; Benefield, 2009). This experimental approach is largely facil-

tated by the fact that CD significantly reduces the gap between
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

18 P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

e

o

m

r

d

a

a

e

t

t

i

e

n

n

t

w

N

m

p

T

o

2

5

i

fi

a

t

A

c

i

i

e

m

u

e

d

t

m

o

T

s

f

a

a

p

a

l

o

(

U

p

B

g

2

fl

a

t

p

(

the company and its customers (see Customer involvement theme,

Section 5.6) (Benefield, 2009; Feitelson et al., 2013).

In order to enable continuous and rapid experimentation, ar-

chitectural infrastructure for runtime variability of functionality,

mechanisms for data collection and rollback mechanisms to revert

changes are required (Olsson et al., 2013). For instance, Rally Soft-

ware (Neely and Stolt, 2013) suggested A/B testing with Feature

Toggle as a technique to manage and support run-time variabil-

ity of functionality. Goel et al. (2014) describe the development of

an infrastructure for fast upgrade of database systems which en-

abled Facebook to deploy experimental software builds and im-

provements on a large scale of machines without degrading the

systems uptime and availability. Apart from technological require-

ments, organizational functions, which includes release and prod-

uct management as well as innovation and R&D, must be well

aligned and tightly integrated (Olsson et al., 2013, 2012).

It is interesting to observe that continuous experimentation has

been proposed not only in the context of web applications in com-

panies such as Facebook or Rally Software, where innovation cy-

cles are naturally shorter, but also in the context of embedded sys-

tems. For example, Eklund and Bosch (2012) and Bosch and Eklund

(2012), in the automotive industry, present the innovation exper-

iment system (IES). IES is an evolution of current R&D practices

moving from considering innovation as a process internally guided

and assessed by the original system manufacturer to a process in

which innovation is actually evaluated by real users at scale. How-

ever, the literature also recognizes the limitations of applying the

experimental paradigm in the context of safety critical or other

systems that require certification and heavy verification and vali-

dation processes (Bosch and Eklund, 2012; Fagerholm et al., 2014).

Regarding how continuous and rapid experiments are actually

conducted, the CD literature is quite scarce. Fagerholm et al. (2014)

present an initial model for continuous experimentation com-

posed of an experimentation cycle based on build-measure-learn

blocks and their underlying infrastructure. The build-measure-

learn blocks structure the activity of conducting experiments and

connect product vision, business strategy and technological prod-

uct development through experimentation. On the other hand, the

underlying infrastructure of the model comprises three layers, in-

cluding roles involved in running the experiment, enabling tech-

nical infrastructure and information artefacts that are needed for

conducting the experiments.

5.8. Post-deployment activities

The theme of post-deployment activities refers to those activ-

ities that are conducted once the product (or a new feature or

enhancement of the product) has been deployed (Olsson et al.,

2012). CD has created a large number of new opportunities not just

for observing user behaviours and monitoring how systems and

services are being used (Cukier, 2013; Benefield, 2009), but also

for identifying unexpected patterns and runtime issues (Cukier,

2013; Krusche and Alperowitz, 2014), monitoring system quality

attributes (Cukier, 2013; Feitelson et al., 2013; Fitzgerald and Stol,

2014) and collecting real-time data to feed both business and tech-

nical planning (Benefield, 2009). For instance, Orso et al. (2002)

proposed an approach to perform different monitoring tasks and

collect useful information on their software’s behaviour. In addi-

tion, continuous monitoring might also aim to monitor metrics

related to service-level agreements and system quality attributes,

including performance, system availability and operational infras-

tructure. Goel et al. (2014) report on a very fast, distributed, in-

memory database at the heart of Facebook that is extensively used

for post deployment activities including advertisement revenue

monitoring, performance debugging as well as real-time analysis

of user behaviour and service logs.
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
As acknowledged by various studies (Cukier, 2013; Feitelson

t al., 2013; Fitzgerald and Stol, 2014; Benefield, 2009), the main

bjective of continuous monitoring is to constantly monitor and

easure both business indicators and infrastructure-related met-

ics in order to facilitate and improve business and technical

ecision-making. More importantly, continuous monitoring must

lways be unobtrusive to users, thought it needs to be visible and

ccessible to all relevant stakeholders, including development, op-

ration and business people (Cukier, 2013; Benefield, 2009). One of

he most significant activities in this sense is post-release testing

o ensure successful deployment (Agarwal, 2011) and also perform-

ng critical validation and testing on real users at scale (Feitelson

t al., 2013). Dark deployment is used where enterprises deliver

ew features or services that are invisible to customers and have

o impact on the running system. This technique can be used to

est system quality attributes and examine them under simulated

orkload in a real production environment (Feitelson et al., 2013;

eely and Stolt, 2013). Another relevant practice, canary deploy-

ent, allows enterprises to deliver a new version to a limited user

opulation to test the system under real production traffic and use.

he new version is then delivered to the whole user population

nce it reaches a high enough level of quality (Feitelson et al.,

013; Neely and Stolt, 2013).

.9. Agile and lean software development

CD goes beyond agile and lean software development; thus, ag-

le and lean software development methods and practices are the

rst steps the organization can take toward CD, e.g. (Fitzgerald

nd Stol, 2014; Staron et al., 2012). Hence, ASD methods and prac-

ices can be considered as an enabler for CD. However, CD scales

SD practices throughout the whole organization instead of fo-

using only on team-level activities. For example, this is noticed

n the continuous experimentation approach, in which software

s developed based on field experiments with relevant stakehold-

rs, i.e. customers or users (Fagerholm et al., 2014). The experi-

ental results are linked throughout the organization with a prod-

ct roadmap as well as managed within a flexible business strat-

gy (Fagerholm et al., 2014). Along the same lines, lean software

evelopment promotes the consideration of the whole organiza-

ion as part of CD: ‘If you deliver daily, waste is exposed almost im-

ediately . . . optimizing just a part of the system simply is not an

ption with daily deployment’ (Poppendieck and Cusumano, 2012).

o accelerate continuous software delivery and achieve agility at

cale, Cantor and Royce (2014) describe the IBM transformation

rom conventional engineering governance to economic governance

nd Bayesian analytics, which integrate governance with agility

spects.

Most of the primary studies discuss in one way or another as-

ects related to ASD. For example, Benefield (2009); Poppendieck

nd Cusumano (2012); Middleton and Joyce (2012) explain that

ean software development supports delivery of a continuous flow

f small features into production, as is the aim of CD. Benefield

2009) focuses on lean techniques for the SaaS delivery model.

sing specific Agile and Lean software development methods ap-

ears frequently in the primary studies as well (e.g. using Scrum

ellomo et al., 2013a, continuous Scrum Agarwal, 2011, pair pro-

ramming Blotner, 2002, eXtreme Programming Gotel and Leip,

007, or Rugby which is an agile process model including work-

ows for the continuous delivery of software Krusche et al., 2014).

CD also changes the traditional ASD practices and methods into

continuous flow. Continuous ways of working are described in

he ASD literature as follows: continuous improvement and em-

loyee empowerment, e.g. (Middleton and Joyce, 2012); CI, e.g.

Bellomo et al., 2013b) and (Krusche et al., 2014); continuous deliv-
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29 19

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

e

a

e

e

(

m

o

t

v

m

t

f

b

t

f

t

n

s

l

v

w

5

l

g

t

5

t

a

t

I

o

s

d

e

2

S

a

e

w

i

f

2

A

t

t

f

l

t

i

t

o

i

t

p

b

c

i

F

v

i

w

t

d

i

d

d

i

c

m

r

F

e

b

t

m

5

o

c

p

o

a

o

u

L

t

I

i

u

S

i

p

v

t

t

2

t

(

t

c

a

2

p

u

p

c

o

t

o

i

c

s

p

i

a

v

a

r

t

a

5

d

ry, e.g. (Krusche et al., 2014; Krusche and Alperowitz, 2014; Neely

nd Stolt, 2013); continuous delivery of features, e.g. (Bellomo

t al., 2013a); or transforming release cycles into a continuous flow,

.g. (Marschall, 2007) and (Agarwal, 2011). For instance, Agarwal

2011) reports results from continuous scrum in which bug fixes,

inor enhancements and major features are released continuously

n a weekly basis by a single development team. Each sprint has

hree phases, creating a triple-sprint overlap pattern: planning, de-

elopment and QA. The development team is divided into team

embers who are responsible and capable of executing each of

hese phases; hence, there are sub-teams each with a different

unction, i.e. planning, development and QA. Each sprint is time-

oxed into a three-week period. During the first week of a sprint,

he product owner and scrum master together with the inputs

rom the development team formulate a plan for the remainder of

he sprint. Thereafter, the planning sub-team starts planning the

ext sprints and the development team starts development on the

print that was planned by the sub-team in the prior week. Simi-

arly, the QA team performs QA on what was developed by the de-

elopment team in the prior week. Thus, sequential sprints overlap

ith a phase-lag of a one-week release cycle (Agarwal, 2011).

.10. Organizational factors

Many factors related to organizational aspects were also high-

ighted in the CD literature. We classified these aspects into three

roups: integrated corporate functions, transparency and innova-

ive and experimental organizational culture.

.10.1. Integrated corporate functions

Both empirical and non-empirical studies stressed the integra-

ion of the R&D organization with other corporate functions such

s sales, marketing, product management, QA, release and opera-

ions. This integration is crucial for fast delivery and deployment.

t enables transparency and understanding of the whole picture

f product development activities and overcome corporate con-

traints that often cause delays in product deliveries, e.g. hand-over

elays and communication gaps (Gotel and Leip, 2007; Bellomo

t al., 2013a; Ludwig et al., 2014; Poppendieck and Cusumano,

012; Kalantar et al., 2014; Feitelson et al., 2013; Fitzgerald and

tol, 2014). A flat R&D organizational structure is common when

pplying ASD (Gotel and Leip, 2007; Neely and Stolt, 2013). How-

ver, CD demands a greater alignment of the R&D organization

ith other corporate functions (Olsson et al., 2013). For instance,

ntegration of R&D with the operations/maintenance team, also re-

erred to as DevOps, is noted in several studies (Feitelson et al.,

013; Brown et al., 2013; Fitzgerald and Stol, 2014; Krusche and

lperowitz, 2014). Similar to DevOps is the emphasis on the in-

egration between software development and business strategy,

ermed BizDev (Fitzgerald and Stol, 2014). Both DevOps and BizDev

ocus on achieving a shorter cycle time with increased feedback

oops (Cukier, 2013; Fitzgerald and Stol, 2014).

Several strategies describing how to integrate corporate func-

ions are depicted in the CD literature; however, they are mostly

nitial proposals. For instance, Neely and Stolt (2013) describe

he journey that Rally Software followed for tracking the status

f work in real time to sales and marketing teams in order to

ntegrate them with R&D. One challenge here is that in addi-

ion, the marketing strategy needs to be adapted to the CD ap-

roach. Using cross-domain competencies amongst team mem-

ers to ensure effective communication and integration with other

orporate functions has also been stressed by studies conducted

n non-embedded domains (Feitelson et al., 2013; Cukier, 2013).

eitelson et al. (2013) highlight that at Facebook, software de-

elopers are trained to possess multiple skills, such as abilities

n testing and operations, in order to ensure good-quality soft-
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
are all the time without the need for a supporting QA func-

ion (Feitelson et al., 2013). Similarly, in Cukier (2013), software

evelopers also perform activities related to operation functions,

n addition to performing QA functions activities. However, cross-

omain competence may be more challenging in the embedded

omain, where extensive knowledge of hardware-related aspects

s needed. Additionally, several studies have proposed the use of

ommon practices and platforms for software development and

aintenance/operation/release as mechanisms to integrate corpo-

ate functions with the R&D organization (Brown et al., 2013;

itzgerald and Stol, 2014; Gotel and Leip, 2007). Using shared mod-

ls such as roadmaps and a feature dependency matrix has also

een identified as a mechanism that facilitates effective coordina-

ion and interrelationships between solution designers and release

anagers of complex services (Ludwig et al., 2014).

