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1. Introduction

1.1 Background

Comprehensive risk analysis [1] of a complex system calls for a systematic

identification of all significant accident scenarios, and assessment of the

likelihood and consequences of each accident scenario. Probabilistic risk

analysis (PRA) [2] is an approach that has been widely used in the risk

analysis of complex facilities, especially nuclear power plants. Compared

to qualitative risk analysis methods [3], PRA is more precise and more

effective when a large number of complex accident sequences needs to be

analysed. Usually, the main purpose of PRA is to support risk-informed

decision making and to help fulfil regulatory requirements. PRA can point

out the weaknesses of the analysed system, and the system’s reliability

can be improved effectively on the basis of the results of PRA.

PRA modelling is generally performed using fault trees [4, 5] and event

trees [2]. An event tree models how an accident can progress from an ini-

tiating event to different consequences depending on a set of nodal ques-

tions e.g. about which safety systems fail. The probabilities of different

event tree branches can be calculated using fault trees. A fault tree typ-

ically represents the failure logic of the analysed system and thus helps

to determine which component failure and event combinations can cause

the system to fail. The probability of the system’s failure can be calculated

from the fault tree if the probabilities of its basic events (e.g. component

failures) are known. This computation is usually based on minimal cut

sets [4], which are minimal combinations of basic events that can cause

the top event, such as failure of the system. The probabilities can be

estimated on the basis of operational data or determined by expert judge-

ment.

1



Introduction

Fault tree analysis is currently the leading method for risk and relia-

bility analysis of complex systems. However, fault trees are static and

have only limited capability to represent dynamic systems such as digital

control systems. Dynamic interactions between software and hardware or

interactions between the control system and the controlled process cannot

be modelled properly using fault trees. In addition, fault trees do not sup-

port non-binary logic or modelling of the system’s evolution in time. This

has motivated the extensive development of dynamic reliability analysis

methods since the 1990s [6].

Dynamic flowgraph methodology (DFM) is a method for the reliability

analysis of dynamic systems containing feedback loops [7, 8, 9]. As in

fault tree analysis, the aim of DFM is to identify which conditions can

cause a top event, which can be e.g. system failure. A DFM model is a

graph representation of the analysed system. The components of DFM

models are analysed at discrete time points, and they can have multiple

states. DFM has most often been applied to different digital control sys-

tems that include both hardware and software components. One reason

for this is that a DFM model can represent the interactions between a

control system and the controlled process.

The main alternative to DFM is the methodology that combines Markov

modelling and cell-to-cell mapping (CTCM) technique [10, 11, 12]. Markov

models can represent the dynamic and multi-state logic of a system to a

degree of accuracy that is comparable to DFM. The main difference is that

every state transition is associated with a probability in Markov mod-

els. Other dynamic reliability and risk analysis methods include dynamic

event trees [13, 14, 15], Petri nets [16], event sequence diagrams [17],

GO-FLOW methodology [18] and dynamic fault trees [19]. In addition,

there are some Monte Carlo simulation based methods for the reliability

analysis of digital instrumentation and control systems [20, 21, 22].

Broadly viewed, there are two main approaches to analyse the reliability

of a dynamic system:

1. to simulate the system (inductive analysis),

2. to identify different ways in which the system can fail, e.g. minimal

cut sets, and to determine the system’s failure probability based on

this kind of logical analysis (deductive analysis).

Some dynamic models, such as DFM and Markov models, can be solved

in both ways. Markov models have been used more for inductive analysis,

2
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whereas DFM has been considered more suitable for deductive analysis.

Although risk importance measures [23] and common cause failures [24]

are important areas of reliability theory, they have not been studied much

in the context of DFM. Risk importance measures can be used to identify

components and basic events that are most important with regard to the

system’s reliability. The importance of a component depends both on the

reliability of the component and the consequences that its failure would

have on the system’s reliability. Risk importance values help to determine

how the system’s reliability can best be improved.

A common cause failure (CCF) means that multiple components fail due

to a common cause [25]. A CCF can occur between components that share

some failure mechanism which can cause them to fail simultaneously or

during a relatively short time window, for instance during the PRA mis-

sion time which is usually 24 hours. Modelling CCFs is an important part

of the reliability analysis of complex systems including redundant compo-

nents. If CCFs are not taken into account, the risk of the system’s failure

can be underestimated.

1.2 Objectives

This dissertation develops new risk importance measures for DFM. Tra-

ditional risk importance measures have been developed for binary and

static logic, meaning that they cannot directly be applied in DFM. Some

risk importance measures have previously been developed for DFM [26,

27], but they have limitations. For example, they cannot fully measure the

importances of different failure modes of components, because they are

not formulated for the states of nodes of DFM. Neither do they consider

information about the timings of events and conditions properly. This mo-

tivates the development of new risk importance measures for measuring

the importances of states of components and for taking the time aspect of

DFM into account. The new importance measures also need to support

the interpretation of results.

Another objective of this dissertation is to study CCFs in the DFM con-

text, which has not been addressed in the earlier literature. Model in

[28] included CCFs, but they were not really discussed in the paper. Ap-

proaches for the modelling of CCFs as well as the computation of CCF

probabilities are developed. Compared to static analysis, DFM introduces

a new dimension in that it considers the failure times of components. It

3
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needs to be considered how the failure times should be taken into account

in the CCF modelling and the calculation of probabilities.

One important basis for risk importance measure calculation and CCF

modelling is the interpretation of DFM results. The primary result of

DFM analysis is a set of prime implicants [29], which are minimal combi-

nations of events and conditions that are sufficient to cause the top event.

The interpretation of prime implicants is not always completely clear and

unambiguous, for example when non-repairable components are consid-

ered as identified in the author’s MSc thesis [30]. Therefore, the definition

and interpretation of prime implicants are also studied in this disserta-

tion.

4



2. Methodological background

The most often used reliability analysis method, fault tree analysis, is

summarised in Section 2.1. Section 2.2 presents binary decision diagrams,

because they are a commonly used method to solve a reliability model

and they have been applied to DFM analysis. Markov modelling is de-

scribed briefly in Section 2.3 because it is the most often used dynamic

reliability analysis method and the main alternative to DFM. Sections

2.4-2.6 present DFM, risk importance measures and CCFs as the main

background for the results of the dissertation, presented in Chapter 3.

2.1 Fault tree analysis

Fault tree analysis [4, 5] is a widely used method to estimate the failure

probability of a system. A fault tree represents the ways in which the

system can fail. It is a graphical tree structure in which basic events

(component failures and other events that can cause the system to fail) are

connected using logical gates, such as OR and AND; there are equivalent

Boolean operations [31] (+ and ·).
A fault tree is typically used to identify minimal cut sets [4]. A cut set

is a set of basic events that causes the top event which represents the

system’s failure. A minimal cut set is a cut set that contains the minimal

number of basic events. Thus if one of the basic events is removed from

the minimal cut set, it is not a cut set any more and the system does not

fail.

The probability of the top event can be calculated on the basis of minimal

cut sets and the probabilities of basic events [32]. It is also possible to

calculate the top event probability directly from the fault tree without the

identification of minimal cut sets. On the other hand, the analysis can

also focus only on the identification of minimal cut sets if the probability

5
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Figure 2.1. A fault tree with five basic events.

estimates of basic events are not available. Minimal cut sets themselves

are useful qualitative information.

An example of a fault tree is presented in Figure 2.1. Boolean formula

representation of the fault tree is F = (a+b)·c·(d+e) = acd+ace+bcd+bce.

The minimal cut sets of the fault tree are acd, ace, bcd and bce.

2.2 Binary decision diagrams

A binary decision diagram (BDD) [33, 34] is an efficient data structure for

symbolic Boolean manipulation. It is a directed acyclic graph that consists

of decision nodes, two kinds of edges, 0-edges and 1-edges, and terminal

nodes, 1-terminal and 0-terminal. In a BDD, each decision node, repre-

senting a Boolean variable, has a 0-edge and a 1-edge. When a BDD rep-

resents a Boolean formula, each path from the root node to the 0-terminal

or the 1-terminal represents a Boolean assignment.

BDDs are based on repeated application of the Shannon expansion for-

mula [34]

F = x · F |x=1 + x · F |x=0, (2.1)

where F is a Boolean formula, x is a Boolean variable, x is the negation

of variable x, F |x=1 is Boolean formula F with condition that x = 1, and

F |x=0 is Boolean formula F with condition that x = 0. For example, if
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F = abc+ ad, F can be presented in form

F =a · (bc+ d)

=a · (b · (c+ d) + b · d)
=a · (b · (c+ c · d) + b · d).

Reliability analysis has been one application area of BDDs [35, 36, 37].

For example, a fault tree can be transformed into a BDD. Minimal cut sets

can be generated from a BDD representing a fault tree, or the top event

probability can directly be calculated from the BDD. In a BDD, each path

ending in the 1-terminal also corresponds to a cut set, and these cut sets

are mutually exclusive, which is an advantage compared to fault trees.

2.3 Markov modelling

Markov modelling is described briefly in this section because it is the most

often used dynamic reliability analysis method and the main alternative

to DFM. A Markov model consists of a set of system states, and transition

rates between the states [38]. A Markov model is usually analysed in

discrete time steps. The probabilities of different system states at a time

step can be calculated on the basis of the probabilities of the states at

the previous time step and the state transition rates. Typically, initial

probabilities are defined for the system states, whereafter probabilities

for how the states evolve in time are calculated.

The methodology of Markov/CTCM [10, 11, 12] has been applied to the

reliability analysis of dynamic systems. In CTCM, the variables of the

analysed system are discretised to a finite number of states. The variables

can, for example, be physical variables such as water level or represent

states of components such as a valve. States of different variables are

combined to form state combinations called cells. These cells are then

used as system states in a Markov model. The transition rates between

the cells are determined e.g. on the basis of physical equations, system

design and estimated failure rates of components. From the model, it is

possible to analyse the ways in which some postulated top event can occur

[12, 39] and how probable this event is or, alternatively, how the system

evolves on the basis of some initial conditions [8, 11].
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2.4 Dynamic flowgraph methodology

A DFM model [7, 8, 9, 40, 41, 42, 43, 44] is a graph representation of the

analysed system. Nodes in the model represent the components and vari-

ables of the system, and edges connecting the nodes represent causal and

other dependencies between the nodes. These dependencies can involve

time delays, and nodes can have two or more states. If a node does not

depend on any other node, it is a stochastic node, the state of which is

determined by a discrete probability distribution at each time step. The

state of a deterministic node is determined on the basis of the states of

input nodes. Each deterministic node has a decision table which specifies

the output state for each state combination of the input nodes. Decision

tables can be constructed on the basis of empirical knowledge about the

system, physical equations, simulations, expert judgement, software de-

sign or software code.

Figure 2.2 shows a simple DFM model of a tank system with a valve

that is controlled on the basis of water level measurement, and Table 2.1

gives the decision table of node V as an example. In the model, node

V represents the functional state of a valve (state 0 for closed and 1 for

open), L represents the water level and M represents the water level mea-

surement value. Nodes M and L have three states −1, 0 and 1 indicating

water levels low, medium and high. Nodes S and F are stochastic nodes

determining whether the water level measurement and the valve have

failed. A row in the decision table specifies a combination of states of the

input nodes, and the corresponding state of the output node. Delays in

the dependencies are shown in the time lag row. Table 2.1 can be inter-

preted so that the valve is stuck in its previous state if it has failed (F is

1). Otherwise, the valve is opened if the water level measurement has a

high value and closed if the water level measurement has a low value.

The primary target of DFM is usually to identify prime implicants of the

top event [29]. An implicant is a combination of conditions that causes the

top event, and a prime implicant is a minimal combination of conditions

that is sufficient to cause the top event. In DFM, these conditions are

represented by literals. In this context, a literal is a triplet consisting

of a variable V , state s and time point −t, and denoted as Vs(−t). A lit-

eral can, for example, represent a value of a physical variable or a state

of a component, or indicate the occurrence of some event at a particular

time step. Prime implicants of DFM can be interpreted as multi-state and

8
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Figure 2.2. A DFM model.

Table 2.1. The decision table of node V.

Output Inputs

Node V F M V

Time lag 0 0 1

0 0 −1 0

0 1 −1 0

0 0 0 0

0 1 0 0

1 0 1 0

0 1 1 0

0 0 −1 1

1 1 −1 1

1 0 0 1

1 1 0 1

1 0 1 1

1 1 1 1

timed minimal cut sets. Generally, prime implicants are an extension of

minimal cut sets for non-coherent logic [35]. Paper I of this dissertation

concerns the mathematical definition of a prime implicant.

The top event is also defined as a set of literals. The analyst can freely
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choose any top event. Therefore, it is possible to analyse several top

events in parallel, and both success and failure scenarios can be analysed.

A DFM model is typically analysed by tracing event sequences back-

wards from effects to causes [7]. Deductive analysis starts from the top

event. The model is traced backwards in the cause-and-effect flow to iden-

tify what states of variables produce the top event. The process ends when

the initial time step is reached. Prime implicants of a top event can con-

tain initial states of deterministic nodes and states of stochastic nodes at

any time step.

DFM analysis does not always have an unambiguous solution, because

there are different ways to interpret some literals, prime implicants and

constraints related to literals, and to handle the initial time step. Issues

related to the interpretation of prime implicants, literals and literal con-

straints are studied in Paper I of this dissertation.

DFM models can also be analysed inductively by simulating the model

with particular initial conditions [45]. All the possible consequences of

the system’s initial or boundary conditions are generated. The initial or

boundary conditions can either be desired or undesired states. If these

conditions are desired states, inductive analysis can be used to verify sys-

tem requirements with the aim of ensuring that operation under normal

conditions does not lead to undesired states. If these conditions are unde-

sired states, inductive analysis can be used to verify the system’s safety

behaviour. Inductive analysis can be used, for example, to analyse the

prime implicants identified in deductive analysis in more detail, and to

examine the effects of mitigation actions.

DFM involves key concepts such as process node, condition node, causal-

ity edge, condition edge, transfer box and transition box (see e.g. [40]).

The difference between process nodes and condition nodes is largely based

on the modelling philosophy. From a technical point of view, there is no

difference. Transfer boxes correspond to decision tables without time lags,

and transition boxes correspond to decision tables with time lags. Causal-

ity edges connect process nodes, and condition edges connect condition

nodes to process nodes via transfer or transition boxes.

The two most frequently cited DFM software tools are Dymonda [46]

and Yadrat [41]. Dymonda has been developed by the original develop-

ers of DFM. It solves the graph model by transferring it to a set of timed

fault trees representing different time steps, or alternatively combining

the decision tables of the model into one critical transition table [29]. Dy-

10



Methodological background

monda solves an initial set of prime implicants directly from the timed

fault trees or the critical transition table, and then applies the method of

generalized consensus [47, 48] to solve the complete set of prime impli-

cants. Yadrat has been developed by VTT. It transforms the DFM model

into a BDD from which the prime implicants are solved. The prime impli-

cant solving methods of the tools have not been compared properly with

regard to computation times. A benefit of a BDD is that the non-coherent

logic of the model is naturally present in the BDD structure. Because of

this, the BDD approach requires less prime implicant processing after ini-

tial identification, whereas the Dymonda’s approach of using the method

of generalized consensus relies heavily on the comparisons between ini-

tial prime implicants. On the other hand, multi-state nodes have to be

converted into binary variables when a BDD is used, and the prime impli-

cants of the BDD have to be converted back to represent the multi-state

logic.

Dymonda and Yadrat use slightly different specifications and terminol-

ogy. Dymonda follows the official DFM specifications [49]. Yadrat can be

considered as an alternative interpretation of the methodology. Despite

their differences, the same deductive analyses can be performed using

both tools. Yadrat does not provide support for inductive analysis.

In the computation of the top event probability in DFM, the basic idea

is similar to the computation of the top event probability in fault tree

analysis [32]. In DFM, the top event probability is calculated on the ba-

sis of the prime implicants and the probabilities of the literals. Deter-

mination of the probabilities of literals has not been addressed much in

the literature. Probabilities have been presented mainly considering one

time step, whereas time-dependent probability models have not been pre-

sented. However, DFM specifications [49] do mention that Dymonda con-

tains time-dependent probability models. In this dissertation (see Paper

III), an exponential model with a constant failure rate is used for the com-

putation of failure probabilities. For computation of the top event proba-

bility, the usual upper bound algorithms [32] used in fault tree analysis

can also be applied in DFM. More accurate top event probability algo-

rithms have also been developed, such as the algorithm presented in [50]

and the algorithm cited in [49].

The application areas of DFM have included digital control and safety

systems in nuclear power plants [8, 45, 51], space systems [28, 52, 53],

hydrogen production plants [40, 54], human performance [55], networked
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control systems [9] and field programmable gate arrays (FPGAs) [44, 56].

The reliability analysis of digital systems is considered to be one of the

greatest challenges in modern nuclear power plant PRA. Traditional static

methods, such as fault trees, cannot capture the dynamic interactions of

digital systems very well. NUREG/CR-6901 [57] has identified DFM as

one of the promising methods for the reliability analysis of digital I&C

systems. DFM has been considered effective in modelling dynamic inter-

actions, such as delays, memories, logic loops and system states [51]. In-

teractions can, for example, lead to the coupling of events, such as opening

of a valve and starting of a pump, and therefore, have a significant effect

on the reliability of the system. Multi-state logic is advantageous, because

the behaviour of software controlled systems is usually non-binary.

Most DFM models reported in the literature are rather small. To the

author’s knowledge, the largest model found in the literature represents

the FPGA-based reactor trip logic loop in a detailed manner and contains

396 nodes [44]. The complexity of DFM analysis depends on the number

of nodes and states of nodes, the complexity of decision tables, and the

number of time steps used in the analysis. The computation times are

rather sensitive to increase in any of these factors. The model in [44]

was traced backwards only one time step, because the computation with

multiple time steps would have lasted too long.

Aldemir et al. [8] compared DFM to Markov/CTCM methodology in mod-

elling a digital feedwater control system. The results of the methodologies

were consistent. An approach utilising both DFM and Markov analysis

was proposed. The authors suggested that DFM could first be used to

identify prime implicants. Thereafter, inductive Markov analysis could

be performed to validate the prime implicants and to examine their sen-

sitivity to variations of initial conditions.

2.5 Risk importance measures

Risk importance measures [23, 58] are used to analyse which components

contribute most to a system’s failure probability. This information helps

to determine how the system’s reliability can be improved effectively, e.g.

where to add redundancy, which components to upgrade and how to al-

locate testing activities. The importance of a component depends on the

reliability of the component itself, its position in the system’s structure,

and the need for the component in the system. The failure probability
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of the component is a significant factor, but if the failure of component

does not jeopardise the functioning of the system, it is not very important.

At least two different importance measures should be used in the impor-

tance analysis, because one measure is usually limited to describing the

component’s influence over the system’s reliability from one point of view

only.

In the reliability analysis of nuclear power plants, the Fussell-Vesely

measure of importance [59, 60] and the risk increase factor [61, 62] (also

known as the risk achievement worth) are frequently used risk impor-

tance measures. Fussell-Vesely takes into account both the failure prob-

ability of the component and the system’s capability to survive without

the component. Therefore, Fussell-Vesely is typically used as the primary

risk importance measure. The risk increase factor measures how much

the failure of the component increases the probability of the system’s fail-

ure. It is a good complement to Fussell-Vesely and it is useful, e.g. when

the repairing order of failed components must be decided.

Although the previous paragraphs discussed component failures, risk

importance measures can be calculated for any basic event. The Fussell-

Vesely measure of importance IFV (i) for basic event i is defined as the

probability that at least one minimal cut set containing basic event i has

been realised assuming that the system has failed.

Definition 1 Fussell-Vesely:

IFV (i) :=
Qi

TOP

QTOP
, (2.2)

where QTOP is the probability that the system fails and Qi
TOP is the prob-

ability that a minimal cut set including basic event i causes the system to

fail.

The risk increase factor II(i) for basic event i is defined as the system’s

failure probability with the condition that basic event i has occurred di-

vided by the system’s failure probability (without any conditions).

Definition 2 The risk increase factor:

II(i) :=
QTOP (i = 1)

QTOP
, (2.3)

where QTOP (i = 1) is the failure probability of the system, given that basic

event i has occurred.
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2.6 Common cause failures

CCFs [24, 63] are an important part of the reliability analysis of complex

systems including redundant components. If CCFs are not taken into

account, the risk of the system’s failure is likely to be underestimated. In

[25], a CCF is defined using the following criteria:

“1. Two or more individual components fail, are degraded (including

failures during demand or in-service testing), or have deficiencies that

would result in component failures if a demand signal had been received.

2. Components fail within a selected period of time such that success

of the probabilistic risk assessment (PRA) mission would be uncertain.

3. Components fail because of a single shared cause and coupling

mechanism.

4. Components fail within the established component boundary.”

There are different ways to model CCFs. In nuclear power plant PRA,

parametric models [64] are used most often. In parametric models, the

CCF probability is calculated by multiplying individual component fail-

ure probability with some CCF parameters. Another option is to estimate

the CCF probability independently without considering the failure proba-

bilities of individual components.

Two parametric models, β- and α-factor models, have been used in this

dissertation. They are introduced in the following.

Consider a group of m identical components with a common failure mech-

anism. When CCFs are modelled using the β-factor model, it is assumed

that a component can either fail independently or in a CCF of all m com-

ponents. If a component fails, the failure is a CCF with probability β.

Hence, if the component fails with probability Q, the probability of inde-

pendent failure is Q1 = (1 − β) · Q, and the probability of a CCF of all m

components is Qm = β ·Q.

The α-factor model considers the possibility that a subset of m compo-

nents can fail due to a common cause, i.e. CCFs between different com-

ponent combinations are possible. The formulas for the α-factor model

are

Qk =
k(

m−1
k−1

) αk

αtot
Q, (2.4)

αtot =
m∑

k=1

kαk, (2.5)

where the factors α1,..., αm are determined by the analyst.

