
International Conference
on Product Focused Software

Process Improvement

Oulu, Finland, June 22 - 24, 1999

Edited by

Markku Oivo

VTT Electronics

Pasi Kuvaja

University of Oulu,
Department of Information Processing Science

Organised by

VTT Electronics

University of Oulu

VTT SYMPOSIUM 195 Keywords:
software process improvement, software quality
management, product quality, software
engineering

TECHNICAL RESEARCH CENTRE OF FINLAND
ESPOO 1999

ISBN 951–38–5270–9 (soft back ed.)
ISSN 0357–9387 (soft back ed.)

ISBN 951–38–5271–7 (URL: http://www.inf.vtt.fi/pdf/)
ISSN 1455–0873 (URL: http://www.inf.vtt.fi/pdf/)

Copyright © Valtion teknillinen tutkimuskeskus (VTT) 1999

JULKAISIJA – UTGIVARE – PUBLISHER

Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT
puh. vaihde (09) 4561, faksi 456 4374

Statens tekniska forskningscentral (VTT), Bergsmansvägen 5, PB 2000, 02044 VTT
tel. växel (09) 4561, fax 456 4374

Technical Research Centre of Finland (VTT), Vuorimiehentie 5, P.O.Box 2000, FIN–02044 VTT, Finland
phone internat. + 358 9 4561, fax + 358 9 456 4374

VTT Elektroniikka, Sulautetut ohjelmistot, Kaitoväylä 1, PL 1100, 90571 OULU
puh. vaihde (08) 551 2111, faksi (08) 551 2320

VTT Elektronik, Inbyggd programvara, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
tel. växel (08) 551 2111, fax (08) 551 2320

VTT Electronics, Embedded Software, Kaitoväylä 1, P.O.Box 1100, FIN–90571 OULU, Finland
phone internat. + 358 8 551 2111, fax + 358 8 551 2320

Libella Painopalvelu Oy, Espoo 1999

3

Preface

Software process improvement (SPI) has become a practical tool for companies
where software quality is of prime value. This International Conference on
Product Focused Software Process Improvement (PROFES’99) concentrates on
professional software process improvement motivated by product quality needs.
Often, this is facilitated by software process assessment, software measurement,
process modelling, technology transfer, and software quality. The PROFES’99
conference presents the latest developments, not only in software process
improvement, but also in how to improve the quality of the final product in a
cost-effective way.

The conference theme “Software product and professional software process
improvement” is emphasized in the approaches to software quality management
and improvement. This theme addresses both the solutions found in practice, as
well as research results from academia. The purpose of the conference is to bring
the most recent findings and results in this field into the spotlight, and stimulate
discussion between researchers, experienced professionals, and technology
providers for software process improvement.

The conference programme includes top-notch keynote speakers, four half-day
tutorials on various aspects of the conference theme, 38 high-quality presenta-
tions from 14 different countries, stimulating panel discussions, and two ESSI
PIE dissemination sessions.

We wish to thank the BOOTSRAP Institute, the European Commission, the
University of Oulu, and VTT Electronics for their support. We are also grateful
to the programme committee, organizing committee, as well as to all the authors,
speakers, and other contributors who made the quality of the conference so high.

Sincerely,

Markku Oivo Pasi Kuvaja
VTT Electronics University of Oulu

4

Conference Organization

General Chair:
Professor Dieter Rombach,
University of Kaiserslautern and Fraunhofer IESE
Germany

Program Co-Chairs:
Prof. Markku Oivo
VTT Electronics, Finland and
Fraunhofer IESE, Germany

Dr. Lawrence Votta
Brincos, Inc.
USA

Organizing Chair:
Assistant Professor Pasi Kuvaja, University of Oulu
Department of Information Processing Science
Finland

Local Arrangements Chair:
Mrs. Katja Salmela
VTT Electronics
Finland

Publicity Chair:
Dr. Adriana Bicego
Etnoteam S.p.A
Italy

Sponsors
BOOTRAP Institute
European Commission
University of Oulu
VTT Electronics

5

Programme Committee

Adriana Bicego, Etnoteam, Italy
Reidar Conradi, NTNU, Norway
Ilkka Haikala, Tampere University of Technology, Finland
Takeshi Hayama, NTT Data Corp, Japan
Bärbel Hörger, Daimler-Benz, Germany
Ross Jeffery, University of New South Wales, Australia
Erik Johansson, Q-Labs, Sweden
Karlheinz Kautz, Copenhagen Business School, Denmark
Marc Kellner, SEI, Carnegie Mellon University, USA
Munish Khurana, Motorola, UK
Kari Känsälä, Nokia Research Center, Finland
Pasi Kuvaja, University of Oulu, Finland
Risto Nevalainen, STTF, Finland
Harri Reiman, Ericsson, Finland
Günther Ruhe, Fraunhofer IESE, Germany
Veikko Seppänen, VTT Electronics, Finland
Rini van Solingen, Schlumberger, The Netherlands
Reijo Sulonen, Helsinki University of Technology, Finland
Ian Taylor, Process Research Consultants, Austria
Richard Veryard, Veryard Projects, United Kingdom
Otto Vinter, Bruel & Kjaer, Denmark
Giuseppe Visaggio, University of Bari, Italy
Claes Wohlin, Lund University, Sweden

In addition, the following persons have helped in reviewing the papers: Martin
Höst, Magnus C. Ohlsson, Björn Regnell, Per Runeson, Anders Wesslen, Kari
Alho, Casper Lassenius, Jyrki Kontio, Jarmo Hurri, Marjo Kauppinen, and Jari
Vanhanen.

6

Contents

Preface 3
Conference Organization 4
Programme Committee 5
Keynote Address: The Team Software Process 11
Watts Humphrey
Keynote Address: "In situ" Computer Aided Empirical Software Engineering 13
Koji Torii
Panel: Process Improvement vs. Product Improvement 15
Otto Vinter

SESSION 1: Methodology for Product Focused Process Improvement 27
A Validation Approach for Product-Focused Process Improvement 29
Andreas Birk, Janne Järvinen, Rini van Solingen
Establisinhing Continuous Assesment Using Measurements 49
Janne Järvinen, Rini van Solingen
Specific Requirements for Assessing Embedded Product Development 68
Pasi Kuvaja, Jari Maansaari, Veikko Seppänen, Jorma Taramaa
Product Focused SPI in the Embedded Systems Industry 86
Rini van Solingen, Pieter Derks, Jorma Hirvensalo

SESSION 2: Tools and Techniques in Software Process Improvement 101
Effective Feature Analysis for Tool Selection 103
G. Antoniol, G. La Gommare, G. Giraudo, P. Tonella
Questionnaire Based Usability Testing 118
Erik P.W.M.van Veenendaal
Developing a Change Request Management Tool for a Distributed
Environment 135
Horst Lichter, Manfred Zeller

SESSION 3: Software Quality 151
Piloting as a Part of Process Improvement of Reviews - a Case Study
at Nokia Telecommunications 153
Janne Kiiskilä
Early Testing of Embedded Software 170
Marcello Vergano
Capture-Recapture Estimations for Perspective-Based Reading -
A Simulated Experiment 182
Thomas Thelin, Per Runeson

7

SESSION 4: Novel Approaches in Software Process Assessments 201
The Role of the Client-Supplier Relationship in Achieving Software
Quality 203
Jennifer Gasston
Improving Market-Driven RE Processes 222
Peter Sawyer, Ian Sommerville, Gerarld Kotonya
Conformance Analysis of the Tailored CMM with ISO/IEC 15504 237
Yingxu Wang, Alec Dorling, J. Brodman, D. Johnson

SESSION 5: Software Measurement 261
Empirical Studies of Inspection and Test Data 263
Reidar Conradi, Amarjit Singh Marjara, Borge Skåtevik
A Process-Oriented Approach to Improving Software Product Quality 285
Richard E. Fairley
Quality first: Measuring a Safety-Critical Embedded Software
Development Process 300
E. Kesseler

SESSION 6: Experince Packaging and Transfer 321
Systematic Experience Transfer Three Case Studies from a Cognitive
Point of View 323
Eva Wieser, Frank Houdek, Kurt Schneider
An Experince Report on Decoding, Monitoring, and Controlling
the Software Process 345
Luigi Benedicenti, Stefano De Panfilis, Giancarlo Succi, Tullio Vernazza
Tailoring Product Focused SPI - Application and customisation
of PROFES in Tokheim 363
Rini van Solingen, Arnim van Uijtregt, Rob Kusters, Jos Trienekens

SESSION 7: Process Modelling and Assessment 379
Software Process Improvement in Small Organizations Using Gradual
Evaluation Schema 381
Naji Habra, Anne-Caterine Lamblin, Alain Renault
Process Re-engineering Patterns 397
Masao Ito, Kouichi Kishida
Modeling Framework and Supporting System for Process Assessment
Documents 412
Makoto Matsushita, Hajimu Iida, Katsuro Inoue

8

An Architecture for Defining the Processes of the Software and Systems
Life Cycles 424
Terence P. Rout, Peter Bernus
EFQM/SPICE Integrated Model: The Business Exellence Road for
Software Intensive Organisations 437
Elixabete Ostolaza, Ana Belen Garcia
A Reading-Based Scenario for Characterising and Exploiting Process
Components 453
Maria Tortorella, Giuseppe Visaggio

SESSION 8: New Proposals in Software Process Improvement 479
Expanding Goal Setting Theory Concepts - Using Goal Commitment
Measurements to Improve Changes for Success in SPI 481
Pekka Abrahamsson
Tailoring Process Improvement to Small Companies using
a Methodology Focused on the Individuals 497
Guido Cardino, Andrea Valerio
Moving Towards Modelling Oriented Software Process Engineering:
A Shift from Descriptive to Prescriptive Process Modelling 508
Simo Rossi

SESSION 9: Methods and Tools in SPI 523
A Software Process Simulator for Software Product and Process
Improvement 525
Paolo Donzelli, Giuseppe Iazeolla
Repurposing Requirements: Improving Collaborative Sense-Making
over the Lifecycle 539
Albert M. Selvin, Simon J. Buckingham Shum
The Dynamic Models for Software Developmant Projects and
the Machine Learning Techniques 560
Isabel Ramos Román, Jose Cristobal Riquelme Santos
Improving the Requirements Definition: The RESPECT Project 575
F. Calzolari, E. Cozzio

SESSION 10: Industrial Experience Reports 589
Establishing SPI Measurements 591
Jakob H. Iversen
A PIE One Year after: APPLY 606
Alain Roan, Patrick Hebrard

9

Creating a Solid Configuration- and Test-Management Infrastructure to
Improve the Team Development of Critical Software Systems 620
Eddy Verstraeten
An Industrial Experince in Improving the Software Process through
Domain Analysis 637
Andrea Valerio, Massimo Fenaroli, Luigi Benedicenti, Giancarlo Succi
Using CASE to Enhance Service Performance in Local Government:
The CAPELLA Project 652
Karlheinz Kautz, Peter Kawalek, Matthew Keenan, Tom McMaster,
Clive Walker, David Wastell, Michael Willetts, Chris Williams

APPENDIX: Author Index

10

11

Keynote Address:

The Team Software Process

Speaker

Watts S. Humphrey

The Software Engineering Institute
Carnegie Mellon University, USA

The Software Engineering Institute has developed the Team Software Process
(TSP)SM to help integrated engineering teams more effectively develop software-
intensive products. This talk reviews the current problems with software
development and shows how the TSP addresses them. For example, hardware-
software projects in even very experienced groups generally have cost, schedule,
and quality problems. Testing is generally expensive and time consuming, and
often followed by many months of user testing before the products are fully
usable.

The TSP shows engineering groups specifically how to apply integrated team
concepts (IPPD) to the development of software-intensive systems. It walks
teams and their management through a 3-day launch process that establishes
goals, defines team roles, assess risks, and produces a comprehensive team plan.
Following the launch, the TSP provides a defined and measured process
framework for managing, tracking, and reporting on the team’s work.

The TSP has been used with pure software teams and with mixed teams of 2 to
20 hardware and software engineers and it has been shown to sharply reduce the
total cost of development and acquisition. TSP has been used for both new
development and enhancement and with both commercial and imbedded real-

SM Team Software Process and TSP are service marks of Carnegie Mellon University.

12

time systems. A number of organizations are using the TSP and this talk
describes some of their experiences. Finally, the talk briefly reviews the TSP
introduction strategy and approach.

13

Keynote Address:

"In situ" Computer Aided Empirical
Software Engineering

Koji Torii

Nara Institute of Science And Technology
8916-5, Takayama, Ikoma, Nara, JAPAN 630-0101

First I will describe what I mean by Computer Aided Empirical Software
Engineering (CAESE), and its importance in (empirical) software
engineering.Empirical software engineering may make general software
engineering morevisible with hopefully quantitative knowledge. Empirical
software engineering can be viewed as a series of actions used to acquire
knowledge and a better understanding about some aspects of software
development given a set of problem statements in the form of issues, questions
or hypotheses. Our experience in conducting empirical software engineering
from a variety of viewpoints for the last decade has made us aware of the
criticality of integrating the various types of data that are collected and analyzed
aswell as the criticality of integrating the various types of activities that take
place such as experiment design and the experiment itself. Our experience has
led us to develop a CAESE framework as a substrate for supporting the
empirical software engineering lifecycle. CAESE supports empirical software
engineering in the same manner that a CASE environment serves as a substrate
for supporting the software development lifecycle.

Replication, one of the most important activities in empirical
softwareengineering is not easy to do. Even in controlled experiments,
detailinformation cannot be transferred. Some of the reasons for these
difficulties are found in the difference of experiment environment, such as
software tools, knowledge levels of subjects, and etc. Thus we propose CAESE,
consisting of a process description just the same as for CASE.

14

The second point is "in situ" concept. In biological science, or any empirical
studies, work domains in general are based on two different approaches: in vivo
(naturalistic) setting, and in vitro (laboratory) settings. In vivo settings deal with
real world problems by looking at software developers in the natural context in
which the actual software development project is carried out. Work by Basili on
TAME and the Software Experience Factory approach are a type of naturalistic
setting studies. The Software Experience Factory provides mechanisms to trace
an actual software development project, to accumulate and store "knowledge"
that emerges during the project, and to make knowledge available and reusable
for other projectsand project members.

In vitro studies, on the other hand, consist of controlled experiments. Originating
from psychological studies, laboratory studies focus on a particular aspect of
human behavior, trying to develop a generalized model of behavior, or focus on
proposed techniques and methods to test their effectiveness. A study looks at a
particular task, develops hypotheses about human behavior or techniques related
to the task, and tests the hypotheses. The task in the study, for example, may
concern defect detection, maintenance, or requirements inspection.

I hope my discussions may partially answer the following questions. Why isn’t
process improvement easy? Why isn’t the transfer of the process improvement
technology easy? Why isn’t replication in the empirical software engineering
done properly?

15

Panel:

Process Improvement versus

 Product Improvement

In the field of software engineering when we talk about improvements, we
usually mean process improvements. We think in terms of controlling and
improving the activities that are conducted during the development of software.
But after all, who cares about processes: we want products. So what really
matters to us is product improvements.

We have a clear notion and supporting models of how to achieve process
improvements, but we lack more knowledge on how to achieve product
improvements. So the questions to be discussed by this panel will be:

• Do better processes really lead to better products?

• How can we assess product quality in the wider sense?

• Can process measurements support product improvement?

The panellists have been selected from industry as well as research.

Otto Vinter (Chair),

Brüel & Kjaer Sound & Vibration Measurement, Denmark

Rini van Solingen,

Tokheim, and Eindhoven University of Technology, The Netherlands

Kari Känsälä,

Nokia Research Center, Finland

Bo Balstrup,

Danfoss Drives, Denmark

Terry Rout,

Griffith University, Australia

16

Panel: Position Statement 1

Otto Vinter

(ovinter@bk.dk)

Manager Software Technology and Process Improvement

Brüel & Kjaer Sound & Vibration Measurement

Denmark

Models for assessing and improving software processes have been around for
some time now: ISO 9001, CMM, BOOTSTRAP, SPICE (ISO 15504).
However, these models only implicitly and indirectly address the properties of
the resulting products. The underlying assumption is: Improved processes will
lead to improved products. And the correctness of this assumption has not been
validated (yet?).