.10.2. Transparency

Organizational transparency, which is mentioned above as one

f the main targets of integrated corporate functions, is a prede-

essor for building CD into an organization. Organizational trans-

arency intends to show the bigger picture of scattered devel-

pment activities in different parts of the organization, building

common understanding among stakeholders about the devel-

pment progress and goals (Krusche and Alperowitz, 2014; Kr-

sche et al., 2014; Gotel and Leip, 2007; Bellomo et al., 2013a;

udwig et al., 2014; Poppendieck and Cusumano, 2012; Kalan-

ar et al., 2014; Feitelson et al., 2013; Fitzgerald and Stol, 2014).

n CD, transparency has an important role in creating the abil-

ty to foresee, trace and understand important aspects of prod-

ct development in real time (Krusche et al., 2014; Neely and

tolt, 2013). Thus, transparency is also an enabler for identify-

ng early risks that may harm product delivery and for reacting

roactively to these risks. For example, it is important to pro-

ide mechanisms for visibility in the sales and marketing activi-

ies so that it is possible to track the status of the work in real

ime allowing for appropriate planning activities (Neely and Stolt,

013). As described in Section 3.5.3, the importance of visualizing

esting activities from end to end is highlighted in the literature

Nilsson et al., 2014).

In addition, it is noted that making the development progress

ransparent enables better awareness for team members oftheir

ontribution on the delivery of value (Staron et al., 2012), as well

s allowing them to decide what is needed (Middleton and Joyce,

012) and to take personal responsibility (Marschall, 2007). An im-

ortant way for building transparency in the context of CD is the

se of key performance indicators (KPIs) as metrics to visualize the

erformance of the organization. For instance, Staron et al. (2012)

onducted a case study on a large agile and lean software devel-

pment project at Ericsson in Sweden, in which KPIs were used

o visualize the release readiness across the distributed teams in

rder to predict the time in weeks to release the product. Visual-

zing the quality of the outcomes by KPIs provided a way to build

ommon awareness of the status among all stakeholders, from de-

igners to unit managers (Staron et al., 2012). Therefore, it is im-

ortant to identify useful metrics in the context of CD when build-

ng transparency. Other approaches for building transparency into

n organization are proposed in the CD literature, e.g. traffic lights

isualization is commonly used to display the status of production

t any time (Krusche and Alperowitz, 2014). Moreover, information

adiators and Kanban boards are often used around the work space

o ensure that daily progress on a project is completely transparent

nd available for all to see (Middleton and Joyce, 2012).

.10.3. Innovative and experimental organizational culture

Many primary studies stress the importance of people-driven

evelopment and the need to create an innovative and exper-
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

20 P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

c

t

2

f

l

(

v

2

e

u

fi

n

K

‘

t

p

r

f

c

r

v

t

t

u

2

s

t

s

(

B

c

b

2

b

r

E

S

E

c

p

n

p

t

i

p

t

E

b

t

m

e

e

d

t

r

n

a

S

d

e

N

imental organizational culture to enable CD. According to the

primary studies, learning from experience is more important and

beneficial than chastising those responsible for a failure. Because

humans make errors, some distrust is natural, but attention should

be focused on honest communication and learning from mistakes;

this improves trust among stakeholders, which enables greater ef-

ficiency and also innovativeness. In CD, failures are treated as

opportunities for improvement rather than as occasions for as-

signing blame (Feitelson et al., 2013). Marschall (2007) empha-

sizes the importance of the role of individuals in taking respon-

sibility for completing their tasks when producing value to a

customer. Personal responsibilities can be used even to substi-

tute methodologies and formalized procedures created for blaming

and self-protection, as these procedures have no place in a team

of engineers willing to take responsibility for the entire system

(Feitelson et al., 2013).

The study by Papatheocharous et al. (2014) highlights the im-

portance of human factors as a basis for increasing the capabilities

of continuous software engineering. In their study they identified

that providing tools for developers to improve themselves, and de-

signing and assigning work tasks based on personal qualities may

lead to situations where team members are willing to accept more

responsibility in managing themselves, and, thus, take responsibil-

ity for the project outcome.

Regarding innovation, innovations should be encouraged by

breaking the routine with frequent activities aimed towards new

innovations. There should be flexibility and breakout times in the

daily routines. For instance, hackathons are commonly used in

Facebook in order to encourage interaction among different organi-

zational functions from engineers to financial, legal and other de-

partments (Feitelson et al., 2013).

6. Analysis of reported benefits and challenges

for continuous deployment (RQ3)

6.1. Benefits

The literature highlights several benefits from applying CD. The

most referenced benefits are shorter time-to-market, increased

customer satisfaction, continuous feedback, rapid innovation, nar-

rower test focus, improved release reliability and quality and im-

proved developer productivity. However, the strength and qual-

ity of evidence for these benefits is limited as many claims are

based on industry reports (i.e. practitioners’ perceptions) or dis-

cussed in non-empirical studies. Furthermore, in many cases, ben-

efits are claimed, but no rational or more detailed explanation of

the reasons for these benefits is provided in the papers. Nonethe-

less, the benefits found in primary studies are detailed in the fol-

lowing paragraphs.

The most immediate benefit of applying CD is shorter time-to-

market through fast and frequent releases (Agarwal, 2011; Blot-

ner, 2002; Feitelson et al., 2013; Goodman and Elbaz, 2008; Kr-

usche and Alperowitz, 2014; Ludwig et al., 2014; Middleton and

Joyce, 2012; Olsson et al., 2012, 2013; Trimble and Webster, 2013,

2012; Benefield, 2009; Lacoste, 2009; Marschall, 2007; Neely and

Stolt, 2013; Poppendieck and Cusumano, 2012; Khomh et al., 2012;

Lavoie and Merlo, 2013). For instance, Feitelson et al. (2013);

Marschall (2007); Neely and Stolt (2013) shortened their deliv-

ery cycles from months or weeks to continuous flow or daily de-

liveries. Similarly, in the context of embedded systems, Trimble

and Webster (2013, 2012) reduced their release cycles significantly

from three months to three weeks. Shorter release cycles enable

companies to constantly develop, learn and improve their offerings

based on instant customer feedback (Olsson et al., 2013; Lacoste,

2009; Neely and Stolt, 2013; Poppendieck and Cusumano, 2012;

Khomh et al., 2012) and thus, companies can quickly learn what
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
ustomers value and focus on deploying relevant functionalities

hat meet customers’ expectations (Poppendieck and Cusumano,

012; Olsson et al., 2013, 2012). Shorter release cycles enable

aster feedback about new features and bug fixes, which makes re-

ease planning slightly easier (short term vs. long term planning)

Khomh et al., 2012). Moreover, a higher number of releases pro-

ides more marketing opportunities for companies (Khomh et al.,

012).

CD has also been found to increase customer satisfaction and

nable continuous customer feedback. CD allows continual prod-

ct enhancement and immediate access to new features and bug

xes, which increases customer satisfaction (Agarwal, 2011; Blot-

er, 2002; Neely and Stolt, 2013; Trimble and Webster, 2013;

homh et al., 2012). For example, Neely and Stolt (2013) reported,

We received an email from a customer saying that they had noticed

he defect fix and wanted to say a huge thank you for resolving a pain

oint in the application’. According to Khomh et al. (2012), under

apid release model, users can adopt new versions of the product

aster, bugs are fixed faster and users do not experience signifi-

antly more post-release bugs in comparison with the traditional

elease model.

In addition, customers can evaluate the enhancements and pro-

ide feedback immediately and in a continuous way (i.e. con-

inuous customer feedback), which improves communication be-

ween the company and its customers (Gotel and Leip, 2007; Kr-

sche and Alperowitz, 2014; Krusche et al., 2014; Ludwig et al.,

014; MacCormack, 2001; Neely and Stolt, 2013; Trimble and Web-

ter, 2012; Olsson et al., 2013, 2012). Furthermore, closer interac-

ion with customers enables enterprises to monitor and collect in-

tant field data on their customers and the software’s behaviour

Cukier, 2013; Feitelson et al., 2013; Fitzgerald and Stol, 2014;

enefield, 2009). The main advantage is that companies have the

hance to rapidly sense, understand and improve their offerings

ased on actionable metrics and data (Ko et al., 2011; MacCormack,

001).

Apart from customer feedback, continuous and immediate feed-

ack from CI and an automated infrastructure helps to identify and

esolve issues more rapidly (Feitelson et al., 2013; Goodman and

lbaz, 2008; Humble et al., 2006; MacCormack, 2001; Neely and

tolt, 2013; Fitzgerald and Stol, 2014). For instance, Goodman and

lbaz (2008) observed that the CI process shortens the feedback

ycle time substantially. Similarly, Humble et al. (2006) also re-

orted that build and deployment scripts accelerate rapid feedback

ot just on the integration of modules of source code but also on

roblems integrating with the deployment environment and its ex-

ernal dependencies.

Closer relationships with customers further can facilitate rapid

nnovation. Continuous and instant customer feedback allows com-

anies to invest their resources in developing relevant functionali-

ies and innovation initiatives (Feitelson et al., 2013; Goodman and

lbaz, 2008). Olsson et al. (2012, 2013) observed that faster feed-

ack means cheaper development since the R&D organization can

hen spend time developing the right things rather than correcting

istakes in functionality.

Narrower test focus appears also in our primary studies (Comas

t al., 2011; Feitelson et al., 2013; Neely and Stolt, 2013; Mantyla

t al., 2013). From a technical point of view, CD implies that each

eployment introduces only limited amounts of new code. From

his perspective, frequent releases with a smaller scope reduces

isk (Neely and Stolt, 2013; Feitelson et al., 2013) and provides a

arrower test focus, which more accurately guides quality assur-

nce activities (Comas et al., 2011; Feitelson et al., 2013; Neely and

tolt, 2013; Mantyla et al., 2013). A narrow scope further allows

eeper investigation of the product’s active parts and makes issues

asier to fix and debug (Comas et al., 2011; Feitelson et al., 2013;

eely and Stolt, 2013; Mantyla et al., 2013).
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29 21

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

a

r

s

l

a

p

t

q

r

F

i

g

e

s

H

6

w

u

e

i

m

p

w

a

t

s

F

p

t

c

t

i

M

i

(

O

l

o

i

r

P

w

l

t

t

p

w

2

t

f

e

i

d

s

g

v

f

p

t

t

a

d

a

a

t

c

f

s

t

t

m

c

e

(

s

g

c

b

v

w

t

p

f

a

e

i

s

s

S

r

f

e

d

q

u

e

f

e

i

e

e

m

d

7

t

e

g

t

S

T

a

i

l

m

C

p

p

f

e

Several studies (Agarwal, 2011; Humble et al., 2006; Krusche

nd Alperowitz, 2014; Neely and Stolt, 2013; Benefield, 2009) also

eported that the deployment infrastructure, coupled with inten-

ive automated testing and fast rollback mechanisms, improves re-

ease reliability and quality. Neely and Stolt (2013) reported that

utomated deployment along with scrutiny of monitoring systems

rovided safer environments for shipping code. Furthermore, in-

ensive automated tests ensure that new improvements pass all

uality assurance procedures, thus leading to a higher quality of

eleases (Agarwal, 2011; Benefield, 2009; Neely and Stolt, 2013).

inally, automated deployment processes are reported as also lead-

ng to improve developer productivity since they allow a single en-

ineer to develop and deploy a new improvement instantly to sev-

ral services, to verify immediately and rollback to the previous

table version, if required (Agarwal, 2011; Gotel and Leip, 2007;

umble et al., 2006; Benefield, 2009).

.2. Challenges

Regarding challenges in CD, the process of transformation to-

ards CD, customers’ unwillingness to receive continuous product

pdates, increased QA efforts and the challenges of applying CD in

mbedded domains were often referenced in the literature.

Transforming towards CD is an evolutionary process and requires

nvestment in deployment processes, as well as changes in people’s

indset and the general organization way of working. For exam-

le, Neely and Stolt (2013) describe how months of preparatory

ork were needed to get the deployment process streamlined and

utomated. Neely and Stolt (2013); Brown et al. (2013) observed

hat, if an organization is not experienced in ASD, a direct tran-

ition to CD requires too many changes to handle at one time.

urthermore, this transition requires a change in mindset as peo-

le may be afraid to release the new code directly into produc-

ion environments (Marschall, 2007; Neely and Stolt, 2013). One

ompany manager in Marschall (2007) noted, ‘When the release

eam and I confronted the developers with our new process, releas-

ng a story as soon as it is signed off it scared the hell out of them’.

oving to CD requires a change in organizational culture, buy-

n from all key stakeholders and transparency in the organization

Blotner, 2002; Middleton and Joyce, 2012; Neely and Stolt, 2013;

lsson et al., 2012). Lavoie and Merlo (2013) point out that fast re-

ease cycles might stress third-party developers because of the risk

f non-compatibility of extension modules. Thus, human factors,

ncluding personality and cognitive aspects, plays a fundamental

ole in truly achieving continuous delivery. As acknowledged by

apatheocharous et al. (2014), in the context of continuous soft-

are engineering where organizations are required to develop, de-

iver and learn in fast and parallel cycles, it is profoundly impor-

ant to establish an agile thinking culture from the individuals, to

eams as well as upper management levels.