If an α-factor group includes four components, the failure probability of
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a component is 0.001, α1 = 0.935, α2 = 0.05, α3 = 0.01 and α4 = 0.005, it

follows that

αtot = 0.935 + 2 · 0.05 + 3 · 0.01 + 4 · 0.005 = 1.085,

Q1 =
1(
3
0

) 0.935
1.085

· 0.001 ≈ 8.62 · 10−4,

Q2 =
2(
3
1

) 0.05

1.085
· 0.001 ≈ 3.07 · 10−5,

Q3 =
3(
3
2

) 0.01

1.085
· 0.001 ≈ 9.22 · 10−6

and

Q4 =
4(
3
3

) 0.005
1.085

· 0.001 ≈ 1.84 · 10−5.
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3. Results

3.1 Prime implicants

Paper I presents a new definition of a prime implicant that is applicable in

time-dependent dynamic reliability analysis. The basis for the definition

is a reliability model that consists of a top function and a set of additional

constraints. The analysis of non-repairable components in the DFM was

the case that revealed the need for the new definition, because the results

contained prime implicants that implied some other prime implicants. For

example, according to the traditional definition [35],

{V1(−4), V F0(−3),WL0(−4),WLM−1(−4),MF1(−1)}

and

{V1(−4), V F0(−3),WL0(−4),WLM−1(−4),MF1(−2)}

are prime implicants of the example model presented in Paper I. However,

since MF represents the failure of a non-repairable component, implicant

{V1(−4), V F0(−3),WL0(−4),WLM−1(−4),MF1(−2)}

implies

{V1(−4), V F0(−3),WL0(−4),WLM−1(−4),MF1(−1)}.

The new definition was developed with the idea that an implicant that

implies some other length-minimal implicant is not a prime implicant,

because it is not a minimal condition for causing the top event.

The new definition provides solid mathematical foundation for DFM. It

takes time-related minimality into account. For example, assume that a

top event occurs if a non-repairable component fails during a particular

time frame. The component can fail at different time points to cause the
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top event, but it does not need to fail until a specific time point. There-

fore, the condition that the component is failed at the latest possible time

point is minimal, and the condition that the component fails earlier is non-

minimal. The new definition also supports the calculation of the top event

probability better than the traditional definition [35], and conveniently a

smaller number of prime implicants can represent the root causes of the

top event. These claims are demonstrated by simple examples in Paper I.

The definition and interpretation of prime implicants affect the modelling

of the component’s time-dependent behaviour and dependent events, and

the computation of failure probabilities, the top event probability and risk

importance measures. Hence, the new definition is an important basis for

further research.

3.2 Risk importance measures

Paper II develops new dynamic risk importance measures as generalisa-

tions of traditional risk importance measures: the dynamic Fussell-Vesely

(DFV) and the dynamic risk increase factor (DRIF). These risk importance

measures map information from prime implicants to values that repre-

sent the significances of different events and conditions. The dynamic

risk importance measures are calculated for the states of nodes. It is log-

ical to separate different states of a node in the analysis because they

represent completely different conditions. Furthermore, the information

about time steps is taken into account in the computation of the dynamic

risk importance measures.

Fussell-Vesely measures the portion of the top event probability coming

from the minimal cut sets that include the analysed basic event. Cor-

respondingly, the DFV measures the portion of the top event probability

coming from the prime implicants that include a particular node in a par-

ticular state before or at a particular time step. If the analysed system is

coherent with regard to the analysed state of the node, the DFV can be

interpreted as the relative decrease in the top event probability caused by

the condition that the node is not in the considered state until a particu-

lar time step. The DFV is presented in its basic form in Definition 3. In

addition to the basic form, the DFV is formulated for failure states of com-

ponents that are modelled with two nodes: one that determines whether

the component has failed or not, and one that represents the functional

state of a component. Another form of the DFV is also developed to mea-
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sure the incoherency of a component.

Definition 3 The dynamic Fussell-Vesely measure of state s of node i at

time step −t is

IDFV (is(−t)) :=
Q

is(−t)
TOP

QTOP
, (3.1)

where QTOP is the top event probability and Q
is(−t)
TOP is the probability that a

prime implicant including node i in state s before or at time step −t causes

the top event.

The DRIF measures how much the top event probability would rela-

tively increase if the analysed node was in the considered state at all time

steps of the DFM analysis time frame. The DRIF is presented in Defini-

tion 4. It can also be calculated for failure states of components.

Definition 4 The dynamic risk increase factor of state s of node i is

IDI(is) :=
QTOP (is(−t) = 1, ∀ t ∈ {0, 1, ..., l − 1, l})

QTOP
, (3.2)

where QTOP (is(−t) = 1, ∀ t ∈ {0, 1, ..., l − 1, l}) is the probability that

the top event occurs, assuming that node i is in state s at every time step

starting from −l which is the earliest possible time step for node i to be in

state s considering the initial conditions. The last time step of the analysis

is assumed to be 0 in this formula.

Paper II also presents how failure states of components can be tracked,

because the information on failure states (as defined in Paper II) does

not directly appear in prime implicants. The failure states provide useful

information even without risk importance measures, because the failure

state is an important factor when analysing the causes of a top event.

Moreover, more information is obtained if it is known that a component

fails to a particular state than if it is only known that the component fails

somehow.

3.3 Common cause failures

One special characteristic of DFM is that components can fail at different

time points but still contribute to the same top event. Even though a CCF

event is often interpreted as a simultaneous failure of similar components,

NUREG/CR-6268 [25] defines that components need to fail only during

the PRA mission time, which is typically 24 hours. This definition is used
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both in data collection and PRA analysis. In data collection, if multiple

failures occur within 24 hours, they are interpreted as a CCF. In addition,

50% of such events where the time between failures is 24-48 hours are

counted as CCFs, i.e. a timing factor of 0.5 is used [25]. For traditional

fault tree analysis, it is irrelevant whether the components fail simultane-

ously or not during the mission time, but in DFM non-simultaneous CCFs

can be considered, because DFM divides the mission time into smaller

time intervals. Paper III takes the possibility of such CCFs into account.

Two parametric CCF models, β- and α-factor models, are used in CCF

probability computation. The CCF probability is calculated on the basis

of the average of the probabilities of individual component failures in (3.3)

for the β-factor model.

Pπ(C1(−t1,−t2, ...,−tm)) = β · 1

m

m∑

i=1

Pπ(F
i
1(−ti)), (3.3)

where −t1,−t2, ...,−tm are the failure times of components, π is the prime

implicant that contains the CCF, and Pπ(F
i
1(−ti)) is the probability that

the i:th component is failed at time step −ti in the prime implicant π. The

probabilities can depend on other literals included in the prime implicant

as presented in Paper III.

The method is simple and, in most cases, conservative, because simul-

taneous CCFs are more likely. If non-simultaneous CCFs are ignored in

the analysis, some CCF probabilities are underestimated assuming that

non-simultaneous CCFs are possible, and some prime implicants are also

left out. It is advantageous that the same β and α parameters can be used

as in the traditional case so that ordinary CCF data [65] can be used in

DFM analysis.

Paper III also presents how CCFs can be incorporated into DFM results.

CCFs do not need to be accounted for when the prime implicants are first

solved. All the prime implicants with CCFs can be created on the basis

of the original prime implicants that contain individual failures. This ap-

proach was chosen so that the graph model would not become excessively

complex, which would increase the computational demands significantly

and make the analysis time-consuming.
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4. Discussion and conclusions

This Dissertation has extended dynamic reliability analysis theory in the

following ways. First, the mathematical foundation of DFM was strength-

ened by developing an improved definition of a prime implicant in Paper I

(Section 3.1 in the Dissertation). Second, the DFM analysis was improved

by defining and analysing new risk importance measures in Paper II (Sec-

tion 3.2 in the Dissertation). Third, CCF modelling was developed in the

DFM context in Paper III (Section 3.3 in the Dissertation).

Unlike any other importance measure, the dynamic risk importance

measures utilise all the information available in prime implicants of DFM.

They measure primarily the importances of different states of components

and variables. The computation of the dynamic risk importance measures

for failure states of components provides significant additional informa-

tion compared to other importance values. On the basis of DFV results, it

is possible to judge at which time points particular failures and conditions

contribute to the top event.

The dynamic risk importance measures were developed for the needs

of DFM, but their applicability to other dynamic risk analysis method-

ologies could also be studied. The DRIF could quite easily be applied in

some different methodologies because it only measures the change in the

top event probability caused by the analysed event, but the DFV relies

heavily on prime implicants. In methods that do not solve prime impli-

cants, some alternative way of calculating the DFV should be found or

some other importance measure could be used instead. For example, dy-

namic simulation based methods are often applied in level 2 PRA [15, 66].

Timings of events are important in severe reactor accidents. Hence, the

application of the dynamic risk importance measures could be studied in

that area. Actually, some dynamic importance measures have already

been developed for level 2 PRA [67].
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Usually, the essential task in DFM analysis is to identify the prime im-

plicants of the top event. Prime implicant identification should be stud-

ied considering the definition presented in Paper I. Previously, e.g. non-

repairable components have been handled using case-specific treatments

in the identification process. A goal for future research could be to develop

a prime implicant identification algorithm that would take additional con-

straints of any type into account. The decomposition theorem from [68]

could possibly be generalised to take the multi-state logic and additional

constraints into account.

Computational efficiency is a key issue in the development of DFM for

practical reliability analysis. There is a need both to identify prime impli-

cants and to perform quantification in a reasonable time. If a new prime

implicant identification algorithm is developed as discussed in the pre-

vious paragraph, the implementation of the algorithm should also be ef-

ficient enough to be used in practice. Correspondingly, the computation

of the top event probability and the risk importance measures should be

reasonably fast, but also accurate enough. Approximations can be calcu-

lated rapidly, but the computation of accurate values can be demanding

if the analysed model is not small. Approximate values are usually suffi-

cient in most reliability analyses as long as they are accurate enough. The

quantification of DFM could be studied in greater depth so that an opti-

mal balance between accuracy and computation times could be achieved

in the computation of the top event probability and the risk importance

measures.

Despite its importance, quantification of individual literals and prime

implicants has not been much addressed in the literature. Paper III pre-

sented how to calculate the failure probabilities of non-repairable compo-

nents and CCF probabilities, but different component reliability models,

the determination of the probabilities of the initial states of variables, and

quantification of cascading failures and other dependent events could also

be studied. One factor that adds complexity is that the same literal can

have different probabilities in different prime implicants if its probability

depends on other literals. Non-repairable components are a simple exam-

ple of this, as presented in Paper III. Probabilistic analysis depends on

the modelling decisions, and the modelling of components and variables

should therefore also be considered from the quantification point of view.

An interesting and challenging topic for future research is to define good

practices in the DFM modelling and quantification.
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The CCF probability computation could be made more accurate by de-

veloping time-dependent CCF models. The assumption of simultaneous

failures is not realistic in many cases. Timing related CCF parameters

could be estimated, for example the probability that the difference be-

tween failure times lies within a specific interval. Data about failure

times is actually already collected [25], but is only utilised in the clas-

sification of events. Data analyses would be needed to study to which

failure modes time-dependent models should be applied.

DFM has been considered to be too complex to be applied to large sys-

tems, and most applications found in the literature are rather small. How-

ever, more efficient DFM tools and prime implicant solving technologies,

such as BDDs, are being developed, and computers are becoming more

and more powerful. Recent DFM models have been larger [28, 44], and

this development will probably continue in the future. With larger mod-

els, the ability to analyse results efficiently becomes even more important.

Therefore, suitable risk importance measures are needed. CCFs are also

more important when larger systems with redundancies are analysed.
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a b s t r a c t

This paper develops an improved definition of a prime implicant for the needs of dynamic reliability
analysis. Reliability analyses often aim to identify minimal cut sets or prime implicants, which are
minimal conditions that cause an undesired top event, such as a system's failure. Dynamic reliability
analysis methods take the time-dependent behaviour of a system into account. This means that the
state of a component can change in the analysed time frame and prime implicants can include the
failure of a component at different time points. There can also be dynamic constraints on a compo-
nent's behaviour. For example, a component can be non-repairable in the given time frame. If a non-
repairable component needs to be failed at a certain time point to cause the top event, we consider that
the condition that it is failed at the latest possible time point is minimal, and the condition in which it
fails earlier non-minimal. The traditional definition of a prime implicant does not account for this type
of time-related minimality. In this paper, a new definition is introduced and illustrated using a dynamic
flowgraph methodology model.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Boolean algebra in reliability analysis

Reliability analyses are often used for identifying the possible
root causes of an undesired top event, such as a system's failure
[1]. These root causes can be combinations of basic events such as
component failures, harmful environmental conditions and
human errors. A minimal combination of basic events that is suf-
ficient to cause the top event is called a minimal cut set [2]. Here,
the minimality means that if one of the basic events is removed
from a minimal cut set, the remaining combination of basic events
is no longer sufficient to cause the top event. Minimal cut sets are
usually the basic result of a reliability analysis. They are often used
as the basis for probabilistic calculations, such as the computation
of total probability [1,3] and risk importance measures [1,3,4],
uncertainty analysis [3] and sensitivity analysis [3].

The theory of minimal cut sets and prime implicants is based
on Boolean algebra. Boolean algebra defines algebraic operations
for variables that can have two values: 0 (‘false’) and 1 (‘true’).
Boolean variables form Boolean formulas when they are connected
using logical connectives, such as þ (‘OR’) and � (‘AND’). For
example, FT ¼ a � b � cþa � d is a Boolean formula if a, b, c and d are
Boolean variables. A Boolean product is a set of Boolean variables
connected by � . For instance, a � b � c and a � d are products. The

expression can be shortened: FT ¼ abcþad. The axioms of Boolean
algebra are presented in Appendix A.

Let G and H be Boolean formulas. Formula G implies H, if from
G¼1, it follows that H¼1. Formula FT has value 1 if and only if a, b
and c have value 1, or if a and d have value 1. Hence, products abc
and ad imply FT.

In reliability analysis, a top event can be represented by a
Boolean formula of variables that represent basic events and
minimal cut sets can be represented by Boolean products that
imply the Boolean formula representing the top event. In tradi-
tional reliability analysis, basic events are assumed to be inde-
pendent. In this paper, basic events are assumed to be indepen-
dent unless dependencies between them are presented. In what
follows, the Boolean formula that represents the top event is called
a top function. For example, if FT ¼ abcþad is a top function and a,
b, c and d represent basic events, the top event has two minimal
cut sets: abc and ad.

The definition of a minimal cut set is adequate only for
coherent reliability models. A reliability model is coherent only if
the top function is monotonically increasing with regard to its
arguments and all basic events are relevant. In an incoherent
reliability model [5], however, failure of a component may actually
prevent the top event from occurring, and the act of repairing it
could cause the top event. For incoherent reliability models, the
concept of a prime implicant is used instead of a minimal cut set to
represent a minimal combination of conditions that causes the top
event [6–8].
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A literal is either a Boolean variable a or its negation a, also
called a negative literal. For opposite literals a and a, it holds that
a � a ¼ 0 and aþa ¼ 1. It also holds that

aþb ¼ a � b ð1Þ
and

a � b ¼ aþb: ð2Þ
A so-called negative basic event is a complement of a regular

basic event (e.g. component not failed). In incoherent reliability
analysis, negative basic events represented by negative literals can
appear in the top function and prime implicants. The definition of
a prime implicant is presented in Definition 1 [6].

Definition 1. Let FT be a top function and π be a product. The
product π is an implicant of FT if π implies FT.

An implicant π is a prime implicant, if there is no other
implicant ρ of FT such that ρ� π.

To illustrate Definition 1, prime implicants of formula G¼ abþ
cd are ab and cd. For formula FT ¼ abcþbcdþcdf þcef , the iden-
tification of prime implicants is more challenging. It is easy to see
that abc, bcd, cdf and cef are prime implicants, but abd is also a
prime implicant, because, if c¼1 and abd¼ 1, then abc¼ 1, and if
c¼0 and abd¼ 1, then bcd¼ 1. Also, cde is a prime implicant,
because if f¼1 and cde¼ 1, then cdf ¼ 1, and if f¼0 and cde¼ 1,
then cef ¼ 1.

1.2. Dynamic reliability analysis

In dynamic reliability analysis [9,10], there can be causal
dependencies between events represented by literals [11]. For
example, the failure of a non-repairable component at time point
t1 implies that the component continues to be failed at later time
point t2. If literal f ti indicates that the component is failed at time
step ti, then f t1 implies f t2 . Fig. 1 presents a fault tree whose prime
implicants are af t1 , bf t1 and bf t2 according to Definition 1. How-
ever, when analysing implicants bf t1 and bf t2 , it should be noticed
that, if b¼1, then the failure condition represented by f has to start
only at time step t2 to cause the top event. The failure can occur
already at time step t1, but it does not need to. Literal f t1 repre-
sents a more restrictive condition than f t2 and on the other hand, if
bf t2 implies the top event, then bf t1 also implies the top event.

Therefore, bf t1 is not a minimal condition for the top event to
occur and is not a prime implicant.

The conclusion of the previous example is that Definition 1 is
not adequate when the reliability model contains dynamic
dependencies between its variables. A new definition for prime
implicants is introduced in Section 2. Section 3 shows how the
definition is applicable to multi-state reliability analysis. A
dynamic reliability analysis method called dynamic flowgraph
methodology (DFM) [10,12–14] is used as an example of a meth-
odology where the new definition is useful. DFM is presented in
Section 4. Prime implicants of an example DFM model are iden-
tified in Section 5. It is shown that the new definition is logical,
supports the computation of the top event probability better and
allows the root causes of the top event to be represented by a
smaller number of prime implicants. As the prime implicants are
the basic result of DFM analysis, their definition and interpretation
also affects other areas of the analysis, such as probabilistic relia-
bility models, the computation of risk importance measures [15]
and the modelling of common cause failures [16].

2. Definition of a prime implicant

The basis for the development of the new definition is a
reliability model that can be represented as a top function and
additional constraints. These additional constraints can, in princi-
ple, be any Boolean equations between the literals of the model.

The main motivation for the new definition is that it is needed
in dynamic flowgraph methodology. A DFM model includes a
graph model and constraints for the behaviour of the graph's
nodes. This model is converted to a Boolean top function to solve
prime implicants. The prime implicants that are solved from the
top function need to correspond to the graph model. Definition 1
can easily be applied to literals of DFM, but it does not account
such minimality as described in the example of Fig. 1. Minimality
that is related to a physical constraint, such as non-repairability,
has to be taken into account, and therefore, it is practical to
include additional constraints to the reliability model along with
the top function.

A more simple approach to account constraints would be to
build them directly into the top function so that “the reliability
model” would contain only the top function. In that case, the
traditional definition could be used as it is, and minimality related
to non-repairability of a component could be taken into account,
in theory at least. However, prime implicants are a property of a
DFM model and they can be identified directly from the graph in
simple cases. It has to be possible to apply the prime implicant
definition in DFM. Even if correct prime implicants were solved by
taking non-repairability constraints into account in the conversion
of the DFM model to top function, Definition 1 would not be
adequate when identifying prime implicants directly from the
DFM model.

Before introducing the new definition, the concept of a min-
term needs to be defined. If V is the set of all the Boolean variables
in the model, then a minterm is a product consisting of each
variable in V or its negation. For example, abcd and abcd are
minterms of example G¼ abþcd among 14 others.

A new definition of an implicant is presented in Definition 2.
Compared to the traditional definition (in Definition 1), the new
definition adds a condition that additional constraints cannot be
violated (e.g. an implicant cannot include a non-repairable com-
ponent first failed and then repaired).

Definition 2. Let FT be the top function representing the top event,
π be a product, A be a vector of Boolean formulas and A¼ 1 be a
set of additional constraints. The product π is an implicant of theFig. 1. A fault tree with dependent basic events.
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top event if π implies FT and there exists minterm v such that v

implies π and each formula in A.

The part “there exists minterm v such that v implies π and
each formula in A” means that the implicant does not contradict
any additional constraint. In other words, the additional con-
straints can hold if the conditions belonging to the implicant are
realised. For example, consider a model with top function FT ¼ a
bcþbcdþcdf þcef and additional constraints eþg ¼ 1 (g implies
e) and f þe ¼ 1 (e implies f). Product cef does imply the top
function FT as stated in the introduction, but there is no minterm
that implies cef , eþg and f þe. This is because f þe ¼ 0 if cef ¼ 1.
Implicants of the top function include abc, abce, bcd, bcdf , abd,
abde, cde, cdef and cdf among others. It should also be noticed
that a literal can appear in an implicant even if it does not appear
in the top function. Product cdg is an implicant, because if
cdg¼ 1, then cde¼ 1 due to additional constraint eþg ¼ 1 and
hence FT¼1.

In Definition 2, an additional constraint is introduced as a
Boolean equation of form H¼1, where H is a formula. However,
additional constraints can be presented in other forms as well.
Each Boolean equation can be presented in form Hn ¼ 0 or in form
H¼1. For example,

eþg ¼ 13eg ¼ 03eþg ¼ e: ð3Þ

Now, ‘L-minimal implicants’ (length-minimal implicants) are
defined in the same manner as prime implicants in Definition 1.
The difference to Definition 1 is that in this definition, an implicant
is a product that satisfies Definition 2.

Definition 3. An implicant π is an L-minimal implicant if there is
no other implicant ρ of FT such that ρ� π.

To continue the previous example, L-minimal implicants of the
top function are abc, bcd, abd, cde, cdg and cdf .

Following the idea that all length-minimal implicants are not
prime implicants as discussed in the Introduction, prime impli-
cants are defined in Definition 4. In this definition, a prime
implicant is an implicant that does not imply any other L-minimal
implicant. For comparison, in [17], a prime implicant was defined
as an implicant that does not imply any other implicant. This is an
essential property of prime implicants. An implicant that implies
another prime implicant is not minimal because the prime
implicant it implies is.