The results of software process improvements are typically:

• more precise estimates (better predictions on development time),

• quicker time-to-market (reduced time in rework),

• productivity gains (reduced development costs)

• fewer defects (and failures after release).

Focusing only on processes could lead to the development of products that will
not fulfil the expectations of its users. It has been said that a company at the top
CMM level 5 could still go bankrupt because it develops the wrong products.

Models that focus on assessing an organisation’s capability to improve its
products are not so common. Product improvement activities aim at developing
products with improved quality in a wider sense e.g. as perceived by the users.
The underlying assumption is: Develop the right product rather than develop the

17

product right. But do we know how to assess product quality in this wider sense
in order to support improvements?

One model in this area is the ISO 9126 with its list of product quality attributes.
These attributes are often referred to as the -ilities of a product:

• functionality,

• usability,

• reliability,

• maintainability,

• efficiency, and

• portability.

Another model for product improvement is found in the Concurrent Engineering
field, e.g. Integrated Product Development (IPD). Product improvement
activities can also be found in the Human Computer Interface (HCI) community
and in the Requirements Engineering field e.g: user centered design, and
modeling with scenarios. But these are limited to only part of the development
life cycle, and are not normally regarded as a part of the software development
activities. Furthermore, they only address a few of the ISO 9126 product quality
attributes.

At Brüel & Kjaer, I have been working full time on process improvements for
more than 6 years. I have had successes and failures. The failures have typically
been in areas where the support from management was not present to back
(enforce) the change of even clearly poor processes.

On one of my recent improvement projects (PRIDE) I discovered that the
improvements we achieved on the product far exceeded the improvements on the
process. The end product achieved much higher sales due to a better match of
user needs and increased usability. And the new techniques spread much quicker
throughout the organization than I have ever seen before. I (re)discovered that
product improvements are of much higher interest to management than process
improvements because they are business driven. The interest among developers
is also higher because they are motivated by the end-result of their development
efforts, rather than by the way development is performed.

18

Management normally does not see process improvements as having a concrete
impact on the product and therefore on sales or bottom line. They are reluctant to
support (enforce) process improvements which they cannot see an immediate
benefit from. They want to look ahead for new opportunities and possibilities.
And all I can show them is a rear view (what went wrong last time). Improving a
process is looked upon as spending money on removing problems rather than
adding features, which is counterintuitive to them.

I therefore started to look around for more comprehensive treatments of product
improvements and found that this area was not well researched. We have a lot of
knowledge on process improvement, but is there really a link between the two?
Of course product development can only be achieved through a set of processes.
But which processes lead to better products? And can it be measured?

19

Panel: Position Statement 2

Rini van Solingen

(R.v.Solingen@tm.tue.nl)

Tokheim, and Eindhoven University of Technology,

The Netherlands

The question whether better processes lead to better products can be used as a
topic in a conference panel, simply because we apparently don’t know. This
already indicates the underlying problem. We have so far not measured, or been
able to measure, the relation between specific software processes and the
resulting product.

Nobody questions whether there is a relation between process and product,
because there is. Without a process (how chaotic it may be), there will be no
product. So, this is not the issue. The issue is that we don’t know how to manage
this process in such a way that the resulting product complies to our needs.
Apparently there is a lack of knowledge on the relation between specific
processes (read: methods, techniques or tools) and product quality. I use the term
‘quality’ for both functional and non-functional characteristics of a product.

Recent literature research carried out in a joined project of Delft and Eindhoven
Universities of Technology, concluded that almost all literature in the software
engineering field:

a. Does not indicate what impacts there are of new methods, techniques or
tools on product quality. Many publications indicate that the method,
technique or tool presented results in ‘better quality’, but what quality means
in that context is rarely explained.

20

b. Does not contain any measurement result to support that the claim on ‘better
quality’ is indeed valid.

This leads us to the conclusion that the relationships between process and
product are unknown and should therefore be discovered in order to control
product quality by a focus on the process.

Furthermore, this points to a second issue: what is product quality? Product
quality will mean very different things in different contexts. If the process
should result in the quality that is required, this needed quality will have to be
specified. Without a specification of the product quality requirements it will be
almost impossible to select a development process that will result in ‘good’
quality. However, product quality requirements are rarely specified in the
software engineering field.

My position for this panel is that if we want to control software product quality
with the process, we need:

• Detailed (and valid) models of impacts of processes on product quality, and

• A detailed (and measurable) specification of the product quality
requirements.

21

Panel: Position Statement 3

Kari Känsälä

(kari.kansala@research.nokia.com)

Senior R&D Manager

Nokia Research Center

Finland

The Nokia Software Process Initiative
(NSPI), that is operative in all
Business Units developing software
(SW) for Nokia's products, has
derived all of its goals form the key
business-related objectives of
Business Units' R&D. The primary
metrics of the NSPI (see Figure) are
related to SW-intensive products:

• SW cycle time (and its predictability)

• SW functionality

• SW quality

“good-enough
software”Software

functionality
Softwar
quality

Software cycle-time
 & its predictability

SW process capability & maturity

SW dev’t productivity / predictability

22

Productivity and process improvement metrics are regarded as secondary (see
Figure), because achieving targets concerning those internal (R&D-related)
metrics means only that the probability of achieving targets concerning primary
external (customer-related) metrics gets higher.

The primary metrics form the "good-enough SW" triangle (named by Ed
Yourdon), that should be regarded as the main framework concerning "product
improvement". These metrics do not, however, cover the needs for product
improvement metrics properly.

Nokia Research Center (NRC) has studied the ISO 9126 product quality
characteristics as a promising solution for a more detailed product improvement
framework. Two main difficulties have, according to our internal and literature
findings, been identified in trying to implement ISO 9126 type of quality
frameworks. Firstly, standard quality characteristics are hard to measure,
because they do not necessarily match with recognized needs and possibilities of
measurement. Secondly, they do not often match as such with the existing
processes, methods, techniques and skills of current SW development
community.

Instead of trying to push ISO 9126 type of frameworks as such, we in NRC have
been mapping ISO 9126 like quality attributes to our own SW engineering R&D
areas (e.g. user interfaces and usability, SW architectures, and SW process
improvement) and our standard SW process frameworks (e.g. CMM, SPICE).
Some examples can be given:

• work of Usability group matches directly with Usability characteristic of
ISO 9126

• work of SW Architectures group matches directly or indirectly with the
Functionality, Reliability, Efficiency, Maintainability and Portability
characteristics of ISO 9126

• work of SW Process Improvement group matches indirectly via SW process
frameworks; e.g. working on Requirements Management (a CMM Key
Process Area) enhances all quality characteristics

23

This is our effort to perform "product improvement". If valid product quality
metrics can be identified in conjunction with this work, they could be mapped to
ISO 9126 characteristics.

Concerning the nature of Nokia’s product and solutions, it is extremely important
to always recall the wider context: SW development is only a part of highly
integrated product/solution development. Improved SW shows primarily via
improved products and solutions, i.e. all SW improvement is not (always
regarded as) product improvement.

24

Panel: Position Statement 4

Bo Balstrupo

(balstrup@danfoss.com)

Technology Manager

Danfoss Drives

Denmark

To discuss Product Improvement versus Process Improvement is like discussing
the hen and the egg. Which comes first?

Normally process improvement is initiated by the need for improvement of
product quality, which in my opinion is the right way to attack the problem. At
least you have to go through your development process to find causes for the
poor quality. For this CMM, BOOTSTRAP, SPICE and other assessment
methods to help to find strengths and weaknesses.

Process improvement consists of three areas: Organisation, Methods, and Tools.

The most common error done by software developers is to focus on tools. Fools
with tools are still Fools. To get it right focus must be on the Product
Development organisation, not only on the Software Development organisation.
The right organisation is the means to improved products and processes.

If the problem is developing the right product for the market, focus must be on
requirements specification. A highly integrated effort with participants from the
whole organisation will inevitably lead to improved products.

Improved specifications are not enough. You will still face the problem of
extended time-to-market due to lack of good processes and lack of knowledge of
the causes. Setting up a measurement program to track the development

25

performance provide hints of where time eaters are. Based on this information a
root cause analysis can pinpoint the problem areas.

Using a formal inspection or review method will on the first hand find many
defects early in the project and secondly secure the vital product knowledge
sharing and insight of good practises.

The final, but still very important method to improve, is testing. No, you can not
test quality into your product, but with a planned and structured test effort you
will, without doubt, get an improved product on the market.

Doing these few process improvements will surely lead to improved products on
time. The time saved, not doing every thing twice, will release plenty of time to
continue the improvement program for both products and processes.

Do not forget the power it releases in the organisation. Professional pride and
commitment to perform will rise to the sky. And you might additionally get
some satisfied customers.

My paradigm is: Develop the right product right.

26

Panel: Position Statement 5

Terry Rout

(t.rout@cit.gu.edu.au)

Manager of the Southern Asia Pacific Technical Center for SPICE

Griffith University

Australia

In my view it is false and dangerous to see the issue as a choice between process
and product; one must keep focussed on both in order to achieve success. The
techniques we have help us to diagnose and to set priorities, they do not force us
to "choose".

27

SESSION 1:

PROFES: Methodology for Product Focused
Process Improvement

28

29

A Validation Approach for
Product-Focused Process Improvement

Andreas Birk1 Janne Järvinen2 Rini van Solingen3

1Fraunhofer IESE, Sauerwiesen 6, D-67661 Kaiserslautern, Germany,
Andreas.Birk@iese.fhg.de

2VTT Electronics, P.O. Box 1100, FIN-90571 Oulu, Finland,
Janne.Jarvinen@vtt.fi

3Tokheim , Industrieweg 5, NL-5531-AD Bladel, The Netherlands,
R.v.Solingen@tm.tue.nl

Abstract

As the number of software engineering improvement methodologies and their
adoption rate in industry increase, the validation of improvement methodologies
becomes more and more important. Past validation studies show the
effectiveness of improvement methodologies. However, they also reveal many
technical difficulties for scientifically sound and detailed validation studies.

This paper surveys the state of the art in improvement methodology validation
and derives recommendations for systematic validation studies, which are
substantiated by experiences from the European PROFES project. PROFES has
developed a product-focused software process improvement methodology and
started its empirical validation already early in the project.

In brief, the main results of our validation work are: (1) Explicit product quality
goals increase the effectiveness of process improvement and allow for causal
analysis of observed improvements. (2) Validation should be based on explicit,
a-priori set hypotheses involving multi-facetted validation criteria. (3)
Improvement methodologies of different types, such as process assessment and
goal-oriented measurement, are rather complementary than competing
approaches.

30

1. Introduction

Validation of improvement methodologies is still a field of software engineering
that is not very well elaborated yet. Several studies have been reported.
However, they differ quite much with regard to their validation approaches,
objects of study, and general validity of results. For this reason, we survey the
approaches of past validation studies and provide a framework for validation of
improvement methodologies. A recommended set of validation practices is
derived. Their importance is underpinned by results from a replicated two-year
case study in the European technology transfer project PROFES1.

PROFES has developed an improvement methodology that is novel in multiple
ways: (1) It focuses on process improvement that is driven by explicit product
quality goals; therefore, explicit links are forged between aspects of the software
process and their impact on the resulting software product quality. (2) The
PROFES improvement approach integrates multiple improvement techniques
that have, in the past, been applied in isolation, such as process assessments and
goal-oriented measurement. (3) PROFES promotes a systematic and iterative
approach of continuous improvement that is a-priori independent of any specific
improvement technique and that follows the Quality Improvement Paradigm
(QIP) / Experience Factory (EF) approach [1].

Methodology validation in PROFES is quite unique for multiple reasons:
Empirical validation has been an explicit work task of methodology
development from the beginning of the project. The validation study has been
planned systematically prior to the start of methodology application. There have
been close contacts between researchers and the methodology users allowing for
close observation of the improvement programmes over a period of two years.
Finally, the application projects have been actively involved in the definition of
validation criteria as well as in the interpretation of the results.

This paper presents the basic validation strategy used in PROFES and illustrates
it by selected validation cases. Section 0 surveys improvement methodologies

1 ESPRIT project 23239, PROduct Focused improvement of Embedded Software
processes. Supported by the Commission of the European Community. For further
information about PROFES see: http://www.ele.vtt.fi/profes/

31

and their validation. It also lists requirements for improvement methodology
validation. Section 0 briefly introduces the PROFES methodology for product-
focused process improvement. The systematic approach to improvement
methodology validation is introduced in Section 0. Section 0 summarises the
main results and experiences from the methodology validation work in PROFES.

2. Improvement Methodologies and Their
Validation

Improvement methodologies in software engineering build on quite a variety of
different paradigms. Each paradigm has specific implications on methodology
validation, determining relevant validation criteria and appropriate validation
strategies. This section lists basic types of improvement paradigms that can be
found in the literature2: Benchmarking, analysis, process modelling, learning,
technology focus, and technology transfer. This classification serves as a
baseline for surveying current work on methodology validation.

Benchmarking based improvement compares the software engineering processes
of a project or organisation with a reference model of recommended software
engineering processes. Improvement actions are identified based on the
deviation between the assessed process and the reference model. Process
benchmarking approaches are the Software Engineering Institute’s (SEI)
Capability Maturity Model (CMM) [23] [30], the emerging international
standard ISO/IEC 15504 [25], and BOOTSTRAP [6]. Quality management
system benchmarking approaches are the ISO/IEC 9000 standards family [24],
the Malcolm Baldrige Award [8], and the European Quality Award [17].

Analytically based improvement applies software engineering measurement to
investigate improvement potential, understand software development, identify
improvement actions, and monitor their success (cf. the Goal/Question/Metric
(GQM) approach [2] [35] [33] and other software measurement approaches [16]
[29]). Process modelling based improvement establishes a core set of common

2 Additional information from the literature survey can be found in [10].

32

software development practices within a project or organisation. Its main tool is
software process modelling (cf.[31] [3]).

Learning based improvement focuses on the collection, organisation, and
dissemination of good software engineering practice with a software
organisation or from external sources into a software organisation (cf., EF/ QIP
[1]). Technology based improvement places emphasis on a specific software
engineering technology and fosters its dissemination and implementation
throughout the software industry. Examples are software inspections (cf. [15])
and reuse (cf. [7] [27]). Technology transfer based improvement focuses on
procedures and infrastructure for supporting the transfer and adoption of new
technology. It does not emphasise or promote a particular software engineering
technology (cf. [11]).

There exist multiple variations and combinations of these basic families of
improvement methodologies. In general, two or more improvement
methodologies should be combined for assuring the success of an improvement
programme. For this reason, the PROFES improvement methodology integrates
multiple techniques (see Section 0). However, little is know yet about the
interaction and synergy between multiple improvement methodologies. Studying
such interaction is an important objective of methodology validation. It requires
further advanced, systematic validation approaches. PROFES has moved toward
such approaches and collected experience about them (see Section 0).

It is important to note that none of the currently common improvement
methodologies places much emphasis on setting explicit product quality goals
for guiding improvement programmes. If an approach does so (e.g., the QIP),
methodological support is limited. The PROFES methodology takes a step
beyond that and fosters the role of product quality goals in improvement
programmes (cf. Section 0).