Even though customers seem to be more satisfied (see the

revious section on benefits), the literature notes customer un-

illingness to accept CD as another challenge (Olsson et al., 2013,

012; Blotner, 2002; Agarwal, 2011; Orso et al., 2002). According

o Agarwal (2011), typically, customers are reluctant to accept new

unctionalities mainly because of poor quality of releases. Orso

t al. (2002) also identified privacy and security concerns about

nformation collected from customers as inhibitors of CD. To ad-

ress privacy concerns, which also suits monitoring purposes, they

uggested that organizations should seek permission from users to

ather information. One other inhibitor from a customer point of

iew is the learning curve that continuous changes (either to the

unctionality or to the user interface) request from the end-user

erspective. Zade and Choppella (2012) empirically investigated

he impact of changes on end-users. Their results suggest that

he learning gap that changes in user interfaces may produce is
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
crucial factor to be considered when changes are continuously

elivered to end-users.

Several studies (Agarwal, 2011; Kalantar et al., 2014; Krusche

nd Alperowitz, 2014; Marschall, 2007; Meyer et al., 2013; Neely

nd Stolt, 2013) reported increased QA efforts due to difficul-

ies in managing the test automation infrastructure. Similarly, a

ase study conducted on Mozilla Firefox (Mantyla et al., 2013)

ound that while rapid release has numerous benefits and strongly

upports shorter release times, at the same time it increases

he test efforts. This stems from the fact that more specialized

esters are required to sustain the testing effort in a rapid release

odel. In addition, CD requires establishing an effective QA pro-

ess and new mechanisms to ensure backward compatibility of

nhancements.

In addition, in the context of the embedded domain, Ard et al.

2014) reported that physical assets and hardware equipment

hould also support automation, in general, and CI, in particular, to

et benefits from CD as a whole. Bosch and Eklund (2012) reported

hallenges concerning experimentation in software-intensive em-

edded systems. In particular, the architecture of embedded de-

ices must support mechanisms to add or exchange applications

hen running experiments with minimal impact on the rest of

he system. More importantly, the memory and processing foot-

rint, as well as connectivity aspects, need to be considered care-

ully. Infrastructure requires the support of rollback mechanisms

nd immediate reversion to safe versions. Furthermore, since, in

xperimental scenarios, the infrastructure needed to keep track of

ndividual devices, security and privacy issues require extra con-

ideration (Bosch and Eklund, 2012). Finally, Trimble and Web-

ter (2012) elaborated in the domain of mission critical systems.

afety issues require updates be planned and this prevents near

eal-time value delivery (e.g. users need to be notified and trained

or new capabilities beforehand, to use them in mission-operation

nvironments).

Finally, other challenges found in the literature, although they

o not appear very frequently, include: lack of trust in software

uality (Olsson et al., 2013), difficulty in managing various config-

rations and run-time environments (Kalantar et al., 2014; Meyer

t al., 2013) and natural tensions between the desire to deliver

unctionalities quickly and the need for reliable products (Bellomo

t al., 2013b; Brown et al., 2011). In addition, further difficulties ex-

st in release planning and managing the roadmap in a fast-paced

nvironment (Ludwig et al., 2014) and risks associated with gath-

ring user feedback from a limited population (i.e. minority) that

ay constrain the software’s evolution or even mislead product

evelopment (Ko et al., 2011).

. Research gaps and opportunities for future research (RQ4)

The topic of CD appears to be highly relevant to the indus-

ry. Practitioners have contributed heavily to its body of knowl-

dge, and the results of the quality assessment demonstrate the

reat significance of CD to the industry. However, with regard

o empirical rigour, the quality assessment results are low (see

ection 4.4). In addition, looking at the pertinence facet (see

able B.10, Appendix B), less than half of the studies (22 papers)

re entirely dedicated to CD. Six of these produced contributions

n the form of advice and implications, and three in the form of

essons learned. This is not necessarily negative as CD encompasses

any different aspects. Still, more research that fully focused on

D is needed. In general, although the topic appears to be very

romising, research on CD seems to be still in its infancy, which

romises a range of new opportunities for researchers.

Each of the 10 identified themes represents opportunities for

uture research. However, the themes are explored at different lev-

ls, offering different research opportunities. The research to date
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

22 P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]
has tended to focus on factors such as continuous testing and QA

(31 papers), fast and frequent release (28 papers), automation (24

papers, mainly in CI), and agile and lean software development (22

papers). However, only a small number of studies have dealt with

aspects such as flexible design and architecture (9 papers), contin-

uous and rapid experimentation (10 papers), and customer involve-

ment (12 papers) in the context of CD. More concrete opportunities

for future research include:

• Continuous and rapid experimentation is an emerging research

topic with many possibilities for future work. Most papers in

this area offer theoretical proposals that have yet to be ad-

equately validated (e.g. Bosch and Eklund, 2012; Fagerholm

et al., 2014). In particular, technical challenges (Bosch and Ek-

lund, 2012), challenges with large scale experimentation (Bosch

and Eklund, 2012; Fagerholm et al., 2014), business implica-

tions of continuous and rapid experimentation (Bosch and Ek-

lund, 2012), privacy issues when running experiments with cus-

tomers (Bosch and Eklund, 2012), and the process of transform-

ing towards continuous experimentation itself (Olsson et al.,

2012) are identified as areas for future research.
• Technical infrastructure for supporting CD. Incremental deploy-

ment is referred to in some of the industry reports in com-

panies such as Facebook (Goel et al., 2014) and Rally (Neely

and Stolt, 2013). However, how it is done in practice is un-

clear. Although some techniques and tools are mentioned in

the literature, such as canary deployment and dark deployment

(Feitelson et al., 2013; Neely and Stolt, 2013), they are briefly

introduced without going into much detail on how they are ac-

tually used in practice. This topic is especially relevant when

considering the importance of system availability and quality

aspects related to the version of the system that is deployed at

any given moment. Another example is Scuba as a solution to

support monitoring of post-deployment user behaviour at Face-

book (Goel et al., 2014). Although, the Scuba database is briefly

introduce, however the kind of data that is collected as well as

mechanisms to analyse it and feed it back to the development

process are not described. Moreover, why certain technologies

are selected over other similar existing solutions in the market

has not been analysed. Thus, which are the most suitable tech-

nologies under certain conditions is unclear.
• Although customer involvement is emphasized in many pri-

mary studies, we discovered that the tasks required for making

continuous and effective use of customer feedback are under-

developed. Besides the needs for mechanisms to identify repre-

sentative customers and infrastructure for collecting customer

data, a clear research gap appears in solutions for processing

incoming feedback and quickly interpreting the information.

Further investigation is needed on new approaches to express

and validate assumptions from user feedback, as the software

evolves (Ko et al., 2011), and privacy and security concerns that

may inhibit customer feedback collection (Orso et al., 2002).
• Regarding flexible and robust software architecture, some

mechanisms for balancing stability and speed have been pro-

posed in the literature (e.g. continuous assessment of quality

attributes through prototyping or automated approaches and

rapid architecture trade-off analysis). Nonetheless, the natural

tension between the desire to deliver functionalities quickly

and the need for reliable products is still a challenge for CD

(Bellomo et al., 2013b; Brown et al., 2011). Investigating mea-

surement systems for managing technical debt (Bellomo et al.,

2013b), risk assessment methods for CD (Comas et al., 2011),

and stability-triggers-speed scenarios (i.e. stability causes a re-

focus on speed) (Bellomo et al., 2013b) are areas proposed by

the primary studies for future research.
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
• Continuous planning also seems to play an important role

in achieving CD. Based on our results, continuous planning

is not commonly adopted and applied throughout the entire

organization. It is currently connected to prioritization (Trimble

and Webster, 2013) or involves only a certain level of planning,

mainly release planning (e.g. Continuous Scrum Agarwal, 2011).

Fitzgerald and Stol (Fitzgerald and Stol, 2014) found that the

current focus of continuous planning in CD is mainly on what

emerges from ASD, which it is related to sprint iterations or,

at best, software releases. Thus, empirical research rarely de-

scribes how continuous planning is conducted at different orga-

nizational levels and how the information from plans is visible

at different levels of planning.
• Similarly, despite the identified need for, and importance of, in-

tegrating R&D with other corporate functions, there is very lit-

tle empirical research that evaluates emerging approaches such

as DevOps and BizDez (Fitzgerald and Stol, 2014). Research is

needed to identify and empirically evaluate mechanisms to fa-

cilitate collaboration between different organizational functions,

not just at the organizational level but also at the technical

level.
• We also believe that automation is an important area for fu-

ture research. The goal of automation is to eliminate all manual

steps from build to deployment processes. The literature shows

different research gaps regarding automation. For example, GUI

testing (Agarwal, 2011) is identified as a lead indicator of bugs

that typically appear in production environments. However, GUI

testing still requires manual observation because of difficulties

in automatically identifying errors. This is an area for possible

future research. In particular, Agarwal (2011) pointed out the

possibility of utilizing advanced techniques in video analytics to

enable fully automated GUI testing. Similarly, dealing with vari-

ability is considered an area that calls for future work, particu-

larly when automating the deployment of software components

(Van Der Storm, 2005).
• The application of CD in contexts that are different from web

applications (i.e. embedded systems) presents a clear oppor-

tunity for future research as different domains have different

constraints when applying CD. As identified in Section 4, when

reviewing the study domain, the majority of studies have been

conducted in the web application domain. Organizations in the

area of web applications are currently able to implement CD

and even deploy many new versions per day (e.g. Feitelson

et al., 2013; Marschall, 2007; Neely and Stolt, 2013). However,

this goal is still a formidable challenge for the systems and ser-

vices domains, such as in embedded systems. Although the ap-

plication of CD in embedded systems has attracted significant

interest over the last four years (see Fig. 7), many challenges

are still apparent for CD in embedded systems. For example,

in the area of post-deployment activities, those primary stud-

ies that have used or discussed post-deployment activities focus

on cloud- or web-based domains. However, unlike web-based

companies, not all software development companies have ac-

cess to a huge amount of customers. Another example is the

case of software ecosystems, which are becoming increasingly

popular. The implications of using CD with different contribu-

tors or when interdependent systems need to be coordinated

are not clear.
• The implications of human aspects with CD are also underde-

veloped. With the adoption of CD, individuals are given more

responsibility for systems under development. For example, in

an optimal situation, an individual developer could deploy a

new version of the system directly to customers in just a cou-

ple of automated steps. However, the individual should be also

ready to take on that responsibility. Papatheocharous et al.

(2014) argue, ‘models considering the individuals personal traits
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29 23

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

w

o

c

L

c

b

a

m

a

t

l

o

o

l

e

t

c

t

m

h

c

f

8

e

w

s

n

fi

c

b

f

l

w

m

n

t

o

i

i

r

s

a

u

i

i

r

q

t

h

c

p

o

s

L

R

w

a

2

s

a

i

i

s

2

c

p

p

w

e

m

t

i

s

C

e

t

H

e

t

o

t

a

a

p

t

e

t

i

w

C

t

d

o

t

m

p

t

t

u

n

t

t

t

fl

c

t

t

t

o

t

p

p

c

s

i

a

i

to accommodate the objective of holistic continuous software engi-

neering’ are scarce. Models such as Stairway to Heaven (Olsson

et al., 2012) provide guidance on organizational levels, but how

CD relates to personality and cognitive factors remains an un-

explored research area.