Definition 4. An L-minimal implicant π is a prime implicant if
there is no other L-minimal implicant ρ of FT such that ρþπ ¼ ρ if
additional constraints A¼ 1 hold.

Note that the equation ρþπ ¼ ρ can be satisfied due to addi-
tional constraints even if it does not hold that ρ� π. Without
additional constraints, ρþπ ¼ ρ is equivalent to ρ� π, and Defi-
nition 1 is equivalent to Definition 4.

In the previous example, products abc, bcd, abd, cde, cdg and
cdf were identified to be L-minimal implicants. Now, according to
Definition 4, cdg is not a prime implicant because eþg ¼ e (see
(3)), and hence, cdeþcdg ¼ cd � ðeþgÞ ¼ cde. L-minimal implicant
cde is not a prime implicant because eþ f ¼ e � ðf þeÞþ f ¼
ef þeeþ f ¼ ef þ f ¼ f , and hence, cdeþcdf ¼ cd � ðeþ f Þ ¼ cdf .
Hence, the prime implicants are abc, bcd, abd and cdf .

It should be noted that only L-minimal implicants must be
considered in Definition 4 and not all implicants because it is
possible that a prime implicant implies an implicant that is not L-
minimal. For instance, in the example of Fig. 1, due to additional

constraint f t1þ f t2 ¼ f t2 (f t1 implies f t2 ), it holds that

af t1 ¼ af t1 f t2þaf t1 ¼ af t1 f t2þaf t1 ðf t2þ f t2 Þ ¼ af t1 f t2þaf t1 f t2
¼ af t1 f t2þaf t1 ðf t1þ f t2 Þ ¼ af t1 f t2þaf t1 f t1 f t2 ¼ af t1 f t2þ0¼ af t1 f t2 :

ð4Þ

3. Generalisation to multi-state reliability analysis

All previous examples of this paper were examples of binary
reliability analysis in which components can have two states
represented by a positive literal a and a negative literal a. In reality,
many complex systems are not binary, and it is restrictive to model
components only with a failed state and a functioning state. Multi-
state reliability analysis [18,19] allows components to have more
than two states. To make the prime implicant definition applicable
to multi-state reliability analysis, the concept of a literal has to be
generalised to the multi-state case.

Let a literal be denoted as Cs, where C is a component and s is a
state. As in the binary case, literals of this type can have value 0 or
1. For literals of a component, it holds that
X

sA S

Cs ¼ 1 ð5Þ

and

Cs1 � Cs2 ¼ 0; ð6Þ
where S is the set of all states of component C and s1as2. The
number of states is assumed to be finite in this paper, and S a
finite set.

Definitions 2–4 can now be applied to the multi-state case. Let
FT ¼ A0B1C0þB1C1D1þB1C2E2þC1D0E1þC1D0F1 be a top function
and E1þF1 ¼ F1 be an additional constraint. If component C has
only states 0, 1 and 2, prime implicants are A0B1C0, B1C1D1, B1C2E2,
A0B1D1E2, C1D0F1 and A0B1D0E2F1. Product A0B1D1E2 is a prime
implicant because constraint (5) holds for component C and either
product A0B1C0, B1C1D1 or B1C2E2 is therefore 1 if A0B1D1E2 ¼ 1.
Similarly, product A0B1D0E2F1 is a prime implicant because either
product A0B1C0, C1D0F1 or B1C2E2 is 1 if A0B1D0E2F1 ¼ 1.

4. Dynamic flowgraph methodology

4.1. Introduction to the methodology

Dynamic flowgraph methodology (DFM) [10,12–14] is an
approach for analysing systems with time dependencies and
feedback loops. The reason for the development of DFM is that
traditional methods, such as fault tree analysis, can describe the
system's dynamic behaviour only in a limited manner. DFM can
more accurately represent system's evolution in time. DFM is
typically used to model and analyse digitally controlled systems
that include both hardware and software components. DFM sup-
ports the modelling of multi-state components, which is an
advantage in modelling digitally controlled systems because it is
often practical to model some of their components with more than
two states and more than one failure mode. Another advantage of
DFM is that only one model is needed to represent the complete
behaviour of a system and therefore different states of the system
can be analysed using the same model [12].

A DFM model is a directed graph which consists of discrete-
state nodes analysed at discrete time steps and edges that repre-
sent the dependencies between nodes. The nodes represent the
system's components and variables. DFM models contain two
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kinds of nodes: deterministic nodes and stochastic nodes. The
state of a deterministic node is determined by states of its input
nodes at specified time steps. These dependencies are typically
defined by decision tables, such as in Table 1. The state of a sto-
chastic node is determined by a probability model.

In DFM, the top event is defined as particular nodes being in
particular states at particular time steps. The top function can be
derived from the graph model by tracing it backwards, starting
from the top event until a specified initial time. In principle, a fault
tree representing the top function could be built directly without
the DFM model, but it would be laborious and difficult if the
system is not very simple. The top function can be derived auto-
matically from the DFM model.

4.2. Literals in dynamic analysis

To apply Definition 4 in DFM, the concept of a literal has to be
generalised even further from the case of multi-state reliability
analysis, because nodes are analysed at discrete time steps. Hence,
in DFM, a literal is a node in a state at a time step. For example, a
literal representing node N in state s at time step �t is denoted as
Nsð�tÞ. For literals of a node, it holds that
X

sAS

Nsð�tÞ ¼ 1 ð7Þ

and

Ns1 ð�tÞ � Ns2 ð�tÞ ¼ 0; ð8Þ

where S is the set of all states of node C and s1as2. The minus sign
is used in the time step notation because DFM models are usually
analysed deductively from effects to causes.

Stochastic nodes can also have additional time-dependent
constraints, such as a non-decreasing property. A typical exam-
ple is a node that determines whether a non-repairable compo-
nent is failed. This node is in state 0 at the initial time, and if it
turns to state 1 at a later time step, it remains in state 1 for the rest
of the scenario. This non-decreasing property can be defined as
Boolean equation

F1ð�tÞ � F0ð�tþ1Þ ¼ 0; ð9Þ

where F is the node with non-decreasing state and t is an integer,
so that �nr�to0 where �n is the initial time step of the
analysis. This constraint means that if the node is in state 1 at time
step �t, it cannot be in state 0 at the next time step �tþ1.

The following propositions follow from additional constraint
(9). The proofs of propositions are presented in Appendix B.

Proposition 1. From additional constraint (9) and literal rule (7), it
follows that

F1ð�tÞ � F0ð�tþxÞ ¼ 0 ð10Þ
for all xZ2; xAN.

Proposition 2. From additional constraint (9) and literal rule (7), it
follows that

F1ð�tÞþF1ð�tþxÞ ¼ F1ð�tþxÞ ð11Þ
for all xZ1; xAN.

Proposition 3. From additional constraint (9) and literal rule (7), it
follows that

F0ð�tÞþF0ð�tþxÞ ¼ F0ð�tÞ ð12Þ
for all xZ1; xAN.

Proposition 4. From Eq. (10), it follows that

F1ð�tÞ � F1ð�tþxÞ ¼ F1ð�tÞ ð13Þ
for all xZ1; xAN.

If F is a binary node that has dynamic constraint (9) and pro-
ducts A1ð�uÞ � F1ð�tÞ and A1ð�uÞ � F1ð�tþ1Þ are implicants of the
top event, A1ð�uÞ � F1ð�tÞ is not a prime implicant because of (11).
Respectively, if products B1ð�vÞ � F0ð�tÞ and B1ð�vÞ � F0ð�tþ1Þ
are implicants of the top event, B1ð�vÞ � F0ð�tþ1Þ is not a prime
implicant because of (12).

Different failure modes of a component can be modelled using
a multi-state node that has one state for normal operation and
another for each failure mode. Each failure mode state functions
similar to state 1 of the previously presented non-decreasing
binary node. In other words, if the node turns to a failure mode
state, it remains in that state for the rest of the scenario. If this
node is M, it has additional constraints

Mf ð�tÞ �Msð�tþ1Þ ¼ 0; ð14Þ

for each failure mode state f and for each state s for which f as.
This additional constraint has similar propositions to (9).

Another relevant type of dynamic constraint is a constraint that
a node cannot change by more than a particular number of states
between time steps [11]. For example, if a valve has states 0
(‘closed’), 1 (‘slightly open’), 2 (‘half open’), 3 (‘almost open’) and 4
(‘fully open’), it could have dynamic constraints

V0ð�tÞ � ðV2ð�tþ1ÞþV3ð�tþ1ÞþV4ð�tþ1ÞÞ ¼ 0; ð15Þ

V1ð�tÞ � ðV3ð�tþ1ÞþV4ð�tþ1ÞÞ ¼ 0; ð16Þ

V2ð�tÞ � ðV0ð�tþ1ÞþV4ð�tþ1ÞÞ ¼ 0; ð17Þ

V3ð�tÞ � ðV0ð�tþ1ÞþV1ð�tþ1ÞÞ ¼ 0 ð18Þ
and

V4ð�tÞ � ðV0ð�tþ1ÞþV1ð�tþ1ÞþV2ð�tþ1ÞÞ ¼ 0: ð19Þ
These additional constraints have propositions such as

V0ð�tÞ � V1ð�tþ1Þ � V2ð�tþ2Þ ¼ V0ð�tÞ � V2ð�tþ2Þ ð20Þ
and

V0ð�tÞ � V1ð� tþ1Þ � V2ð� tþ2Þ � V3ð�tþ3Þ ¼ V0ð� tÞ � V3ð� tþ3Þ: ð21Þ
This means that, for example, an implicant that contains literals
V0ð�tÞ, V1ð�tþ1Þ and V2ð�tþ2Þ cannot be an L-minimal impli-
cant because a logically equivalent product can be obtained by
removing literal V1ð�tþ1Þ, and hence the product is still an
implicant if V1ð�tþ1Þ is removed.

Table 1
The decision table of deterministic node C.

Output Inputs

Node C F N C

Time lag 0 0 1
0 0 �1 0
0 0 �1 1
0 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
0 1 �1 0
1 1 �1 1
0 1 0 0
1 1 0 1
0 1 1 0
1 1 1 1
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4.3. Identification of prime implicants

To identify prime implicants in DFM, there are two different
approaches. In [10], the top function of the DFM model is trans-
formed into a timed fault tree from which prime implicants are
identified. In another approach implemented in a DFM tool Yadrat
[14], the DFM model is transformed into a binary decision diagram
(BDD) [20,21] which represents the top function. Additional con-
straints, such as (9), need to be taken into account either when the
top function is processed or when the L-minimal implicants are
post-processed.

The analysis of a DFM model starts with the product of the
literals that define the top event. The top function is developed by
applying the equations that determine the states of the nodes in
the top event and the equations that determine the states of the
nodes that consequently appear in the top function. The process
continues until the top function contains only literals representing
deterministic nodes at the initial time and literals representing
stochastic nodes.

In Yadrat [14], the DFM model is transformed into a BDD which
is a data structure used to represent Boolean functions. BDDs are
based on repeated application of the classic Shannon expansion
formula

F ¼ x � F j x ¼ 1þx � F j x ¼ 0: ð22Þ

Variables with more than two states are coded into Boolean vec-
tors so that the number of Boolean variables is minimized. Hence,
all the Boolean variables in the BDD do not represent literals that
appear in prime implicants. The BDD is constructed based on
decision tables (see Table 1) which determine how the states of
deterministic nodes depend on the states of input nodes. Decision
tables are gone through systematically row by row. At each row all
inputs are considered separately. If the input is an output of
another decision table, the BDD construction algorithm is recur-
sively called with the input as a parameter. The input variables of
each row are combined with AND-operation and the rows are
combined with OR-operation.

To account constraint (9), the Yadrat approach [14] modifies
the top function (represented by the BDD) so that each literal
of the form F1ð�tÞ is replaced (when the BDD is constructed) by
sum

F1ð�tÞþF1ð�t�1Þþ⋯þF1ð�nþ1Þ ð23Þ

where �n is the initial time. This can be done because condition
F1ð�tÞ can be caused by F1ð�uÞ, where tou. If this was not done,
some prime implicants might be left unidentified. Consider the
following top function for example:

ET ¼ F1ð�nþ2Þ � B1ð�nÞþF0ð�nþ1Þ � C2ð�nÞ: ð24Þ

The prime implicants are F1ð�nþ2Þ � B1ð�nÞ, F0ð�nþ1Þ � C2ð�nÞ
and B1ð�nÞ � C2ð�nÞ. B1ð�nÞ � C2ð�nÞ is a prime implicant
because either F1ð�nþ2Þ or F0ð�nþ1Þ is necessarily 1 which
follows from (9). The prime implicant algorithms cannot identify
this prime implicant without specifically accounting constraint
(9) somehow. In the Yadrat approach, the top function is modified
to be

ET ¼ ðF1ð�nþ2ÞþF1ð�nþ1ÞÞ � B1ð�nÞþF0ð�nþ1Þ � C2ð�nÞ ð25Þ

and prime implicant B1ð�nÞ � C2ð�nÞ is identified normally
because literals F1ð�nþ1Þ and F0ð�nþ1Þ are complementary.

Algorithms that Yadrat uses to identify prime implicants are
based on a decomposition theorem [7], which divides L-minimal
implicants into three sets with regard to a Boolean variable.

Theorem 1. The decomposition theorem: Let FT be a top function, x a
Boolean variable and LMI½FT � a set of L-minimal implicants of FT. Then

LMI½FT � ¼ LMI½FT j x ¼ 1 � FT j x ¼ 0�
[fxg � LMI½FT j x ¼ 0�⧹LMI½FT j x ¼ 1 � FT j x ¼ 0� ð26Þ
[ fxg � LMI½FT j x ¼ 1�⧹LMI½FT j x ¼ 1 � FT j x ¼ 0�:

When Theorem 1 is recursively applied to a top function, all the
prime implicants of the top function according to Definition 1 can be
found. From this set of implicants, all the real prime implicants
(according to Definition 4) can be derived by post-processing. In the
post-processing, “implicants” that contradict with additional con-
straints are removed, unnecessary literals (literals that are implied by
other literals in the same implicants) are removed from the impli-
cants, and the implicants are compared to each other with respect to
(9) in order to ascertain which of them are prime implicants.

A general algorithm to take Definition 4 and additional con-
straints into account in the identification of prime implicants
should be developed. One possibility would be to generalise the
decomposition theorem to take the multi-state logic and addi-
tional constraints into account.

4.4. Simple example

Fig. 2 presents a simple DFM model with two nodes, a deter-
ministic node P and non-decreasing binary stochastic node PF.
Node P has two states, 0 and 1, and it depends on PF via simple
Boolean equations:

P0ð�tÞ ¼ PF1ð�tÞþP0ð�t�1Þ; ð27Þ

P1ð�tÞ ¼ PF0ð�tÞ � P1ð�t�1Þ: ð28Þ
If the top event is that node P is in state 0 at time step 0 and the

initial time is �4, the top function is

FT ¼ P0ð0Þ ¼ PF1ð0ÞþP0ð�1Þ ¼ PF1ð0ÞþPF1ð�1ÞþP0ð�2Þ
¼ PF1ð0ÞþPF1ð�1ÞþPF1ð�2ÞþP0ð�3Þ
¼ PF1ð0ÞþPF1ð�1ÞþPF1ð�2ÞþPF1ð�3ÞþP0ð�4Þ: ð29Þ
L-minimal implicants of the top event are clearly PF1ð0Þ,

PF1ð�1Þ, PF1ð�2Þ, PF1ð�3Þ and P0ð�4Þ. However, as Eq. (9) holds
for PF, products PF1ð�1Þ, PF1ð�2Þ and PF1ð�3Þ are not prime
implicants due to (11). If state 1 of PF represents the failed state of
a pump, prime implicant PF1ð0Þ indicates that the pump needs to
be failed at latest at time step 0 in order to cause the top event.
This condition can be satisfied by a failure that occurs either at
time step �3, �2, �1 or 0. Similarly, implicant PF1ð�2Þ indicates
that the pump needs to be failed at latest at time step �2. This is a
more restrictive condition, because the pump could also fail at
either of two later time steps so as to cause the top event, and
hence, it is not considered minimal. Prime implicant PF1ð0Þ implies
that conditions PF1ð�1Þ, PF1ð�2Þ, PF1ð�3Þ also imply the top
event. Hence, instead of four prime implicants (according to the
traditional definition), only one prime implicant is needed.

5. Prime implicants of a feed water tank system

Fig. 3 presents a feed water tank system [14]. In this system, the
water flow to the tank is constant. A regulation valve controls how

Fig. 2. A simple DFM model from a DFM tool called YADRAT [14].
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much water is released out of the tank. The valve is operated based
on the values of the water level measurement. The goal is that the
water level neither gets too high nor too low.

Fig. 4 presents a DFM model based on the system. The model
contains five nodes: WL, WLM, MF, V and VF. Node WL represents
the water level which can be low (state �1), medium (state 0) or
high (state 1). Node WLM represents the water level measurement
which is given the value of WL at the previous time step unless the
water level sensor is failed. Node MF is a non-decreasing binary
stochastic node and determines whether the water level mea-
surement is failed. If MF is in state 1, WLM is frozen. Node V
represents the valve which can be open (state 1) or closed (state
0). The valve opens if the water level measurement is high, and
closes if the water level measurement is low. Node VF is a non-
decreasing binary stochastic node and determines whether the
valve is failed. If VF is in state 1, V remains in its previous state.

The input dependencies of nodes WL, WLM and V are repre-
sented by Boolean equations

WL�1ð�tÞ ¼ V1ð�t�1Þ � ðWL�1ð�t�1ÞþWL0ð�t�1ÞÞ; ð30Þ

WL0ð� tÞ ¼ V0ð� t�1Þ �WL�1ð�t�1ÞþV1ð�t�1Þ �WL1ð�t�1Þ; ð31Þ

WL1ð�tÞ ¼ V0ð�t�1Þ � ðWL0ð�t�1ÞþWL1ð�t�1ÞÞ; ð32Þ

WLM�1ð�tÞ ¼WL�1ð�tÞ �MF0ð� tÞþWLM�1ð�t�1Þ �MF1ð� tÞ; ð33Þ

WLM0ð�tÞ ¼WL0ð�tÞ �MF0ð�tÞþWLM0ð�t�1Þ �MF1ð�tÞ; ð34Þ

WLM1ð�tÞ ¼WL1ð�tÞ �MF0ð�tÞþWLM1ð�t�1Þ �MF1ð�tÞ; ð35Þ

V0ð�tÞ ¼ V0ð�t�1Þ � ðVF1ð�tÞþWLM0ð�tÞÞþWLM�1ð� tÞ � VF0ð� tÞ ð36Þ
and

V1ð�tÞ ¼ V1ð�t�1Þ � ðVF1ð�tÞþWLM0ð�tÞÞþWLM1ð�tÞ � VF0ð�tÞ: ð37Þ
The top event to be analysed is that the water level is high (WL

is in state 1) at time steps �1 and 0. The initial time is �4. The top
function can be derived by applying Eqs. (30)–(37) to formula

FT ¼WL1ð0Þ �WL1ð�1Þ ð38Þ
until only initial states of WL, WLM and V and states of MF and VF
appear in the formula. The top function and the prime implicant
identification process are too complicated to be presented on
paper. Therefore, they are skipped. The prime implicants were
identified using the Yadrat tool [14] and they are presented
in Table 2.

In order to compare the new definition (Definition 4) to the
traditional definition (Definition 1), all L-minimal implicants can
be identified based the prime implicants of Table 2. This can be
done by replacing all literals representing nodes MF and VF by the
sums on the right sides of equations in Table 3 and removing non-
minimal implicants and those implicants that contradict with
constraints (8) and (9). Examples of L-minimal implicants that are
not prime implicants according to Definition 4 are presented
in Table 4. Only based on prime implicants 1, 2 and 7, 29 L-minimal
implicants that are not prime implicants were generated. In total,
there are 68 L-minimal implicants that are not prime implicants.
This comparison shows that Definition 4 allows the results to be
presented in a more compact form than the traditional definition.

Inclusion of some L-minimal implicants in Table 4 in the results
is also clearly not sensible. This is evident when L-minimal
implicants 1.5–7 from Table 4 are compared to the first prime
implicant from Table 2. The only difference between these impli-
cants is the time step of MF0 (the measurement not failed). If other

Fig. 3. A feed water tank system [14].

Fig. 4. A DFM model based on the feed water tank system from a DFM tool called
YADRAT [14].

Table 2
Prime implicants of the top event.

No. Prime implicant

1 fV1ð�4Þ;VF0ð�3Þ;WL0ð�4Þ;VF1ð�1Þ;MF0ð�3Þg
2 fV1ð�4Þ;VF0ð�3Þ;WL�1ð�4Þ;VF1ð�1Þ;MF0ð�3Þg
3 fV1ð�4Þ;VF0ð�3Þ;WL0ð�4Þ;MF1ð�1Þ;MF0ð�3Þg
4 fV1ð�4Þ;VF0ð�3Þ;WL�1ð�4Þ;MF1ð�1Þ;MF0ð�3Þg
5 fV1ð�4Þ;VF0ð�3Þ;WL0ð�4Þ;WLM�1ð�4Þ;VF1ð�1Þg
6 fV1ð�4Þ;VF0ð�3Þ;WL�1ð�4Þ;WLM�1ð�4Þ;VF1ð�1Þg
7 fV1ð�4Þ;VF0ð�3Þ;WL0ð�4Þ;WLM�1ð�4Þ;MF1ð�1Þg
8 fV1ð�4Þ;VF0ð�3Þ;WL�1ð�4Þ;WLM�1ð�4Þ;MF1ð�1Þg
9 fVF0ð�3Þ;WL�1ð�4Þ;MF0ð�3Þ;VF1ð�2Þg
10 fWL�1ð�4Þ;MF0ð�3Þ;V0ð�4Þ;VF1ð�2Þg
11 fVF0ð�3Þ;WL�1ð�4Þ;WLM�1ð�4Þ;VF1ð�2Þg
12 fVF0ð�3Þ;WL�1ð�4Þ;MF0ð�3Þ;MF1ð�2Þg
13 fWL�1ð�4Þ;V0ð�4Þ;VF1ð�2Þ;WLM0ð�4Þg
14 fWL�1ð�4Þ;WLM�1ð�4Þ;V0ð�4Þ;VF1ð�2Þg
15 fV0ð�4Þ;VF1ð�3Þg
16 fWL�1ð�4Þ;MF0ð�3Þ;V0ð�4Þ;MF1ð�2Þg
17 fVF0ð�3Þ;WL�1ð�4Þ;WLM�1ð�4Þ;MF1ð�2Þg
18 fWL�1ð�4Þ;V0ð�4Þ;WLM0ð�4Þ;MF1ð�2Þg
19 fWL�1ð�4Þ;WLM�1ð�4Þ;V0ð�4Þ;MF1ð�2Þg
20 fVF0ð�3Þ;WLM�1ð�4Þ;MF1ð�3Þg
21 fV0ð�4Þ;WLM0ð�4Þ;MF1ð�3Þg
22 fV0ð�4Þ;WLM�1ð�4Þ;MF1ð�3Þg

Table 3
Equations to generate all L-minimal implicants.