33

The objective of validation is to demonstrate that an improvement methodology
satisfies the expectations of its users. Validation strategies vary considerably
across different types of improvement methodologies and the expectations of
different user groups. Table 1 gives an overview of validation strategies that are
reported in the literature. It is structured according to the basic types of
improvement methodologies that have been described above. Each methodology
can be analysed with regard to multiple different aspects (e.g., validity of

Improvement
Methodology

Validation
Aspect

Typical Validation Approaches

Benchmarking
(Process
Assessments)

Validity of
process
assessment
methods as
measurement
instrument

Data collection: Survey, SW measurement

Analysis: Correlational statistics
Examples:[18][28][14]

Benchmarking
(Process
Assessment)

Effectiveness of
process
assessment as a
means for
improvement

Data collection: Survey, interview, SW measurement, subjective
observation

Analysis: Correlational statistics, descriptive statistics,
qualitative analysis, subjective experience
Examples:[18][4][36]

Benchmarking
(Quality
Management
Systems
Assessment)

Benefits from
methodology
application

Data collection: Survey, interview

Analysis: Descriptive statistics, qualitative analysis
Examples:[34]

Analytically
Based

Benefits from
methodology
application

Data collection: Survey, interview, SW measurement, subjective
observation

Analysis: Descriptive statistics, qualitative analysis, subjective
experience
Examples: [9][12][20]

Learning Based Benefits from
methodology
application

Data collection: Survey, interview, SW data, subjective
observation

Analysis: Descriptive statistics, qualitative analysis, subjective
experience
Examples: [9]

Technology
Based

Benefits from
technology
application

Data collection: Interview, SW data, subjective observation

Analysis: Correlational statistics, descriptive statistics,
qualitative analysis, subjective experience

Examples: [15][27]

Technology
Transfer Based

Benefits from
technology
transfer strategy

Data collection: Interview, SW measurement, subjective
observation

Analysis: Descriptive statistics, qualitative analysis, subjective
experience
Examples: [19]

Table 1: Overview and classification of past improvement methodology
validation work.

34

process assessments as a measurement instrument or their effectiveness in
achieving a certain kind of improvement). Basic data can be collected using
surveys, interviews, software measurement, and subjective observation of the
researchers. Depending on the data available, various data analysis techniques
can be applied: correlational statistics, descriptive statistics, qualitative analysis,
and subjective interpretation based on personal experience. The literature review
allows for the following conclusions:

• Improvement success is rarely measured in terms of specific product quality
improvements. Most studies either report “overall quality improvements”
(not stating quality attributes) or those that are not directly related to product
quality (e.g., productivity or staff morale).

• Causal analysis has not yet been performed by any of the validation studies
found in the literature. Hence, no study demonstrates that improvements are
actually caused by the applied improvement methodology.

• Most studies use only a few validation criteria that vary across the studies.
Hence, it is difficult to compare the results from these studies.

• Only a few studies investigate the effects of more than one improvement
methodology. Interaction or synergy effects are hardly studied at all.

• Process assessments and some individual software engineering technologies
(e.g., inspections and reuse) are by far better investigated than other
improvement techniques.

Multiple authors have addressed principles of good methodology validation
practice. Brodman and Johnson [4] found that for industrial organisations, cost
of improvement are relevant mainly in terms of personnel effort, while
government organisations focus on financial cost. Likewise, benefit from
improvement, from an industrial perspective, is measured in terms of meeting
(usually non-financial) organisational or customer goals. Simmons [32] under-
pins these findings. She emphasises that success should be evaluated using a set
of multiple criteria, which can be derived from organisation-specific business
drivers or organisational goals. El Emam and Briand [13] have found no
validation study that establishes a causal relationship that improvement is the
cause of benefits that are witnessed.

The PROFES methodology validation addresses these recommendations from
past validation work, namely: (1) Multi-facetted evaluation criteria that have

35

been derived from organisational goals and that consider also non-process
factors. (2) Cost measured in terms of personnel effort. (3) Initial planning of the
study to assure appropriate measurement and analysis as well as mitigation of
bias. Based on the observations from our survey and the above recommendations
we have identified a set of requirements on systematic validation of
improvement methodology. These requirements have guided the PROFES
methodology validation study. They are listed in Figure 1. It must be noted that
methodology validation is a complex and challenging task. Meeting the stated
criteria is very difficult. Most often, it is impossible to meet them all due to time
and resource restrictions, or due to the inherent difficulties of in-vivo research.

Figure 1: Requirements on systematic validation of improvement methodology.

3. Product-Focused Improvement

Most improvement methodologies in software engineering focus on software
process improvement. Their underlying rationale is that improved software
engineering processes result in better product quality (cf. [23]). Yet, none of
these improvement methodologies makes the link between process and product
quality explicit (cf. [30] [6] [24]). PROFES has developed a process

(R1) Define the improvement methodology that is subject of the study in a precise
manner.

(R2) Formulate hypotheses for validation explicitly at the beginning of the study.
(R3) Ensure that the validation criteria are actually relevant from the relevant

perspective.
(R4) Ensure that the study uses a composite, multi-facetted validation criterion.
(R5) Ensure that the validation criterion is measured consistently, in a uniform way

across all participants of a study.
(R6) Ensure that the validation criterion is measured using different, redundant

indicators concurrently.
(R7) Investigate causal relationships between the application of the improvement

methodology and the validation criteria.
(R8) Investigate possible moderating effects on validity of improvement methodology.
(R9) For case studies: Establish close contacts between researchers and the studied

software organisations.
(R10) For surveys and experiments: Achieve representative samples.
(R11) Ensure that the study is replicated in order to provide evidence from different

sources or experimental settings.
(R12) Identify possible bias of the investigation early. Take measures for mitigating it.

36

improvement methodology [5] [22] [21] that explicitly considers product quality
as starting point for improvement planning. Its main building blocks are:

• Improvement planning starts with the identification of the organisation’s
product quality goals. Process improvement actions are determined with
regard to their expected impact on product quality.

• The link between product quality and the software engineering processes is
established using a new kind of artefact called product/process dependency
(PPD) model [5] [21]. A PPD repository deploys experiential knowledge
about PPDs.

• Established improvement techniques such as process assessment (acc. to
ISO 15504 [25]), goal-oriented measurement (acc. to GQM [2] [35]) are
integrated into an overall framework to exploit their combined strengths.

• Improvement programmes are conducted in an iterative manner following
the QIP/EF approach for continuous improvement [1].

The PROFES improvement methodology consists of six overall phases that are
sub-divided into twelve steps for which established improvement techniques are
suggested. Overall, the PROFES improvement methodology is modular and
involves an upfront tailoring activity for adapting it to the specific needs and
characteristics of the software organisation. It will be shown below that the
explicit focus on product quality and the associated PPD concept facilitate
methodology validation allow for detailed causal analysis of product quality
achievements.

4. The PROFES Validation Approach

Validation of the PROFES improvement methodology started at the beginning
of the PROFES project in early 1997. Based on the first blueprint of the
methodology, the validation study was planned with early involvement of the
methodology users. For a period of more than two years, the PROFES
methodology has been applied yet in multiple projects at three industrial
organisations: Dräger Medical Technology, Business Unit Monitoring (MT-M),

37

Ericsson Finland, and Tokheim. During this time, the projects were subject to
detailed observation by the researchers who are responsible for the validation
work. The work was separated into two overall phases. Various kinds of
information were collected about the improvement programmes in each phase.
The PROFES methodology validation involves three basic types of validation
criteria (i.e., multi-facetted validation):

• Achievement of product quality improvements through application of the
PROFES improvement methodology (to be demonstrated by identifying
causal links between methodology and product quality)

• Other benefit from applying the PROFES improvement methodology.

• Cost-effectiveness of the PROFES improvement methodology.

The following sub-sections briefly introduce study design and environment, and
describe the three types of validation criteria used in PROFES.

4.1 Study Design and Environment

The basic design of the empirical work in PROFES is a twice repeated, three
times replicated case study: The project is separates into two 15 months periods.
In each period, the same kind of investigation is conducted at the three software
organisations (Dräger MT-M, Ericsson Finland, and Tokheim). The PROFES
methodology validation has been planned from the beginning of the project.
GQM has been used to identify validation criteria. Two overall GQM goals were
defined that differ in their viewpoints:

Analyse the PROFES methodology with respect to cost/benefit for the
purpose of characterisation from the viewpoint of the methodology user
(Goal 1) / methodology provider (Goal 2) in the context of PROFES.

For each goal, questions and measures have been gained by interviewing
representatives of the PROFES application projects or methodology developers,
respectively. The results are defined in the form of two GQM plans, which have
been used to plan data collection and analysis. Figure 2 outlines parts of their
structure. It lists validation criteria and assumed impacting factors of the
PROFES methodology validation.

38

Each of the three PROFES application projects develops some kind of embedded
system. The individual products have quite different characteristics. Also the
organisations and overall software development environments differ
considerably from each other. Hence, it can be expected that the PROFES results
have a quite high level of external validity. The design of the PROFES
methodology validation and the systematic, up-front planning of the study
satisfies widely the requirements (R1—6), (R8&9), and (R12) on systematic
validation (see Section 0).

Methodology User Viewpoint Methodology Provider Viewpoint

Product and Process Improvements
Achievement of product quality goals
Standardisation of work practices
Improvement of work practices

Systematic Improvement
Focused improvement actions
Integrated business, product, and process
issues
Efficient management involvement

Findings, Awareness, Understanding
Knowledge about software and system
Awareness of software development
capabilities
Awareness of necessity of improvement

Team Building & Organisational Culture
Contribution to group synergy
Awareness of necessity of improvement

Possible Impacting Factors
Maturity of the software organisation
Infrastructure of the software organisation
Other ongoing improvement initiatives
Project management’s awareness of the
improvement methodology
Higher management’s expectations on the
improvement programme

Product and Process Improvements
Product quality improvements
Process definition
Process stability

Methodology characteristics
Customer viewpoint
Quality and improvement awareness

Methodology definition and support
Coverage of methodology (roles, phases,
activities)
Guidance of methodology (processes,
guidelines)
Documentation of methodology
Tool support of methodology

Possible Impacting Factors
Size of measurement programme
Maturity of the software organisation
Infrastructure of the software organisation
Other ongoing improvement initiatives
Organisational culture: Management
commitment for the improvement
programme
Degree at which quality improvement is
integrated with regular software
development activities

Figure 2: PROFES validation criteria and expected impacting factors.

39

4.2 Achievement of Product Quality Improvements

The core strategy of methodology validation in PROFES is to demonstrate that
the application of the PROFES improvement methodology results in
improvements of the developed system’s product quality, where quality also
involves aspects such as time-to-market and development costs. Validation
should result in identifying and explicitly documenting a chain of evidence
according to the pattern shown in Figure 3.

This should be done according to the following principles:

• Explicitly document the complete chain of evidence, listing each element in
the chain.

• Clearly justify each transition in the chain from one element to the next.

Figure 3: Pattern of the chain of evidence that is used for PROFES
methodology validation and examples. (Note that the steps process
improvement and product quality (software) can be omitted in some cases.)

Product Quality (System) Reduced system development time

Process Change Continuous integration

Process Improvement Faster integration

Product Quality (Software) Reduced software development time

Methodology Element Process assessment

40

• For each dependent element in the chain, thoroughly identify possible
alternative explanations and try to refute them.

• Consider interaction effects of multiple methodology elements that were
applied concurrently.

• Provide objective and quantitative evidence (based on measurement data)
whenever possible.

• Provide subjective and qualitative evidence thoroughly.

These principles satisfy the requirement (R7) from Section 0 and are in
accordance with basic principles of case study and qualitative research (cf. [26]).

Figure 4 shows an example validation case for achievement of product quality
through application of the PROFES improvement methodology. It documents
how the PPD concept of PROFES resulted in high usability of the final system
product. Compared to the causal pattern from Figure 3, in the example case the
steps process improvement and product quality (software) have been omitted,
because the effects of the particular process change (i.e., incremental
development) on process improvements (e.g., better manageability of tasks and
work products) and on software product quality (e.g., defect density) are not
critical to the system product quality (i.e., usability of the final product). For
each causal relationship in the chain of evidence, possible alternative
explanations are refuted and evidence for the causal relationship is provided.
The validation case shows that the product/process dependency concept in the
PROFES methodology is effective (proof of existence).

4.3 Multi-Facetted Benefit Criterion

Benefit from applying the PROFES improvement methodology is measured
using multiple facets of benefit. Hence, the PROFES methodology validation
complies with requirement (R4) in Section 0. The different facets of benefit are
listed in Figure 2. They show that industrial software organisations—the users of
the PROFES improvement methodology—want to see (1) that product
improvements can be achieved (see also Section 0), (2) that various kinds of
process improvements happen, (3) that the improvement programmes show
certain characteristics (e.g., tailorability and efficient use of management

41

resources), (4) that knowledge and awareness of multiple software development
aspects increase, and (5) that team building and organisational culture are
supported. The methodology provider viewpoint adds further validation criteria
such as the quality of the methodology’s documentation. Example early benefits
from GQM as part of the PROFES improvement methodology are:

• Enhanced definitions of software development processes: Already in the
planning phase of the GQM measurement programmes, a need for more
detailed or updated software process definitions showed up.

• Knowledge about software and system: GQM measurement has widened the
project teams’ knowledge about software and system, resulting in even
better informed technical work and decision making.

• Fine-tuning of improvement actions: During the GQM feedback sessions,
previous improvement actions were fine-tuned by the software engineers in
order to improve their efficacy.

Similar information has been gained concerning later stages of the GQM
measurement programmes, ISO 15504 process assessments, software
engineering experience management, and other parts of the PROFES
methodology. A presentation of the detailed results from the benefits
investigation would exceed the scope of this paper. The results provide a
detailed view on the application of the PROFES improvement methodology.

42

PROFES Methodology Validation Case
Methodology
Element

Product/process dependency (PPD)

Incremental development
(Six months cycles from requirements to system test. Implementation of core
functionality in early increments in order to test them early and multiple times.)

Evidence for implementation of change:
The project schedule substantiates cycle duration. Both product increments
achieved until today were fully operational for conducting user test; hence, the
main functionality was present.

Causal relationship:
Usage of PPDs during project planning was emphasised by the PROFES
project. Project management cared especially much for the identification of
product quality goals and identified measures that were likely to help achieving
the goals. In this case, quality and development time goals, together with the
fact that many aspects of the project would be new to the team and the
organisation resulted in the decision of an incremental development process.

Possible alternative explanations:
1. Change due to process assessment
2. Not actually a change but standard development practice

Process
Change
(note: this
process
change
affects the
system
product
quality
directly.
Intermediate
affects on
process and
software
quality are
not really
relevant and
do not need to
be
investigated.) Refutation of alternative explanations:

ad 1.: First process assessment took place after the decision for incremental
development was taken.
ad 2.: None of the previous projects did address incremental development.

System
Product
Quality

Usability of the product is good
• Layouts of screen and control devices are attractive and user-friendly

• Handling of the product is user-friendly

Evidence for achievement of the software product quality:
Usability of the first product increment was not satisfactory. The second
increment shows good usability (according to similar statements from product
marketing and from the development team).
Engineers report that there was enough time for evaluating product usability
and for improving it after evaluation.

Causal relationship:
Incremental development resulted in a good user interface.

Possible alternative explanations:
1. Usability requirements were easy to implement
2. Usability only due to new hardware features

Refutation of alternative explanations:
ad 1.: The product is of a totally new type, new user interface hardware was
used, the user interface is much more complex than with previous products.
ad 2.: The first increment’s usability with the same hardware was not fully
satisfactory.

Figure 4: Example case for validation of an element of the PROFES
improvement methodology.

43

4.4 Cost-Effectiveness of the Improvement Methodology

The third type of methodology validation criteria in PROFES is cost-
effectiveness. The GQM interviews for planning the evaluation work have
resulted in the following facets of cost-effectiveness:

• Overall effort for the improvement programme

• Effort for the improvement programme by key personnel: Managers,
software engineers, improvement team, and external consultants.

• Tailoring effort for the improvement methodology when setting up the
improvement programme.

The related measurements have provided detailed effort data about the execution
of BOOTSTRAP process assessments and GQM measurement programmes. It
involves the number of hours spent by each participant of the improvement
programme for each activity of the respective method. Table 2 shows an
example effort model for one variant of BOOTSTRAP assessments.