To conclude, besides specific areas that require future research,

e find that CD needs an increase in both the number and rigour

f empirical studies. Recent case studies, such as those that fo-

us on Mozilla Firefox (Baysal et al., 2012; Khomh et al., 2012;

avoie and Merlo, 2013; Mantyla et al., 2013) or the experiment

onducted by Zade and Choppella (2012), provide rigorous contri-

utions to illustrate the impact of CD on product/process quality

s well as on the end customer. However, these studies explicitly

ention limitations in generalizing results. Thus, similar studies

re needed. Industry participation is essential in order to obtain

he right data set that allows to produce reliable results (particu-

arly in research aspects that are the hardest to research in terms

f data availability such as those that involve customers). More-

ver, although several benefits related to CD are mentioned in the

iterature, they are mainly referred to in industry reports and non-

mpirical research. Thus, empirical studies and scientific evidence

hat confirm or refute these benefits as well as studies that analyse

ause-effect relationship between identified factors might be inves-

igated in future work. Similarly, emerging approaches for imple-

enting CD require more rigorously empirical evaluations that can

elp to generalize results where possible. In particular, the lack of

ontext descriptions in the primary studies makes comparing dif-

erent studies and providing more generalizable results difficult.

. Comparison to related reviews

In order to put the findings of this work into the context of lit-

rature and highlight the contributions made by the present work,

e compare our results with related literature reviews as pre-

ented in Section 2.2. Since ASD and specific agile practices are

ot the centre of our work, the comparison focuses mainly on our

ndings and the findings of the semi-systematic literature study

onducted by Mäntylä et al. (2014).

Both studies differ slightly in terms of focus and scope. Still, the

enefits and challenges of CD, are at the heart of both reviews. The

ocus of Mäntylä et al. (2014) is mainly on the impact of rapid re-

eases on testing processes; additionally, the results are extended

ith a semi-systematic literature review, which includes 24 pri-

ary studies, to investigate the prevalence of rapid release, span-

ing its origination, enablers, benefits and problems. Our study, on

he other hand, seeks to collect and synthesize all relevant studies

n the topic of CD in a systematic manner in order to character-

ze this phenomenon by identifying recurrent themes and explor-

ng the multifaceted nature of CD. We found 50 primary studies

elevant in the context of CD. Our study extends Mäntylä et al.’s

emi-systematic literature review in that its focus is entirely on CD

nd its recurrent themes; it includes scientific studies published

p to June 2014 (comprising theoretical studies as well), and takes

nto account all aspects of the systematic literature review method

n order to ensure reliable results, such as peer reviews of each

esearch step, systematic data extraction and data synthesis, and

uality assessment of primary studies. These aspects are absent in

he study conducted by Mäntylä et al. (2014).

In a similar vein to Mäntylä et al. (2014), we found that CD

as had an important impact on the software industry in re-

ent years (see Fig. 8). Indeed, many of our primary studies, es-

ecially those published in recent years, discuss specific cases

f real companies, such as Facebook (Goel et al., 2014; Feitel-

on et al., 2013), Firefox (Baysal et al., 2012; Khomh et al., 2012;

avoie and Merlo, 2013; Mantyla et al., 2013), IBM (Cantor and
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
oyce, 2014; Gotel and Leip, 2007; Kalantar et al., 2014; Lud-

ig et al., 2014; Brown et al., 2013), Rally Corporation (Neely

nd Stolt, 2013), Ericsson (Staron et al., 2012; Antinyan et al.,

014), Volvo (Antinyan et al., 2014) or NASA (Trimble and Web-

ter, 2013, 2012). The fact that CD has been adopted in such

diverse set of companies provides testimony that CD is be-

ng applied in many different domains. Our primary studies

nclude evidence of CD being adopted even in domains such as

afety critical (e.g., Trimble and Webster, 2013, 2012; Ard et al.,

014) and science systems (Wicenec et al., 2012). Thus, our results

onfirm the claim made by Mäntylä et al. (2014) that CD can be

art of any software development domain. In addition, our study

resents an overview of the state-of-the-art of CD (Section 4),

hich, as presented in Section 7, reveals that the body of knowl-

dge of CD is in an exploratory stage and its scientific evidence

ust be improve.

Mäntylä et al. (2014) also discuss enablers as ‘accelerating fac-

ors that facilitate the adoption of rapid releases.’ We did not specif-

cally focus on enablers as preconditions of CD, as we had a wider

cope to investigate recurrent factors in the literature related to

D. Mäntylä et al. (2014) found that ‘parallel development with tools

nabling easy automatic deployment and testing, and with proac-

ive customers and product managers’ are enablers of rapid releases.

owever, the actual mechanisms to achieve frequent releases, tools

mployed to support automation, and strategies for involving cus-

omers in the product development process were not further elab-

rated. Our study extends Mäntylä et al.’s preliminary identifica-

ion of important aspects enabling rapid software releases by cre-

ting a schema that classifies recurrent aspects in the CD literature

nd identifies concrete frameworks, methods and tools that sup-

ort CD in practice.

Our classification schema comprises 10 underpinning factors

hat define CD. Factors already identified in the study by Mäntylä

t al. remain in our classification schema under the following

hemes: fast and frequent releases, automation, continuous test-

ng and quality assurance, and customer involvement. However,

e also found other aspects that are relevant in the context of

D, such as flexible product design and architecture, configura-

ion management, continuous and rapid experimentation, post-

eployment activities, agile and lean software development and

rganizational factors, such as integrated corporative functions,

ransparency, and the need of creating an innovative and experi-

ental organizational culture. Indeed, these factors are not inde-

endent of each other, but have overlaps and synergies between

hem that help support CD in practice. For example, continuous

esting and quality assurance is critical in CD because the prod-

ct is continuously deployed to the end customer. Thus, mecha-

isms that assure quality, such as automated testing, are essen-

ial in the context of CD. However, automation is much more

han just automating the testing process; it also aims to minimize

he manual overhead by automating the entire end-to-end work-

ow, including aspects such as automation of the delivery pro-

ess, configuration management, etc. In a similar vein, experimen-

ation, as a way of making decisions based on objective data rather

han ‘gurus’ opinions that may lead to incorrect interpretations of

he reality, is emphasized in the CD body of knowledge. More-

ver, it is considered to be a common-sense approach to proac-

ively involve customers and customers’ views in the development

rocess.

Similar to the findings of Mäntylä et al., we found that tool sup-

ort is very important. Table B.11 in Appendix B summarizes the

oncrete tools and methods that, according to our primary studies,

oftware intensive companies use to apply CD. Moreover, our find-

ngs are aligned with the claim that ‘release length simply appeared

s a variable in the release models without providing insights regard-

ng rapid releases’ (Mäntylä et al., 2014). Thus, the release length
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

24 P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

S

F

in our primary studies varied from a few hours to a few weeks,

depending mainly on the application domain.

With regard to the benefits and challenges of using CD, our

findings are well aligned with the results already reported by

Mäntylä et al. (2014). Shorter time-to-market, increased customer

satisfaction, continuous rapid feedback, and narrower test focus

were among the benefits identified in both reviews. According to

the primary studies in our review, developers are more produc-

tive when using CD as a direct consequence of the automation

of deployment processes. According to the review conducted by

Mäntylä et al., efficiency also increases, but as a result of time-

pressure. In addition, we found that the deployment infrastructure

supporting on automation and fast rollback mechanisms improves

release reliability and quality. Mäntylä et al. note that using CD

makes it easier to monitor progress and quality.

Finally, with regard to the challenges of using CD, we found

four main aspects were reported in the literature: the process of

transforming towards CD, customers’ unwillingness to accept con-

tinuous updates, increased QA efforts, and the application of CD

in the embedded domain. Although Mäntylä et al. found customer

unwillingness to be a challenge with rapid releases, the challenges

identified in their review mainly focus on testing areas, such as

conflicting goals between rapid release and achieving high reliabil-

ity and test coverage. Still, as described above, these findings need

to be confirmed through more rigorous scientific studies as, at the

moment, they are mainly based on practitioner perceptions.

9. Conclusion

This study provides a structured understanding of the body of

CD knowledge, together with a systematically collected list of ref-

erences relevant to CD. By using the systematic mapping method,

we identified, classified and analysed primary studies related to CD

based on a survey of the literature conducted in June 2014. The

most important findings of this review, which are organized ac-

cording to the study’s research questions, are summarized below.

• RQ1: What is the current state of the research pertaining to CD in

the context of software intensive products and services? From the

21,382 retrieved documents, we identified 50 primary studies

relevant to CD. Most of these primary studies are industry

reports (36%) and case studies (24%). Other research methods

that were used included action research (4%) and grounded

theory, mixed method, design science and experiment, each

with just 2% of the studies. Overall, 42% of the primary studies

contributed to CD in the context of web/Internet-based services

and applications, and 24% were related to embedded systems.

Eight percent of the studies focused on desktop applications

and the domains of the remaining 26% of the primary studies

were not clearly described. In addition, 8% of primary studies

contributed to CD theoretically (without empirical evidence). A

rigour and relevance analysis indicated that 37 primary studies

exhibited high relevance; however, of these, only 14 studies

showed high rigour and 23 studies had less than moderate

rigour. This provides clear evidence that scientific contributions

in the literature on CD are currently of high relevance but

medium-low rigour, which calls for more meticulous research.
• RQ2: What are the main factors that characterize CD in the con-

text of software intensive products and services (sub: what do

researchers mean when they refer to CD)? A general consen-

sus exists among most authors of the literature surveyed that

CD refers to the ability of organizations to release software

functionalities to customers quickly and frequently, soon after

each new functionality is developed. However, these authors

tended to use the concept interchangeably with continuous
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
delivery (although as it is described in Section 2.1, they have

different meanings).

As a result of our analysis of the 50 primary studies, we

identified 10 recurrent themes or factors related to CD. Each

of the 10 factors was analysed and presented in detail in

Section 5. The factors include: (1) fast and frequent release,

(2) flexible product design and architecture, (3) continuous

testing and quality assurance, (4) automation (of build and test

(CI), deployment/delivery/release processes and configuration

of deployment environments), (5) configuration management,

(6) customer involvement, (7) continuous and rapid experi-

mentation, (8) post-deployment activities, (9) agile and lean

software development and (10) organizational factors, including

integrated corporate functions, transparency and an innovative

and experimental organizational culture.
• RQ3. What are the reported benefits and challenges in association

with CD in the context of software intensive products and ser-

vices? A number of benefits and challenges related to CD were

identified. Transforming towards CD is identified as challenging,

requiring significant investment in deployment processes, as

well as in changes in people’s mindsets and organizations’

general way of working. In addition, an unwillingness by some

customers to accept new functionality, a need to increase

efforts in QA and the application of CD in the context of

embedded systems were identified as significant challenges.

However, CD also poses potential benefits for organizations,

such as shortening their time-to-market by reinforcing the

organizations’ capabilities to release software functionalities to

customers more quickly and frequently, an increase in customer

satisfaction with the continual deployment of valuable product

enhancements and obtaining immediate feedback during the

development process, particularly from customers, which helps

to guide software development activities and quickly identifies

potential problems. In addition, CD also appears to facilitate

rapid innovation through experimentation and continuous and

instant customer feedback and to improve release reliability

and quality, in part, due to a narrower test focus and the

extensive use of automation. However, these findings have to

be carefully interpreted, as the empirical evidence is limited

mainly to practitioners’ perceptions.
• RQ4. What are the research gaps in the area of CD in the context

of software intensive products and services? Finally, a plethora of

venues for future research, due to the topics freshness and its

industrial relevance were identified. Rigorous scientific contri-

butions are clearly needed, particularly those based on empiri-

cal evidence evaluating the benefits of CD. In addition, we iden-

tified a number of research gaps within the 10 themes iden-

tified. Continuous and rapid experimentation is an emerging

research topic with many avenues for future work. Similarly,

a clear research gap exists for mechanisms to use customer

feedback in the most appropriate way so that information can

be quickly interpreted. In continuous testing and QA, research

contributions on mechanisms for implementing automated GUI

testing are required, as well as investigations assessing techni-

cal debt in the context of CD. In addition, topics such as contin-

uous planning, automation and integrated corporate functions

(e.g. DevOps and BizDez), all appear to be especially relevant.

In addition to the above specific areas of future research, CD re-

search needs to increase in both number and, especially, rigour

of empirical studies.

Acknowledgement

This research has been carried out within the Digile Need for

peed program, and it has been partially funded by Tekes (the

innish Funding Agency for Technology and Innovation).
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://dx.doi.org/10.13039/501100003406
http://dx.doi.org/10.1016/j.jss.2015.12.015

P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29 25

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

A
ppendix A. Extracted data – primary study properties
Table A.9

Extracted data – primary study properties.