Equation

VF1ð�1Þ ¼ VF1ð�1ÞþVF1ð�2ÞþVF1ð�3Þ
VF1ð�2Þ ¼ VF1ð�2ÞþVF1ð�3Þ
VF0ð�3Þ ¼ VF0ð0ÞþVF0ð�1ÞþVF0ð�2ÞþVF0ð�3Þ
MF1ð�1Þ ¼MF1ð�1ÞþMF1ð�2ÞþMF1ð�3Þ
MF1ð�2Þ ¼MF1ð�2ÞþMF1ð�3Þ
MF0ð�3Þ ¼MF0ð0ÞþMF0ð�1ÞþMF0ð�2ÞþMF0ð�3Þ
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literals occur, the top event occurs if the measurement does not
fail at time step �3. Since the state of MF after time step �3 is
irrelevant with regard to top event, it is clearly not sensible to
include the L-minimal implicants with literals MF0ð�2Þ, MF0ð�1Þ
and MF0ð0Þ in the results, even if they imply the top event by
implying MF0ð�3Þ.

The above-mentioned L-minimal implicants from Table 4 also
would distort probabilistic assessment. Since the top event occurs
if the measurement does not fail at time step �3, calculating
probabilities for literals MF0ð�2Þ, MF0ð�1Þ and MF0ð0Þ and L-
minimal implicants 1.5–7 is clearly wrong. The relevant conditions
for the top event to occur are in the first prime implicant in Table 2
and L-minimal implicants 1.5–7 are useless for the calculation of
the top event probability.

L-minimal implicant 1.1 from Table 4 differs from prime
implicant 1 in Table 2 only in that the time step of VF1 is �2
instead of �1. From the probabilistic assessment point of view, it
is correct to include the possibility of the valve failing either at
time step �2 or �1. But the probability of literal VF1ð�1Þ can
cover both time steps. In other words, if the failure probability of
valve in one time step is 10�6, the probability of literal VF1ð�1Þ
should be approximately 2 � 10�6 in prime implicant 1. The top
event probability would be calculated approximately correctly if
both L-minimal implicant 1.1 and prime implicant 1 were included
and the probabilities of literals VF1ð�2Þ and VF1ð�1Þ were 10�6,
but L-minimal implicant 1.1 is not really needed.

6. Conclusions

The paper presented a new definition of a prime implicant that
is applicable in dynamic reliability analysis. In this approach, a
reliability model consists of a top function and additional con-
straints. The need for the new definition became evident when

non-repairable components were modelled in the dynamic flow-
graph methodology and such prime implicants that implied some
other prime implicants appeared. The fundamental idea behind
the definition is that an implicant that implies some other length-
minimal implicant is not a minimal condition that causes the top
event, and is, therefore, not a prime implicant.

In addition to dynamic constraints that are related to non-
repairable components, reliability models can also contain addi-
tional constraints that, for example, prevent some mutually
exclusive basic events from appearing in the same prime implicant
or represent failure dependencies between components. A typical
static reliability model does not, however, contain additional
constraints. In that case, the new definition is equal to the tradi-
tional definition.

So far, additional constraints, such as the non-repairability
property, have been handled using case-specific treatments in
identification of prime implicants. Following this paper, develop-
ment is needed on prime implicant identification algorithms
because it should be possible to take additional constraints of any
type into account.

The new definition provides solid mathematical foundation for
prime implicants in dynamic reliability analyses, where timings of
events are taken into account. The definition sets basis for further
research as the interpretation of prime implicants affects the
computation of risk importance measures, the modelling of com-
ponent's time-dependent behaviour, the modelling of dependent
failures, and the calculation of literal (basic event) probabilities
and the total probability.
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Appendix A. The axioms of Boolean algebra

Boolean variables satisfy the following axioms:

aþðbþcÞ ¼ ðaþbÞþc; ðA:1Þ

a � ðb � cÞ ¼ ða � bÞ � c; ðA:2Þ

aþb¼ bþa; ðA:3Þ

a � b¼ b � a; ðA:4Þ

aþ0¼ a; ðA:5Þ

a � 1¼ a; ðA:6Þ

aþðb � cÞ ¼ ðaþbÞ � ðaþcÞ ðA:7Þ
and

a � ðbþcÞ ¼ ða � bÞþða � cÞ: ðA:8Þ
Boolean variables also satisfy absorption laws:

aþab¼ a ðA:9Þ
and

aðaþbÞ ¼ a: ðA:10Þ

Table 4
Examples of L-minimal implicants that are not prime implicants. These implicants
were generated based on prime implicants 1, 2 and 7.

No. L-minimal implicant

1.1 fV1ð�4Þ;VF0ð�3Þ;WL0ð�4Þ;VF1ð�2Þ;MF0ð�3Þg
1.2 fV1ð�4Þ;VF0ð�3Þ;WL0ð�4Þ;VF1ð�1Þ;MF0ð�2Þg
1.3 fV1ð�4Þ;VF0ð�3Þ;WL0ð�4Þ;VF1ð�1Þ;MF0ð�1Þg
1.4 fV1ð�4Þ;VF0ð�3Þ;WL0ð�4Þ;VF1ð�1Þ;MF0ð0Þg
1.5 fV1ð�4Þ;VF0ð�3Þ;WL0ð�4Þ;VF1ð�2Þ;MF0ð�2Þg
1.6 fV1ð�4Þ;VF0ð�3Þ;WL0ð�4Þ;VF1ð�2Þ;MF0ð�1Þg
1.7 fV1ð�4Þ;VF0ð�3Þ;WL0ð�4Þ;VF1ð�2Þ;MF0ð0Þg
1.8 fV1ð�4Þ;VF0ð�2Þ;WL0ð�4Þ;VF1ð�1Þ;MF0ð�3Þg
1.9 fV1ð�4Þ;VF0ð�2Þ;WL0ð�4Þ;VF1ð�1Þ;MF0ð�2Þg
1.10 fV1ð�4Þ;VF0ð�2Þ;WL0ð�4Þ;VF1ð�1Þ;MF0ð�1Þg
1.11 fV1ð�4Þ;VF0ð�2Þ;WL0ð�4Þ;VF1ð�1Þ;MF0ð0Þg
2.1 fV1ð�4Þ;VF0ð�2Þ;WL�1ð�4Þ;VF1ð�1Þ;MF0ð�3Þg
2.2 fV1ð�4Þ;VF0ð�2Þ;WL�1ð�4Þ;VF1ð�1Þ;MF0ð�2Þg
2.3 fV1ð�4Þ;VF0ð�2Þ;WL�1ð�4Þ;VF1ð�1Þ;MF0ð�1Þg
2.4 fV1ð�4Þ;VF0ð�2Þ;WL�1ð�4Þ;VF1ð�1Þ;MF0ð0Þg
2.5 fV1ð�4Þ;VF0ð�3Þ;WL�1ð�4Þ;VF1ð�1Þ;MF0ð�2Þg
2.6 fV1ð�4Þ;VF0ð�3Þ;WL�1ð�4Þ;VF1ð�1Þ;MF0ð�1Þg
2.7 fV1ð�4Þ;VF0ð�3Þ;WL�1ð�4Þ;VF1ð�1Þ;MF0ð0Þg
7.1 fV1ð�4Þ;VF0ð�2Þ;WL0ð�4Þ;WLM�1ð�4Þ;MF1ð�1Þg
7.2 fV1ð�4Þ;VF0ð�1Þ;WL0ð�4Þ;WLM�1ð�4Þ;MF1ð�1Þg
7.3 fV1ð�4Þ;VF0ð0Þ;WL0ð�4Þ;WLM�1ð�4Þ;MF1ð�1Þg
7.4 fV1ð�4Þ;VF0ð�3Þ;WL0ð�4Þ;WLM�1ð�4Þ;MF1ð�2Þg
7.5 fV1ð�4Þ;VF0ð�2Þ;WL0ð�4Þ;WLM�1ð�4Þ;MF1ð�2Þg
7.6 fV1ð�4Þ;VF0ð�1Þ;WL0ð�4Þ;WLM�1ð�4Þ;MF1ð�2Þg
7.7 fV1ð�4Þ;VF0ð0Þ;WL0ð�4Þ;WLM�1ð�4Þ;MF1ð�2Þg
7.8 fV1ð�4Þ;VF0ð�3Þ;WL0ð�4Þ;WLM�1ð�4Þ;MF1ð�3Þg
7.9 fV1ð�4Þ;VF0ð�2Þ;WL0ð�4Þ;WLM�1ð�4Þ;MF1ð�3Þg
7.10 fV1ð�4Þ;VF0ð�1Þ;WL0ð�4Þ;WLM�1ð�4Þ;MF1ð�3Þg
7.11 fV1ð�4Þ;VF0ð0Þ;WL0ð�4Þ;WLM�1ð�4Þ;MF1ð�3Þg
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Appendix B. Proofs of propositions

B.1. Proposition 1

Proof. The proposition can be proved inductively. First, from
additional constraint (9) and literal rule (7), it follows that

F1ð�tÞ � F0ð�tþ2Þ ¼ F1ð�tÞ � F0ð�tþ2Þ�
ðF0ð�tþ1ÞþF1ð�tþ1ÞÞ ¼ F1ð�tÞ � F0ð�tþ1Þ�
F0ð�tþ2ÞþF1ð�tÞ � F1ð�tþ1Þ � F0ð�tþ2Þ ¼ 0�
F0ð�tþ2ÞþF1ð�tÞ � 0¼ 0: ðB:1Þ

Second, if F1ð�tÞ � F0ð�tþxÞ ¼ 0ðxZ2; xANÞ, then
F1ð�tÞ � F0ð�tþxþ1Þ ¼ F1ð�tÞ � F0ð�tþxþ1Þ�
ðF0ð�tþxÞþF1ð�tþxÞÞ ¼ F1ð�tÞ � F0ð�tþxÞ�
F0ð�tþxþ1ÞþF1ð�tÞ � F1ð�tþxÞ � F0ð�tþxþ1Þ ¼ 0�
F0ð�tþxþ1ÞþF1ð�tÞ � 0¼ 0: ðB:2Þ

B.2. Proposition 2

Proof. The proposition can be proved inductively. First,

F1ð�tÞþF1ð�tþ1Þ ¼ F1ð�tÞ�
ðF0ð�tþ1ÞþF1ð�tþ1ÞÞþF1ð�tþ1Þ ¼ F1ð�tÞ�
F0ð�tþ1ÞþF1ð�tÞ � F1ð�tþ1ÞþF1ð�tþ1Þ ¼ 0þF1ð�tÞ�
F1ð�tþ1ÞþF1ð�tþ1Þ ¼ F1ð�tþ1Þ: ðB:3Þ

Second, if F1ð�tÞþF1ð�tþxÞ ¼ F1ð�tþxÞðxZ1; xANÞ, then
F1ð�tÞþF1ð�tþxþ1Þ ¼ F1ð�tÞþðF1ð�tþxÞþF1ð�tþxþ1ÞÞ

¼ ðF1ð�tÞþF1ð�tþxÞÞþF1ð�tþxþ1Þ
¼ F1ð�tþxÞþF1ð�tþxþ1Þ ¼ F1ð�tþxþ1Þ:

ðB:4Þ

B.3. Proposition 3

Proof. The proposition can be proved inductively. First, from
additional constraint (9) and literal rule (7), it follows that

F0ð�tÞþF0ð�tþ1Þ ¼ F0ð�tÞþF0ð�tþ1Þ�
ðF0ð�tÞþF1ð�tÞÞ ¼ F0ð�tÞþF0ð�tÞ � F0ð�tþ1ÞþF1ð�tÞ�
F0ð�tþ1Þ ¼ F0ð�tÞþF0ð�tÞ � F0ð�tþ1Þþ0¼ F0ð�tÞ; ðB:5Þ

Second, if F0ð�tÞþF0ð�tþxÞ ¼ F0ð�tÞðxZ1; xANÞ, then
F0ð�tÞþF0ð�tþxþ1Þ ¼ ðF0ð�tÞþF0ð�tþxÞÞþF0ð�tþxþ1Þ
¼ F0ð�tÞþðF0ð�tþxÞþF0ð�tþxþ1ÞÞ ¼ F0ð�tÞþF0ð�tþxÞ
¼ F0ð�tÞ: ðB:6Þ

B.4. Proposition 4

Proof.

F1ð�tÞ � F1ð�tþxÞ ¼ F1ð�tÞ � F1ð�tþxÞþF1ð�tÞ � F0ð�tþxÞ
¼ F1ð�tÞ � ðF1ð�tþxÞþF0ð�tþxÞÞ
¼ F1ð�tÞ: ðB:7Þ
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This paper presents new risk importance measures applicable to a dynamic reliability analysis approach
with multi-state components. Dynamic reliability analysis methods are needed because traditional
methods, such as fault tree analysis, can describe system's dynamical behaviour only in limited manner.
Dynamic flowgraph methodology (DFM) is an approach used for analysing systems with time
dependencies and feedback loops. The aim of DFM is to identify root causes of a top event, usually
representing the system's failure. Components of DFM models are analysed at discrete time points and
they can have multiple states. Traditional risk importance measures developed for static and binary logic
are not applicable to DFM as such. Some importance measures have previously been developed for DFM
but their ability to describe how components contribute to the top event is fairly limited. The paper
formulates dynamic risk importance measures that measure the importances of states of components
and take the time-aspect of DFM into account in a logical way that supports the interpretation of results.
Dynamic risk importance measures are developed as generalisations of the Fussell-Vesely importance
and the risk increase factor.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Risk importance measures [1–4] are important in the reliability
analysis of complex systems, such as safety systems in nuclear
power plants. They can be used to analyse which components or
basic events are most important with regard to the system's
reliability, the probability that the system does not fail. The
importance of a component depends not only on the reliability
of the component but also on the impact of its behaviour on the
consequences of interest. Risk importance measures reveal which
are the beneficial ways to improve the system's reliability.

Dynamic reliability analysis methods [5] have been studied
extensively since 90s because traditional methods, such as fault
tree analysis, can describe system's dynamical behaviour only in
limited manner. Dynamic methods can represent system's evolu-
tion in time more accurately than traditional methods and they
can be used to identify time-dependent failure condition combi-
nations that cause the system's failure. There are well-established
techniques for the computation of risk importance measures in
fault tree and event tree analyses [6,7]. However, in dynamic
reliability analysis, fewer importance measures have been devel-
oped [8]. The limitations are even more evident with regard to
dynamic reliability analysis approaches that include components
with more than two states.

This paper presents two new risk importance measures for a
dynamic reliability analysis approach called dynamic flowgraph
methodology (DFM) [9–12]. A brief conference paper on these
importance measures was already published in 2012 [13] but this
paper presents the work in a comprehensive and more general
form.

Risk importance measures are typically calculated from mini-
mal cut sets which are usually the most essential result of
reliability analysis. A minimal cut set is a minimal combination
of basic events that is sufficient to cause the top event. If one of the
basic events is taken away from a minimal cut set, the remaining
combination of basic events is not sufficient to cause the top event
anymore.

Two risk importance measures are generalised into the
dynamic and multi-state case of DFM: the Fussell-Vesely measure
and the risk increase factor (also known as the risk achievement
worth). They are the most often used risk importance measures in
the reliability analysis of nuclear power plants [1]. These two
measures form a combination that can describe fully the influence
of the component's unavailability. Fussell-Vesely measures how
large portion of the top event probability is caused by the minimal
cut sets that contain a given basic event and the risk increase
factor measures how much the probability of the top event
increases if a given basic event occurs. Hence, Fussell-Vesely
measures the direct effect of the component's unavailability,
whereas the risk increase factor depends more on the component's
position in the system's structure and the reliability of other
components.
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If P, V, L and M are basic events and PL, VL, PM and VM are
minimal cut sets, Fussell-Vesely of basic event V can be calculated
(using so-called “MCS upper bound” to calculate the top event
probability) as presented in (1) and the risk increase factor as
presented in (2).

IFV ðVÞ ¼ QV
TOP

QTOP

¼ 1−ð1−Q ðVLÞÞ � ð1−Q ðVMÞÞ
1−ð1−Q ðPLÞÞ � ð1−Q ðVLÞÞ � ð1−Q ðPMÞÞ � ð1−Q ðVMÞÞ ; ð1Þ

where the notation Q(CS) means the probability of minimal cut set
CS and QTOP is the top event probability.

IIðVÞ ¼ QTOPðV ¼ 1Þ
QTOP

¼ 1−ð1−Q ðLÞÞ � ð1−Q ðMÞÞ
1−ð1−Q ðPLÞÞ � ð1−Q ðVLÞÞ � ð1−Q ðPMÞÞ � ð1−Q ðVMÞÞ : ð2Þ

Components can usually fail in more than one way. For
example, a valve could be failed open or close. The state in which
a component is failed is called a failure state in this paper. The
paper concentrates on calculating the new risk importance mea-
sures for failure states of components in DFM.

The paper is structured as follows. Section 2 briefly presents
dynamic flowgraph methodology. Section 3 reviews previous
research and specifies the objectives of the paper. New dynamic
risk importance measures are formulated in Sections 4 and 5 and a
case study is presented in Section 6. The significance of the
dynamic risk importance measures and possibilities for further
research are discussed in Section 7, and Section 8 concludes
the study.

2. Dynamic flowgraph methodology

Dynamic flowgraph methodology [9–12] is an approach for
analysing systems with time dependencies and feedback loops. It
is typically used to model and analyse digitally controlled systems
which include both hardware and software components. For
example, modern nuclear power plants include digitally controlled
safety systems. The multi-state logic of DFM is an advantage in
modelling of that kind of systems because their components
generally do not behave in binary manners. Another advantage
of DFM is that only one model is needed to represent the complete
behaviour of a system and different states of the system can be
analysed using the same model [10].

A DFM model is a directed graph which consists of nodes that
represent the system's components and variables and edges that
represent the dependencies between nodes. A node can have a
finite number of states and the state of a node is determined either
by a probability model or by states of its input nodes at specified
time steps. Input dependencies of a node are represented in a
decision table which is an extension of a truth table.

The aim of DFM is to identify root causes for a top event, which
is defined as a condition that particular nodes are in particular states
at particular time steps. The result is a set of prime implicants which
are generalisations of minimal cut sets. A prime implicant is a
minimal combination of basic events and other conditions that is
sufficient to cause the top event. In DFM analysis, a basic event or a
condition is represented as a literal which is a node in a state at a
time step and a prime implicant is a set literals. Hence, prime
implicants of DFM can be understood as timed minimal cut sets.

An example on DFM analysis results is provided next. To keep
the focus on concepts that are most relevant with regard to this
paper, the actual DFM model is not presented at this point.
Expression Fð−2Þ ¼ 0 is a literal representing node F in state 0 at
time step −2, and fNð−3Þ ¼ −1; Tð−3Þ ¼ 1;Rð−3Þ ¼ 1; Fð−2Þ ¼ 0;

Fð−1Þ ¼ 1g and fCð−3Þ ¼ 0; Tð−3Þ ¼ −1;Rð−3Þ ¼ 0;Rð−2Þ ¼ 1g are
prime implicants of top event fTð−1Þ ¼ 1; Tð0Þ ¼ 1g of an example
system that is presented later in Section 4.5 if the initial time is −3.
If the state of a node is determined by its input nodes, the node
can appear in prime implicants only at the initial time, such as N, T,
and C in this example. Negative time steps are used in this paper,
because the same notation has been used in previous DFM papers
[9–12] because DFM models are mostly analysed deductively from
effects to causes.

3. Towards dynamic risk importance measures

3.1. Previous research

In DFM modelling, risk importance measures need to be
constructed so that they map information from prime implicants
to values that represent the significances of different components.
Thus, the time aspect of DFM should be taken into account in
dynamic risk importance measures as well as the multi-state logic.

In the context of DFM, not much research has been conducted
on risk importance measures. Refs. [14] and [15] present some
DFM importance measures as generalisations of fault tree analysis
importance measures. The importance measures presented in [14]
measure the importances of different nodes in DFM models. They
do not consider which state or states of a node appear in prime
implicants even though the state information can play an impor-
tant role in the interpretation of DFM results. Significances of
nodes they provide can be useful but their ability to describe how
components contribute to the top event is fairly restricted in
many cases.

In [15], importance measures are formulated for literals of DFM
models. They consider each time point separately while analysts
are mainly interested in the overall importances of nodes and
states of nodes. For example, if literals Vð−t1Þ ¼ s and Vð−t2Þ ¼ s
represent node V in state s at time steps −t1 and −t2, importance
measures are only calculated for these literals separately even
though they represent the same condition. The importance of
node V or state s is not directly provided. This paper aims to
develop risk importance measures that measure the importances
of states of nodes and still maintain the information about time
steps of literals in the results.