During the second phase of PROFES, process assessments and measurement-
related activities were conducted in an integrated manner. The effort data from
these activities allows for investigation of possible synergy effects between the
two techniques.

Role Total

Activity Lead
Assessor

Assessor Manager Engineer Facilitator (Effort in
pers. hrs.)

Preparation 18 20 2 40

Opening Briefing 0.5 0.5 2 1 0.5 4.5

Assessment SPU 7.5 7.5 2.5 1 18.5

Assessment Project 27 26 4.5 4 3 64.5

Evaluation 32 16 48

Review 10 10 20

Final Meeting 7 7 4 4 6 28

Report Preparation 44 4 48

Report Review 2 8 10

Total 148 99 13 9 12.5 281.5

Table 2: Example effort model of BOOTSTRAP process assessments.

44

5. Conclusions

A survey of literature on validation of improvement methodology has uncovered
that causal analysis of the assumed effects of improvement methodologies have
hardly been conducted yet. Furthermore, most validation studies apply only a
very few validation criteria that are rarely derived from the users of
improvement methodologies.

In the context of ESPRIT project PROFES, we have had the opportunity to
conduct methodology validation in a manner that is in multiple respects different
from past methodology validation work:

• We have investigated causal relationships between improvement
methodology and product quality improvements.

• A multi-faceted validation criterion has been derived from the users of the
improvement methodology; it covers multiple aspects of benefit and cost
(measured in terms of effort) of methodology application.

• We were able to investigate interaction and synergy effects between
different improvement techniques (e.g., process assessment and software
engineering measurement) as well as the impact that an explicit product
quality focus has on software process improvement.

The setting in which the PROFES methodology validation could be performed
has been quite unique. First, empirical validation has been an explicit work task
of methodology development and started very early in the project. Second, the
close contacts between the validation team and the application projects allowed
for very detailed observation of the methodology application over a considerably
long time period. Third, the PROFES software projects were not only delivering
data but also participating actively in the definition of validation criteria as well
as in the interpretation of the results.

The objective of this paper is to explore methodological aspects of the validation
of improvement methodology. A detailed presentation of results does not fit into
the scope of this paper. However, without providing detailed evidence in this
context, we can report the following main findings about product-focused
process improvement:

45

• An explicit product quality focus can have much impact on effectiveness
and efficiency of improvement programmes. It guides decisions that can be
difficult to justify through process assessments or software engineering
measurement alone, and it ensures that other improvement techniques can be
applied in a more effective manner. For instance, PPD models can focus a
process assessment to those processes that are expected most critical for
achieving a required product quality.

• Many synergy effects can be derived from the informed combination of
common improvement techniques, such as process assessments, process
modelling, and measurement. For instance, detailed modelling of selected
processes facilitates process assessments and measurement programmes.

• The two improvement techniques that are currently most common, namely
software process assessments and software engineering measurement, are
cost-effective.

Based on our findings, we can argue that product-focused improvement using
the principles of the PROFES improvement methodology is more effective than
the non-integrated application of improvement techniques that consider product
quality goals only in an implicit manner. We also encourage the reuse of our
validation approach in future improvement programmes. It can facilitate
customisation and management of improvement programmes and also provide
further evidence for the validity of product-focused improvement from which
other software organisations and software engineering research can benefit in the
future.

6. Acknowledgements

The authors would like to thank all members of the PROFES consortium for
many fruitful discussions. Special thanks go to the application projects at Dräger
MT-M, Ericsson Finland, and Tokheim. We would also like to thank Dirk
Hamann and Dietmar Pfahl for reviewing an earlier version of this paper and
Felix Kröschel for the very valuable help during data collection and analysis.

The Commission of the European Community has supported this work through
ESPRIT project no. 23239 PROFES.

46

References

[1] V.R. Basili, G. Caldiera, and H.D. Rombach. Experience Factory. In J.J.
Marciniak, ed., Encycl. of SE, vol. 1, pp. 469–476. John Wiley & Sons, 1994.

[2] V.R. Basili, G. Caldiera, and H.D. Rombach. Goal Question Metric
Paradigm. In J.J. Marciniak, ed., Encycl. of SE, vol. 1, pp. 528–532. John Wiley
& Sons, 1994.

[3] A. Bröckers, Ch. Differding, and G. Threin. The role of software process
modeling in planning industrial measurement programs. In Proc. of the 3rd Int.
SW Metrics Symp., Berlin, March 1996. IEEE CS Press.

[4] J.G. Brodman and D.L. Johnson. Return on investment (ROI) from
software process improvement as measured by US industry. Software Process–
Improvement and Practice, 1(1):35–47, Aug. 1995.

[5] A. Birk, J. Järvinen, S. Komi-Sirviö, M. Oivo, D. Pfahl, PROFES – A
Product-driven Process Improvement Methodology, In Proc. of the 4th Europ.
SW Proc. Impr. Conf. (SPI ‘98), Monte Carlo, Monaco, Dec. 1998.

[6] A. Bicego, M. Khurana, and P. Kuvaja. BOOTSTRAP 3.0 – Software
Process Assessment Methodology. In Proc. of the SQM ’98, 1998.

[7] T.J. Biggerstaff and A.J. Perlis. Software Reusability – Applications and
Experience, vol.s I & II. ACM Press, 1989.

[8] M.G. Brown. The Baldrige criteria - better, tougher and clearer for 1992.
Journal for Quality and Participation, 15(2):70–75, March 1992.

[9] V. Basili, M. Zelkowitz, F. McGarry, J. Page, S. Waligora, and R.
Pajerski. SEL’s sw process-improvement program. IEEE SW, 12(6):83–87, Nov.
1995.

[10] A. Birk, J. Järvinen, and R. van Solingen. A validation approach for
product-focused process improvement. Fraunhofer IESE Technical Report
IESE-005.99. Kaiserslautern, Germany. 1999.

[11] J. Christian, M. Edward, S. Redwine, and L. Tornatzky. Using new
technologies. Technical Report SPC-92046-CMC, SW Prod. Cons., 1993.

[12] M.K. Daskalantonakis. A practical view of software measurement and
implementation experiences within Motorola. IEEE Trans. Software Eng., Vol.
18, No. 1, 1992, pp. 998—1010.

[13] K. El Emam and L. Briand. Costs and benefits of software process
improvement. In C. Tully and R. Messnarz, eds., Better Software Practice for
Business Benefit. Wiley, 1997.

[14] K. El Emam and A. Birk. Validating the ISO-IEC 15504 measure of
software requirements analysis process capability. ISERN Technical Report
ISERN-99-02. Kaiserslautern, Germany. 1999.

47

[15] M.E. Fagan. Advances in software inspections. IEEE Transactions on
Software Engineering, 12(7):744–751, July 1986.

[16] W.A. Florac, R.E. Park, and A.D. Carleton. Practical software measure-
ment: Measuring for process management and improvement. Technical Report
CMU/SEI-97-HB-003, SEI, Carnegie Mellon University, April 1997.

[17] European Foundation for Quality Management. Guidelines on self-
assessment. brochure.

[18] D. Goldenson and J. Herbsleb. After the appraisal: A systematic survey of
process improvement, its benefits, and factors that influence success. Technical
Report CMU/SEI-95-TR-009, ESC-TR-95-009, SEI, Carnegie Mellon
University, Aug. 1995.

[19] R.B. Grady and T. van Slack. Key lessons in achieving widespread
inspection use. IEEE SW, 11(4):46–57, July 1994.

[20] C. Gresse, B. Hoisl, H.D. Rombach and G. Ruhe. Kosten-Nutzen-Analyse
von GQM-basiertem Messen und Bewerten - Eine replizierte Fallstudie. In
O. Grün/L.J. Heinrich, eds., Wirtschaftsinformatik: Ergebnisse empirischer
Forschung, pp. 119–135. Springer, Wien; New York, 1997.

[21] D. Hamann, J. Järvinen, A. Birk, D. Pfahl. A Product-Process Depen-
dency Definition Method. In Proc. of the 24th EUROMICRO Conf.: Workshop
on SW Process and Product Impr. pp. 898-904. IEEE Computer Society Press,
Västerås, Sweden, Aug. 1998.

[22] D. Hamann, J. Järvinen, M. Oivo, D. Pfahl. Experience with explicit mod-
elling of relationships between process and product quality. In Proc. of the 4th

European SW Process Improvement Conf., Monte Carlo, Monaco, Dec. 1998.

[23] W.S. Humphrey. Managing the Software Process. Addison Wesley,
Reading, Massachusetts, 1989.

[24] International Organization for Standardization. ISO 9000: Quality
management and quality assurance standards; Part 3: Guidelines for the
application of ISO 9001 to the development, supply and maintenance of
software. Geneva, Switzerland, 1991.

[25] ISO/IEC: Information Technology: Software Process Assessment.
ISO/IEC Tech. Rep. 15504 Type 2, ISO (Ed.), Geneva, Switzerland, 1998.

[26] A.S. Lee. A scientific methodology for MIS case studies. MIS Quarterly,
March 1989, pp. 33—50.

[27] W.C. Lim. Effects of reuse on quality, productivity, and economics. IEEE
SW, 11(5):23–30, Sep. 1994.

[28] F. McGarry, S. Burke, and B. Decker. Measuring the impacts individual
process maturity attributes have on software products. In Proc. of the 5th Int’l
SW Metrics Symposium, pp. 52—62. IEEE Computer Society Press, Nov. 1998.

[29] NASA. Software measurement guidebook. Technical Report SEL-84-101,
NASA Goddard Space Flight Center, Greenbelt MD 20771, July 1994.

48

[30] M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber. Capability
maturity model, version 1.1. IEEE SW, 10(4):18–27, July 1993.

[31] D.E. Perry, N.A. Staudenmayer, and L.G. Votta. People, organizations,
and process improvement. IEEE SW, 11(4):36-45, July 1994.

[32] P. Simmons. Quality outcomes: Determining business value. IEEE SW,
Jan. 1996.

[33] R. van Solingen and E. Berghout. The Goal/Question/Metric method: A
practical handguide for quality improvement of software development. McGraw-
Hill, 1999.

[34] D. Stelzer, M. Reibnitz, and W. Mellis. Benefits and prerequisites of iso
9000 based software quality management. SW Process Newsletter, (12), 1998.

[35] F. van Latum, R. van Solingen, M. Oivo, B. Hoisl, D. Rombach, and G.
Ruhe. Adopting GQM-Based Measurement in an Industrial Environment. IEEE
SW, 15(1):78–86, January 1998.

[36] H. Wohlwend and S. Rosenbaum. Software improvements in an inter-
national company. In Proc. of the 15th Int’l Conf. on SE, pp. 212–220. IEEE
Computer Society Press, May 1993.

49

Establishing continuous assessment using
measurements

Janne Järvinen3, VTT Electronics, Finland & Fraunhofer IESE, Germany
Rini van Solingen, Tokheim & Eindhoven University of Technology, The

Netherlands

Abstract

Software process assessments have become commonplace in the software
industry. Assessments are sometimes regarded, however, as too infrequent,
expensive and disruptive. Hence, there is a clear need for alternative ways to
assess the current status of software processes and monitor the implementation
of improvement activities. An assessment of software processes is based on
finding indicators for establishing whether certain processes exist and how well
they are performed. Based on the assessment outcome, improvement actions will
be identified and guided with appropriate measurements. The software process
(re-) assessment can be supported and made more frequent by using data from
these measurements, and thus reducing the cost of the assessment.

In the European project PROFES (PROduct-Focused Improvement of
Embedded Software processes) an integrated, product-focused process
improvement methodology has been developed and tested in the industrial
partner sites. Among other things, PROFES integrates process assessment and
software measurement to enable continuous assessment.

This paper shows how this combination of assessment and measurement was
done in practice. It also describes examples of measurements and their
connection to the assessment method.

3 Contact the authors via: janne.jarvinen@vtt.fi or jarvinen@iese.fhg.de

50

1. Introduction

Many companies that make investments for software process improvement could
use their resources much more efficiently than today. The issue is that software
process assessment and software measurement programmes are mostly applied
separately, while there is some overlap on measuring processes. A single metric
can be used for multiple purposes. A metric can tell about a defect found in a
design document inspection, but it can also tell about the inspection process
efficiency. Moreover, the same metric can give information for establishing
whether an inspection process is performed in a given project. This kind of
measurement information can also be used to facilitate software process
assessment. The a priori assumption of this paper is that the cost of a software
process assessment is reduced if parts of the interviews and data gathering can
be integrated.

The paper is structured as follows: In Chapter 0 the relevant background for
continuous assessment and goal oriented measurement is introduced. Chapter 0
describes the fundamental principles and expected benefits of continuous
assessment. Chapter 0 portrays the PROFES project and the setting for this
study. Chapter 0 contains a description of the practical steps taken in the
PROFES project to apply continuous assessment. Also, an example is included
to illustrate the links between measurement and assessment.

2. Background material

2.1 Bootstrap

The BOOTSTRAP methodology [3] is an ISO 15504 (SPICE) compliant
software process assessment method that also supports the ISO-9001 standard.
Process assessment is performed both at organisational level (SPU-Software
Producing Unit) and at project level. At the organisational level assessment the
goal is mainly to assess the written official processes and in project level
assessment the goal is to assess how these processes are executed in practice.
With process assessment the strengths and the weaknesses of current processes
are identified through comparison with the assessment reference model.

51

The BOOTSTRAP methodology has been originally developed for the needs of
improving the capability the European software intensive industry.
BOOTSTRAP was designed to cover ISO 9001 requirements and to fit also to
small and medium sized organisations. During PROFES project the
BOOTSTRAP methodology has been enhanced to fulfill the requirements stated
for embedded systems development through the extension with new embedded
software specific process areas.

2.2 GQM

One of the most popular methods for software measurement is the
Goal/Question/Metrics approach (GQM) [1] [10], depicted in Figure 1.

Implicit Models

Q1 Q2 Q3 Q4

GOAL

M1 M2 M3 M4 M5 M6 M7

D
ef

in
iti

on
Interpretation

Influencing
factors

Quality
models

Figure 1: The Goal/Question/Metric paradigm.

GQM represents a systematic approach to tailoring and integrating goals with
models of the software processes, software products, and with particular quality
perspectives of interest. GQM focuses on the specific needs of the software
project and of the development organisation. Measurement goals are defined on
the basis of high-level corporate goals, and refined into metrics. In other words,
GQM defines a certain goal, refines this goal into questions, and defines metrics
that must provide the information to answer these questions. The GQM
paradigm provides a method for top-down metric definition and bottom-up data
interpretation. GQM is goal-oriented, which makes it especially popular in goal-
driven business environments.

52

The principles of GQM measurement are:

• A measurement programme must reflect interests of data providers and must
be based on the knowledge of real experts on the measurement goals. In this
paper these are members of the software project team.

• Since the design of the measurement programme is based on the knowledge
of the project team, only they can give valid interpretations of the collected
data. Therefore, they are the only ones allowed to interpret data.

• Due to the limited amount of time of project members, and their
commitments to project planning, conflicts of interest may occur when all
improvement efforts are assigned to the project team. Therefore a separate
team, a GQM team, must be created that facilitates the collection and
analysis of measurement data by performing all operational activities not
necessarily to be executed by the project team.

These principles imply that the members of the GQM team offer a service to the
software project team by doing most of the technical work, related to setting up
and performing the measurement programme. Essentially, during execution of
the measurement programme, the GQM team provides a data validation and
analysis service, by organising ‘feedback sessions’ in which graphical
measurement data is presented to the project teams [9] [10].

3. Principles of continuous assessment

Software process assessments have become an established part of improvement
programmes in the software industry (cf. e.g. [8]). However, the way in which
assessments are performed has been characterised as too infrequent, expensive
and disruptive to the software engineers (cf. e.g. [4], [11]). Hence, there is a
clear need for alternative ways to assess the current status of software processes
and monitor the implementation of improvement activities.