Category Description

P1: General type of paper (adapted from Kitchenham, 2010).

Empirical If the paper bases its findings on empirical evidence (exploration of the phenomenon of CD, explanation of

some aspect related to CD, evaluation of a CD technique, etc.). Therefore, the source of knowledge of the

paper is acquired by means of observation or experimentation. Observations can be carried out by using

different data collection methods such as direct observation of the phenomenon or interviews, surveys,

focus groups, etc.

Theoretical If the paper is descriptive and discusses some issue (theories, frameworks, or underlying concepts) and

may (but not always) consider some theoretical issues concerning CD. It does not include an empirical

study of the issue being discussed. Typically tools and frameworks that ae not empirically validated as

well as conceptual and mathematical analyses are included in this category.

Both The paper is a mixed theoretical and empirical paper. Typically papers that development techniques or

frameworks with the intention of CD and provide some empirical evaluation or demonstration of the

technique are included in this category.

P2: Research method (adapted from Unterkalmsteiner et al., 2012).

Case study If one of the following criteria applies: (1) The study declares one or more research questions which are

answered (completely or partially) by applying a case study. (2) The study empirically evaluates a

theoretical concept by applying it in a case study (without necessarily explicitly stating research

questions, but having a clearly defined goal).

Industry report If the focus of the study is directed toward reporting industrial experiences without stating research

questions or a theoretical concept which is then evaluated empirically. Usually these studies do not

mention any research method explicitly.

Experiment If the study conducts an experiment and clearly defines its design (variables, control group, treatment,

etc.).

Survey If the study collects quantitative and/or qualitative data by means of a questionnaire or interviews. In a

survey study a sample that is representative of the population is studied in order to generalize results

from the sample to the whole population (opposite to a case study in which only one or a limited

number of cases is considered).

Action research If the study states this research method explicitly.

Design science If the study states this research method explicitly.

Grounded theory If the study states this research method explicitly.

Mixed method If the study uses multiple methods for data collection.

Not stated If the study does not define the applied research method and it cannot be derived or interpreted from

reading the paper.

Opinion paper If the paper expresses the personal opinion of an author about CD or whether a certain aspect of CD is

good or bad, or how it should be applied. The paper does not rely on related work and research

methods and does not explicitly describe industrial experiences.

P3: Contribution (adapted from Paternoster et al., 2014 and Shaw, 2003).

Model Representation of an observed reality by concepts or related concepts after a conceptualization process.

Theory Construct of cause-effect relationships of determined results.

Framework/Method Method or technique related to constructing software or managing development processes. Commonly it

involves better ways to do some task.

Guidelines List of advises, synthesis of the obtained research results.

Lesson learned Set of outcomes, directly analysed from the obtained research results.

Advice/Implications Discursive and generic recommendation, deemed from personal opinions.

Tool Technology, programme or application used to create, debug, maintain or support software development

processes.

P5: Pertinence (inspired by Paternoster et al., 2014).

Full The main focus of the study is CD. The three characteristic of CD are noticeable in the study (deployment,

continuity and speed).

Partial The study is partially related to CD. The study supports CD or focuses on an aspect that is important in

the context of CD but CD as a whole is not its main focus.

Marginal The study is marginally related to CD. CD is mentioned in the study but the main research focus of the

study is different from CD.

Please cite this article as: P. Rodríguez et al., Continuous deployment of software intensive products and services: A systematic mapping

study, The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

26 P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

Domain Pertinence Rigour Relev.

Web/services Full 1.5 4

Multiple domains Partial 2.5 4

N/S Marginal 1 4

Web/services Partial 2 0

Web/service Full 1.5 4

Web/Service Full 1.5 4

N/S Full 3 0

Web/service Partial 0.5 3

Web/service Full 2 4

Web/service Full 1.5 4

Web/service Full 1 4

Embedded, safety critical Partial 0.5 4

Embedded, safety critical Partial 1 4

N/S Partial 1 0

N/S Full 1 4

Embedded Partial 1 2

Web/service Partial 1.5 4

N/S Partial N/A N/A

Embedded Partial 3 4

Web/service Marginal 1 4

Embedded Full 1 3

Web/service Full 2 3

N/S Full 2 0

Web/service Full 0.5 4

Web/service Full 1.5 4

Web/service Full 1 4

Web/service Full 1 4

Web/service Partial 2.5 4

N/S Full 3 0

Web/service Partial 1.5 4

N/S, open source Partial 1.5 0

Web/service Partial 3 4

Embedded Full 3 4

Embedded and web/services Full 3 4

N/S Partial 1 1

N/S Marginal 1 1

Embedded Full 0.5 3

Embedded Full 1 3

l Embedded Partial 1 4

N/S Partial 2 0

Web/service Full N/A N/A

Desktop application Partial 3 4

Web/service Full 1.5 4

Desktop application Partial 2 4

Desktop application Partial 3 4

Embedded Partial 3 4

Embedded Partial 2.5 4

N/S Partial 1.5 4

l Desktop application Partial 3 4

N/S Marginal 3 1
Appendix B. Systematic map overview

Table B.10

Systematic map overview.

PS Research method Contribution

Agarwal (2011) Industry report Framework/method

Bellomo et al. (2013b) Grounded theory Theory

Cantor and Royce

(2014)

Industry report Framework/method

Comas et al. (2011) Theoretical Framework/method

Cukier (2013) Industry report Guidelines

Feitelson et al. (2013) Industry report Advice/implications

Krusche and Alperowitz

(2014)

Case study Lesson learned

Ludwig et al. (2014) Theoretical + industry

report

Framework/method

MacCormack (2001) Mixed methods Lesson learned

Marschall (2007) Industry report Advice/implications

Neely and Stolt (2013) Industry report Lesson learned

Trimble and Webster

(2012)

Industry report Lesson learned

Trimble and Webster

(2013)

Industry report Lesson learned

Van Der Storm (2005) Theoretical + case study Framework/method

Brown et al. (2013) Industry report Framework/method

Brown et al. (2011) Theoretical + case study Framework/method

Bellomo et al. (2013a) Industry report Guidelines

Poppendieck and

Cusumano (2012)

Opinion paper Advice/implications

Antinyan et al. (2014) Action research Framework/method

Blotner (2002) Industry report Advice/implication

Bosch and Eklund

(2012)

Theoretical + case study Model

Fagerholm et al. (2014) Design science Model

Fitzgerald and Stol

(2014)

Theoretical Model

Goodman and Elbaz

(2008)

Industry report Advice/implications

Gotel and Leip (2007) Industry report Advice/implications

Humble et al. (2006) Industry report Guidelines

Kalantar et al. (2014) Industry report Tool

Ko et al. (2011) Case study Lesson learned

Krusche et al. (2014) Theoretical + mixed

methods

Model

Lacoste (2009) Industry report Advice/implications

Meyer et al. (2013) Theoretical Tool

Middleton and Joyce

(2012)

Case study Lesson learned

Olsson et al. (2012) Case study Model, lesson learned

Olsson et al. (2013) Case study Model, lesson learned

Orso et al. (2002) Theoretical + case study Tool

Scacchi and Alspaugh

(2013)

Case study Lesson learned

Wicenec et al. (2012) Industry report Advice/implications

Eklund and Bosch

(2012)

Theoretical + case study Model

Ard et al. (2014) Theoretical + industry

report

Lesson learned, mode

Nagy et al. (2010) Theoretical Model

Benefield (2009) Opinion paper Advice/implications

Khomh et al. (2012) Case study Lesson learned

Goel et al. (2014) Industry report Framework/method

Lavoie and Merlo

(2013)

Case study Lesson learned

Mantyla et al. (2013) Case study Model

Staron et al. (2012) Action research Lesson learned,

framework/method

Nilsson et al. (2014) Case study Framework/method

Papatheocharous et al.

(2014)

Case study Framework/method

Baysal et al. (2012) Case study Lesson learned, mode

Zade and Choppella

(2012)

Experiment Theory
Please cite this article as: P. Rodríguez et al., Continuous deployment of software intensive products and services: A systematic mapping

study, The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29 27

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

Table B.11

Frameworks and methods, models and tools.

Primary study Description Pertinence

Frameworks and methods

Agarwal (2011) Continuous SCRUM, an approach based on Scrum to achieve fast-paced continuous product evolution and

deployment

Full

Goel et al. (2014) Solution applied at Facebook to enable frequent software upgrades. Full

Brown et al. (2013) and

(Cantor and Royce,

2014)

Economic governance, measured improvement and disciplined agile delivery frameworks to accelerate

software delivery at an enterprise scale

Full and

marginal

Comas et al. (2011) Risk assessment heuristic approach to quantify software deployment risks in the context of fast-paced

continuous release environment

Partial

Antinyan et al. (2014) Method to identify risky areas of source code and assess risks in the context of fast and incremental delivery

environment

Partial

Brown et al. (2011) Approach to quantify architecture quality with measurable criteria to guide continuous and iterative release

planning

Partial

Van Der Storm (2005) Approach to continuous release and upgrade of component-based software Partial

Nilsson et al. (2014) Visualization technique of the testing activities involved from unit and component level to product and release

level that support the identification of improvement areas

Partial

Papatheocharous et al.

(2014)

Two level approach of how human factors can influence continuous software engineering Partial

Staron et al. (2012) Release Readiness Indicator to predict the time in weeks to release the product Partial

Ludwig et al. (2014) Approach to manage dependences between service design and release management Partial

Models

Olsson et al. (2012) and

(Olsson et al., 2013)

Stairway to Heaven model Full

Fagerholm et al. (2014) Continuous experimentation model Full

Bosch and Eklund

(2012) and (Eklund

and Bosch, 2012)

Architecture for large-scale innovation experiment system Full

Fitzgerald and Stol

(2014)

Continuous software engineering model Full

Krusche et al. (2014) Rubgy: Agile process model for continuous delivery Full

Nagy et al. (2010) Project health measurement model based on bayesian networks Partial

Mantyla et al. (2013) Model explaining the relationship between release model, release length and test effort Partial

Baysal et al. (2012) Model of the Mozilla’s patch lifecycle for rapid releases Partial

Ard et al. (2014) Software in Simulation (SiS) architecture to practice continuous integration and continuous deployment in the

embedded domain

Partial

Tools

Kalantar et al. (2014) Weaver. A domain-specific language for continuous validation of the deployed environment Full

Meyer et al. (2013) Automated quality assurance service to validate configuration management scripts across a range of

environments

Partial

Orso et al. (2002) GAMMA. Tool for remotely monitoring of deployed software Partial

Lavoie and Merlo

(2013)

Clone detector as a tool to understand differences between releases such as how many changes were done

between releases, how many bugs were made, etc.

Partial

Please cite this article as: P. Rodríguez et al., Continuous deployment of software intensive products and services: A systematic mapping

study, The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2015.12.015

http://dx.doi.org/10.1016/j.jss.2015.12.015

28 P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

F

F

F

G

G

G

H

H

I

J

K

K

K

K

K

K

K

K

L

L

L

M

M

M

M

M

M

M

N

N

N

References

Agarwal, P., 2011. Continuous Scrum: agile management of SaaS products. In: Pro-

ceedings of the 4th India Software Engineering Conference. ACM, pp. 51–60.
∗[PS1].

Antinyan, V., Staron, M., Meding, W., Osterstrom, P., Wikstrom, E., Wranker, J.,

Henriksson, A., Hansson, J., 2014. Identifying risky areas of software code in
agile/lean software development: an industrial experience report. In: 2014 Soft-

ware Evolution Week-IEEE Conference on Software Maintenance, Reengineering
and Reverse Engineering (CSMR-WCRE). IEEE, pp. 154–163. ∗[PS2].

Ard, J., Davidsen, K., Hurst, T., 2014. Simulation-based embedded agile development.

IEEE Software 31 (2), 97–101. ∗[PS3].
Baysal, O., Kononenko, O., Holmes, R., Godfrey, M.W., 2012. The secret life of

patches: a Firefox case study. In: 2012 19th Working Conference on Reverse En-
gineering (WCRE). IEEE, pp. 447–455. ∗[PS4].

Beck, K., 2000. Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., et al., 2001. The agile manifesto.