3.2. Other methodologies

Markov models constitute a dynamic reliability analysis
approach that is comparable to DFM [16]. Markov models can be
used to analyse dynamic multi-state systems as DFM models.
Some studies have been carried out on risk importance measures
for Markov models [8,17,18]. However, it would not be practical to
use similar importance measures in DFM because they rely on the
perturbation of transition rate matrices of Markov models and
DFM models are not based on transition rates.

There are two types of importance measures for multi-state
systems [19]. Measures of type 1 are formulated for components
and they measure the significance that a component has to the
system's reliability as a whole. Type 1 measures are useful when
analysing whether the number of redundant components needs to
be increased. Measures of type 2 are formulated for states of
components and they measure how a certain state or states of a
component affect the system's reliability. Different states of a
component can assume quite different values of a type 2 measure.
For example, the top event probability might increase if a valve is
in state ‘failed-close’ but the same analysis might show that the
top event probability decreases if the valve is in state ‘failed-open’.
Type 2 measures provide guidance on how a component should be
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changed so that the system's reliability improves. Many risk
importance measures of traditional fault tree analysis can be
generalised for multi-state systems.

An approach of type 2 is to transform a multi-state component
into a binary component by dividing the states into two sets with
regard to a specified performance level [20]. For example, if a
pump can function in ‘low’, ‘medium’, ‘high’ or ‘very high’ power,
states ‘low’ and ‘medium’ could form one group and states ‘high’
and ‘very high’ one group. When a multi-state component is
treated as a binary component, traditional risk importance mea-
sures can be applied to it. Another approach to measure the
importance of a multi-state component is composite importance
measures [21], which are weighted averages of type 2 state
importances and represent type 1 measures. For example, an
average of the risk increase factors of valve's ‘failed-close’,
‘failed-open’ and possible other states weighted with state prob-
abilities could be calculated to get a value that measures the
significance of the valve as a whole. Both approaches could be
applied in DFM.

The modelling of the time-dependent failure behaviour of a
component can be performed similarly in the reliability analyses of
multi-phase missions [22] and in DFM, even though only a single
mission is considered in DFM. In multi-phase missions, basic
events can occur during different phases similarly to time steps
in DFM. In [23], importance measures are formulated for phase
specific events. Correspondingly, in DFM, importance measures
can be formulated for time step specific events.

3.3. Conclusion on objectives

The dynamic risk importance measures, the dynamic Fussell-
Vesely and the dynamic risk increase factor, are formulated for the
different states of nodes. The dynamic Fussell-Vesely is formulated
also for different time steps and the dynamic risk increase factor
takes the time aspect into account in its own way.

The paper especially focuses on computing dynamic risk
importance measures for failure states of components. It is pre-
sented how the information about failure states in prime impli-
cants can be tracked by tracing the graph model backwards and
utilised to calculate risk importance measures to provide more
specific information on how components contribute to the top
event probability.

4. The dynamic Fussell-Vesely

4.1. The basic form

Dynamic risk importance measures need to take the multi-
state logic and time aspect of DFM into account in a logical way
that supports the interpretation of results. For coherent systems,
Fussell-Vesely can be interpreted as how much the top event
probability would relatively decrease if a component was perfect.
In coherent systems, only component failures can cause the top
event but in incoherent systems, a failure of a component may
actually prevent the top event from occurring and the act of
repairing might cause the top event [24]. In multi-state reliability
analysis, a system can be defined as coherent if only one state per
node appears in prime implicants. Even though DFM models are
usually incoherent, they can be coherent with regard to
some nodes.

The dynamic Fussell-Vesely (DFV) should be constructed in
such a way that the idea about the decrease of the top event
probability is maintained. For systems that are coherent with
regard to the considered state of the node, the DFV should be
possible to interpret so that it indicates how much the top event

probability would decrease if the node could be made not to be in
the considered state at least until a particular time step. Thus, as
the definition of Fussell-Vesely deals with minimal cut sets that
include a particular component failure, the definition of the DFV
should consider prime implicants that include a particular node in
a particular state before or at a particular time step.

Let us assume that the time step of the latest literal in the top
event is 0 meaning that it is the last time step of the analysis and
the initial time is −n (n∈N). These notations are valid for the rest of
the paper. The dynamic Fussell-Vesely is defined in its basic form
in Definition 1.

Definition 1. The dynamic Fussell-Vesely measure of state s of
node i at time step −t is

IDFV ðið−tÞ ¼ sÞ≔Qið−tÞ ¼ s
TOP

QTOP
; ð3Þ

where QTOP is the top event probability and Qið−tÞ ¼ s
TOP is the

probability that a prime implicant, including node i in state s
before or at time step −t ð0≤t ≤nÞ, causes the top event.

When time steps of literals are not considered interesting, all
the attention can be paid to IDFV ðið0Þ ¼ sÞ because it takes all time
steps into account.

4.2. Importances of failure states

In DFM, components are often modelled with two nodes: one
that represents the functional state of a component and the other
that determines if the component is failed or not. Let the following
definitions apply for the rest of the paper:

� The node whose state determines if the component is failed or
not is called a ‘failure node’.

� A component is failed when the failure node is in state 1 and it
functions normally when the failure node is in state 0.

� The initial state of a failure node is 0.
� The time lag of a failure node is 0.
� The node that defines the functional state of a component is

called a ‘component node’.

These definitions are used in the DFM tool YADRAT [12]. With these
definitions, a failure event can be interpreted as a change of failure
node's state from 0 to 1. When a failure node is in state 0, the
component is in one of its normal states determined by the
component node. The failure state is defined by the combination of
a failure node being in state 1 and the state of the component node.
For example, if a component node of a water level measurement
sensor has states ‘low’, ‘medium’ and ‘high’, the water level measure-
ment sensor component has normal states ‘low’, ‘medium’ and ‘high’
and failure states ‘failed-low’, ‘failed-medium’ and ‘failed-high’.

If a component is modelled using two nodes, the failure state of
a component cannot directly be read from a prime implicant. A
prime implicant only shows that the failure node is in state 1. The
failure state can depend on the initial states of nodes and other
literals that appear in the prime implicant. The dynamic Fussell-
Vesely cannot therefore directly be calculated for failure states
according to Definition 1. Eq. (4) presents the specific definitions
of the dynamic Fussell-Vesely for a failure state of a component:

IDFVfs ðið−tÞ ¼ sÞ≔Qf ð−tÞ ¼ 1; ið−tÞ ¼ s
TOP

QTOP
; ð4Þ

where f is a failure node connected to component node i and
Qf ð−tÞ ¼ 1; ið−tÞ ¼ s

TOP is the probability that a prime implicant, including
a failure in state s of component node i before or at time step −t
ð0≤tonÞ, causes the top event.
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4.3. Measuring incoherency of a component

When a failure node is in state 0, the corresponding component
is functioning as it is meant to. It might be interesting to know if a
system is incoherent with regard to a failure of a given component.
It could therefore be useful to measure how much state 0 of a
failure node contributes to the top event. However, if the dynamic
Fussell-Vesely of state 0 of a failure node was calculated according
to Definition 1, the interpretation of the result would not come
naturally because a failure node is defined to be initially in state 0.
But, let the time aspect be inverted so that the definition considers
prime implicants that contain a failure node in state 0 at time step −t

or later instead of at time step −t or before. In this case, the measure
can be interpreted as how much the top event probability relatively
decreases if the component fails at a given time step at the latest, if
the system is coherent with regard to state 0 of the failure node. The
DFV measure is formulated for state 0 of a failure node:

IDFV0 ðf ð−tÞ ¼ 0Þ≔Qf ð−tÞ ¼ 0
TOP

QTOP
; ð5Þ

where Qf ð−tÞ ¼ 0
TOP is the probability that a prime implicant, including a

literal representing failure node f in state 0 at time step −t or later,
causes the top event.

Fig. 1. A flow chart of the backtracking process to solve failure state probabilities. The calculation of the state probabilities of failure nodes, random nodes and deterministic
nodes at the initial time is illustrated in its own flow chart in Fig. 2.

T. Tyrväinen / Reliability Engineering and System Safety 118 (2013) 35–5038



4.4. Computation

In the calculation of the dynamic Fussell-Vesely, each prime
implicant is examined. If a prime implicant contains the consid-
ered node in the considered state (or the considered component in
the considered failure state) in the considered time frame, its
contribution is added to the DFV.

It is possible that the failure state of the considered component
is not unambiguous in a prime implicant. A failure can lead to
different states of the component node in separate scenarios.
Probabilities for different failure states are therefore solved and a
prime implicant's contribution to a failure state DFV presented in

(4) is the probability of the prime implicant multiplied by the
probability that the component fails to the considered failure state.

The failure state probabilities can be solved deductively by
backtracking the model or inductively by simulating different
scenarios. The deductive approach is chosen here for the same
reason of why DFM models are most often analysed deductively:
the number of scenarios to be simulated grows easily large with
complex models. The backtracking process to solve failure state
probabilities starts from the component node at the failure time
step. The state probabilities of the component node can be
calculated when the state probabilities of its input nodes are
known. Hence, the state probabilities of the input nodes are

Fig. 2. A flow chart of the calculation of the state probabilities of failure nodes, random nodes and deterministic nodes at the initial time. This flow chart is a subpart of the
flow chart presented in Fig. 1 and it takes the node, time step −t and time lag l as inputs from Fig. 1.
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needed and they can be calculated from the state probabilities of
the input nodes of the input nodes of the component node.
Because of this, the backtracking algorithm is based on the
recursive calling of a function that calculates the state probabilities
of an output node from the state probabilities of the input nodes.
When the state probabilities of input nodes are known, the state
combination probabilities of input nodes can be calculated and the
probability of an output state is the sum of probabilities of those
input state combinations that lead to the considered output state.

The recursive calling of the function continues till the initial
time is reached or the considered node is a stochastic node. In
these cases, the state probabilities are obtained from the prob-
ability model of the node. In the calculation of the DFV, the
backtracking is performed under the conditions set by a prime
implicant. This means that the states of some nodes are known
and the state probabilities are obtained from this information, not
from the probability model or calculated as conditional probabil-
ities if the prime implicant information does not imply a certain
state but affects the probability model.

The backtracking algorithm implemented in the YADRAT tool is
illustrated using flow charts in Figs. 1 and 2. YADRAT contains
three types of nodes: deterministic nodes, failure nodes and
random nodes. The state of a deterministic node is determined
by its input nodes through a decision table, except at the initial
time step at which the state is determined by a probability model.
A failure node is a non-decreasing binary node that is initially in
state 0 and whose state is determined by a probability model. A
random node is a multi-state stochastic node whose state is
determined by a probability model. Each node type is treated
differently in the backtracking.

4.5. Backtracking example

Fig. 3 shows an example of a DFM model based on a tank
system with a digitally controlled valve and Table 1 gives an
example of a decision table. In the model, node C represents the
functional state of a valve, N represents water level measurement
value and T represents water level. Nodes F and R determine if the
valve and the water level measurement are failed and they change
states stochastically. Each row of the decision table represents a
state combination of input nodes (F, N and C) and the output
column determines to which state of the output node C each state
combination of input nodes leads to. The time lag row determines
the delays in the dependencies between the input nodes and the
output node. In Table 1, node C depends on its own state at the
previous time step because the time lag is 1. From Table 1, it can be
seen that the valve remains in failure state ‘failed-0’ or ‘failed-1’
after the failure, because node C stays in the same state it was at
the previous time step when F is in state 1.

A set of literals π ¼ fNð−3Þ ¼ −1; Tð−3Þ ¼ 1;Rð−3Þ ¼ 1; Fð−2Þ ¼ 0;
Fð−1Þ ¼ 1g is a prime implicant of top event fTð−1Þ ¼ 1; Tð0Þ ¼ 1g of

the system presented in Fig. 3 when the initial time is −3. Node F is
the failure node of the valve. The failure time is therefore −1.
Hence, the failure state probabilities are the state probabilities of
Cð−1Þ. Under the failure condition, component node C remains in
the same state as it was at the previous time step. Thus, the failure
state probabilities are the state probabilities of Cð−2Þ. As node C is
a deterministic node, its state probabilities are defined by the state
probabilities of its input nodes. The state probabilities of Fð−2Þ,
Nð−2Þ and Cð−3Þ therefore have to be solved. Probability Q ðFð−2Þ ¼
0 j πÞ ¼ 1 because prime implicant π contains a literal Fð−2Þ ¼ 0.
Node N is a deterministic node. Hence, the state probabilities of its
input nodes should be examined to determine its state probabil-
ities at time step −2. The initial state of component node C does
not appear in prime implicant π. The state probabilities of Cð−3Þ
are therefore obtained from the probability parameters. If
Q ðNð−2Þ ¼ s j πÞ ¼ n2;s for all s∈f−1;0;1g, Q ðCð−3Þ ¼ rÞ ¼ c3;r for all
r∈f0;1g, n2;−1 þ n2;0 þ n2;1 ¼ 1 and c3;0 þ c3;1 ¼ 1, Table 1 indicates
that Q ðCð−2Þ ¼ 0 j πÞ ¼ n2;−1 þ n2;0c3;0 and Q ðCð−2Þ ¼ 1 j πÞ ¼ n2;1þ
n2;0c3;1. The backtracking structure of this example is illustrated in
Fig. 4. The progression of the backtracking algorithm is illustrated
more closely in Appendix A.

4.6. Solving accurate failure state probabilities

Sometimes the solving of failure state probabilities has to be
divided into different scenarios to obtain correct results. When theFig. 3. A DFM model from the DFM tool YADRAT.

Table 1
The decision table of component node C.

Node Output Inputs

C F N C

Time lag 0 0 1

0 0 −1 0
0 0 −1 1
0 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
0 1 −1 0
1 1 −1 1
0 1 0 0
1 1 0 1
0 1 1 0
1 1 1 1

Fig. 4. The backtracking tree starting from the node C at time step −2.
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backtracking process diverges, different branches are examined
independently even though they can contain the same nodes. This
type of dependencies are taken into account by backtracking the
model to identify those nodes that appear in multiple branches
and solving failure state probabilities separately in different
scenarios related to them. Here, a scenario means that the nodes
are set to particular states at particular time steps and the back-
tracking is performed under that state combination assumption.
The probabilities of the state combinations are calculated and
accurate failure state probabilities are computed as weighted sums
of failure state probabilities related to different scenarios.

There are cases in which the accurate failure state probabilities
can be solved by a single backtracking without dividing the solving
process into different scenarios and only applying the algorithm
presented in Figs. 1 and 2. If a single backtracking gives an
unambiguous failure state, the result is always accurate because
the backtracking covers all the possible scenarios. However, in
some cases, the backtracking can imply a possibility of a failure
state that is not really possible. Hence, it is computationally most
efficient to calculate the failure state probabilities first with a
single backtracking and if the failure state is not unambiguous,
calculate accurate probabilities by examining different scenarios
separately.

4.7. The non-decreasing property of failure nodes

The non-decreasing property of a failure node has to be taken
into account in the DFV calculation. Let F be a failure node and −t a
time step. Literal Fð−tÞ ¼ 1 represents a condition that the corre-
sponding component is failed at time step −t. Due to the non-
decreasing property of failure nodes, this condition can be satisfied
by a failure that occurs at time step −t or earlier. Hence, when DFV
values are calculated for the state 1 of F, it must be taken into
account that condition Fð−tÞ ¼ 1 can be caused by a failure at an
earlier time step. For this reason, a prime implicant that includes
condition Fð−tÞ ¼ 1 also contributes to the DFV values of earlier
time steps than −t. If prime implicant π includes literal Fð−tÞ ¼ 1
and −uo−t, the contribution of π to IDFV ðFð−uÞ ¼ 1Þ is Q ðFð−uÞ ¼
1 j πÞ � Q ðπÞ. Conditional probability Q ðFð−uÞ ¼ 1 j πÞ is usually

Q ðFð−uÞ ¼ 1Þ
Q ðFð−tÞ ¼ 1Þ ð6Þ

but if prime implicant π includes, for example, literal Fð−uÞ ¼ 0,
Q ðFð−uÞ ¼ 1 j πÞ ¼ 0 as condition Fð−uÞ ¼ 0 implies that the compo-
nent must be functioning at time step −u.

Let s be a state of component node C. The contribution of prime
implicant π to IDFVfs ðCð−uÞ ¼ sÞ is
Q ðFð−uÞ ¼ 1 j πÞ � Q ðπÞ � Q ðCð−uÞ ¼ s j πFð−uÞ ¼ 1Þ; ð7Þ

where πFð−uÞ ¼ 1 is a modified version of prime implicant π that
includes literal Fð−uÞ ¼ 1 instead of Fð−tÞ ¼ 1.

5. The dynamic risk increase factor

5.1. Definition

The risk increase factor measures how much the unavailability
of a system increases if a component fails. Thus, in the calculation
of the risk increase factor it must be assumed that a component is
failed. In DFM, a component can fail at different time steps. The
failure of a component does not usually cause system's failure
immediately. To provide all the available time for the failure to
affect the system, let the dynamic risk increase factor (DRIF) be
defined so that the component fails at the earliest possible time

step. When a component is failed, it remains failed for the rest of
the scenario.

To formulate a more general version of DRIF, let the idea that
the condition lasts the whole scenario be applied to a state of a
node and the dynamic risk increase factor be formulated so that it
measures how much the top event probability increases if the
considered node is in the considered state at all time steps. The
definition is presented in Definition 2.

Definition 2. The dynamic risk increase factor for a state of a node is

IDIði¼ sÞ≔QTOPðið−tÞ ¼ s; ∀ t∈f0;1;…;m−1;mgÞ
QTOP

; ð8Þ

where QTOPðið−tÞ ¼ s; ∀ t∈f0;1;…;m−1;mgÞ is the probability that
the top event occurs assuming that a node i is in state s at every time
step starting from −m ð0≤m≤nÞ which is the earliest possible time
step for the node i to be in state s considering the initial conditions.

The earliest possible time step for a node to be in a state can
vary. For example, a failure node is defined to be initially in state 0.
Hence, it can be in state 1 only starting from time step −nþ 1.
Similarly, for random nodes and component nodes, all states might
not be initially possible.

5.2. Computation

In the calculation of the DRIF, a conditional top event prob-
ability is needed. Possibilities are to identify new prime implicants
of the conditional top event either by deriving them from
originally identified prime implicants or performing a completely
new DFM analysis with a modified top event or develop an
algorithm to calculate the conditional top event probability
“directly” from the model without identifying prime implicants
first. A completely new DFM analysis for each DRIF value would be
too time-consuming. The computation of the top event probability
without identifying prime implicants is an interesting problem
that could be examined in the future but in this paper, prime
implicants of the conditional top event are derived from the
original prime implicants which is more straightforward.

Prime implicants of the conditional top event can be derived
from the original prime implicants in the following way. The prime
implicants are examined one by one. Those prime implicants that
contradict with the condition (contain a node at a specific time
step in a wrong state) are removed and the literals that appear in
the condition are removed from the prime implicants because
their conditional probability is 1. After this, if accurate results are
wanted, all duplicate prime implicants and implicants that are not
prime implicants anymore have to be removed from the set. This
can be done by comparing changed prime implicants with each
other and comparing the untouched prime implicants with the
remaining changed prime implicants. Fig. 5 presents a flow chart
to illustrate the identification of new prime implicants.

Table 2 presents the prime implicants of the top event
fTð−1Þ ¼ 1; Tð0Þ ¼ 1g of the system presented in Fig. 3. When the
DRIF is calculated for the failure of the valve, the condition is
fFð−2Þ ¼ 1; Fð−1Þ ¼ 1; Fð0Þ ¼ 1g. When the new prime implicants are
derived, prime implicants 10 and 13 from Table 2 are removed
because they contain literal Fð−2Þ ¼ 0. Literals Fð−2Þ ¼ 1 and
Fð−1Þ ¼ 1 are removed from other prime implicants. 11 non-
minimised implicants are left (Table 3). When these implicants
are compared to each other, it is noticed that only fCð−3Þ ¼ 0g is a
prime implicant and others are non-minimal implicants.

The dynamic risk increase factor can be calculated for a failure
state of a component assuming that the failure node is in state
1 starting from the first time step after the initial time and that the
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component node remains in the corresponding state after the
failure. The failure node in state 1 does not always guarantee a
particular failure state. It must therefore be assumed that the
initial conditions are such that the component fails to the
considered failure state. If the failure causes the component node
to remain in its previous state, it is assumed that the initial state of
the component node is the state that corresponds to the consid-
ered failure state. If the component always fails to the same failure
state, no initial condition assumption is needed. If the component
node can change state after the failure, the DRIF should only be
calculated for state 1 of the failure node because the component
does not necessarily remain in the same failure state for the whole
scenario.

Component node C in Table 1 is stuck in its previous state when
failure node F turns to state 1. Hence, in the calculation of IDIðC ¼ 0Þ
with the initial time −3, the condition is that Fð−tÞ ¼ 1 for all
−t∈f0;−1;−2g and Cð−3Þ ¼ 0 and similarly, in the calculation of
IDIðC ¼ 1Þ, the condition is that Fð−tÞ ¼ 1 for all −t∈f0;−1;−2g and
Cð−3Þ ¼ 1.

There are also cases inwhich the failure state at time step −nþ 1
is determined in a more complicated way and more complex initial
state assumptions are needed. Generally, the initial conditions that
are needed to produce the failure state need to be identified. The
result is a set of initial state combinations. The DRIF is calculated
separately with each initial state combination assumption and the
final DRIF for the failure state is calculated as a weighted average of

Fig. 5. A flow chart representing the identification process of prime implicants of the conditional top event.
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the DRIFs of the initial state combinations that lead to the failure
state. These cases are not considered further in this paper because
more simple cases are more common.