3.1 Principles of continuous assessment

Typically, an assessment is an annual or biannual snapshot of the software
development activities, and is conducted as a self-assessment or using an

53

external assessment team. Information gathering is done manually through
document reviews and interviews. Use of supporting tools is minimal.

The basic idea of continuous software process assessment is to collect relevant
information from the software process, as it becomes available. This information
can then be consolidated and used to help an assessor in judging the process
status.

There is a paradigm shift with continuous assessment. Information is
continuously gathered using existing data from the development process where
possible. While a competent assessor or team using available information does
the act of assessment in a traditional sense, the continual manner how the
assessment is done changes the role of assessment within process improvement.

The degree of continuity and automation determines how embedded the
assessment is in the software development process. If majority of assessment
information is gathered (automatically) via a measurement programme, the
notion of Measurement bAsed Assessment (MAA) clarifies this special instance
of continuous assessment. In this article we assume a hybrid approach for
continuous assessment where part of the data for assessment purposes are
collected automatically and part of data is collected manually via questionnaires
and checklists. Given the process and technological capability of the
organisations participating in the exploratory study at hand the hybrid approach
has been considered optimal.

The ISO 15504 is used as a reference framework for the software process
capability. When the ISO 15504 reference model is enhanced with the
assessment model defined in part 5 of the SPICE it is possible to find links
between measurable objects and the ISO 15504 framework (cf. Figure 2).
Specifically, the assessment indicators provide the adequate detail for
connecting process information with the framework. The indicators of process
performance are used to determine whether a process exists in practice.

54

REFERENCE
MODEL

ISO 15504

PROCESS DIMENSION

Process categories
Processes
(with definition

of process purpose)

Indicators of
Process performance

- Base Practices

- Work Products &

WP Characteristics

Assessment
indicators

CAPABILITY DIMENSION

Capability levels
Process Attributes

Indicators of
Process capability

- Management practices

- Practice performance
Characteristics

- Resource & Infrastructure
Characteristics

ASSESSMENT MODEL
(ISO 15504 Part 5)

Figure 2: The ISO 15504 framework.

For example, the software design process (cf. ENG.1.3 in ISO 15504 reference
model, [5]) is considered as existing if it can be determined that there exist
documents that specify

- an architectural design that describes the major software components that
will implement the software requirements;

- internal and external interfaces of each software component;

- a detailed design that describes software units that can be built and tested;

- consistency between software requirements and software designs.

If a software design process is functioning in an organisation it should be fairly
straightforward to determine the existence of the documents that satisfy the goals
listed above. This information could be contained, e.g. in a document
management system that keeps track of the documents produced against a
specified process. A report from this system would then help the assessor in
determining whether the software design process is performed.

55

Further, the ISO 15504 indicators of process capability are used to determine
how capable an existing process is. Linking information from the measurement
system to the management practices, characteristics of practice performance,
resource and infrastructure can assist an assessor in determining how well the
process is performed as intended by ISO 15504. For example, the performance
management attribute 2.1 of SPICE level 2 can be considered as fulfilled if

- objectives for the performance of the process will be identified (for example,
time-scale, cycle time and resource usage);

- the responsibility and authority for developing the work products of the
process will be assigned;

- the performance of the process will be managed to produce work products
that meet the defined objectives.

3.2 Expected benefits

There are two main areas where continuous assessment is expected to bring
benefits over the traditional approaches:

- Process visibility

- Assessment cost

With continuous assessment the process implementation becomes more visible.
This means that it is possible to see in detail what is done in the software
process. For example, this enables close observation of improvement activities
so it is more apparent whether new practices are adopted and successful long
before the usual re-assessment. Continuous assessment also provides the means
to detect process deviations earlier thus helping to manage process
implementation in two ways: Firstly, giving early signals on practices that are
not being adopted, indicating that people should be supported with the process
adaptation. Secondly, suggesting potentials for process change. Typically,
defined processes and procedures are quite rigid. In practice, processes are
dynamic, so they are always trying to change. Having support for visualisation
of process implementation can help in identifying processes that should change
or are already being changed in practice by the people using the process. This

56

way processes can be living representations of the work rather than folders on
bookshelves collecting dust.

The assessment costs are expected to be reduced with continuous assessment.
The working hypothesis is that collecting information from the software process
as it becomes available reduces the time needed for the interviews and document
analysis during an assessment. This data collection can greatly be supported by
appropriate tooling (cf. [7]). The key is to integrate the data collection into the
work processes in such a way that it is a natural part of the work. This can be
achieved in two ways: Either the data collection is essential for the work to be
performed (e.g. writing an inspection report) or that the work automatically
leaves marks in the tools and databases of the company. In integrating and
automating the data collection the cost/benefit –ratio should be regarded to find
an optimal mix.

4. Study Environment and Participants

The work presented in this paper on continuous assessment, results from the
Esprit project PROFES (23239). In the PROFES project, an integration is made
between assessments and measurement programmes in order to increase their
efficiency and effectiveness.

Two roles were present in the PROFES project for the development of
continuous assessment: method provider, and application providers. The method
providers were: VTT Electronics (Finland), University of Oulu (Finland),
Fraunhofer IESE (Germany), and Etnoteam (Italy). These four partners have
sound experiences with both assessments and GQM measurement programmes
resulting from international cooperation projects such as BOOTSTRAP, SPICE,
TAME, ESSI/CEMP, and PERFECT. The application providers were the
industrial companies offering practical expertise and real development projects
for PROFES. These three industrial companies were: Dräger Medical
Technology (The Netherlands), Ericsson (Finland), and Tokheim (The
Netherlands). All of these companies are active in the development, maintenance
and services of systems but in three different markets: medical technology,
telecommunications, and petroleum retailing. The application providers

57

participated by testing the continuous assessment methods in some of their
projects and/or departments.

The main objective to start with the development of continuous assessment was
the critique in the companies on the cost and duration of an assessment. Since
assessments were used in the PROFES methodology for process baselining only,
the required effort was considered too high. Also the calendar time (two months)
between the start of an assessment and the feedback of the findings was
considered to be much too long. On the other hand a measurement feedback
procedure was used that provided feedback on much shorter intervals with
considerably low effort to produce the results. However, the measurements
conducted and analysed were applicable for assessments directly. This
observation has supported one of the objectives set for the project, i.e. to
integrate the PROFES assessments with the PROFES measurement activities.
Initially, a full assessment was carried out in the three application providers. The
critique on the assessment cost and duration came from this initial assessment.

The second round of assessments had the objective to overcome this critique.
Two solutions were found:

• Limit the assessment to a sub-set of processes. Not all processes were
assessed, only those that have been worked on to achieve improvements
were re-assessed. This reduces the cost and shortens duration. However, still
a first large assessment is required.

• Use measurement data on the improved processes as evidence of
improvement. If the measurement data collected for the active measurement
programmes had an overlap with assessment indicators, this data was used
as evidence in the assessment.

This second round of assessments indicated that it is feasible to use
measurement data to shorten assessment duration and decrease assessment cost.
However, it also appeared that several of the assessment indicators were not
covered by the available measurement data. Therefore, additional effort was
needed to collect the evidence for these indicators.

Based on the experiences in the second round of assessments, it was concluded
that a more thorough integration of a measurement programme with assessment

58

indicators is needed in order to really carry out continuous assessment.
Translating the assessment indicators to software metrics, and applying this list
as a checklist during the design of a measurement programme, appears to be a
way forward to continuous assessment.

The experiences in the industrial companies were the main starting point for
developing the concept of continuous assessment, and the industrial companies
also specified most requirements for continuous assessment. Currently, the
concept of continuous assessment is being further detailed and developed. In
parallel, the companies are experimenting with the draft concepts for continuous
assessment in order to acquire experience with it and adjust these concepts to
make them as practical as possible.

5. Continuous Assessment Approach in PROFES

In PROFES, we decided to investigate the continuous assessment by combining
the BOOTSTRAP assessment approach with GQM–based measurement. The
approach has been motivated and constrained by the needs of the industrial cases
aiming to explore the practical applicability of continuous assessment. This
chapter describes the method used within PROFES for continuous assessment
and gives an example of the method application.

5.1 Steps for applying Continuous Assessment

The proposed steps to apply continuous assessment are as follows:

I. Select processes

II. Define indicators for process dimension

III. Define indicators for capability dimension

IV. Update GQM and measurement plans

V. Collect data and analyse results

59

I. Select processes

The principle in selecting processes for continuous assessment in PROFES has
been that only those processes are included that are either critical or currently
being improved. Generally, it is good to start small and gain experience with
continuous assessment. In short, good candidates are those that are a) already
measured, b) being or planned to be improved, and c) extensively supported by
tools (to minimise manual data collection). The selected processes should be
reviewed so that

• Target rating is recorded for each practice – can be the same as current rating
if only monitoring is attempted. This is the starting point to systematically
govern the (improvement) activities.

• Applicable sources for measurement data are defined. Examples of good data
sources with potential for data collection automation are Lotus Notes, MS-
Project, any Configuration Management system, any database that is used to
collect project data [cf. 7]. However, the data does not have to be always
automatically collectable (although this is usually preferred).

For each process the most important metrics are those indicating whether the
process is performing or not, i.e. producing useful results and fulfilling the
purpose of the process. This is the ISO15504 process dimension. Depending on
the chosen scope the measurements for ISO15504 capability dimension can also
be regarded. These measurements relate to the control, management, and
improvement aspects of the process. See later in this chapter for an example.
Note that there may be practices that are better left for assessment interviews;
i.e. not everything needs to be covered automatically.

II. Define indicators for process dimension

In ISO15504 process dimension there are Base Practices, that are the minimum
set of practices necessary to perform a process successfully. For example, the
base practices for the Software Construction Process (ENG.1.4) are: Develop
software units, Develop unit verification procedures, Verify the software units,
Establish traceability, i.e. typically covering coding and unit testing in a software
life cycle. Suitable metrics for base practices are usually those that give evidence

60

of the base practice existence, i.e. that something has been done that contributes
to fulfilling the purpose of the process. Mostly, the information should be found
from the artefacts that are produced in a particular process, i.e. work products.

III. Define indicators for capability dimension

The ISO15504 capability dimension should also be examined for the selected
processes. Basically, the capability dimension contains information on how well
the practices are done, and how well the process runs. Usually, going through
Level 2 of the capability dimension is enough as this is the state of the practice
today. Recent SPICE assessment trials results show that only 12% of process
instances (total 341) were higher than Level 2 [11] . Naturally, higher levels can
be revisited depending on target capability. The information for the capability
dimension can mostly be found from the project plan, project reporting
documents, configuration management system, and the actual work products.

IV. Update GQM and measurement plans

The definition of relevant measurements for continuous assessment does not
necessarily include a GQM goal tree formulation, as the ISO15504 processes
form the structure for the investigation. However, an existing GQM plan is an
excellent source of information. Some of the GQM measurements may also be
used to facilitate software process assessment. Augmenting an existing
measurement programme with process capability focus can bring added value
for reasonable costs. For example, it is possible to monitor process improvement
activities closely and evaluate the effectiveness of the process changes.

The integration of measurement activities into the software process must be
planned with care. Usually this involves at least minor changes to the process as
data must be recorded or structured in a way that is processable later. Software
tools and databases are a key source for process data but even there effort is
needed to structure, convert and extract data from various tools and databases.
Some data may also be entered manually from questionnaires or checklists.
Within PROFES, various checklists proved to be particularly useful for the
continuous assessment trials.

61

V. Collect data and analyse results

The data for continuous assessment indicators should be collected during project
execution as part of the data collection routines agreed in the measurement plan.
A spreadsheet program such as Microsoft Excel may be sufficient for data
consolidation and analysis. In PROFES project we have used the MetriFlame
tool ([7]) for managing the measurement data and producing graphs for analysis
sessions. MetriFlame also supports continuous assessment by providing links
between GQM–based metrics and ISO15504 processes. The frequency of
assessment data analysis varies but typically milestones in the project and GQM
feedback sessions (cf. Section 0) are good candidates for a snapshot of process
capabililty. Note that for some indicators there may be measurement data, but
for some indicators a quick check on the process by a competent assessor is
needed, as it is not cost-efficient to automate everything.

5.2 Example: Techniques for linking actual process
indicators with BOOTSTRAP processes

This example illustrates the process of defining metrics for continuous
assessment. Note that the final, detailed indicators are not in this example.

In general, a good place to start is to look for the work products related to the
process and base practices. In this sense the ISO15504 Software Construction
process – ENG.1.4 (cf. [5]) should be one of the easiest to trace (see Table 1).
Three out of four base practices ask for existence of work products, i.e. files that
are usually made during development. If these are in a Configuration
Management system (here PVCS for example), then it should not be difficult to
recall this information. Alternatively, just a list of planned work products or
artefacts would be the basis for checking whether something is done or not. This
could be in Lotus Notes, MS-Project, MS-Excel, etc.

62

Table 1: Example sources for continuous assessment indicators for the
ISO15504 Software Construction process (ENG.1.4).

Base Practices N P L F Possible way of measurement Example metrics

BP.1 Develop software units x X From CM (PVCS) or controlled list # of source files

BP.2 Develop unit verification

procedures

x X From CM (PVCS) or controlled list # of test cases/unit

BP.3 Verify the software units x X From CM (PVCS) or controlled list # of completed

test cases/unit, #

of review reports

BP.4 Establish traceability x X A bit problematic – see below

x=current value X=expected target value N=Not , P=Partially, L=Largely, F=Fully achieved

For establishing traceability (BP.4) this is usually not so straightforward. If the
development is done within a comprehensive CASE environment or a
requirement management is used, then traceability should not be a big problem.
For a more ”normal” situation a suggestion would be as follows: Have a
traceability mapping (document) related to each software unit where the
relationship between the code, its design and relevant requirements are clear.
Later, information about related testing materials should be added to this
traceability mapping.

The base practice rating could then be based on the level of achievement
although this should be done carefully (if at all). For example, if all planned
software units are developed, the rating for BP.1 is F, i.e. base practice is fully
achieved. In practice, the criterion for an F can also be less than 100%.
However, one should be cautious for automatic rating because from existence
alone it can not be decided whether some existing work products contribute to
fulfilling the purpose of the process. For example, lets assume everybody does
coding their own way. This will most likely create problems later, so even if all
software units are done, one could question whether base practice BP.1 is
completely fulfilled. So it depends on the situation. Therefore, it is essential that
a competent assessor is making the judgement for process capability.

Now, let´s look at level 2 (see Table 2). For the Performance management
attribute (2.1) it looks like most of the data could be gathered from the project
plan, project report(s), and a defect management tool (here PSBugs).

63

Table2: Examples of continuous assessment indicators at capability level 2.

2 Managed N P L F Possible ways of measurement Example metrics

2.1 Performance management attribute

2.1.1 Identify resource

requirements

x X Estimate needed resources as part of

project plan (MS-Project)

% of estimates done,

checklist (estimates y/n)

2.1.2 Plan the performance of

the process

x X Decide which data to use from project

plan (MS-project)

Depth of a WBS, checklist

(planning uptodate y/n)

2.1.3 Implement the defined

activities

x X Decide which data to use from project

plan/reports (MS-Project), PSBugs

of source files vs. plan,

effort vs. plan

2.1.4 Manage the execution of

the activities

x X Review documents (Lotus Notes),

PSBugs

of replans, # of review

docs

2.2 Work product management attribute

2.2.1 Identify req. for the

integrity and quality

x X CM (PVCS), Quality plan (in project

plan)

of requirements for

integrity and quality

2.2.2 Identify the activities

needed

x X Project plan (MS-Project) # of quality activities, e.g.

reviews

2.2.3 Manage the

configuration of work

products

x X CM (PVCS) # of files under CM,

existence of CM audit

report.