Bellomo, S., Nord, R.L., Ozkaya, I., 2013. Elaboration on an integrated architecture

and requirement practice: prototyping with quality attribute focus. In: 2013 2nd
International Workshop on the Twin Peaks of Requirements and Architecture

(TwinPeaks). IEEE, pp. 8–13. ∗[PS5].
Bellomo, S., Nord, R.L., Ozkaya, I., 2013. A study of enabling factors for rapid fielding

combined practices to balance speed and stability. In: 2013 35th International
Conference on Software Engineering (ICSE). IEEE, pp. 982–991. ∗[PS6].

Benefield, R., 2009. Agile deployment: lean service management and deployment

strategies for the SaaS enterprise. In: 42nd Hawaii International Conference on
System Sciences, 2009, HICSS’09. IEEE, pp. 1–5. ∗[PS7].

Blotner, J.A., 2002. Agile techniques to avoid firefighting at a start-up. In: OOPSLA
2002 Practitioners Reports. ACM, pp. 1–ff. ∗[PS8].

Boehm, B., 2002. Get ready for agile methods, with care. Computer 35 (1), 64–69.
Boehm, B., 2006. A view of 20th and 21st century software engineering. In: Pro-

ceedings of the 28th International Conference on Software Engineering. ACM,

pp. 12–29.
Boehm, B.W., 1988. A spiral model of software development and enhancement.

Computer 21 (5), 61–72.
Bosch, J., 2012. Building products as innovation experiment systems. In: Software

Business. Springer, pp. 27–39.
Bosch, J., Eklund, U., 2012. Eternal embedded software: towards innovation experi-

ment systems. In: Leveraging Applications of Formal Methods, Verification and

Validation. Technologies for Mastering Change, vol. 7609. Springer, Berlin, Hei-
delberg, pp. 19–31. ∗[PS9].

Brown, A.W., Ambler, S., Royce, W., 2013. Agility at scale: economic governance,
measured improvement, and disciplined delivery. In: Proceedings of the 2013

International Conference on Software Engineering. IEEE Press, pp. 873–881.
∗[PS10].

Brown, N., Nord, R.L., Ozkaya, I., Pais, M., 2011. Analysis and management of

architectural dependencies in iterative release planning. In: 2011 9th Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA). IEEE, pp. 103–112.
∗[PS11].

Cantor, M., Royce, W., 2014. Economic governance of software delivery. IEEE Soft-

ware 31 (1), 54–61. doi:10.1109/MS.2013.102. ∗[PS12].
Castells, M., 2011, vol. 1. The Rise of the Network Society: The Information Age:

Economy, Society, and Culture. John Wiley & Sons.

Causevic, A., Sundmark, D., Punnekkat, S., 2011. Factors limiting industrial adoption
of test driven development: a systematic review. In: 2011 IEEE Fourth Interna-

tional Conference on Software Testing, Verification and Validation (ICST). IEEE,
pp. 337–346.

Claps, G.G., Svensson, R.B., Aurum, A., 2015. On the journey to continuous deploy-
ment: technical and social challenges along the way. Inf. Software Technol. 57,

21–31.
Comas, J., Mostashari, A., Mansouri, M., Turner, R., 2011. A software deployment risk

assessment heuristic for use in a rapidly-changing business-to-consumer web

environment. Int. J. Software Eng. Appl. 5 (4), 107–126. ∗[PS13].
Cruzes, D.S., Dyba, T., 2011. Recommended steps for thematic synthesis in software

engineering. In: 2011 International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM). IEEE, pp. 275–284.

Cukier, D., 2013. DevOps patterns to scale web applications using cloud ser-
vices. In: Proceedings of the 2013 Companion Publication for Conference on

Systems, Programming, & Applications: Software for Humanity. ACM, pp. 143–

152. ∗[PS14].
Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B., 2012. A decade of agile methodolo-

gies: towards explaining agile software development. J. Syst. Software 85 (6),
1213–1221.

Dybå, T., Dingsøyr, T., 2008. Empirical studies of agile software development: a sys-
tematic review. Inf. Software Technol. 50 (9), 833–859.

Eck, A., Uebernickel, F., Brenner, W., 2014. Fit for continuous integration: how orga-

nizations assimilate an agile practice. In: Proceedings of the Twentieth Americas
Conference on Information Systems. Savannah.

Eisenhardt, K.M., Martin, J.A., 2000. Dynamic capabilities: what are they? Strategic
Manage. J. 21 (10–11), 1105–1121.

Eklund, U., Bosch, J., 2012. Architecture for large-scale innovation experiment
systems. In: 2012 Joint Working IEEE/IFIP Conference on Software Architec-

ture (WICSA) and European Conference on Software Architecture (ECSA). IEEE,

pp. 244–248. ∗[PS15].
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
agerholm, F., Guinea, A.S., Mäenpää, H., Münch, J., 2014. Building blocks for con-
tinuous experimentation. In: Proceedings of the 1st International Workshop

on Rapid Continuous Software Engineering (RCoSE 2014), Hyderabad, India.
∗[PS16].

eitelson, D.G., Frachtenberg, E., Beck, K.L., 2013. Development and deployment at
Facebook. IEEE Internet Comput. 17 (4), 8–17. ∗[PS17].

itzgerald, B., Stol, K.-J., 2014. Continuous software engineering and beyond: trends
and challenges. In: Proceedings of the 1st International Workshop on Rapid

Continuous Software Engineering. ACM, pp. 1–9. ∗[PS18].

oel, A., Chopra, B., Gerea, C., Mátáni, D., Metzler, J., Ul Haq, F., Wiener, J., 2014.
Fast database restarts at Facebook. In: Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data. ACM, pp. 541–549. ∗[PS19].
oodman, D., Elbaz, M., 2008. “It’s not the pants, it’s the people in the pants” learn-

ings from the gap agile transformation what worked, how we did it, and what
still puzzles us. In: Agile Conference, 2008, AGILE’08. IEEE, pp. 112–115. ∗[PS20].

otel, O., Leip, D., 2007. Agile software development meets corporate deployment

procedures: stretching the agile envelope. In: Agile Processes in Software Engi-
neering and Extreme Programming. Springer, pp. 24–27. ∗[PS21].

umble, J., Farley, D., 2010. Continuous Delivery: Reliable Software Releases through
Build, Test, and deployment automation. Pearson Education.

umble, J., Read, C., North, D., 2006. The deployment production line. In: Agile Con-
ference, 2006. IEEE, p. 6. ∗[PS22].

varsson, M., Gorschek, T., 2011. A method for evaluating rigor and industrial rele-

vance of technology evaluations. Empirical Software Eng. 16 (3), 365–395.
ärvinen, J., Huomo, T., Mikkonen, T., Tyrväinen, P., 2014. From agile software devel-

opment to mercury business. In: Software Business. Towards Continuous Value
Delivery. Springer, pp. 58–71.

alantar, M., Rosenberg, F., Doran, J., Eilam, T., Elder, M., Oliveira, F., Snible, E.,
Roth, T., 2014. Weaver: language and runtime for software defined environ-

ments. IBM J. Res. Dev. 58 (2), 1–12. ∗[PS23].

homh, F., Dhaliwal, T., Zou, Y., Adams, B., 2012. Do faster releases improve software
quality? An empirical case study of Mozilla Firefox. In: 2012 9th IEEE Working

Conference on Mining Software Repositories (MSR). IEEE, pp. 179–188. ∗[PS24].
itchenham, B., 2010. What’s up with software metrics?–A preliminary mapping

study. J. Syst. Software 83 (1), 37–51.
itchenham, B., Charters, S., 2007. Guidelines for performing systematic literature

reviews in software engineering. Technical report, EBSE-2007-01.

itchenham, B.A., Budgen, D., Pearl Brereton, O., 2011. Using mapping studies as
the basis for further research–a participant-observer case study. Inf. Software

Technol. 53 (6), 638–651.
o, A.J., Lee, M.J., Ferrari, V., Ip, S., Tran, C., 2011. A case study of post-deployment

user feedback triage. In: Proceedings of the 4th International Workshop on Co-
operative and Human Aspects of Software Engineering. ACM, pp. 1–8. ∗[PS25].

rusche, S., Alperowitz, L., 2014. Introduction of continuous delivery in multi-

customer project courses. In: Companion Proceedings of the 36th International
Conference on Software Engineering. ACM, pp. 335–343. ∗[PS26]

rusche, S., Alperowitz, L., Bruegge, B., Wagner, M.O., 2014. Rugby: an agile process
model based on continuous delivery. In: Proceedings of the 1st International

Workshop on Rapid Continuous Software Engineering. ACM, pp. 42–50. ∗[PS27].
acoste, F.J., 2009. Killing the gatekeeper: Introducing a continuous integration sys-

tem. In: Agile Conference, 2009, AGILE’09. IEEE, pp. 387–392. ∗[PS28].
avoie, T., Merlo, E., 2013. How much really changes? A case study of Firefox ver-

sion evolution using a clone detector. In: Proceedings of the 7th International

Workshop on Software Clones. IEEE Press, pp. 83–89. ∗[PS29].
udwig, H., Cappi, J., Becker, V., Stewart, B., Meade, S., 2014. Integrating ser-

vice release management with service solution design. In: Service-Oriented
Computing–ICSOC 2013 Workshops. Springer, pp. 28–39. ∗[PS30].

acCormack, A., 2001. How internet companies build software. MIT Sloan Manage.
Rev. 42 (2), 75–84. ∗[PS31].

äntylä, M.V., Adams, B., Khomh, F., Engström, E., Petersen, K., 2014. On rapid re-

leases and software testing: a case study and a semi-systematic literature re-
view. Empirical Software Eng. 1–42.

antyla, M.V., Khomh, F., Adams, B., Engstrom, E., Petersen, K., 2013. On rapid re-
leases and software testing. In: 2013 29th IEEE International Conference on

Software Maintenance (ICSM). IEEE, pp. 20–29. ∗[PS32].
arschall, M., 2007. Transforming a six month release cycle to continuous flow. In:

Agile Conference (AGILE), 2007. IEEE, pp. 395–400. ∗[PS33].

erisalo-Rantanen, H., Tuunanen, T., Rossi, M., 2005. Is extreme programming just
old wine in new bottles: A comparison of two cases. J. Database Manage. (JDM)

16 (4), 41–61.
eyer, S., Healy, P., Lynn, T., Morrison, J., 2013. Quality assurance for open source

software configuration management. In: 2013 15th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE,

pp. 454–461. ∗[PS34].

iddleton, P., Joyce, D., 2012. Lean software management: BBC worldwide case
study. IEEE Trans. Eng. Manage. 59 (1), 20–32. ∗[PS35].

agy, A., Njima, M., Mkrtchyan, L., 2010. A Bayesian based method for agile soft-
ware development release planning and project health monitoring. In: 2010 2nd

International Conference on Intelligent Networking and Collaborative Systems
(INCOS). IEEE, pp. 192–199. ∗[PS36].

eely, S., Stolt, S., 2013. Continuous delivery? easy! just change everything (well,

maybe it is not that easy). In: Agile Conference (AGILE), 2013. IEEE, pp. 121–
128. ∗[PS37].

ilsson, A., Bosch, J., Berger, C., 2014. Visualizing testing activities to support con-
tinuous integration: a multiple case study. In: Agile Processes in Software Engi-

neering and Extreme Programming. Springer, pp. 171–186. ∗[PS38].
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0016
http://dx.doi.org/10.1109/MS.2013.102
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0034
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0035
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0036
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0037
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0038
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0039
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0040
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0041
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0042
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0043
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0044
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0044
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0044
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0044
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0044
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0044
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0045
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0045
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0045
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0046
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0047
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0048
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0049
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0050
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0051
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0051
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0051
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0051
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0051
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0051
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0052
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0052
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0052
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0052
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0052
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0052
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0053
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0053
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0054
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0054
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0054
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0054
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0055
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0055
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0055
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0055
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0055
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0056
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0056
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0056
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0057
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0057
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0057
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0057
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0058
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0058
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0058
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0059
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0059
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0059
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0059
http://dx.doi.org/10.1016/j.jss.2015.12.015

P. Rodríguez et al. / The Journal of Systems and Software 000 (2016) 1–29 29

ARTICLE IN PRESS
JID: JSS [m5G;January 25, 2016;21:58]