Other than for failure states of components, there is no easy
and efficient way to calculate the DRIF for states of deterministic
nodes because only initial states of deterministic nodes appear in
prime implicants and there is therefore no easy way to derive the

prime implicants for the conditional top event from the original
prime implicants. The conditions that would be needed to produce
the condition that the considered deterministic node would be in
same state at all time steps should be solved. After that, the DRIF
should be calculated assuming each of those conditions separately,
and finally, a weighted average should be calculated. This could
not be efficiently done with complex models because the number
of different conditions would be large in many cases. However, a
risk increase factor can be calculated for initial states of determi-
nistic nodes by only assuming that a node is in a particular state at
the initial time.

6. Importance analysis of an emergency core cooling system

6.1. Emergency core cooling system

In this section, an emergency core cooling system of a boiling
water reactor [12] is analysed with the DFM tool YADRAT. The
system is shown in Fig. 6. The purpose of this system is to provide
adequate water cooling of a reactor core if the ordinary cooling
system is not functioning. An on–off control system regulates the
water level in the pressure vessel by controlling a pump and a
regulation valve. Sensors measure the water level and the pressure
which are utilised in controlling of the valve, while only the water
level measurement affects controlling of the pump. The water level
can decrease due to evaporation. If the water level is low, more
water is pumped into the pressure vessel until an upper limit is
reached. The regulation valve is opened if both water level and
pressure are measured to be under lower limit.

6.2. System reliability model

Fig. 7 presents the node structure of a DFM model from the
YADRAT tool based on the emergency core cooling system [12].
This model contains one pump line that includes four compo-
nents: a water level sensor modelled with component node WLM
and failure node WLM-fail, a pressure sensor modelled with
component node PM and failure node PM-fail, a regulation valve
modelled with component node V and failure node V-fail and a
pump modelled with component node P and failure node P-fail.
Component node P has two states: ‘on’ and ‘off’ but the pump can

Fig. 6. An emergency core cooling system of a boiling water reactor.

Table 3
The non-minimised implicants of the conditional
top event.

No. Prime implicant

1 fCð−3Þ ¼ 0g
2 fCð−3Þ ¼ 0; Tð−3Þ ¼ −1;Rð−3Þ ¼ 0g
3 fCð−3Þ ¼ 0; Tð−3Þ ¼ −1;Nð−3Þ ¼ 0g
4 fCð−3Þ ¼ 0; Tð−3Þ ¼ −1;Nð−3Þ ¼ −1g
5 fCð−3Þ ¼ 0; Tð−3Þ ¼ −1;Rð−3Þ ¼ 0;Rð−2Þ ¼ 1g
6 fCð−3Þ ¼ 0; Tð−3Þ ¼ −1;Nð−3Þ ¼ 0;Rð−2Þ ¼ 1g
7 fCð−3Þ ¼ 0; Tð−3Þ ¼ −1;Nð−3Þ ¼ −1;Rð−2Þ ¼ 1g
8 fCð−3Þ ¼ 0;Nð−3Þ ¼ 0;Rð−3Þ ¼ 1g
9 fCð−3Þ ¼ 0;Nð−3Þ ¼ −1;Rð−3Þ ¼ 1g

10 fCð−3Þ ¼ 0;Nð−3Þ ¼ 0;Rð−3Þ ¼ 1;Rð−2Þ ¼ 1g
11 fCð−3Þ ¼ 0;Nð−3Þ ¼ −1;Rð−3Þ ¼ 1;Rð−2Þ ¼ 1g

Table 2
The prime implicants of the top event fTð−1Þ ¼ 1; Tð0Þ ¼ 1g of the system presented
in Fig. 3.

No. Prime implicant

1 fCð−3Þ ¼ 0; Fð−2Þ ¼ 1g
2 fCð−3Þ ¼ 0; Fð−1Þ ¼ 1; Tð−3Þ ¼ −1;Rð−3Þ ¼ 0g
3 fCð−3Þ ¼ 0; Fð−1Þ ¼ 1; Tð−3Þ ¼ −1;Nð−3Þ ¼ 0g
4 fCð−3Þ ¼ 0; Fð−1Þ ¼ 1; Tð−3Þ ¼ −1;Nð−3Þ ¼ −1g
5 fCð−3Þ ¼ 0; Tð−3Þ ¼ −1;Rð−3Þ ¼ 0;Rð−2Þ ¼ 1g
6 fCð−3Þ ¼ 0; Tð−3Þ ¼ −1;Nð−3Þ ¼ 0;Rð−2Þ ¼ 1g
7 fCð−3Þ ¼ 0; Tð−3Þ ¼ −1;Nð−3Þ ¼ −1;Rð−2Þ ¼ 1g
8 fCð−3Þ ¼ 0; Fð−1Þ ¼ 1;Nð−3Þ ¼ 0;Rð−3Þ ¼ 1g
9 fCð−3Þ ¼ 0; Fð−1Þ ¼ 1;Nð−3Þ ¼ −1;Rð−3Þ ¼ 1g

10 fNð−3Þ ¼ −1;Rð−3Þ ¼ 1; Fð−2Þ ¼ 0; Tð−3Þ ¼ 1; Fð−1Þ ¼ 1g
11 fCð−3Þ ¼ 0;Nð−3Þ ¼ 0;Rð−3Þ ¼ 1;Rð−2Þ ¼ 1g
12 fCð−3Þ ¼ 0;Nð−3Þ ¼ −1;Rð−3Þ ¼ 1;Rð−2Þ ¼ 1g
13 fNð−3Þ ¼ −1;Rð−3Þ ¼ 1; Fð−2Þ ¼ 0; Tð−3Þ ¼ 1;Rð−2Þ ¼ 1g
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only fail to failure state ‘failed-off’, which means that it does not
pump any water. The valve can be failed in state ‘failed-close’ or
‘failed-open’. The water level measurement can be frozen in state
‘failed-low’, ‘failed-medium’ or ‘failed-high’, while the pressure
measurement can be frozen in state ‘failed-low’ or ‘failed-high’.

An exponential model is used for failure probabilities. The
failure rates are presented in Table 4. A failure rate is here the
probability that the component fails during one time step.

The pump line also contains a random node PL that represents
a pump leakage signal and several deterministic nodes that
represent the signals between the sensors, the control logic and
the actuators. The model also includes two deterministic nodes to
represent the water inflow (WF) and the reactor water level (WL).
The nodes of the model are described more in Appendix B.

6.3. Results

The analysed case was that the water level is low four time
steps in a row (top event fWLð−3Þ ¼ low;WLð−2Þ ¼ low;WLð−1Þ ¼
low;WLð0Þ ¼ lowg) which is a long enough time to be critical with
regard to cooling of the core. The initial time was chosen to be −5
because earlier experiences had shown that all the relevant prime
implicants can be identified using this time frame and same

patterns are only repeated in prime implicants using a longer
time frame.

The number of identified prime implicants was 338 and five of
them are presented in Table 5. These five prime implicants were
chosen because they represent different prime implicant types.
They are not necessarily the most important prime implicants. In
prime implicants 2 and 4, the regulation valve fails in state ‘failed-
close’. In prime implicant 3, the pressure measurement is frozen in
state ‘failed-high’. In prime implicant 5, the failure states of the

Fig. 7. A DFM model based on the emergency core cooling system.

Table 4
The failure rates of the components.

Failure node Failure rate [1/Δt]

P-fail 0.01
V-fail 0.02
WLM-fail 0.03
PM-fail 0.04

Table 5
Examples of prime implicants.

No. tot-pr. pr. Node t State

1 3.5E−2 0.330 WL −5 High
0.500 V −5 Close
0.500 PL −5 True
0.500 PM −5 Low
0.885 PM-fail −2 0
0.970 WLM-fail −4 0

2 1.0E−2 0.500 V −5 Close
0.020 V-fail −4 1

3 1.0E−2 0.500 V −5 Close
0.500 PM −5 High
0.040 PM-fail −4 1

4 9.9E−3 0.500 V −5 Close
0.500 PL −5 True
0.040 V-fail −3 1

5 1.4E−5 0.330 WL −5 Low
0.500 P −5 On
0.500 PL −5 True
0.100 PL −4 True
0.059 V-fail −2 1
0.941 WLM-fail −3 0
0.030 WLM-fail −2 1
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water level measurement and valve are not unambiguous but can
be different in different scenarios. The water level measurement is
frozen in state ‘failed-low’ with a probability of 0.5 and in state
‘failed-medium’ with a probability of 0.5, and the valve is failed in
state ‘failed-open’ with a probability of 0.17 and in state ‘failed-
close’ with a probability of 0.83. Prime implicant 1 includes only
an initial condition of the water level WL, initial conditions of
components, a pump leakage signal at the initial time, a condition
that the pressure measurement is functioning at time step −2 and
a condition that the water level measurement is functioning at
time step −4.

Table 6 presents both accurate and approximated DFV values
for failure states of components. Approximated results were
calculated using a single backtracking for each failure in a prime
implicant in the solving of failure state probabilities and accurate
results were calculated by dividing the failure state probability
solving process into different scenarios as described in Section 4.6.

Fig. 8 presents the DFV values for component failures and
pump leakage signal and Fig. 9 presents the DFV values for 0-
states of failure nodes in the form of a graph. Table 7 presents the
DRIF values for failure states of components, Table 8 for compo-
nent failures and Table 9 for the states of the random node.

The valve clearly has more significant effects to the system's
reliability than other components. It has the largest DFV values
except for time step −4 (Fig. 8) and also according to the dynamic
risk increase factor, its failure in state ‘failed-close’ has the worst
effect on the system (Table 7). However, the valve's failure in state
‘failed-open’ decreases the top event probability significantly and
the failure of the valve therefore has the smallest DRIF value of the
component failures (Table 8). According to both importance
measures, the pump is more important than the sensors even
though its failure rate is smaller. This is logical because the pump

Table 6
The dynamic Fussell-Vesely values for failure states. Those DFV values that are 0 are
left out.

Component node Failure state Time DFV accu. DFV appr.

P Failed-off 0 0.198 0.198
Failed-off −1 0.198 0.198
Failed-off −2 0.184 0.184
Failed-off −3 0.151 0.151
Failed-off −4 0.089 0.089

V Failed-open 0 0.00004 0.0003
Failed-open −1 0.00004 0.0003
Failed-open −2 0.00003 0.0001
Failed-open −3 0.00003 0.00003
Failed-open −4 0.00003 0.00003
Failed-close 0 0.289 0.289
Failed-close −1 0.289 0.289
Failed-close −2 0.262 0.262
Failed-close −3 0.197 0.197
Failed-close −4 0.087 0.087

WLM Failed-high 0 0.060 0.062
Failed-high −1 0.060 0.062
Failed-high −2 0.060 0.062
Failed-high −3 0.060 0.060
Failed-high −4 0.036 0.036
Failed-medium 0 0.083 0.081
Failed-medium −1 0.083 0.081
Failed-medium −2 0.083 0.081
Failed-medium −3 0.059 0.059
Failed-medium −4 0.034 0.034
Failed-low 0 0.00004 0.00004
Failed-low −1 0.00004 0.00004
Failed-low −2 0.00004 0.00004

PM Failed-high 0 0.119 0.119
Failed-high −1 0.119 0.119
Failed-high −2 0.119 0.119
Failed-high −3 0.084 0.084
Failed-high −4 0.042 0.042

Fig. 8. The dynamic Fussell-Vesely values for component failures and pump
leakage signal. On the right side of the graph, curves are ordered according to
their end points.

Fig. 9. The dynamic Fussell-Vesely values for 0-states of failure nodes. On the right
side of the graph, curves are ordered according to their starting points.

Table 7
The dynamic risk increase factor values for failure states.

Component node Failure state DRIF

P Failed-off 1.51
V Failed-open 0.17

Failed-close 1.81
WLM Failed-high 1.50

Failed-medium 1.44
Failed-low 0.30

PM Failed-high 1.42
Failed-low 0.46

Table 8
The dynamic risk increase factor values for compo-
nent failures (1-states of failure nodes).

Failure node DRIF

P-fail 1.51
V-fail 0.99
WLM-fail 1.20
PM-fail 1.10

Table 9
The dynamic risk increase factor values for states of the random node.

Random node State DRIF

PL true 1.51
false 0.55
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and the valve directly affect the water flow. However, the top
event is most often caused by the pump leakage signal (PL in the
‘true’ state).

When analysing the time-dependent behaviour of DFV values
in Table 6 and Fig. 8, it has to be remembered that DFV values are
calculated cumulatively. The DFV values indicate that early failures
of time steps −4 and −3 contribute most to the top event in all
cases. This is logical because they have a more long lasting effect
on the water level than later failures. The pump is the easiest
component to analyse here because it always fails in the same way
and its failure always has the same impact. The earlier the pump
fails the more likely it is causing the top event as can be seen from
the DFV values in Table 6. The DFV values of PM and WLM are also
consistent with the intuitive idea that the earlier failure is more
likely to cause the top event than a later failure.

The valve however has the largest addition to the cumulative
DFV at time step −3. The reason for this is that component node V
is more likely to be in state ‘close’ at time step −4 than at the initial
time −5, and hence, the valve is more likely to be stuck in the
harmful failure state ‘failed-close’ at time step −3 than at time step
−4. High pump leakage signal probability 0.5 at the initial time is
the main reason why component node V is more likely to be in
state ‘close’ at time step −4. If component node V is in state ‘open’,
the valve is closed due to the pump leakage signal unless it is fails.

For the pump and valve, failures of time step −1 can still
contribute to the top event but failures of time step 0 cannot. This
is because failures of the valve and the pump affect the water level
with a delay of one time step. Measurement failures have to occur
at time step −2 at the latest to contribute to the top event because
they affect the water level with a delay of two time steps.

All possible failure states except the ‘failed-low’ state of the
pressure measurement appear in the prime implicants. State ‘low’

of WLM, together with state ‘low’ of PM, sends the valve a signal
that it needs to open so that more water can be pumped into the
pressure vessel. Hence, failure state ‘failed-low’ cannot contribute
to decreasing the water level but only increasing it. Failure state
‘failed-low’ of the water level measurement had small dynamic
Fussell-Vesely values even though it cannot really cause the water
level to decrease. In some of those prime implicants that had the
water level measurement failed, such as in prime implicant 5 in
Table 5, the situation was that either the sensor failed in state
‘failed-medium’ and partly caused the top event, or the sensor
failed in state ‘failed-low’ and some other conditions caused the
top event. None of the prime implicants implied that the water
level measurement was frozen in state ‘failed-low’ with certainty.
Hence, failure state ‘failed-low’ did appear in some prime impli-
cants but did not really contribute to the top event. In those cases,
the failure of the water level measurement appeared in the prime
implicants because in some scenarios, the failure in the ‘failed-
medium’ state was needed to cause the top event. Failure state
‘failed-open’ of the valve had small DFV values for the same
reason.

It seems worth highlighting that failure state ‘failed-medium’ of
the water level measurement had larger overall DFV value (DFV
value of time step 0) than failure state ‘failed-high’. This was
because the failure in state ‘failed-medium’ at time step −2 can
contribute to the top event but the failure in state ‘failed-high’ at
time step −2 cannot. If the water level measurement is frozen in
state ‘failed-high’ at time step −2, it means that the water level
must have been ‘high’ at time step −4 and thus, the water level
could not have been ‘low’ at time step −3.

Some differences appeared between accurate and approxi-
mated failure state DFV values because failure states were not
calculated correctly using a single backtracking in every case. For
example, approximated results imply that the failure in state
‘failed-high’ of the water level measurement at time step −2

contributes a little to the top event even though it is impossible
as explained in the previous paragraph. The reason for this was
that node WLM-fail at time step −4 appeared in two different
branches of backtracking. The positive probability for failure state
‘failed-high’ came from an impossible scenario in which WLM-fail
was in state 1 in one branch and 0 in another. Wrong failure state
probabilities are always a result of taking this kind of impossible
scenarios into account. These impossible scenarios appear in the
calculations more likely if there are more time steps to backtrack.
In other words, wrong results are more likely with late failures
than with earlier failures because the backtracking process is
longer and nodes are analysed at more time steps. In this example,
wrong failure state probabilities were calculated only for failure
times-2 and -1 as can be seen from the DFV values in Table 6.

As the wrong failure state probabilities are more likely to
appear with late failures, those prime implicants for which wrong
failure state probabilities are calculated are likely to have small
probabilities and small effect to DFV values. Because of this,
approximated DFV values are most often very close to accurate
values. Also, even if impossible scenarios appear in backtracking,
they do not necessarily lead to wrong failure state probabilities. In
this example, the most important prime implicant for which
wrong probabilities were calculated formed the portion of 0.89%
of the top event probability, and as total, such prime implicants
formed the portion below 2.5% of the top event probability. The
only real issue that wrong failure state probabilities caused to
complicate the analysis of results was the implication that the
failure in state ‘failed-high’ of the water level measurement at time
step −2 could contribute to the top event and even that is not very
significant with regard to final conclusions drawn about the
system.

The system is not coherent with regard to failure events, except
the failure of the pump. The results of Fig. 9 indicate that some
prime implicants include failure nodes in state 0. State 0 of PM-
fail, in particular, contributes significantly to the top event. When
this condition appears in prime implicants, it ensures that the
pressure measurement cannot fail in state ‘failed-low’, which
would prevent the top event from occurring. Hence, according to
the DFV values, failure state ‘failed-low’ would prevent the top
event from occurring in many cases.

From the dynamic risk increase factor values (Tables 7 and 8), it
can be seen that some failure states increase the top event
probability and some decrease it. Failure state ‘failed-open’ of
the valve, failure state ‘failed-low’ of the water level measurement
and failure state ‘failed-low’ of the pressure measurement
decrease the top event probability because they can only cause
the water level to increase not decrease. Those failure states that
had significant DFV values in Table 6 can cause the water level to
decrease and hence, they have DRIF values larger than 1. The
failure of the regulation valve in state ‘failed-close’ at time step −4
causes the top event to occur with certainty.

The pump leakage signal has the highest DFV values (0.648
when all time steps are taken into account) and same or higher
DRIF value (1.51) than any of the component failures. The best way
to improve the reliability of this system would therefore be to
reduce the probability of the pump leakage signal which could be
done by reducing the probability of the spurious signal and the
probability of the pump leakage. It would also be beneficial to
improve the reliability of the valve and the pump. Results also
indicate that the top event probability would lower if the control
system was changed so that the valve was more open and the
measurement sensors displayed low values for the water level and
the pressure all the time. However, this type of change is neither
practically possible nor sensible and it might cause the water level
to be high all the time which could be harmful too. Because of this,
it would be worthwhile to analyse the system with the top
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event fWLð−3Þ ¼ high;WLð−2Þ ¼ high;WLð−1Þ ¼ high;WLð0Þ ¼ highg
as well. With this top event, the results would be quite different.

7. Discussion

7.1. Benefits

The dynamic risk importance measures are an important
contribution to the dynamic flowgraph modelling because the
previously developed importance measures [14,15] were not
designed to measure significances of node's states properly while
the states of nodes often play an important role in the interpreta-
tion of DFM results. The dynamic risk importance measures take
the time aspect of DFM into account in a logical way that supports
the interpretation of results. In addition, they can provide detailed
information on how components modelled with two nodes con-
tribute to the top event. In principle, they could also be applied in
all dynamic methods that rely on variables with a finite number of
states. The time aspect of the dynamic risk importance measures
could also be generalised to the case of continuous time.

7.2. The dynamic Fussell-Vesely

The Fussell-Vesely measure is the importance measure used
most often because it is simple to compute and it encapsulates
purely the information from minimal cut sets or prime implicants.
The dynamic Fussell-Vesely has the same qualities. The dynamic
Fussell-Vesely takes into account both the probability that the
node is in the considered state and how the node and the state
interconnect with other nodes. However, the DFV does not take
the incoherency of a system into account because it does not
consider that the prime implicants can include the node in
different states. This limits the interpretation of the DFV values
calculated for component failures. The incoherency can only be
taken into account by calculating separate DFV values for the state
0 of a failure node. For example, the results of Fig. 8 could not
indicate that the system was incoherent with regard to some
failure nodes and the incoherency only came evident when the
results of Fig. 9 were analysed.

If the system is coherent with regard to a failure, other risk
importance measures that depend on the conditional top event
probability with a condition that the considered component is
functioning can also be derived from Fussell-Vesely. The same
cannot be done in the incoherent case. The fractional contribution
[25] gives same results as Fussell-Vesely in coherent case and
takes the incoherency into account in incoherent case. But, the
dynamic fractional contribution would be computationally more
demanding as new prime implicants of the conditional top event
should be identified.

7.3. The failure state approach

The failure state approach used in the calculation of the
dynamic risk importance measures for components provides
information about the state of a failed component as discussed
in Section 4.2. This information cannot directly be read from prime
implicants. The failure state approach is useful because a failure
state (or failure mode) is really an important factor when analys-
ing causes of a top event even if only the failure is the fundamental
cause from the mathematical point of view. There are also other
ways to model different failure modes in DFM. One way is to use a
so-called “multi-state failure node” that contains separate states
for different failure modes. If a “multi-state failure node” is used
instead of modelling presented in this paper, there is no need to
solve failure states. This requires own failure node state for each failure

state, and hence, the decision table of the component grows large,
which makes the DFM model computationally more demanding.

The solving of accurate failure state probabilities is based on an
examination of different scenarios related to nodes that appear in
different branches of backtracking as discussed in Section 4.6. This
can be very demanding for components of complex systems
because the number of different scenarios can be large. In some
cases, it is better to compute approximations by a single back-
tracking than to examine all the different scenarios. In the
example case presented in this paper, accurate failure state
probabilities, which affected the DFV results in Table 6, were
calculated in 2 s. The same model was also analysed with −6 as the
initial time instead of −5 (results not presented here) and in that
case, the computation lasted 2 min while approximated results
were obtained in a second. Thus, one time step more to backtrack
makes a significant addition to computation demands. But, the
effect that inaccurate failure state probabilities have on DFV values
was small in all the examined example cases such as in the results
presented in Table 6. Hence, when only approximations of failure
state DFV values are needed, the use of a single backtracking may
be sufficient.