2.2.4 Manage the quality of

work products

x X Review materials (Lotus Notes),

PSBugs

of review docs vs.plan,

of corrective actions open

x=current value X=expected target value N=Not , P=Partially, L=Largely, F=Fully achieved

Most information for the performance management can be found using MS-
Project data. For the Work product management attribute (2.2) the sources for
data are mostly Configuration management system (PVCS), and tracking and
review materials contained in MS-Project and Lotus Notes. Quality management
information might also be contained as part of the project plan. Defect data
(PSBugs) reveals how defects are uncovered and corrected giving information
for determining the capability of software construction. For example, the unit
verification procedures would probably need to be improved if there are
repeatedly coding defects that are found in integration phase or later. Note that
not all measurements need advanced tooling. For example, a project managers
tick mark on “planning up to date” box on a checklist gives already processed
information on management practice 2.1.2–Plan the performance of the process.
Finally, it should be remembered that the data is only collected using this

64

structure; a competent assessor is needed to make the process capability rating.
For example, it depends on the assessors judgement of the situation what does it
mean for management practice 2.2.4 to have a value of 75% on “# of review
docs/plan”, and a value of 44 on “# of corrective actions open” (see Table).

5.3 Experiences

The preliminary experiences from trialing the continuous assessment approach
within PROFES are encouraging. It seems to be feasible and useful to define and
use measurements for assessment purposes. Early and interactive feedback of
process improvement activities appears to provide a healthy monitoring
atmosphere within the development projects. However, there are limitations of
the approach, which can also viewed as prerequisites for continuous assessment.
Firstly, there should be experiences of goal oriented measurement, and
preferably an existing measurement programme where continuous assessment
could be added. The process capability viewpoint can be useful in feedback
sessions but setting up measurements only for continuous assessment does not
seem to be a cost effective solution. Secondly, it is not easy to find
measurements for continuous assessment from scratch. Tool support and
guidance is needed to map the ISO15504 structure and indicators to actual,
relevant measurements. There should be, for example, a list of possible metrics
associated with each indicator. Finally, as it looks like that the scope of
continuous assessment is largely defined by current measurement programmes,
it seems to be difficult to extend the approach to cover processes in an
organisation more widely. On the other hand, promising experiences were
gathered from using various checklists for the data gathering purposes. Further
research is needed to explore the use of checklists for continuous assessment.

6. Summary and Future Work

The paper has provided an overview of the continuous assessment concepts and
related exploratory study in the PROFES project. The motivation has been to
reduce assessment costs and use assessment more closely within product focused
process improvement to provide better process visibility and better transparency
to changes in product quality. The suggested approach integrates assessment and

65

goal-oriented measurement using ISO15504/BOOTSTRAP as a specialised
measurement instrument while introducing the powerful feedback mechanism of
GQM. Extensive tool support facilitates continuous assessment but is not always
needed. The results of the exploratory study in PROFES are still very
preliminary, but under specific circumstances the approach seems to provide
additional benefits with reasonable costs.

The continuous assessment work within PROFES will be continued in the
application projects to gather experiences of using the approach. Also, the aim is
to gather an initial set of indicators suitable for continuous assessment for a
limited set of processes. These could be used as a starting point for planning
continuous assessment in other companies. Finally, the MetriFlame tool will be
extended to provide more support for continuous assessment by mapping
measurement programme data and definitions to ISO15504 processes.

7. Acknowledgements

The authors would like to thank the members of PROFES consortium and
especially Dietmar Pfahl and Matias Vierimaa for their valuable input for this
paper. This work has been supported by the CEC through the PROFES project
No 23239.

66

References

1. Basili, Victor R., Caldiera, Gianluigi, and Rombach, H. Dieter. “Goal Question

Metric Paradigm”. In John J. Marciniak, editor, Encyclopaedia of Software

Engineering, Volume 1, John Wiley & Sons, 1994, pp. 528–532.

2. Basili, Victor R., Caldiera, Gianluigi, and Rombach, H. Dieter. “Experience

Factory”. In John J. Marciniak, editor, Encyclopaedia of Software Engineering,

Volume 1, John Wiley & Sons, 1994, pp. 469-476.

3. Bicego, Adriana, Khurana, Munish, and Kuvaja, Pasi. “BOOTSTRAP 3.0 –

Software Process Assessment Methodology”. In Proceedings of the SQM ’98, 1998.

4. Campbell, M., Järvinen, J., Thomson, H., Vernon, J. “Methods and Tools for

Software Process Assessment and Improvement”. In the proceedings of The 5th

European Conference on Software Quality, Dublin, Ireland, September 16-19, 1996,

pp. 11-21.

5. ISO/IEC TR 15504-2 : “Information Technology - Software Process Assessment -

Part 2: A Reference Model for Processes and Process Capability”. Technical

Report type 2, International Organisation for Standardisation (Ed.), Case Postale 56,

CH-1211 Geneva, Switzerland, 1998.

6. Latum, Frank van, Solingen, Rini van, Oivo, Markku, Hoisl, Barbara, Rombach,

Dieter, and Ruhe, Günther. “Adopting GQM-Based Measurement in an Industrial

Environment”. IEEE Software, 15(1), January 1998, pp. 78–86.

7. Parviainen, Päivi, Järvinen, Janne, and Sandelin, Toni, “Practical Experiences of

Tool Support in a GQM-based Measurement programme”. In Software Quality

Journal, Volume 6, No. 4, December 1997, pp. 238 - 294.

8. Rementeria, S., et al., “1995/1996 Software Excellence Survey: Model and Detailed

Results Analysis”, European Software Institute, Technical Report ESI-1996-

PIA/96282, 1996.

9. Solingen, R. van, Berghout, E., Kooiman, E., “Assessing feedback of measurement

data: Practices at Schlumberger RPS with reflection to theory”. In proceedings of

the 4th International Software Metrics Symposium, IEEE-CS, November 1997.

67

10. Solingen, R. van, Berghout, E., “The Goal/Question/Metric method: a practical

handguide for quality improvement of software development”. McGraw-Hill

Publishers, 1999.

11. SPICE Project Trials Team. “Phase 2 Trials Interim Report”. June 17, 1998.

68

SPECIFIC REQUIREMENTS FOR ASSESSING
EMBEDDED PRODUCT DEVELOPMENT

Pasi Kuvaja1, Jari Maansaari1, Veikko Seppänen2, Jorma Taramaa2

(in alphabetical order)

1Department of Information Processing Science, University of Oulu
P.O. Box 3000, Linnanmaa, FIN-90401 Oulu, Finland

[Jari.Maansaari@oulu.fi, Pasi.Kuvaja@oulu.fi], fax: +358 8 5531890

2VTT Electronics
P.O. Box 1100, Linnanmaa, FIN-90571 Oulu, Finland

[Jorma.Taramaa@vtt.fi, Veikko.Seppanen@vtt.fi], fax: +358 8 5512320

Abstract

In this paper, new requirements to enhance any ISO 15504 conformant
assessment methodology for embedded systems development process
assessment are presented. The findings of the paper were discovered in an
ESPRIT Project called PROFES (PROduct Focused improvement of Embedded
Software processes), where the specific characteristics of embedded systems
development were analysed in three industrial organisations. The results of the
paper are requirements to include product management, product life-cycle and
some specific support processes in the assessment of embedded software
producing units. These processes, which are defined and outlined in the paper,
enhance regular assessment models by making them more applicable for
assessing embedded product development organisations and projects.

1. Introduction

The number of products based on embedded computer systems has rapidly
increased. At the same time, complexity of product features controlled or
supported by embedded computers has dramatically increased and the role of
embedded software has become crucial. All these developments make it

69

necessary both to enhance existing processes and to define new ones in
industrial embedded systems development. It is clear that embedded systems
development includes specific features that cannot be found in traditional
software development. It is thereby obvious that these features set new
requirements for the process assessment and improvement methodologies, which
have this far been developed mainly for non-embedded software applications in
mind.

All assessment methodologies have a common goal to evaluate software
processes against the best practices and produce a time-slice of the processes at
that moment. All software assessment methodologies are general in their nature,
and thereby do not address features that are specific to some specific domain.
Additionally, most assessment approaches assume explicitly4 that software
development is either in-house or contract based development, which restricts
their usability in the assessment of product development. This applies for
example to all the CMM based approaches [SEI93, SEI95] that use the U.S
Department of Defence standard (DoD8127A) [DoD88] for process definition.5

Limitations of current assessment methodologies to adequately support
assessment and improvement of embedded systems development were
recognised by industrial companies aiming at improving their embedded
products. This led to the establishment of the PROFES project6 [PRO97], whose
main goal is to develop, validate and exploit a methodology for product quality
driven software process improvement. The project combines and enhances well-
known and widely used process assessment [KSK94], improvement [BC95] and
goal-oriented measurement [BCR94] methodologies to form a new improvement
methodology that identifies also product and process dependencies. In the paper
findings of PROFES project are used in defining a set of new processes that are
central in developing product based embedded systems. Scope of the paper is

4 Although it has not been stated in any form, but only those processes are involved in the reference
models of the assessment approaches.
5 The standard focuses on the contract management and organisation’s internal quality assurance
processes.
6 PROFES (PROduct Focused improvement of Embedded Software processes) is an ESPRIT
Project (No 23239) lasting 1.1.1997 to 30.06.1999. The methodology providers in PROFES
consortium are Etnoteam S.P.A from Italy, Fraunhofer IESE from Germany, University of Oulu, and
VTT Electronics from Finland, and the application providers are LM Ericsson Finland, Dräger Medical
Technology from the Netherlands, and Tokheim Retail Petroleum Systems from France.

70

focussed onto those processes directly related to product development, product
management and support required in embedded product development. The
results presented in this paper were derived through a literature analysis
([UlE95, Cas96, GeK96, HuD96, MWM97, SEP90, Sol95, SKO96, Sta96,
SEI95, Boo97, JKK97]) and three industrial application experiments.

The composition of the paper is as follows. Section 2 defines basic concepts
related to product development and section 3 introduces characteristics of
embedded systems. Section 4 describes a defined general life-cycle model for
developing embedded products and identifies key activities for each phase of
life-cycle. Section 5 summarises findings of the paper and presents directions for
future work.

2. Development of industrial products

The success of industrial companies in embedded systems business depends on
their ability to identify customer needs and to create quickly products that meet
the needs and can be produced at low cost. Achieving these goals is not only a
marketing problem, nor is it a pure design problem or a manufacturing problem;
but it is a product development problem involving all the functions. An
industrial product is an artefact sold by an enterprise to its customers. Product
development is a set of activities beginning with the perception of a market
opportunity and ending in the production, sale, and delivery of a product. A
product development process is a way to see product development as a product
life-cycle conformed by a sequence of steps or activities that an enterprise
employs to conceive, design, and commercialise a product. A general product
development process is illustrated in Figure 1.

Concept
development

System-level
design

Detail design
Testing and
Refinement

Production
Ramp-Up

Mission
statement

Product
launch

Figure 1. A general product development life-cycle [UlE95]

71

The product development life-cycle presented in the Figure 1, includes five
phases: product concept development, system-level design, detail design, testing
and refinement and production ramp-up. In the product concept development
phase the needs of the target market are identified, alternative product concepts
are generated and evaluated, and a single product concept is selected for further
development. The system-level design phase includes the definition of the
product architecture and the division of the product into subsystems and
components. The product specification is completed in the detail product design
phase by defining the geometry, materials, and tolerances of all of the unique
parts of the product. The testing and refinement phase involves the construction
and evaluation of multiple pre-production versions of the product. In the
production ramp-up phase the product is manufactured using the intended
production system. The purpose of the ramp-up is to train the work-force and to
solve any remaining problems in the production processes.

The general development life-cycle described above will differ in accordance
with a organisation’s unique context. The general approach is most convenient in
market-pull situation, where organisation begins product development with a
market opportunity and then seeks out whatever technology is required to satisfy
the market need. Technology-push, platform dependent, process-intensive and
customised are the four other product development approaches defined by
[UlE95]. Many products based on embedded systems are nowadays developed
using the "platform dependent" approach, although the versatility of embedded
systems product applications makes it hard to evaluate the exact portion of this
approach. A platform product is built around a pre-existing technological
subsystem, the platform, for which previous development investments have been
made. The platform may consist of one or several distinct layers or smaller
subsystems and modules. Therefore, every attempt is made to incorporate the
platform into several different products. In this approach concept development,
system-level design and detail design phases are affected by the reuse of the
platform, and a process to maintain the platform must be established.

Expected application risks and quality characteristics of the product to be
developed have also significant influence to product development process. It is
quite clear that for example reliability and functionality requirements are
different between different products. This fact has also strong effects to the
quality characteristics of software to be developed. In a survey [SKO96] that

72

was carried out among embedded systems professionals’ world wide, reliability
was indicated as the most critical requirement for embedded software.
Maintainability and expandability were also seen quite important by many of the
respondents of the survey. In the PROFES project the results of an inquiry
among the experts of the application providers resulted that the three most
important quality characteristics are reliability, maintainability, and cost-
effectiveness. One of the key visions of the PROFES project is that product
quality improvement in the domain of embedded systems will be achieved
through the application of a methodology (a framework of methods and tools)
for embedded systems software improvement that is driven by customer oriented
product improvement needs.

3. Embedded computer systems

3.1 Embedded systems domain

Embedded systems are electromechanical systems relating electronics,
mechanics, computer hardware and software closely to each other. They consist
of control, communication and other intelligent functions implemented by using
one or more computing modules. Embedded systems are usually built using
several different technologies. In the subsequent figure the conceptual structure
of embedded systems is outlined. Electronic products in which embedded
systems are incorporated are the target environment of the systems. The primary
task of the system is to control the target environment, very often within strict
timing, resource consumption and reliability constraints. The control of the
target environment is typically implemented using sensors and actuators that
may themselves be embedded systems or unintelligent input-output devices.
Unintelligence of the target environment is still typical in many embedded
systems applications, although embedded control is rapidly diffusing to
previously unintelligent appliances, such as push buttons, light bulbs, tickets and
price tags to name just a few. The target environment is often distributed, i.e.
there is a combined embedded control and communication problem to solve.
Embedded communication is increasingly based on digital signal processing
(DSP) technologies, and wireless communication technologies are rapidly
emerging. The next generation of embedded systems will support ubiquitous

73

computing, computers will be "everywhere" and communicate wirelessly with
each others.

Embedded
Systems (Domain)

Embedded Product Use Environment

Embedded
Computer System

Target
Environment

Standards End UsersOperators

Software Electronics Mechanics

Figure 2. The conceptual structure of embedded systems.

The core technological parts of embedded systems are embedded software and
computer hardware (Figure 2). Embedded software consists typically of a
combination of built-in and general-purpose software used to control the target
environment. Electromechanical products, where the role of mechanics is
essential, are called mechatronics applications. Mechatronics is viewed as
encompassing topics ranging from embedded control of automated devices and
equipment to robotics and manufacturing automation. Embedded systems used
in mechatronic applications are associated particularly with the enhancement of
products, machinery and processes. Considering the three industrial case
organisations of the PROFES project, automated gasoline pumps used at service
stations are good examples of mechatronic applications, where reliability
requirements of the embedded control are extremely high.

The use environment of products controlled by embedded systems includes end-
users, operators and standards. End users range from non-technical to highly
technical people who use the product for highly specific purposes, such as
research scientists and medical experts. Operators are organisations or groups of

74

people who organise, manage, support and make use of the product. A good
example of an operator is a telecom operator who has established and manages
and controls a telecom network for mobile telephones. Standards set a basis and
regulate the use of many products in their use environments. A good example is
a mobile communication standard, such as GSM that must be followed by all
product developers.

Either the use environment or some standard or both may define the information
content, or services to be provided by the product, and thereby affect directly to
the characteristics of the embedded system incorporated in the product. Medical
devices used in intense care units or operating theatres are examples of products,
whose embedded control systems must be developed by taking into account both
specific use environments and national and international standards and
regulations.