O

O

O

P

P

P

P

R

R

S

S

S

S

S

T

T

T

U

V

V

W

Z

Z

P

t
p

f
a

r

S
i

c

A
I

i
i

f
m

P
m

o

L

D
r

i
o

f

o
d

S

s
I

n

s
s

T

P
T

a

i
o

p
g

J

n

i
t

w

T
P

l

f
h

a

P
r

w
s

t

m
–

o
t

C

J

i
a

s
c

f

M

v
S

a
I

M
1

p

l

lsson, H.H., Alahyari, H., Bosch, J., 2012. Climbing the “stairway to heaven”–a
multiple-case study exploring barriers in the transition from agile development

towards continuous deployment of software. In: 2012 38th EUROMICRO Confer-
ence on Software Engineering and Advanced Applications (SEAA). IEEE, pp. 392–

399. ∗[PS39].
lsson, H.H., Bosch, J., Alahyari, H., 2013. Towards R&D as innovation experiment

systems: a framework for moving beyond agile software development. In:
IASTED Multiconferences–Proceedings of the IASTED International Conference

on Software Engineering, SE 2013, pp. 798–805. ∗[PS40].

rso, A., Liang, D., Harrold, M.J., Lipton, R., 2002. Gamma system: continuous evo-
lution of software after deployment. In: Proceedings of the 2002 ACM SIGSOFT

International Symposium on Software Testing and Analysis, pp. 65–69. ∗[PS41].
apatheocharous, E., Belk, M., Nyfjord, J., Germanakos, P., Samaras, G., 2014. Person-

alised continuous software engineering. In: Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering. ACM, pp. 57–62. ∗[PS42].

aternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson, P.,

2014. Software development in startup companies: a systematic mapping study.
Inf. Software Technol. 56 (10), 1200–1218.

etersen, K., Feldt, R., Mujtaba, S., Mattsson, M., 2008. Systematic mapping studies
in software engineering. In: Proceedings of the 12th International Conference on

Evaluation and Assessment in Software Engineering. British Computer Society,
Swinton, UK, pp. 68–77.

oppendieck, M., Cusumano, M.A., 2012. Lean software development: a tutorial. IEEE

Software 29 (5), 26–32. ∗[PS43].
ies, E., 2011. The Lean Startup: How Today’s Entrepreneurs Use Continuous Inno-

vation to Create Radically Successful Businesses. Random House LLC.
odríguez, P., Markkula, J., Oivo, M., Turula, K., 2012. Survey on agile and lean

usage in Finnish software industry. In: Proceedings of the ACM-IEEE interna-
tional symposium on Empirical software engineering and measurement. ACM,

pp. 139–148.

cacchi, W., Alspaugh, T.A., 2013. Processes in securing open architecture software
systems. In: Proceedings of the 2013 International Conference on Software and

System Process. ACM, pp. 126–135. ∗[PS44]
chwaber, K., 2004, vol. 7. Agile Project Management with Scrum. Microsoft Press,

Redmond.
haw, M., 2003. Writing good software engineering research papers: minitutorial.

In: Proceedings of the 25th International Conference on Software Engineering.

IEEE Computer Society, pp. 726–736.
tåhl, D., Bosch, J., 2014. Modeling continuous integration practice differences in

industry software development. J. Syst. Software 87, 48–59.
taron, M., Meding, W., Palm, K., 2012. Release readiness indicator for mature agile

and lean software development projects. In: Agile Processes in Software Engi-
neering and Extreme Programming. Springer, pp. 93–107. ∗[PS45].

rimble, J., Webster, C., 2012. Agile development methods for space operations. In:

The 12th International Conference on Space Operations. ∗[PS46]
rimble, J., Webster, C., 2013. From traditional, to lean, to agile development: find-

ing the optimal software engineering cycle. In: 2013 46th Hawaii International
Conference on System Sciences (HICSS). IEEE, pp. 4826–4833. ∗[PS47]

urhan, B., Layman, L., Diep, M., Erdogmus, H., Shull, F., 2010. How effective is test-
driven development. Making Software: What Really Works, and Why We Be-

lieve It. O’Reilly Media, Inc., pp. 207–217.
nterkalmsteiner, M., Gorschek, T., Islam, A.M., Cheng, C.K., Permadi, R.B., Feldt, R.,

2012. Evaluation and measurement of software process improvement a system-

atic literature review. IEEE Trans. Software Eng. 38 (2), 398–424.
an Der Storm, T., 2005. Continuous release and upgrade of component-based soft-

ware. In: Proceedings of the 12th International Workshop on Software Configu-
ration Management. ACM, pp. 43–57. ∗[PS48].

italari, N., Shaughnessy, H., 2012. The Elastic Enterprise: The New Manifesto for
Business Revolution. Olivet Publishing.

icenec, A., Parsons, R., Kitaeff, S., Vinsen, K., Wu, C., Nelson, P., Reed, D., 2012.

Distributed agile software development for the SKA. In: SPIE Astronomical
Telescopes+ Instrumentation. International Society for Optics and Photonics,

p. 845106. ∗[PS49]
ade, H., Choppella, V., 2012. Functionality or user interface: which is easier to learn

when changed? In: 2012 4th International Conference on Intelligent Human
Computer Interaction (IHCI). IEEE, pp. 1–6. ∗[PS50].

hang, H., Ali Babar, M., 2013. Systematic reviews in software engineering: an em-

pirical investigation. Inf. Software Technol. 55 (7), 1341–1354.

ilar Rodríguez (PhD) is a postdoctoral researcher at the Department of Informa-

ion Processing Science, University of Oulu, Finland. She earned her PhD in Com-
uter Science from University of Oulu and her MSc in Information Technologies

rom Technical University of Madrid. Before taking her current position, she was
research assistant at Technical University of Madrid. She has worked in several

esearch projects related to software engineering including EU-ITEA2 FLEXI, Cloud

oftware Program, N4S and VALUE (Finland). Her research interests include empir-
cal software engineering, agile, lean, value creation in the software domain and

ognitive biases in software engineering.
Please cite this article as: P. Rodríguez et al., Continuous deployment o

study, The Journal of Systems and Software (2016), http://dx.doi.org/10
lireza Haghighatkhah is a PhD student and a researcher at the Department of
nformation Processing Science at the University of Oulu, Finland. He received BSc

n Applied Computing from Southern Cross University; Australia in 2010 and MSc
n Information Processing Science from University of Oulu, Finland in 2014. He has

our years industrial experience in J2EE platform and enterprise software develop-
ent. His research interests include Evidence-based Software Engineering, Software

rocess Assessment and Improvement as well as Lean and Agile Software Develop-
ent. He is currently working in DIGILE Need for Speed research program focusing

n continuous deployment and experimentation.

ucy Ellen Lwakatare is a doctoral student and a researcher of the M-Group at the

epartment of Information Processing Science, University of Oulu. Ms. Lwakatare
eceived her Master’s degree in Information Processing Science at University of Oulu

n 2013. Her research interests include: portfolio management, agile software devel-
pment, release processes and DevOps. She is currently a researcher of the Finnish

unded, Need for Speed (N4S) project focusing on processes, models or new ways

f working for that enable Finnish software intensive organizations to continuously
eliver value to customer in real time.

usanna Teppola (MSc) has worked as a Research Scientist at VTT Technical Re-

earch Centre of Finland since 2000. Susanna has over fifteen years’ experience in
CT, her current research interests laying in the area of continuous software engi-

eering, software product/service management and variability. In these areas Su-

anna has conducted and participated in many industrial and industry-driven re-
earch projects and project preparations both at national and international level.

anja Suomalainen (MSc) Tanja Suomalainen has received her MSc in Information

rocessing Science from the University of Oulu in 2006. She has worked at VTT (VTT
echnical Research Centre of Finland Ltd.) since 2005. She started her career first as

research trainee and then after graduation as a Research Scientist. Currently she

s also a PhD student in the Faculty of Information Processing Science at University
f Oulu, Finland. Her research interests include planning in software development,

roduct roadmapping, requirements management, global software development en-
ineering, and agile and lean software development.

uho Eskeli (MSc) Juho Eskeli received his MSc in Electrical and Information Engi-

eering from the University of Oulu in 2009. He has worked at VTT since 2006 and

s currently working as research scientist in Smart lighting and integration concepts
eam in Oulu, Finland. His research interests include software development, soft-

are development tools, internet of things, and embedded systems.

eemu Karvonen (MSc) works as a researcher at the Department of Information
rocessing Science at University of Oulu. Teemu’s research interests are agile and

ean practices and their implications to ICT companies. Currently his research is

ocused on research themes of DIGILE’s research program ‘Need 4 Speed’. Teemu
as also developed software for Nokia’s core network servers, WCDMA base stations

nd smartphones in total over 10 years.

asi Kuvaja (PhD) is Senior Programme Manager and co-founder of international
esearch group M-Group in University of Oulu. His research interests are in Soft-

are Engineering including: agile and lean software development, software quality,
oftware process, software process assessment and improvement, embedded sys-

ems, and software measurement. He is one of the developers of the BOOTSTRAP

ethodology and product quality-driven software process improvement approach
PROFES. He has been actively contributing the SPICE project and was co-editor

f ISO/IEC 15504 Part 7 – “Process Improvement Guide”. He has served as Interna-
ional Programme and Organising Committees of many IEEE, IFIP, IFAC and PROFES

onferences.

une Verner has been involved with software engineering research and teaching

n New Zealand, Australia, Hong Kong the United States, United Kingdom, Ireland
nd Finland for over 30 years. Dr. Verner was a Marie Curie fellow at Keele Univer-

ity 2011–2013, and has recently been a visitor at Oulu University, Finland. She is a
onjoint professor of Software Engineering at the University of NSW and a Research

ellow at Keele University, United Kingdom.

arkku Oivo (PhD, eMBA) is Head of department and Director of M-Group at Uni-

ersity of Oulu, Finland. During 2000-2002 he was Vice President and director at
olid Co. He held several positions at VTT 1986-2000. He had visiting positions

t University of Maryland (1990-91), Schlumberger Ltd. (Paris 1994-95), Fraunhofer
ESE (1999-2000), University of Bolzano (2014-2015) and Technical University of

adrid (2015). He worked at Kone Co. (1982-86). He has initiated and managed
00+ research projects with tens of millions of euros funding. He has over 100+

ublications. His research interests include empirical software engineering, agile,

ean, quality & process improvement, and startups.
f software intensive products and services: A systematic mapping

.1016/j.jss.2015.12.015

http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0060
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0060
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0060
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0060
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0061
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0061
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0061
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0061
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0062
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0062
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0062
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0062
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0062
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0063
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0063
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0063
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0063
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0063
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0063
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0064
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0064
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0064
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0064
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0064
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0064
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0065
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0065
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0065
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0065
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0065
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0066
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0066
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0066
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0067
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0067
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0068
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0068
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0068
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0068
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0068
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0069
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0069
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0069
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0070
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0070
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0071
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0071
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0072
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0072
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0072
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0073
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0073
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0073
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0073
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0074
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0074
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0074
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0075
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0075
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0075
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0076
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0076
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0076
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0076
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0076
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0076
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0077
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0077
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0077
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0077
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0077
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0077
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0077
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0078
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0078
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0079
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0079
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0079
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0080
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0080
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0080
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0080
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0080
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0080
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0080
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0080
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0081
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0081
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0081
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0082
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0082
http://refhub.elsevier.com/S0164-1212(15)00281-2/sbref0082
http://dx.doi.org/10.1016/j.jss.2015.12.015

Series title and number

VTT Science 132

Title Changing the planning for agile and lean software
development
From roadmapping to continuous planning

Author(s) Tanja Suomalainen

Abstract It is hard to survive and succeed in today's business environment, and to be able to
sense and respond to predictable and unpredictable events. Also, market
uncertainties, increased competitiveness and the constant need to shorten
development cycles call for more flexible, responsive and adaptive software
development practices. Agile and lean software development practices have been
presented as a solution to these challenges and to creating a change-tolerant
organisation. Despite the wide adoption of agile and lean practices, it is realised that
companies are going further in their practices towards continuous deployment. All of
these practices, agile, lean, and continuous deployment, change scheduling and
planning, among other things.