7.4. The dynamic risk increase factor and other importance measures

Like the traditional risk increase factor, the dynamic risk increase
factor mainly depends on how other components can keep the
system operating while the considered component is failed or node
is in a given state. When used independently, the DRIF gives a fairly
restricted view on how a state of a node contributes to the top event
but it is a good complement to the DFV. The DRIF can be used to
derive some other dynamic risk importance measures that rely on
the conditional top event probability with an assumption that a node
is in a given state at all time steps.

There are many other importance measures that could also be
generalised in dynamic and multi-state cases. Other often-used
importance measures include Birnbaum importance, the risk
decrease factor (also known as the risk reduction worth), the
criticality importance and the partial derivative [1]. For some risk
importance measures, there is more than one way in which the
generalisation to the dynamic case can be made. In the dynamic
risk increase factor, it is assumed that the condition starts at the
first possible time step. The DRIF could also be generalised for
other time steps. A similar idea has been considered in relation to
multi-phase missions [23]. This could bring worthwhile additional
information in some cases when the system is incoherent with
regard to the considered node but mostly not. The computation of
the DRIF for a failure state with an assumption of a late failure
would be significantly more demanding than the computation of
the DRIF with the failure at the first possible time step, because
not only the initial conditions would affect the failure state but
also the states of the random nodes and failure nodes at earlier
time steps than the considered failure time. All the different state
combinations of affecting nodes at relevant time steps should be
considered when the assumption of a failure state is made.
Computation demands would, of course, be much smaller if failure
states were not considered.

Many risk importance measures rely on the calculation of a
conditional top event probability. In those importance measures
that include a failure assumption, the failure condition can be
replaced with an assumption that a node is in a particular state at
particular time steps. An assumption that a component is func-
tioning can also be replaced with an assumption that a node is not
in a particular state at particular time steps. In these cases, a new
set of prime implicants is identified for the conditional top event.
If accurate results are to be produced, the identification of new
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prime implicants is computationally demanding when the original
set of prime implicants is large.

The computation of differential risk importance measures, such
as the partial derivative and the differential importance measure
[26], would be easier in DFM because prime implicants of the
conditional top event would be the same as the original prime
implicants. Only manipulation of probability parameters and
recalculation of probabilities would be required in the calculation
of the conditional top event probability. It would however
be difficult to apply differential risk importance measures to
failure states unless a separate probability is assigned to each
failure state.

7.5. Measuring the importance of a node

This paper focused on importance measures that measure the
importance of a state of a node. Sometimes, analysts are more
interested in the overall importances of nodes so that the most
critical components of a system can be identified. To measure the
overall importances of nodes, the composite importance measure
approach presented in [21] could be applied to the dynamic risk
increase factor. The Fussell-Vesely presented in [21] differs
significantly from the dynamic Fussell-Vesely as it relies on the
computation of the top event probability with an assumption
that the node is in a certain state. Instead, the Fussell-Vesely from
[14] could be generalised to take the time aspect into account. In
the risk increase factor presented in [14], it is assumed that the
node is in its worst state at each time step. The worst state can be
different at different time steps. In the dynamic risk increase
factor, it is assumed that a node is in the same state at each time
step, which makes these measures fundamentally different.
However, the worst state approach could be applied to the
dynamic risk increase factor to formulate an overall DRIF mea-
sure for a node. If the worst state was the same at every time
step, these measures would give the same value, but if the worst
state differed, the risk increase factor from [14] would give a
larger value.

7.6. DFM tool development

Other YADRAT tool related research includes modelling of
common cause failures and other dependencies between failures
as well as a study of different component reliability models. Group
importance measures are investigated in relation to dependent
failures. Dynamic risk importance measures, for example, can be
formulated separately for each failure state combination of a
common cause failure group. An interesting question is how the
time aspect of DFM is considered in group importance measures.
In addition to failure nodes and random nodes, different stochastic
node types will be developed when some component reliability
models are implemented in YADRAT. The computation of dynamic
risk importance measures has to be studied in relation to different
dynamic constraints of stochastic nodes.

The main challenge in DFM tool development is to provide
trustworthy results in a reasonable calculation time. In the
dynamic risk importance measure calculation, this means that
it is usually better to compute approximations rather than to
try to aim for accurate values. It is also important in the
development of dynamic risk importance measures in DFM to
consider what information is actually useful, as the main
objective of risk importance measures is to provide guidance
for the system's design. The information given by importance
measures needs to be kept simple enough so that the analysts
can interpret it.

8. Conclusion

The dynamic risk importance measures use all the information
that is available in prime implicants of DFM to measure significances
of node's states unlike any other importance measure. With dynamic
risk importance measures calculated for different failure states of
components and states of failure nodes, the component's influence
on the system's reliability can be analysed more comprehensively
thanwith just risk importance measures calculated for failure events.
As the dynamic Fussell-Vesely is calculated for time steps, it is also
possible to judge at which points of the time line certain failures and
conditions need to occur to contribute to the top event.
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Appendix A. Backtracking algorithm example

This section presents how the backtracking algorithm pre-
sented in Figs. 1 and 2 progresses step by step in the backtracking
example of Section 4.5. Some parts of the process are cut out to
keep the length of the example moderate. The state probabilities
of node A at time step −u are represented by a vector
SPðAð−uÞÞ ¼ ðau;0; au;1;…; au;bÞ, where b is the number of states of
A and au;s is the probability of state s. All calculated state
probabilities are always stored. The backtracking process starts
from the component node at the failure time:

1. Component node C at −t ¼ −1.
2. The input nodes are F, N and C.

2.1. Examine F.
2.1.1. The time lag l¼0.
2.1.2. The node type is failure node.
2.1.3. −t ¼ −1≠−3.
2.1.4. The prime implicant does not contain a literal of the

form Fð−uÞ ¼ 0;−u≥−1.
2.1.5. The prime implicant contains literal Fð−1Þ ¼ 1.
2.1.6. The probability for state 1 is 1.
2.1.7. SPðFð−1ÞÞ ¼ ð0;1Þ.

2.2. Examine N.
2.2.1. The time lag l¼0.
2.2.2. The node type is deterministic node.
2.2.3. −t−l¼ −14−3.
2.2.4. −t ¼ −t−l¼ −1.
2.2.5. Deterministic node N at −t ¼ −1.
2.2.6. The input nodes are R, T and N

2.2.6.1. Examine R.
2.2.6.1.1. The time lag l¼1.
2.2.6.1.2. The node type is random node.
2.2.6.1.3. The prime implicant does not con-

tain a literal representing R at
−t−l¼ −2.

2.2.6.1.4. State probabilities r2;0 and r2;1 are
obtained from the probability
parameters.

2.2.6.1.5. SPðRð−2ÞÞ ¼ ðr2;0; r2;1Þ.
2.2.6.2. Examine T.

2.2.6.2.1. The time lag l¼0.

⋮
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2.2.6.2.x. SPðTð−1ÞÞ ¼ ðt1;0; t1;1; t1;2Þ.
⋮

2.2.6.3. Examine N.
2.2.6.3.1. The time lag l¼1.

⋮

2.2.6.3.x. SPðNð−2ÞÞ ¼ ðn2;−1;n2;0;n2;1Þ.
⋮

⋮

2.2.x.
SPðNð−1ÞÞ ¼ ðn1;−1;n1;0;n1;1Þ.

⋮

2.3. Examine C.
2.3.1. The time lag l¼1.
2.3.2. The node type is deterministic node.
2.3.3. −t−l¼ −2≥−3.
2.3.4. −t ¼ −t−l¼ −2.
2.3.5. Deterministic node N at −t ¼ −2.
2.3.6. The input nodes are F, N and C.

⋮

2.3.8. SPðCð−2ÞÞ ¼ ðc2;0; c2;1Þ ¼ ðn2;−1 þ n2;0c3;0;n2;1 þ n2;0c3;1Þ
(calculated in Section 4.5).

2.3.9. This node is component node C but −t ¼ −2 is not the
failure time −1.

2.3.10. The time lag l¼1.
2.3.11. −t ¼ −t þ l¼ −1.

3. State probabilities are calculated by summing the probabil-
ities of the rows in Table A1:

c1;0 ¼ n1;−1c2;0 þ n1;0c2;0 þ n1;1c2;0 ¼ c2;0 ¼ n2;−1 þ n2;0c3;0 ðA:1Þ

and

c1;1 ¼ n1;−1c2;1 þ n1;0c2;1 þ n1;1c2;1 ¼ c2;1 ¼ n2;1 þ n2;0c3;1: ðA:2Þ

4. SPðCð−1ÞÞ ¼ ðn2;−1 þ n2;0c3;0;n2;1 þ n2;0c3;1Þ.
5. This node is C and −t ¼ −1.
6. Failure state probabilities are n2;−1 þ n2;0c3;0 and n2;1þ

n2;0c3;1.

Appendix B. Emergency core cooling system model

Each node of the emergency core cooling system model
presented in Fig. 8 is briefly described in Table B1.
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Abstract

In this paper, common cause failures in dynamic reliability analysis are examined. Com-

mon cause failures are important in the risk analysis of complex systems including re-

dundancies. Modeling of common cause failures has been well-studied in the context of

static methods, such as fault trees; they cannot however represent the behavior of dy-

namic systems sufficiently. Dynamic flowgraph methodology is a method for analyzing

dynamic systems containing feedback loops. Like fault tree analysis, dynamic flowgraph

methodology seeks to identify root causes for system failure. In the dynamic flowgraph

methodology, component failures occurring at different time points can together cause

system failure. This paper extends the dynamic flowgraph methodology by presenting

common cause failure models that take failure times of components into account. Com-

mon cause failures are added to the results in the post-processing phase of the analysis,

which has been proven to be an efficient approach in the context of dynamic flowgraph

methodology. An illustrative model of an emergency core cooling system is presented to

demonstrate common cause failure modeling in dynamic flowgraph methodology.

1 Introduction

Common cause failures (CCFs) [1, 2] are important in the reliability analysis of complex

systems including redundant components. If dependencies are not taken into account, the

risk of system failure can be underestimated. In [3], a CCF is defined using the following

criteria:

“1. Two or more individual components fail, are degraded (including failures during

demand or in-service testing), or have deficiencies that would result in component failures

if a demand signal had been received.

2. Components fail within a selected period of time such that success of the proba-

bilistic risk assessment (PRA) mission would be uncertain.

3. Components fail because of a single shared cause and coupling mechanism.

4. Components fail within the established component boundary.”

Dynamic flowgraph methodology (DFM) [4, 5, 6, 7, 8, 9, 10, 11] analyzes dynamic

systems containing feedback loops. Like fault tree analysis, DFM aims to identify which

conditions can cause the top event. DFM has been developed because traditional methods

are able to represent the dynamic behavior of a system only to a limited extent. DFM can

represent how the values of the system’s variables evolve in time. It has most often been

applied to digital control systems so that the interactions between the control system and

the controlled process have been included in the model.
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In a DFM model, variables can have multiple states, which is an advantage when

modeling components with multiple failure modes, and the effects that failures have on

process variables. In addition, only one DFM model is needed for the analysis of different

states of the system. DFM has been highlighted in [12] as one of the promising dynamic

reliability analysis approaches, along with Markov models [13, 14].

DFM analysis generates a set of prime implicants [15] as its main result. Prime impli-

cants are minimal combinations of events and conditions that are sufficient to cause the

top event. DFM considers at which time points events must occur in order to cause the

top event. Compared to static fault tree analysis, DFM provides more accurate informa-

tion about the development of accident scenarios, resulting in more accurate probability

calculations.

Although CCFs are an important part of the theory of probabilistic risk analysis,

to the author’s knowledge there are no earlier publications concerning CCFs in a DFM

context. The model in [16] included CCFs, but they were not really discussed in the

paper. One special characteristic of DFM is that components can fail at different time

points contributing to the same top event. Although a CCF event is often interpreted as a

simultaneous failure of similar components, NUREG/CR-6268 [3] defines that components

need to fail only during PRA mission time, which is typically 24 hours. This definition

is used both in data collection and PRA analysis. In data collection, if multiple failures

occur within 24 hours, they are interpreted as a CCF. In addition, 50% of such events

where the time between failures is 24-48 hours are counted as CCFs, i.e. a timing factor

of 0.5 is used [3].

In traditional fault tree analysis, it is not considered whether the components fail simul-

taneously or non-simultaneously during the mission time, but in DFM, non-simultaneous

CCFs can be considered, because DFM divides the mission time into smaller time in-

tervals. This paper takes the possibility of such CCFs into account and generalizes two

parametric models [17, 18], β- and α-factor models, for DFM analysis. It appears that the

selected approach leads to slightly higher CCF probabilities compared to the case in which

CCFs are assumed to be simultaneous. This contribution can be viewed as an extension

of a conference paper published in 2012 [19].

The structure of the paper is as follows. Section 2 presents relevant details of the

DFM. Section 3 discusses CCF modeling techniques. In Section 4, new CCF models are

presented, and Section 5 analyzes an example system. Section 6 discusses and concludes

the article.
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2 Dynamic flowgraph methodology

2.1 Models and analysis

A DFM model [4, 5, 6, 7, 8, 9, 10, 11] is a graph representation of the analyzed system.

Nodes in the model represent the components and variables of the system, and edges

connecting the nodes represent causal and other dependencies between the nodes. There

can be time delays in those dependencies, and nodes can have two or more states. If a

node does not depend on any other node, it is a stochastic node whose state is determined

by a discrete probability distribution at each time step. The state of a deterministic node

is determined based on the states of input nodes. Each deterministic node has a decision

table which specifies the output state for each state combination of the input nodes.

Figure 1 shows a simple DFM model of a tank system with a valve that is controlled

based on water level measurement, and Table 1 gives the decision table of node V as an

example. There are also decision tables for nodes L and M , which are not presented here.

In the model, node V represents the functional state of a valve (state 0 for closed and 1 for

open), L represents water level and M represents water level measurement value. Nodes

M and L have three states −1, 0 and 1 indicating water levels low, medium and high.

Nodes S and F are stochastic nodes determining whether the water level measurement and

the valve have failed. A row in the decision table specifies a combination of states of the

input nodes, and the corresponding state of the output node. Delays in the dependencies

are shown in the time lag row.

The primary target of DFM is to identify prime implicants of the analyzed top event.

A prime implicant is a minimal combination of conditions that is sufficient to cause the

top event [15]. In DFM, these conditions are represented by literals. In this context, a

literal is a triplet consisting of a variable V , state s and time point −t, and denoted as

Vs(−t). The top event is also defined as a set of literals.

A DFM model is typically analyzed by tracing event sequences backwards from effects

to causes. Deductive analysis starts from the top event and proceeds backwards in time

until a defined initial time. The graph model is traced backwards in the cause-and-effect

flow, and at the same time, a binary reliability model is produced for the top event, e.g.

fault tree [4] or binary decision diagram [7]. Prime implicants are then solved from the

binary reliability model. The prime implicants of a top event can contain initial states of

deterministic nodes and states of stochastic nodes at any time step.

A failure node is a stochastic node with two states, a “functioning state” (0 or ‘false’)

and a “failure state” (1 or ‘true’). It cannot turn from state 1 to state 0, and it is fixed to

state 0 at the initial time step.
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Figure 1: A DFM model with five nodes.

Table 1: The decision table of node V.

Output Inputs

Node V F M V

Time lag 0 0 1

0 0 −1 0

0 1 −1 0

0 0 0 0

0 1 0 0

1 0 1 0

0 1 1 0

0 0 −1 1

1 1 −1 1

1 0 0 1

1 1 0 1

1 0 1 1

1 1 1 1
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2.2 Failure probabilities

In parametric CCF models, CCF probabilities are calculated based on the probabilities of

individual failures. Therefore, this section presents how individual failure event probabil-

ities can be calculated in DFM.

In this paper, failure probabilities are presented using an exponential model with a

constant failure rate, which is a commonly used model and suitable for demonstration

purposes. More generally, the CCF probabilities are always calculated with the same

formula (presented later in Section 4) regardless of how single failure probabilities are

calculated. If a component fails during a time step with probability λ, and −n is the initial

time, the component is functioning at time step −t (> −n) with probability (1 − λ)n−t

and is in failed state with probability 1− (1− λ)n−t.

The failure probability needs to be calculated for the situation in which the prime

implicant includes the failure. If literals are assumed to be independent, the probability

of prime implicant π is the product of the probabilities of the literals

P (π) =
∏

x∈π
P (x).

A prime implicant can include two literals which represent the same failure node at

different time steps. The literal with an earlier time step always has state 0 and the literal

with a later time step has state 1. The dependency between these literals must be taken

into account when the probability of the prime implicant is computed. The probability that

two dependent conditions/events occur can be calculated using a conditional probability:

P (C ∩D) = P (C) · P (D | C).

Let prime implicant π contain literals F0(−u) (failure node F in state 0 at time −u)

and F1(−t) (failure node F in state 1 at time −t), where −n < −u < −t. In other words,

the component needs to function at time −u and then be failed at time step −t in order

that the top event may occur because of this prime implicant. The probability that both

of these literals are true can be calculated as

P (F0(−u), F1(−t))

= P (F0(−u)) · P (F1(−t) | F0(−u)).

The probability of the first literal is

P (F0(−u)) = (1− λ)n−u.

In the calculation of the probability of the literal F1(−t), it must be taken into account

that the component is functioning at time step −u. Hence, the probability is 1−(1−λ)u−t
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rather than 1− (1−λ)n−t. When the probability is calculated for a literal that represents

a failure node in state 1, it must be checked whether the prime implicant includes the

same failure node in state 0. Thus, the probability of literal F1(−t) can be calculated as

a conditional probability P (F1(−t) | π \ {F1(−t)}), where π is the prime implicant and

π \ {F1(−t)} is the prime implicant excluding literal F1(−t). To shorten the notation,

conditional probability P (F1(−t) | π \ {F1(−t)}) is denoted as Pπ(F1(−t)). When π does

not contain the failure node in state 0, it follows that

Pπ(F1(−t)) = P (F1(−t)) = 1− (1− λ)n−t.

In other words, literal F1(−t) is independent of the other literals in the prime implicant.

If prime implicant π also includes another failure node G in state 1, the product of literal

probabilities includes terms Pπ(F1(−t)) and Pπ(G1(−v)). Even though the notation ap-

pears to imply that the probabilities of these literals depend on one another, the failures

are in fact mutually independent, and the probabilities depend on the separate literals

only.

Let σ = {F0(−u), F1(−t), G0(−h), G1(−v)} be a prime implicant. The probability of

σ is calculated as

P (σ) =P (F0(−u)) · P (F1(−t) | F0(−u))

· P (G0(−h)) · P (G1(−v) | G0(−h))

=P (F0(−u)) · Pσ(F1(−t))

· P (G0(−h)) · Pσ(G1(−v)).

3 Modeling techniques for common cause failures

Markov/cell-to-cell-mapping is a dynamic reliability analysis method that has been com-

pared to DFM [20]. Multi-state and time-dependent modeling is also possible with Markov

models. In [21], CCFs were incorporated into a Markov model by adding CCF states and

corresponding state transitions to the model. Similar state transitions could be modeled

in DFM. However, this would probably make the models more complex and increase the

computation time considerably.

In fault tree analysis [22], CCFs are typically modeled with basic events that are

separate from individual component failure basic events, such as in Figure 2. Similarly,

in DFM, individual failures and CCFs can be modeled using separate failure nodes. It

appears that this technique was used in the DFM model in [16]. However, the addition

of CCF nodes increases the complexity of the model, and the computation times of DFM

are rather sensitive to the model’s complexity.
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Figure 2: A fault tree containing basic events a, b and c, and a CCF between them (CC).

In [23], CCFs were incorporated into dynamic fault trees with an approach in which

the system’s fault tree model was reduced and analyzed separately with each possible CCF

scenario. It is possible to use this type of technique in DFM. This would simplify DFM

analysis, which would be advantageous, but the model should be solved many times and

the prime implicants should be combined and re-minimized in the end. It is likely that the

model would not be simplified enough in the separate analysis of different CCF scenarios

to compensate for the drawback that the model should be solved many times.

One way to incorporate CCFs is to analyze the system model first without CCFs and

then to add the effects of CCFs to the results. This approach has been used in the GO-

FLOW methodology [24]. It does not add to the complexity of the DFM model. This is

an advantage because computation times are sensitive to the model’s complexity in DFM.

Hence, this idea is used in this paper.
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4 Common cause failures in DFM

4.1 Traditional common cause failure models

Consider a group of m identical components with a common failure mechanism. When

CCFs are modeled using the β-factor model, it is assumed that a component can fail

either independently or as a result of a CCF of all m components. If a component fails,

the failure is a CCF with probability β. Hence, if the component fails with probability Q,

the probability of independent failure is Q1 = (1− β) ·Q, and the probability of a CCF of

all m components is Qm = β ·Q.

The α-factor model considers the possibility that a subset of m components can fail

due to a common cause, i.e. CCFs between different component combinations are possible.

The formulas for the α-factor model are

Qk =
k(

m−1
k−1

) αk

αtot
Q, (1)

αtot =
m∑

k=1

kαk, (2)

where αk is the fraction of CCFs with k components, i.e. given that a failure event occurs,

it is a CCF of k components with probability αk if the sum of the parameters is 1.

4.2 Common cause failure models for DFM

When failures of multiple similar components can jointly cause the top event, the possibil-

ity of a CCF needs to be considered. This is the case when the failures of similar compo-

nents appear in the same prime implicant in DFM. The failure times of the components can

be different in DFM. For example, assume that a set of literals {A1(−3), F 1
1 (−1), F 2

1 (−2)}
is a prime implicant, F 1 and F 2 are failure nodes representing identical components, and

the initial time is −3. The first component has failure time −1, and the second component

has failure time −2. Assuming that a CCF is possible, there should be a prime implicant

that is otherwise similar except that those individual failures are replaced by a CCF. The

CCF could be such that both components fail at time step −2. However, the first com-

ponent represented by failure node F 1 could also fail at time step −1 so that the top

event would occur. We introduce the CCF literal F1(−1,−2) that indicates that the first

component is failed at time −1 and the second component at time −2. The probability of

this literal is the sum of the following two probabilities:

1. Probability that the components fail simultaneously at time step −2,
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2. Probability that the first component fails at time step −1 and the second component

fails at time step −2.