3.2 Domain-specific characteristics of embedded
systems

The modern embedded systems and their development very often include the
following specific characteristics:

� software is closely connected to hardware;
� product design is constrained by the implementation technology;
� different technologies used in the same embedded system are

developed in parallel;
� different low-level and high-level software implementation

technologies are used;
� real-time processing and data management are used, and are often

based on a distributed system architecture;
� reliability requirements are crucial;
� device autonomy is used;
� maintainability and extendibility through new functions, technologies

and interfaces is often required;
� cost of the product is important in mass-markets;
� short development lead-time (time-to-market) is required.

75

The simultaneous development of a multitechnological implementation is typical
to many embedded systems. The use of several different hardware, electrical and
mechanical implementation technologies and their tight connection to the
software is one of the central system characteristics. This creates needs to define
which product functions will be implemented using which technologies.
Although functions would have been successfully allocated to technologies, their
further development requires understanding of both logical interconnections
between functions and physical interfaces between different technological parts.

Most embedded systems involve tightly coupled hardware and software parts.
Product markets and use environments set requirements which force their
developers to tailor these parts to different purposes. Since relationships between
software and hardware intensive parts are direct and inflexible, a change in one
of the technologies may demand changes in the other technology. This means
that changes often go through the interfaces of implementation technologies. As
implementation technologies evolve rapidly, it is quite common to make new
versions of the products by adopting new technologies. In both cases
maintainability and extendibility of software become critical because the
software have already been delivered to customers. Since reliability is essential
in many applications and cost effectiveness is a driving force in electronic mass
products, most technological and functional changes need to be addressed at the
product level.

The development environments of embedded software have been quite specific
and restricted, when compared to other software-intensive applications, which
are executed on fully commercial computing platforms and developed using
advanced design and testing tools. The main reasons behind are as follows: low-
level programming languages, i.e. assembly languages have been used especially
in time-critical parts of the software; only restricted ready-made system software
solutions have been available, e.g. minimal or missing operating system
functions; and testing environments must have been tailored for specific product
deliveries.

Although the situation is improving in embedded systems development, many of
the limitations are still valid. The use of more powerful microprocessors in high-
end embedded systems has already made possible to use more advanced
software development environments e.g. in aerospace, telecommunications and

76

automotive industries. This has, however, created new needs to integrate data
processing and application development environments to embedded systems and
software design tools. High-end embedded systems include, on one hand,
subsystems that come close to traditional data processing applications, such as
workstation-based real-time server machines. On the other hand, they may also
include such deeply embedded subsystems as intelligent sensors and actuators.

Embedded systems are generally real-time systems, which respond to events
within specified time limits when controlling the target environment. Therefore
they are quite different from traditional data processing applications where the
computer system and the use environment may have a rather loose connection.
In addition to this, many products that are controlled by embedded systems are
required to have a good service level e.g. they have to be in use for twenty-four
hours every day. Therefore, their functionality is characterised by high
autonomy. This requires software solutions that are highly dependent on
different phenomena and situations that may occur in the target and use
environments.

The volume of embedded systems has rapidly increased in several application
areas, e.g. in consumer electronics, telecommunication, and automobile industry.
This has created high competition. The role of embedded systems has often
become essential in the determination of the product cost. However, the
increased cost of using more efficient embedded systems has to be balanced by
the willingness of the customers to pay for the increased functionality that the
new product generations provide.

4. Embedded product development processes

The processes that are required in the assessment of embedded systems
development are those needed to manage the relationships between the
company, markets and mass of customers. The following three process classes
were identified through a literature analysis and three application experiments:

� product management processes,
� product life-cycle processes, and
� supportive processes.

77

4.1 Product management processes

The main goal of the product management processes is to guarantee a
competitive portfolio of products that creates and satisfies customer and market
needs. The more specific goals are customer satisfaction and product
profitability. Product management processes assess product goals, strategies and
plans, manage the decision process for changes in the product portfolio, and
provide product information to the other processes of the producing unit7.
Product management processes contribute mostly to time to market and
customer lead time quality characteristics. They are also expected to contribute
in improving the market trust, reaching high level of customer satisfaction, and
increasing the profitability of the product. Potential internal effects of the
product management processes onto the product producing unit are improved
efficiency, increased individual motivation, and improved quality of work. The
product that the product management processes are managing might be
recognised at least from the following viewpoints: customer solutions,
engineering requirements, product information, pricing, distribution, and service.
The product management process class contains product strategy formulation,
and reuse processes.

The purpose of the product strategy formulation process is to continuously
assess the market needs and specify properties and product business plans for
each product area. Successful execution of the process defines the marketing
strategy, evaluates the implementation technologies available and plans the
product options, identifies the suppliers, defines the product assembly scheme,
evaluate the economic feasibility of the production, and identifies the product
maintenance strategy.

The purpose of the reuse process is to promote and facilitate the reuse of new
and existing software work products from an organisational and product/project
perspective. The activities of the reuse process are to define reuse strategies, to
identify and establish reuse activities, to identify reusable entities, and to
establish reuse infrastructure.

 7 The unit within an organisation where the product is produced and/or maintained, often acronymed
PPU.

78

4.2 Product life-cycle processes

The product life-cycle processes are: product requirements specification,
product design, systems design and implementation, systems integration and
testing, and production and installation. The following figure (Figure 3)
illustrates the life-cycle processes that form a logical order of execution.

P r o d u c t
r e q u i r e m e n t

d e f in i t io n
F e a s ib i l i t y s t u d y

A p p l ic a t io n
r e q u i r e m e n t
s p e c i f i c a t io n

F u n c t io n a l
d e s ig n

P r o d u c t
a r c h i t e c t u r e

d e s ig n

M e c h a n ic a l in c l .
e l e c t r ic a l d e s ig n
a n d im p l e n t a t io n

E l e c t r o n ic s (A S IC ,
F P G A , C O T S) d e s ig n

a n d im p l e m e n t a t io n

S o f t w a r e d e s ig n
a n d

im p l e m e n t a t io n

P r o d u c t
c o n s t r u c t io n

P r o d u c t
v a l id a t io n

P r o d u c t io n
r a m p - u p

3 U R G X F W � U H T X L U H P H Q W V � V S H F L I L F D W L R Q

3 U R G X F W � G H V L J Q

6 \ V W H P � G H V L J Q � D Q G � LP S O H P H Q W D W L R Q

6 \ V W H P � L Q W H J U D W L R Q � D Q G � W H V W L Q J

3 U R G X F W L R Q � U D P S � X S

M is s io n s t a t e m e n t

P r o d u c t a n d a p p l ic a t io n r e q u i r e m e n t s

P r o d u c t a r c h i t e c t u r e

M e c h a n ic a l , e l e c t r o n ic s a n d s o f t w a r e c o m p o n e n t s

P r o d u c t io n r a m p - u p

P r o d u c t l a u n c h

Figure 3. Life-cycle processes for embedded product development

The purpose of the product requirements specification process is to define the
product requirements, and ensure both economical and technical feasibility of
the product to be developed. The product requirements are defined in co-
operation with people from marketing, manufacturing, service & support and
R&D, and then documented in the product requirements specification. People
responsible for collecting information and feedback from the customers play an
important role in this process. Product requirements specification process

79

includes three main activities that are: product requirements definition,
feasibility study, and application requirements specification.

Main objective of product requirements definition is to identify possible
business opportunities and develop/evaluate preliminary product ideas according
to these opportunities. The product management team is responsible for
collecting product requirements from the customer. Different types of
requirements (i.e. electronics and software requirements) may already be
separated by the product team and passed to the project management team.
Besides this, for those ideas chosen for further development a business plan is
developed in this phase. Feasibility study involves activities related to analysing
initial product requirements and product ideas, evaluating available technologies
and designs, risks and costs. Product specification document and project
management plan is then developed. Product specification document contains
information related to product architecture, project plan, risk analysis, and
project budget. In Application requirements specification requirements for
product to be used in a specific market are defined. These requirements are also
collected from customer as product requirements but they are specified to special
market

Main objective in product design process is to define functional characteristics
and architecture of the product. The role of R&D and manufacturing is
emphasised in the phase where the system level architecture of the product
implementation plan is defined with specifications of the software, electronics,
mechanics, etc. Product design process includes two main activities that are
functional design, and product architecture design. In functional design the
functionality of the product is defined in detail. This is done by analysing
functions of the system in terms of behaviour, structure and cost. User manual is
also initiated in this activity. In product architecture design software, electronics
and mechanics designs are refined, verified and validated. User manual is
updated and the release of the product is decided for further development.

All components (including software, electronics and mechanical) of the product
are designed and implemented in systems design and implementation process.
From the viewpoint of the electronics development, the process has been well
established since the 1970’s and has been producing quality products up to date.
As the role of software has evolved, its size has increased remarkably, often

80

taking majority of resources allocated for product development work. This has
increased the needs for product and project management in terms of
understanding the dynamics of software development more comprehensively.

Today the hardware development process includes circuit design, printed circuit
board (PCB) layout design (using specific computer-aided electronics design
automation (EDA)), and hardware and electronics production. ASIC
development has become common. It resembles software development, since the
design phase is based on the application of specific hardware design languages
(VHDL). The development of mechanics includes analysis and design of
dynamics, motion, and control problems. Computer-aided design tools provide,
for example, design optimisation and simulation support. Behaviour or algorithm
design is a specific task in the development of embedded systems. In
mechatronic applications algorithms are used to control the target environment
which can include, e.g., hydraulics, pneumatics, and electronics. In
telecommunication, algorithms support e.g. digital signal processing. In
electronic instruments they are used, for example, to analyse measurement data.

In the systems integration and testing process, the product components are
integrated with several testing steps before the whole product is tested. The last
testing phase may include extensive field-testing and certification before the
product is ready for production and installation. Due to the close connection of
several technologies, concurrent engineering principles have become an
increasingly important means to manage the development of embedded systems.
Systems integration and testing phase includes following main activities: pilot
product construction, and pilot product validation. Pilot product is constructed
by integrating mechanical, electronic and software components and by executing
integration tests. The product documentation including user manual is completed
in this activity. Pilot product is validated by executing function and field tests.
Appropriate corrective actions are taken according to test results.

In the production ramp-up process the product is manufactured using the
intended production system. The purpose of the ramp-up is train the work-force
and to work out any remaining problems in the production. The products
produced during production ramp up are in some cases supplied to preferred
customers and are carefully evaluated to identify any remaining flaws before the
actual production is started.

81

4.3 Supportive processes

Although the main focus of the three PROFES application experiments was on
life-cycle processes, some processes related to support area impact all the
processes. The supportive process class contains the following processes:
measurement, process control, and product control and promotion,

The purpose of the measurement process is to collect and analyse data relating to
the products developed and processes implemented within the organisational
unit, to support effective management of the processes, and to objectively
demonstrate the quality of the products. Successful execution of the process
results the following outcomes: An appropriate set of measurements, driven by
the project and organisational goals, will be identified. All data required will be
collected and analysed. A collection of historical data relating to process
implementation will be established and maintained. Measurements will also be
used to support decision making and provide an objective basis for
communication between the interested parties.

The purpose of the process control process is to collect and analyse data relating
to the performance and management of the processes within the organisational
unit, to support effective management of the processes, and to monitor the
effects of process changes. When the process is successfully executed process
data is collected and analysed, performance and management of the processes is
evaluated, and process performance and changes are monitored.

The purpose of product control and promotion process is to provide other
processes with relevant product information, such as release information and
facts. When the process is successfully used commercial support and customer
contacts will be set, promotion and training material is developed, product is
designed, and production environment is prepared.

82

5. Summary

Findings of the PROFES project that are reported here, outline embedded
systems specific enhancements to any ISO 15504 conformant assessment
approaches8. The enhancements were identified in a literature analysis and
inquire among the industrial partners of the project. In this way the processes
that were discovered are those actively used and existing in the development of
modern embedded systems. The enhancements were implemented in the
BOOTSTRAP methodology and validated in the assessments performed in the
three embedded applications of the industrial partners.

The new processes cover the product viewpoint that is not explicitly present
even in the becoming standard for software process assessment and
improvement (ISO 15504) or in any commercial assessment methodologies (for
example in CMM). The new processes define a new process area of product life-
cycle, product management processes and new supportive processes.

6. Future efforts

It is quite clear that more work is needed to validate and incorporate the new
processes into embedded systems assessment and improvement. In fact, some
validation work has already been done by applying the approach defined earlier
in the SPICE project9. Another line of future research effort is needed to
discover whether the new processes defined here will cover the increasing needs
of the future embedded systems that are based on platform solutions. Already
today a number of embedded systems based products are developed using
platform solutions and the number is rapidly increasing. One way to continue
might be to define new or enhance the current processes to cover the evolution
and validation of the embedded system platform, and reuse of platform elements
(like requirements, specifications, designs or ready-made implementations)

8 In the PROFES project, BOOTSTRAP assessment methodology was used.
9 To speed up the work to develop a material to become a basis for a new standard (ISO 15504),
ISO/IEC/SC7set a working group (WG10) to carry out the development stage through an
international project called SPICE (Software Process Improvement and Capability dEtermination).
See also [PaK94].

83

Reuse contains screening, selection, modification and integration of platform
elements. Several support processes not addressed in this paper, such as
configuration management, will also become more complicated in platform-
based embedded systems development.

7. Acknowledgements

The research, whose results are described in this paper, was carried out in the
Esprit4 project PROFES (EP 23239) funded by the European Union. In addition
to VTT Electronics, the University of Oulu and LM Ericsson Finland, Dräger
Medical Electronics (the Netherlands), Etnoteam (Italy), Fraunhofer IESE
(Germany) and Tokheim Retail Systems (the Netherlands) participate in the
project. They have also contributed to the research reported in this paper. The
financial support of Tekes for the Finnish parties of the PROFES project is
gratefully acknowledged.

References

[BB94] Bache, R. and Bazzana, G. Software Metrics for Product Assessment,
McGraw-Hill Book Company, London, UK, 1994, 248 pages.

[BCR94] Basili V.R., Caldiera G. and Rombach H.D. Goal Question Metric
Paradigm. In J.J. Marciniak, ed., Encycl. of SW Eng., vol. 1, pp. 528–532.
John Wiley & Sons, 1994.

[BCR94a] Basili V.R., Caldiera G. and Rombach H.D. Experience Factory. In J.J.
Marciniak, ed., Encycl. of SW Eng., vol. 1, pp. 469–476. John Wiley &
Sons, 1994.

[BC95] Basili V.R., Caldiera G. Improve Software Quality by Reusing Knowledge
and Experience. Sloan Management Review, pp. 55-64, Fall, 1995.

 [BiJ98] Andreas Birk, Janne Järvinen, Seija Komi-Sirviö, Markku Oivo, Dietmar
Pfahl, PROFES – A Product-driven Process Improvement Methodology,
In Proceedings of the Fourth European Software Process Improvement
Conference (SPI ‘98), Monte Carlo, Monaco, December 1998.

[Boo97] Bootstrap Institute. Bootstrap v3.0: Technical Overview, 1997.

[Cas96] Castelli, G. Software Architectures for Deeply Embedded Systems: The
OMI Approach, in Proceedings of An International Symposium On-board
Real-time Software, ESTEC, Noordwijk, The Netherlands, November
1995, ESA, SP-375, pp. 87-93.

84

[ESA91] ESA Software Engineering Standards ESA PSS-05-0. Issue 2. ESA Board
for Software Standardisation and Control, European Space Agency, Paris
(February 1991).

[GeK96] George, G.W. and Kryal, E. The Perception and Use of Standards and
Components in Embedded Software Development - A report for the OMI
Software Architecture Forum, July 1996, Draft, 28 p, the www address:
http://www.osaf.org/resource.html, July 1996, Draft, 28 p.

[HuD96] Hurst, W. and Dennis, J. OMI Software Architecture Forum (OSAF),
Report on the major issues and concerns of industry group associations
and their members on the future use of embedded microprocessors within
their respective industries, - A report for the OMI Software Architecture
Forum, July 1996, 53 p, the www address:
http://www.osaf.org/resource.html.