This thesis investigates how the planning has changed in agile and lean software
development from roadmap-based planning towards continuous planning.
Roadmapping is seen a process of creating and revising future plans. It is used to
manage a high-level view and to link aspects of business to software development, as
well as to bridge the gap between different levels of planning. In contrast, continuous
planning is a process of implementing the planning practices continuously based on a
need, instead of the predefined and regular planning occasions. This thesis provides
empirical evidence of how large and global software development companies are
conducting planning. The empirical data were collected in two ways: firstly, by
conducting an initial inquiry consisting of both questionnaire study and semi-structured
interviews, and secondly, by conducting a multiple-case study.

According to the results, in software development, roadmap-based planning focuses
mainly on product roadmapping, as it improves visibility both upwards to business and
strategic planning and downwards to team level planning. The results also show that
the main levels of continuous planning are: strategic, financial, business, product, and
release planning. The main cycles of planning are conducted weekly, quarterly or
annually. Longer-term plans are created for the next three-year period. On the basis of
the findings, it was realised that planning practices have changed both in regard to
scope and schedule. Planning in agile and lean software development is not restricted
to release planning only; instead it is viewed from a wider perspective that involves also
strategic and financial planning. What is more, the time frame of the plans has
shortened remarkably, from years to months, weeks and days. The reasons for these
changes are both internal and external. Both the unstable and turbulent business
environment and the rapid development of technology and new product development
practices as well as shorter product development cycles are drivers for the change in
planning.

ISBN, ISSN, URN ISBN 978-951-38-8446-8 (Soft back ed.)
ISBN 978-951-38-8445-1 (URL: http://www.vttresearch.com/impact/publications)
ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)
http://urn.fi/URN:ISBN:978-951-38-8445-1

Date September 2016

Language English, Finnish abstract

Pages 108 p. + app. 126 p.

Name of the project

Commissioned by

Keywords Continuous planning, roadmapping, levels of planning, software
development, agile-lean organisation, continuous deployment, change

Publisher VTT Technical Research Centre of Finland Ltd
P.O. Box 1000, FI-02044 VTT, Finland, Tel. 020 722 111

http://www.vttresearch.com/impact/publications
http://urn.fi/URN:ISBN:978-951-38-8445-1

Julkaisun sarja ja numero

VTT Science 132

Nimeke Suunnittelun muuttuminen ketterässä ja kevyessä
ohjelmistokehityksessä
Tiekarttapohjaisesta suunnittelussa kohti jatkuvaa suunnittelua

Tekijä(t) Tanja Suomalainen

Tiivistelmä On vaikea menestyä tai ehkä edes selviytyä nykypäivän liiketoimintaympäristössä eli
pystyä vastaamaan paitsi ennustettavissa oleviin, myös arvaamattomiin muutoksiin.
Markkinoiden epävarmuus, kova kilpailu ja tarve lyhentää kehitysaikaa edellyttävät
joustavampia, reagoivampia ja mukautuvampia ohjelmistokehityskäytäntöjä. Ketterät
ja kevyet menetelmät on esitetty ratkaisuna näihin vaatimuksiin, mutta on havaittu,
että ohjelmistoyritykset ovat menossa kohti jatkuvaa kehitysmallia. Ketterät ja kevyet
menetelmät sekä jatkuva kehitysmalli muuttavat suunnittelua.

Tässä tutkimuksessa selvitettiin, miten suunnittelu on muuttunut ketterässä ja
kevyessä ohjelmistokehityksessä tiekarttapohjaisesta suunnittelusta kohti jatkuvaa
suunnittelua. Tiekarttapohjainen suunnittelu on lähestymistapa luoda ja päivittää
tulevaisuuden suunnitelmia sekä hallita ja yhdistää yrityksen liiketoimintanäkymä
ohjelmistokehitykseen. Sitä käytetään myös parantamaan näkyvyyttä eri tasojen
välillä. Jatkuva suunnittelu tarkoittaa suunnittelun toteuttamista tarpeen mukaan
nopeissa rinnakkaisissa kierroksissa ennalta määritettyjen vaiheiden sijaan. Tutkimus
perustuu empiiriseen aineistoon siitä, kuinka isot kansainväliset ohjelmistoyritykset
toteuttavat suunnittelua. Aineisto kerättiin tekemällä ensin alustava tiedonkeruu, joka
koostui kyselytutkimuksesta ja teemahaastatteluista, ja toteuttamalla sen jälkeen
monitapaustutkimus.

Väitöstutkimuksen tuloksena havaittiin, että tiekarttapohjaisen suunnittelun keskiö
ohjelmistoyrityksissä on tuotesuunnittelu. Tiekarttapohjainen tuotesuunnittelu
parantaa näkyvyyttä sekä strategian ja liiketoiminnan suunnitteluun että
ohjelmistotiimitason vaatimusten suunnitteluun. Tutkimustulokset vahvistavat, että
jatkuvan suunnittelun päätasot ovat strateginen, talous-, liiketoiminnan, tuote- ja
julkaisusuunnittelu. Suunnittelun pääkierrokset toteutetaan viikoittain,
neljännesvuosittain ja vuosittain. Pisimmän aikavälin suunnitelmat luodaan yleensä
kolmeksi vuodeksi eteenpäin. Tutkimuksen tuloksena huomattiin, että
suunnittelukäytännöt ovat muuttuneet laajuuden ja aikataulun suhteen. Suunnittelu ei
rajoitu ketterässä ja kevyessä ohjelmistokehityksessä pelkästään
julkaisusuunnitteluun, vaan se nähdään laajemmasta näkökulmasta, johon sisältyvät
myös strateginen ja taloussuunnittelu. Suunnitelmien aikataulu on lyhentynyt
huomattavasti viime vuosien aikana. Suunnittelua ovat muuttaneet epävakaa
toimintaympäristö, teknologioiden nopea kehittyminen, uudet tuotekehityskäytännöt
ja lyhenevät tuotekehityssyklit.

ISBN, ISSN, URN ISBN 978-951-38-8446-8 (nid.)
ISBN 978-951-38-8445-1 (URL: http://www.vtt.fi/julkaisut)
ISSN-L 2242-119X
ISSN 2242-119X (Painettu)
ISSN 2242-1203 (Verkkojulkaisu)
http://urn.fi/URN:ISBN:978-951-38-8445-1

Julkaisuaika Syyskuu 2016

Kieli Englanti, suomenkielinen tiivistelmä

Sivumäärä 108 s. + liitt. 126 s.

Projektin nimi

Rahoittajat

Avainsanat Jatkuva suunnittelu, tiekarttapohjainen suunnittelu, suunnittelutasot,
ohjelmistokehitys, ketterä ja kevyt organisaatio, jatkuva kehitysmalli,
muutos

Julkaisija Teknologian tutkimuskeskus VTT Oy
PL 1000, 02044 VTT, puh. 020 722 111

http://www.vtt.fi/julkaisut
http://urn.fi/URN:ISBN:978-951-38-8445-1

Changing the planning for agile and lean software
development
From roadmapping to continuous planning

Market uncertainties, increased competitiveness and the constant
need to shorten development cycles call for more flexible,
responsive and adaptive software development and planning
practices. Thus, creating a long-term future plan has become
challenging for software development companies.

This thesis investigates how planning has changed for agile and
lean software development from roadmap-based planning towards
continuous planning. This thesis provides empirical evidence of
how large and global software development companies are
conducting planning. The empirical data were collected by
conducting an initial inquiry consisting of both a questionnaire
study and semi-structured interviews, and then, by conducting a
multiple-case study involving three case companies.

The results show that planning practices have changed both in
regard to their scope and schedule. The scope of planning in agile
and lean software development is not restricted to release planning
only; instead planning should be viewed from a wider perspective
involving also strategic, financial, business, and product planning.
What is more, the time frame of plans has shortened remarkably
from years down to months, weeks and days. The reasons for
these changes are both internal and external, which are elaborated
in more details in the thesis.

ISBN 978-951-38-8446-8 (Soft back ed.)
ISBN 978-951-38-8445-1 (URL: http://www.vttresearch.com/impact/publications)
ISSN-L 2242-119X
ISSN 2242-119X (Print)
ISSN 2242-1203 (Online)
http://urn.fi/URN:ISBN:978-951-38-8445-1

V
T

T
 S

C
IE

N
C

E
 1

3
2

C
h

a
n

g
in

g
 th

e
 p

la
n

n
in

g
 fo

r a
g

ile
 a

n
d

 le
a

n
 so

ftw
a

re
...

•V
IS

IO
N

S•
SCIENCE•TEC

H
N

O
L

O
G

Y
•RESEARCHHIGHLI

G
H

T
S

Dissertation

132

Changing the planning
for agile and lean
software development

From roadmapping to continuous
planning

Tanja Suomalainen

http://www.vttresearch.com/impact/publications
http://urn.fi/URN:ISBN:978-951-38-8445-1

	artikkelit_Suomalainen.pdf
	1_ChallengesForProductRoadmappingInInterCompanyCollaboration.pdf
	Challenges for Product Roadmapping in Inter-company Collaboration
	Introduction
	Collaborative Product Roadmapping Based on Literature
	Product Roadmapping Process
	Collaboration Modes

	Research Design
	Data Collection and Analysis
	Background of the Respondents

	Empirical Findings
	Important Issues in Collaborative Product Roadmapping
	Creating Product Roadmaps in Inter-company Collaboration
	Product Roadmapping Reflecting to Collaboration Modes
	Collaboration Effects to Product Roadmapping
	Validity and Limitations of the Study

	Discussion and Conclusions
	References

	Blank Page
	Blank Page
	4_Defining Continuous planning through a multiple case-study.pdf
	Defining Continuous Planning Through a Multiple-Case Study
	Abstract
	1 Introduction
	2 Continuous Planning
	3 Research Design
	3.1 Research Method and Data Collection
	3.2 Case Companies

	4 Multiple-Case Study Findings
	5 Conclusions
	References

	Blank Page
	Blank Page
	5_Continuous Deployment of Software Intensive Products and Services A systematic mapping study INPRESS.pdf
	Continuous deployment of software intensive products and services: A systematic mapping study
	1 Introduction
	2 Background and related work
	2.1 Continuous deployment
	2.2 Related work

	3 Research methodology
	3.1 The need for the study and definition of research questions
	3.2 Search strategy and databases
	3.3 Primary study selection criteria
	3.4 Primary study selection procedure
	3.5 Data extraction
	3.5.1 Primary study properties: P1-P6
	3.5.2 Primary study quality assessment: P7 and P8
	3.5.3 Continuous deployment factors: P9 - P12

	3.6 Data analysis and interpretation
	3.7 Validity threats and limitations of the study
	3.7.1 Identification of primary studies
	3.7.2 Data extraction
	3.7.3 Publication bias

	4 Results: overview of the state-of-the-art of CD
	4.1 RQ1.1: research methods
	4.2 RQ1.2: contributions
	4.3 RQ1.3: publication years’ frequency distribution and publication channels
	4.4 RQ1.4: primary study quality
	4.5 RQ2: continuous deployment factors
	4.6 RQ3: benefits and challenges

	5 Analysis of continuous deployment factors (RQ2)
	5.1 Fast and frequent release
	5.1.1 Continuous planning
	5.1.2 Mechanisms for achieving fast and frequent release
	5.1.3 Effects of fast and frequent release on product quality

	5.2 Flexible product design and architecture
	5.3 Continuous testing and quality assurance
	5.3.1 Test automation
	5.3.2 Testing with users
	5.3.3 Creating a culture of quality
	5.3.4 Technical debt

	5.4 Automation
	5.4.1 Continuous integration
	5.4.2 Release and deploy automation
	5.4.3 Automation of configuration management for deployment environments

	5.5 Configuration management
	5.5.1 Version control branching strategies
	5.5.2 System configuration

	5.6 Customer involvement
	5.7 Continuous and rapid experimentation
	5.8 Post-deployment activities
	5.9 Agile and lean software development
	5.10 Organizational factors
	5.10.1 Integrated corporate functions
	5.10.2 Transparency
	5.10.3 Innovative and experimental organizational culture

	6 Analysis of reported benefits and challenges for continuous deployment (RQ3)
	6.1 Benefits
	6.2 Challenges

	7 Research gaps and opportunities for future research (RQ4)
	8 Comparison to related reviews
	9 Conclusion
	 Acknowledgement
	Appendix A Extracted data - primary study properties
	Appendix B Systematic map overview
	 References