The probability that the components fail simultaneously at time step −2 can be cal-

culated with the β-factor model as

P (F1(−2,−2)) = β · P (F 1
1 (−2)) = β · P (F 2

1 (−2)).

The author does not have knowledge of any existing timing-related CCF parameter

estimation work. However, simultaneous CCFs can be expected to be more probable than

non-simultaneous CCFs in most cases. Therefore, the possibility of a non-simultaneous

CCF is accounted for by the following computation formula:

P (F1(−1,−2)) = β · P (F 1
1 (−1)) + P (F 2

1 (−2))

2
.

The CCF probability is the β-factor multiplied by the average of the individual component

failure probabilities. The probability that the failures are non-simultaneous is therefore

β · P (F 1
1 (−1))− P (F 1

1 (−2))

2
,

which is half of the probability that the components fail simultaneously at time step −1

due to a common cause. Because simultaneous CCFs are expected to be more likely, this

probability estimate is considered to be conservative.

The more general computation formula can be presented as follows. Consider a literal

C1(−t1,−t2, ...,−tm) that represents a CCF of m components represented by failure nodes

F 1, F 2,..., Fm with failure times −t1,−t2, ...,−tm. Using the β-factor model, the CCF

probability is

Pπ(C1(−t1,−t2, ...,−tm)) = β · 1

m

m∑

i=1

Pπ(F
i
1(−ti)), (3)

where π is the prime implicant that includes the CCF literal. This is because the prime

implicant can include conditions that some components are functioning at some time steps,

i.e. the prime implicant can contain failure nodes F i in state 0. Probabilities Pπ(F
i
1(−ti))

are calculated as discussed in Section 2.2.

The computation with the α-factor model is similar. In equation (3), β is changed to
k

(m−1
k−1)

αk
αtot

(see equation (1)), and the average is calculated based on the literals of those

components which belong to the CCF combination.

4.3 Incorporating CCFs into DFM results

CCF models can be considered in prime implicant post-processing after computing the

initial prime implicants. It is possible to construct all prime implicants containing CCFs
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from original prime implicants that include individual failures (failure nodes in state 1).

Therefore, prime implicants can be generated first using the original DFM model that

does not contain CCFs. Prime implicants with CCFs can be created afterwards.

Here, a CCF combination is a set of failure nodes representing components between

which a CCF can occur. A β-factor group contains only one CCF combination, whereas

an α-factor group contains a CCF combination for each subset containing at least two

components of the group. In the following algorithm, all CCF combinations related to the

DFM model are examined in order to create all CCF prime implicants. After completing

a step in the algorithm, move to the next step if no other instructions are given.

1. Get the next CCF combination.

2. Get the first prime implicant.

3. Check whether the prime implicant contains any of the failure nodes in the CCF

combination in state 1. If not, go to step 14.

4. Write down the latest failure time in the prime implicant related to the CCF com-

bination.

5. Initialize a CCF literal based on the CCF combination.

6. Get the first failure node in the CCF combination.

7. Check whether the prime implicant contains the failure node in state 1. If not, go

to step 9.

8. Set the time step corresponding to the failure node in the CCF literal to be the same

as in the prime implicant. Go to step 11.

9. Check whether the prime implicant contains the failure node in state 0 at the same

or later time step as the latest of the failure times that appear in the prime implicant.

If it does, go to step 14.

10. Set the time step corresponding to the failure node in the CCF literal to be the same

as the latest of the failure times that appear in the prime implicant.

11. Check whether all failure nodes in the CCF combination have been examined. If

not, get the next failure node and go to step 7.

12. Create a new prime implicant in which the literals representing failures related to

the CCF combination are replaced by the CCF literal.
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13. Add the new prime implicant to the list of new prime implicants.

14. Check whether all prime implicants have been examined. If not, get the next prime

implicant and go to step 3.

15. Add the new prime implicants to the list of prime implicants.

16. Check whether all CCF combinations have been examined. If not, go to step 1.

Non-minimal implicants and duplicate prime implicants can be created in this process.

They originate only from cases for which step 10 is applied. Even if the failure of the

component is part of the CCF in the new prime implicant in such a case, it is not really

relevant for the occurrence of the top event. CCF prime implicants must be compared

to each other so that non-minimal implicants and duplicate prime implicants can be re-

moved. The comparisons can be performed for each CCF combination separately after

the corresponding CCF prime implicants have been created, so that the number of com-

parisons can be kept minimal. The comparisons can also be targeted to check only those

CCF prime implicants that can theoretically be non-minimal or duplicate.

Table 2 presents examples of how prime implicants with CCFs are created. In case 4,

a prime implicant is not created because literal F 1
0 (−2) indicates that the first component

needs to function at time step −2. In case 5, implicant {A2(−3), V1(−2), F1(−2,−2)} is

first created, but it is then removed because it is not minimal compared to the prime

implicant of case 1.

Table 2: Examples of creation of CCF prime implicants.

Case Original prime implicant CCF prime implicant

1 {A2(−3), F 1
1 (−2), F 2

1 (−2)} {A2(−3), F1(−2,−2)}
2 {A1(−3), F 1

1 (−1), F 2
1 (−2)} {A1(−3), F1(−1,−2)}

3 {A2(−3), R1(−2), F 2
1 (−1)} {A2(−3), R1(−2), F1(−1,−1)}

4 {B0(−3), V1(−1), F 1
0 (−2), F 2

1 (−2)} −
5 {A2(−3), V1(−2), F 2

1 (−2)} −

In the following, components represented by failure nodes G1, G2 and G3 belong to an

α-factor group, and {Z0(−3), G1
1(−1), G2

1(−2)} is a prime implicant. For each combination

of G1, G2 and G3, a new prime implicant with the CCF is created. The new prime

implicants are presented in Table 3. In addition, assume that each component fails during

one time step with probability 0.01, α parameters are α1 = 0.5, α2 = 0.05 and α3 = 0.1,

and the initial time is −3. The CCF probabilities are presented in Table 4.
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Table 3: CCF prime implicants for α-factor group.

Comb. Prime implicant

1,2 {Z0(−3), G1,2
1 (−1,−2)}

1,3 {Z0(−3), G1,3
1 (−1,−1), G2

1(−2)}
2,3 {Z0(−3), G1

1(−1), G2,3
1 (−2,−2)}

1,2,3 {Z0(−3), G1,2,3
1 (−1,−2,−1)}

Table 4: Probabilities of CCF events.

CCF Probability

G1,2
1 (−1,−2) 8.31E-4

G1,3
1 (−1,−1) 1.11E-3

G2,3
1 (−2,−2) 5.56E-4

G1,2,3
1 (−1,−2,−1) 5.53E-3

5 An example of an emergency core cooling system

This section analyzes an emergency core cooling system (ECCS) of a boiling water reactor

plant using the DFM tool Yadrat [7]. A similar system was analyzed in [8], but this version

contains two pump lines instead of one. The system is illustrated in Figure 3. The system

injects cooling water to the reactor core if the ordinary cooling system does not work.

Water level and pressure measurements are utilized in controlling pumps and valves. The

pressure vessel’s water level decreases due to evaporation if more water is not injected.

If the water level is measured to be too low, the pumps are started and the valves are

opened in order to inject water into the pressure vessel. The water injection is continued

until the water level reaches an upper limit. The valves can be opened only if the pressure

is measured to be low.

Figure 4 shows the node structure of the DFM model constructed for the system. The

decision tables and descriptions of the nodes are presented in Appendix A. There are two

pump lines. Only one pump line needs to function so that the water level (represented

by node WL) can be kept within required limits. For a pump line, four components are

included in the model: a water level sensor (WLM), a pressure sensor (PM), a regulation

valve (V) and a pump (P). Each of these components is modeled with two nodes: a failure

node and a deterministic node representing the component’s functional state. Both pump

lines also include a stochastic node for the leakage signal of the pump (PL). In addition,

the model includes a deterministic node WF for water flow as well as nodes representing

the control logic and other signals.
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Figure 3: Process flow diagram of an ECCS. [8]

Figure 4: A DFM model for the ECCS.
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The scenario that is analyzed is that the water level is too low for too long. The

top event is {WLlow(−1),WLlow(0)}, and the initial time is −5. The β-factor model is

assigned to pumps (P1 and P2), valves (V1 and V2), water level sensors (WLM1 and

WLM2) and pressure sensors (PM1 and PM2). Each component fails with probability

0.005 during one time step, and the generic value 0.1 is used for the parameter β in each

case.

A total of 42 prime implicants were identified for the top event before CCFs were

added. Examples of prime implicants are presented in Table 5. These prime implicants

were selected, because they are representative, and CCF prime implicants are created

based on them in the next step of the analysis. They are not the prime implicants with

the highest probabilities, except in the case of the first two.

Table 5: Examples of prime implicants.

Total prob. Prob. Node Time step State

1 1.8E-4 1.3E-2 P1-fail −2 1

1.3E-2 P2-fail −2 1

2 1.8E-4 1.3E-2 V1-fail −2 1

1.3E-2 P2-fail −2 1

3 2.0E-5 0.995 PM1-fail −4 0

0.995 PM2-fail −4 0

4.5E-3 PM1-fail −3 1

4.5E-3 PM2-fail −3 1

4 2.4E-6 1.3E-2 V1-fail −2 1

1.8E-2 V2-fail −1 1

1.0E-2 PL2 −3 true

5 2.4E-6 1.3E-2 P1-fail −2 1

1.8E-2 V2-fail −1 1

1.0E-2 PL2 −3 true

Taking CCFs into account, 56 prime implicants were identified, and the top event

probability was 6.0E-3. The top event probability is dominated by CCFs. Table 6 presents

the CCF prime implicants, which are based on the prime implicants in Table 5.
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Table 6: Examples of prime implicants with CCFs.

Total prob. Prob. Node Time step State

1 1.5E-3 1.5E-3 P-ccf −2,−2 1

2 1.5E-3 1.5E-3 V-ccf −2,−2 1

3 5.0E-4 0.995 PM1-fail −4 0

0.995 PM2-fail −4 0

5.0E-4 PM-ccf −3,−3 1

4 1.7E-5 1.7E-3 V-ccf −2,−1 1

1.0E-2 PL2 −3 true

5 2.7E-7 1.3E-2 P1-fail −2 1

2.0E-3 V-ccf −1,−1 1

1.0E-2 PL2 −3 true

6 Discussion and conclusions

This paper has presented an approach for modeling CCFs in DFM. Traditional β- and α-

factor models were used, and the same β and α parameters were used as in the traditional

case. Therefore, ordinary CCF data [25] can be used in DFM analysis, and no new

parameter estimation work is required. However, the analysis could be made more accurate

by estimating probability parameters for the timings of failures, for example the probability

that the difference between failure times is within a specific interval. Data about failure

times is in fact already collected [3], but is utilized only in the classification of events.

Compared to fault tree analysis, DFM analysis is computationally significantly more

demanding, but the approach to incorporate CCFs presented in this paper does not com-

plicate the analysis excessively. CCFs do not need to be accounted for when the prime

implicants are first solved, and all the prime implicants with CCFs can be created based

on the original prime implicants. This approach was chosen so that the graph model

itself would not become more complex, which in turn would significantly increase the

computational demands and make the analysis more time consuming.

In this paper, component failures were modeled using so-called failure nodes. Failures

can be modeled even in other ways in DFM, such as using multi-state nodes with a separate

state for each failure mode. The CCF modeling approach can easily be applied to different

failure modeling cases.

This paper presented two parametric CCF models, but the presented approach can

be generalized for all parametric CCF models that calculate CCF probabilities based on
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single component failure probabilities, for example the multiple Greek letter model. In

addition, regardless of which CCF model is used, CCFs can be incorporated into the DFM

results in the same way as long as the corresponding individual component failures are

included in the model.

The chosen CCF modeling approach accounts for the possibility that failure events can

be non-simultaneous in a CCF, whereas CCFs have often been interpreted as simultaneous.

The average of the probabilities of individual component failures is used in the computation

of the CCF probability. The method is simple and, in most cases, conservative, because

simultaneous CCFs are more likely. If non-simultaneous CCFs are ignored in the analysis,

some CCF probabilities are underestimated, assuming that non-simultaneous CCFs are in

fact possible, and some prime implicants are also left out.

In practice, it is component specific how probable non-simultaneous and simultaneous

CCFs actually are. Some components may generally fail simultaneously, whereas for some

components the fraction of non-simultaneous failures may be significant. If timing related

CCF parameters were estimated, the computation formula of the CCF probability could

be made more accurate. Data analyses would be needed to study to which failure modes

time-dependent models should be applied.

In the past, DFM has been considered too complex to be applied to large systems,

and most applications reported in the literature are rather small. However, more efficient

DFM tools are being developed, and computers are becoming more and more powerful.

Recent DFM models have been larger [11, 16] and this development will probably continue

in the future. When larger systems with redundancies are modeled using DFM, CCFs are

also more important. This paper has presented how CCFs can be incorporated in the

analysis in a simple and efficient manner.
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A Emergency core cooling system model

Table A-1 presents descriptions for the nodes of the ECCS model presented in Figure 4.

In the node names in the table, ‘x’ can be replaced by 1 or 2. Tables from A-2 to A-28

present the decision tables of the nodes.
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Table A-1: The nodes of the ECCS model (Figure 4).

Node Description

EHL Extremely high water level signal

ELL Extremely low water level signal

HLx High water level signal

HLx-TD Time delay condition for the high water level signal

LL Low water level signal

LP Low pressure signal

LP-TD Time delay condition for the low pressure signal

Px Pump

PLx Pump leakage signal

PMx Pressure measurement

Px-STA Pump start signal

Px-STO Pump stop signal

Vx Valve

Vx-C Valve close signal

Vx-O Valve open signal

WF Water flow

WL Water level

WLMx Water level measurement

Table A-2: The decision table of node WL.

Output Inputs

Node WL WF WL

Time lag 1 1

high high high

high high medium

medium high low

medium low high

low low medium

low low low
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Table A-3: The decision table of node WF.

Output Inputs

Node WF P1 V1 P2 V2

Time lag 0 0 0 0

high on open on open

high on open on close

high on open off open

high on open off close

high on close on open

low on close on close

low on close off open

low on close off close

high off open on open

low off open on close

low off open off open

low off open off close

high off close on open

low off close on close

low off close off open

low off close off close

21



Table A-4: The decision table of P1.

Output Inputs

Node P1 P1-fail P1-STA P1-STO P1

Time lag 0 1 1 1

off 1 true true on

off 1 true true off

off 1 true false on

off 1 true false off

off 1 false true on

off 1 false true off

off 1 false false on

off 1 false false off

off 0 true true on

off 0 true true off

on 0 true false on

on 0 true false off

off 0 false true on

off 0 false true off

on 0 false false on

off 0 false false off
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Table A-5: The decision table of P2.

Output Inputs

Node P2 P2-fail P2-STA P2-STO P2

Time lag 0 1 1 1

off 1 true true on

off 1 true true off

off 1 true false on

off 1 true false off

off 1 false true on

off 1 false true off

off 1 false false on

off 1 false false off

off 0 true true on

off 0 true true off

on 0 true false on

on 0 true false off

off 0 false true on

off 0 false true off

on 0 false false on

off 0 false false off
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Table A-6: The decision table of V1.

Output Inputs

Node V1 V1-fail V1-O V1-C V1

Time lag 0 1 1 1

open 1 true true open

close 1 true true close

open 1 true false open

close 1 true false close

open 1 false true open

close 1 false true close

open 1 false false open

close 1 false false close

close 0 true true open

close 0 true true close

open 0 true false open

open 0 true false close

close 0 false true open

close 0 false true close

open 0 false false open

close 0 false false close
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Table A-7: The decision table of V2.

Output Inputs

Node V2 V2-fail V2-O V2-C V2

Time lag 0 1 1 1

open 1 true true open

close 1 true true close

open 1 true false open

close 1 true false close

open 1 false true open

close 1 false true close

open 1 false false open

close 1 false false close

close 0 true true open

close 0 true true close

open 0 true false open

open 0 true false close

close 0 false true open

close 0 false true close

open 0 false false open

close 0 false false close

Table A-8: The decision table of P1-STA.

Output Input

Node P1-STA ELL

Time lag 0

true true

false false

Table A-9: The decision table of P1-STO.

Output Input

Node P1-STO PL1

Time lag 0

true true

false false
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Table A-10: The decision table of P2-STA.

Output Input

Node P2-STA ELL

Time lag 0

true true

false false

Table A-11: The decision table of P2-STO.

Output Input

Node P2-STO PL2

Time lag 0

true true

false false
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Table A-12: The decision table of V1-O.

Output Inputs

Node V1-O LL LP ELL PL1 LP-TD

Time lag 0 0 0 0 0

false true true true true true

false true true true true false

true true true true false true

true true true true false false

false true true false true true

false true true false true false

false true true false false true

false true true false false false

false true false true true true

false true false true true false

false true false true false true

false true false true false false

false true false false true true

false true false false true false

false true false false false true

false true false false false false

false false true true true true

false false true true true false

true false true true false true

false false true true false false

false false true false true true

false false true false true false

false false true false false true

false false true false false false

false false false true true true

false false false true true false

false false false true false true

false false false true false false

false false false false true true

false false false false true false

false false false false false true

false false false false false false
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Table A-13: The decision table of V1-C.

Output Inputs

Node V1-C PL1 EHL HL1 HL1-TD

Time lag 0 0 0 0

true true true true true

true true true true false

true true true false true

true true true false false

true true false true true

true true false true false

true true false false true

true true false false false

true false true true true

false false true true false

false false true false true

false false true false false

false false false true true

false false false true false

false false false false true

false false false false false
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Table A-14: The decision table of V2-O.

Output Inputs

Node V2-O LL LP ELL PL2 LP-TD

Time lag 0 0 0 0 0

false true true true true true

false true true true true false

true true true true false true

true true true true false false

false true true false true true

false true true false true false

false true true false false true

false true true false false false

false true false true true true

false true false true true false

false true false true false true

false true false true false false

false true false false true true

false true false false true false

false true false false false true

false true false false false false

false false true true true true

false false true true true false

true false true true false true

false false true true false false

false false true false true true

false false true false true false

false false true false false true

false false true false false false

false false false true true true

false false false true true false

false false false true false true

false false false true false false

false false false false true true

false false false false true false

false false false false false true

false false false false false false
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Table A-15: The decision table of V2-C.

Output Inputs

Node V2-C PL2 EHL HL2 HL2-TD

Time lag 0 0 0 0

true true true true true

true true true true false

true true true false true

true true true false false

true true false true true

true true false true false

true true false false true

true true false false false

true false true true true

false false true true false

false false true false true

false false true false false

false false false true true

false false false true false

false false false false true

false false false false false

Table A-16: The decision table of HL1-TD.

Output Inputs

Node HL1-TD HL1 HL1-TD

Time lag 0 1

false true true

true true false

false false true

false false false
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Table A-17: The decision table of HL2-TD.

Output Inputs

Node HL2-TD HL2 HL2-TD

Time lag 0 1

false true true

true true false

false false true

false false false

Table A-18: The decision table of LP-TD.

Output Inputs

Node LP-TD LP ELL LP-TD

Time lag 0 0 1

false true true true

true true true false

false true false true

false true false false

false false true true

false false true false

false false false true

false false false false

Table A-19: The decision table of LL.

Output Inputs

Node LL WLM1 WLM2

Time lag 0 0

false high high

false high medium

true high low

false medium high

false medium medium

true medium low

true low high

true low medium

true low low
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Table A-20: The decision table of ELL.

Output Inputs

Node ELL WLM1 WLM2

Time lag 0 0

false high high

false high medium

true high low

false medium high

false medium medium

true medium low

true low high

true low medium

true low low

Table A-21: The decision table of EHL.

Output Inputs

Node EHL WLM1 WLM2

Time lag 0 0

true high high

true high medium

true high low

true medium high

false medium medium

false medium low

true low high

false low medium

false low low

Table A-22: The decision table of HL1.

Output Inputs

Node HL1 WLM1

Time lag 0

true high

false medium

false low
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Table A-23: The decision table of HL2.

Output Inputs

Node HL2 WLM2

Time lag 0

true high

false medium

false low

Table A-24: The decision table of LP.

Output Inputs

Node LP PM1 PM2

Time lag 0 0

false high high

true high low

true low high

true low low
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Table A-25: The decision table of WLM1.

Output Inputs

Node WLM1 WLM1-fail WLM1 WL

Time lag 0 1 1

high 1 high high

high 1 high medium

high 1 high low

medium 1 medium high

medium 1 medium medium

medium 1 medium low

low 1 low high

low 1 low medium

low 1 low low

high 0 high high

medium 0 high medium

low 0 high low

high 0 medium high

medium 0 medium medium

low 0 medium low

high 0 low high

medium 0 low medium

low 0 low low
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Table A-26: The decision table of WLM2.

Output Inputs

Node WLM2 WLM2-fail WLM2 WL

Time lag 0 1 1

high 1 high high

high 1 high medium

high 1 high low

medium 1 medium high

medium 1 medium medium

medium 1 medium low

low 1 low high

low 1 low medium

low 1 low low

high 0 high high

medium 0 high medium

low 0 high low

high 0 medium high

medium 0 medium medium

low 0 medium low

high 0 low high

medium 0 low medium

low 0 low low

Table A-27: The decision table of PM1.

Output Inputs

Node PM1 PM1-fail PM1

Time lag 0 1

low 0 high

high 0 low

high 1 high

low 1 low
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Table A-28: The decision table of PM2.

Output Inputs

Node PM2 PM2-fail PM2

Time lag 0 1

low 0 high

high 0 low

high 1 high

low 1 low
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