 [ISO89] ISO 9001. Quality Systems. Model for Quality Assurance in
Design/Development, Production, Installation and Servicing. International
Organisation for Standardisation, Geneva, 1989.

[ISO91] ISO/IEC. Information technology – Software product evaluation – Quality
characteristics and guidelines for their use. International standard 9126,
ISO/IEC Copyright Office, Geneva, Switzerland, 1991.

 [ISO91a] ISO 9000-3. Quality management and quality assurance standards.
International Standard. Part 3: Guidelines for the Application of ISO 9001
to the Development, Supply and Maintenance of Software,ISO, 1991.

 [ISO95] ISO/IEC. ISO-12207, Software Life-cycles, Version 1.00, International
standard 15504, ISO/IEC Copyright Office, Geneva, Switzerland, August
1995.

[ISO98] ISO/IEC JTC 1/SC 7, ISO/IEC TR 15504-2:1998(E), Information
technology – Software process assessment – Part 2: A reference model for
processes and process capability, Technical Report type 2, ISO 1998.

[JKK97] Järvinen, Khurana, Kuvaja, and Saukkonen. The Role Of Embedded
Software In Product Development, Conference on Software Quality
Management (SQM’97), Bath, UK, September 1997.

[KSK94] Kuvaja, P., Similä, J., Krzanik, L., Bicego, A., Koch, G., and Saukkonen,
S., Software Process Assessment and Improvement. The BOOTSTRAP
Approach. Blackwell Business, Oxford, UK, and Cambridge, MA 1994.

[KuB93] Kuvaja, P., and Bicego, A., BOOTSTRAP: Europe's assessment method,
IEEE Software, Vol. 10, Nr. 3 (May 1993), pp. 93-95.

[MWM97] Masera, M., Wilikens, M. and Morris, P. (eds.) Dependability of
Extensively Deployed Products with Embedded IT, Full Report of the
Workshop help on 21-22 November 1996, Brussels, Belgium.

[PaK94] Paulk, M.C., Konrad M. D., An overview of ISO's SPICE project,
American programmer, February, 1994, pp. 16 - 20.

 [PRO97] The PROFES project, URL: http://www.ele.vtt.fi/profes.

85

[SEI93] Paulk, M., et al. Capability Maturity Model for Software, Version 1.1,
CMU/SEI-93-TR-24, Feb. 1993.

[SEI95] Software Engineering Institute, A Systems Engineering Capability
Maturity Model, Version 1.1, SECMM-95-01, CMU/SEI-95-MM-003,
November 1995.

[SEP90] Seppänen, V. Acquisition and reuse of knowledge to design embedded
software, VTT Publications 66, Espoo, Finland 1990.

[SKO96] Seppänen, V., Kähkönen, A-M., Oivo, M., Perunka, H., Isomursu, P. and
Pulli, P. Strategic Needs and Future Trends of Embedded Software,
Technology review 48/96, TEKES Finland, October 1996.

[Sol95] van Solingen, R. and van Uijtregt, S. Partnership with Customers in
Product Improvement - Testing Embedded Software Products in the Field,
3rd International Conference on Reliability, Quality & Safety of Software-
Intensive Systems (ENCRESS'97), Athens, Greece, May 1997,
D.Gritzalis (ed.), Chapman & Hall, pp. 201-214.

[Sta96] Stankovic, J.A. Real-Time and Embedded Systems, ACM Workshop on
Strategic Directions in Computing Research, ed. by Peter Wegner and Jon
Doyle, MIT laboratory for Computing Sciences, Cambridge,
Massachusetts, June 1996,

[UlE95] Ulrich K.T. and Eppinger S.D., Product design and development,
McGraw-Hill, Inc., Singapore 1995.

86

Product focused SPI in the embedded
systems industry

- Experiences of Dräger, Ericsson and Tokheim -

Rini van Solingen10, Tokheim and Eindhoven University of Technology, The
Netherlands

Pieter Derks, Dräger Medical Technology, Best, The Netherlands

Jorma Hirvensalo, Oy LM Ericsson Ab, Jorvas, Finland

Abstract

Software specific problems have been handled in the software community
through focusing on the software process, and continuous improvement of that
software process. However, the contribution of software process improvement
(SPI) to product quality has not been proven yet. The PROFES project
customised successful approaches into one embedded systems specific SPI
methodology focused on improving product quality. This PROFES improvement
has been fully applied in three embedded systems developing organisations:
Dräger Medical Technology, Ericsson and Tokheim, in three industries
(telecommunication, medical systems, and petroleum retailing).

The main message from these applications is that PROFES really helps in
focusing to product areas that have a priority for improvement. The companies
strongly support that only effort is spent on product attributes that are relevant.
Quality of the final product is the central objective, which is highly appreciated,
since the embedded system itself is being sold and not the development process
that created it.

10 The authors can be contacted via: R.v.Solingen@tm.tue.nl

87

1. Introduction

Software problems have been handled in the software community through
focusing on the software process, and continuous improvement of that software
process. However, the contribution of software process improvement (SPI) [6] to
product quality is still an assumption and has not been proven yet.

This paper presents the results of applying the PROFES methodology in three
industrial organisations: Dräger, Ericsson and Tokheim. These companies have
been involved in the EU-Esprit project PROFES (23239), which customised
successful approaches [1][3][8][9] into one embedded systems specific
methodology that links product quality objectives directly to the software
development process. Note that this paper presents the results and experiences of
PROFES application and not the process of PROFES application, because the
methodology is already published in other publications [3], and the individual
company process will be published separately (see for example the Tokheim
process in [9]).

Reason to start developing the PROFES methodology was the notion that current
software process improvement standards, such as the CMM, Bootstrap, Spice, or
GQM insufficiently address the product quality objectives, when applied in the
embedded software industry. As the embedded software industry sells products
and not processes, a more product centred approach should be used in this
domain when applying software process improvement. However, such a product
focused SPI methodology was not available, which was the reason to start
PROFES. On the other hand, many successful, ‘proven’ approaches were
available, each focusing on one specific aspect of product focused SPI. Therefor
it has been decided to develop the PROFES methodology not completely from
scratch, but integrate existing approaches. In that sense, PROFES supports also
companies that already have SPI activities such as assessments, improvement
plans, process models or measurement in place.

The PROFES methodology is intended to be customisable. This is necessary
because each company or project has its own objectives. A ‘one-size-fits-all’
method to product focused SPI is expected not to fulfil these individual needs. It
is for example possible that a department has an objective such as ‘reaching
level 2 at the end of next year’, or an objective such as ‘the first version of the

88

product may have only five defects’. Such different objectives should also be
handled differently by an improvement approach.

The PROFES methodology contains several components such as assessments,
measurement, experience factory, process modelling, etc. that are available as a
kind of toolbox. From this set of components an organisation can select the mix
that fits best. Different starting points, together with the (product) objective,
trigger different ways to carry out an improvement programme. PROFES
methodology supports these differences very well.

The main parts of the improvement programmes in the industrial companies are
focused on the objectives set in the individual projects. Based on these
objectives, improvement actions have been carried out which will be explained,
together with the results that were observed and measured in the projects.

2. Dräger improvement objectives and results

Dräger is a 1.4 billion DM multinational operating primarily in the fields of
medical technology and safety technology, with limited operations in aerospace
technology. It has about 8100 employees, of which over 5300 are employed in
Germany. The three divisions of Dräger are Medical Technology, Safety
Technology and Aerospace. The core business of Dräger Medical Technology
are the development, production and service of gas monitors, single and multi-
parameter patient monitors, fluid pumps, incubators and defibrillators for
application in anaesthesia, intensive care, neonatal and emergency care.

2.2 Dräger MT development project

Dräger MT-M (the monitoring sub division of Dräger MT) is developing a
complete new line of patient monitoring devices. This family of devices should
create a BSW (BedSide Workstation) around each bed location in a department
in a hospital. The BSW’s are intended for the intensive care stations as well as
the operation room area. The system incorporates network connections between
various elements of the system, and allows patients data exchange and viewing a
patients data at several locations. The development project is organised in a

89

project. The development activities take place on two sites: in Lübeck, in
Germany, and in Best in the Netherlands. The PROFES improvement
methodology has been applied within Best.

2.3 Product improvement objectives

Based on many years in the medical equipment business and recent market
explorations, the following improvement objectives where derived for the
product.

• Higher reliability of the overall product. This means, a lower number of
defects in the final product during operation by the end users.

• Higher fitness for use of the overall product. Meaning, the product should
give more functions required by the end users and be able to better support
their processes.

• Higher predictability of the quality, time and costs of the development of the
product.

2.4 Improvements carried out

The potential process improvements within the Dräger organisation are indicated
by process assessments, according to BOOTSTRAP [2]. The process
improvements carried out are selected on their (expected) contribution to the
quality of the final product.

2.4.1 Process improvements to improve product reliability

• Incremental development. To be able to get an early feedback on the product
quality, the products are developed in so called increments. Each of these
increments take about six months and result in a working prototype, featuring
a subset of the final functionality. These prototypes are tested in hospitals, to
get the required feedback.

90

• Testing. To verify the (high) quality requirements, an adequate test strategy is
implemented. Also an independent test group is installed.

• Inspections. To improve the reliability of working products, Fagan
inspections are applied on analysis documents, design documents and test
specifications.

• System and Software architecture. An adequate system and software
architecture is defined. Time and money is explicitly allocated to enable these
activities.

2.4.2 Process improvements to improve product fitness for use

• Co-operation between development and product marketing. To ensure
realistic products specifications, the specifications are made in close co-
operation between the development and the product-marketing department.

• Buy in system modules. To be able to offer state of the art functionality,
some system modules are bought in from world-wide-recognised market
leaders on patient monitoring technologies.

2.4.3 Process improvements to improve development predictability

• Continuous integration. To prevent unpredictable outcomes of the
developments, the various parts of the product are integrated and tested as
early as possible.

• Sub contract management. Because of the shift to system integration, the
quality, time and costs of the development largely depends on the various
suppliers. To manage this adequately, sub contract management is selected as
one of the focus areas.

91

2.5 Results of the improvements

The results of the process improvements can first of all be found in the processes
themselves. As the market release of the products is planned for November
1999, results are not available yet. However, the quality of the available
prototypes is a reasonable indication for the quality of the final products.

2.5.1 Processes

With respect to processes the results of the improvements are as follows:

• BOOTSTRAP level. The BOOTSTRAP level of the processes increased
from 0.5 to 2.5 on departmental level and from 2 to 3 on project level.

• Awareness of quality. The quality awareness increased, both for processes
and for products. Clearly visible is the focus of the engineers on
(improvements of) processes that lead to improved product quality.

• Monitoring of defects. The capability to monitor defects improves
significantly. This enables an effective and efficient fixing of defects.

2.5.2 Products

With respect to products the results of the improvements are as follows:

• Early feedback. Due to the incremental development approach, it is possible
to get early feedback on the product quality from the end user point of view.

• Increment II finished in time. Mainly because of the continuous integration
activities, the increment II development is finished on the planned data.

• Functionality prototype II close to final. The functionality at the end of
increment II, proved to be close to final in the second hospital field tests.

92

• Only 4.75% defects in field tests. From all found defects, only 4.75% are
found during a field test in a hospital. This is considered to be a good result.

3. Ericsson improvement objectives and results

Ericsson manufactures products in almost all sectors of the telecommunications
field and its 100,000 employees are active in more than 130 countries. Ericsson
has approximately 14,000 software engineers working in more than 50 design
centres. The core business of Ericsson is to develop and integrate
telecommunication equipment. The PROFES application has been executed in
the Telecom R&D division of Ericsson Finland.

3.1 Ericsson development projects

PROFES application was carried out in two projects. The MACRO project
contained several sub-projects developing software for the AXE switching
system. MACRO implemented the ISUP (ISDN User Part, an International
Telecommunications Union standard) functionality of the signalling network.
The ITAS project further developed the charging functionality in order to make it
possible for operators to handle Interoperator Tariff Account Settlement (i.e.
how to share toll-ticketing incomes between companies).

3.2 Product improvement objectives

Product qualities for interest of improvement were:

• Product reliability.

• Product maintainability.

The primary quality goal from customer’s perspective is a high In-Service
Performance (ISP) including quantitative targets to shorten system down time
and line down time.

93

3.3 Improvements carried out

Improvements were carried out in those processes that contributed most to the
product objectives. Several process changes were implemented, including:

• More attention was put on capacity/non-functional requirements.

• The results of requirement analysis/interpretation were revised based on
measurements of requirement clarity.

• Overall quality assurance got more attention.

• Improved design-test co-operation (designers participate in test reviews,
testers participate in design reviews).

• Described and measured inspection criteria was used.

• Progressive monitoring of project by introducing new metrics.

3.4 Results of the improvements

Design quality expressed as mean fault density measured in Function test shows
a significant improvement in comparison with baseline and goals. Fault density
outcome (in kilo non-commented source statements) is much lower than in the
preceding project. The goals were met in both projects. One cause for lower fault
density in function test might be that software products were carefully desk-
checked. Detection efficiency in number of faults per desk check effort was in
the ITAS project twice as high (0.60 faults/hour) as in the MACRO project.
MACRO product has passed the first 6 months at the customer. Only 3 major
faults on operational performance were detected. Fault analysis has also shown
that only one fault detected by the customer was received.

Results are also available on maturity improvement. Two Bootstrap assessments
were held, the first one took place in June 1997 and the second one in June 1998.
The process, in which we were able to observe a significant improvement, was
Verification (SUP.4) process (incl. inspections). Comparison of process attribute

94

profiles between MACRO and ITAS showed a significant growth of capability
from 1.8 to nearly level 3. This was mainly achieved due to well planned and
tracked inspection activities that were supported by well-established procedure.

4. Tokheim improvement objectives and results

Tokheim is worldwide leader in providing systems and services for self-service
petrol stations. Tokheim has a revenue of 750 million US$, and 4,800
employees. Products of Tokheim are Fuel Dispensers, Point of Sales, EFT
equipment, Back-Office and Forecourt Controllers. The Tokheim site supported
with the PROFES methodology is located in Bladel, The Netherlands.

4.1 Tokheim development project

The development project guided with PROFES methodology was the World
Wide Calculator (WWC) project. This project develops the central control unit,
which should fit and function for all dispenser types and ranges for the new
product family of fuel dispensers. The calculator is the central measurement and
control unit in a dispenser, which displays the amount of fuel and money of a
fuelling transaction to the customer. Beside this display function, a calculator
controls the whole dispenser, meaning it controls the pump motors and valves,
measures the flow rate, and communicates with a station control system or
outdoor payment terminal.

4.2 Product improvement objectives

The main objective of the WWC project was a product cost reduction. Beside
this very strict cost target, there were also severe deadlines for the project. This
in all made the project team aware that product quality was highly at risk.
Therefor the product improvement objectives within PROFES were mainly
focusing on product reliability.

95

4.3 Improvements carried out

The focus on product reliability made the team aware that the focus was on
detecting and eliminating product defects. Therefor, the improvements focused
on testing. Within the WWC project the following improvements/changes were
carried out that contributed to the product reliability objective:

• Much time in the design phase. More effort was spent during the design
phase of the project. This was necessary due to the combination of extreme
product cost target, while product reliability should be high as well. Therefor
a very thorough and robust design was needed to fulfil these targets. This
resulted in a highly structured product architecture.

• High amount of software reuse. Application of available software from a
previous (intermediate) product did not only support in faster progress of the
project, but also in the use of already stable and reliable software in the new
product.

• Time for testing. Additional time for testing was created to assure the product
reliability targets. This testing effort was spent on unit testing as well as
system testing

• Dedicated resource for testing. In addition to the more testing time and effort,
one engineer was assigned only to product testing. Because of this dedicated
test person, parallel development and testing was carried out and not
postponed to the end.

• Cross-personal testing. Instead of development and testing of units by the
same engineer, the project team introduced cross-personal testing, which
means that a different engineer than the one whom developed it tests the
software.

• Closer co-operation with QA department. Due to the risks on product quality,
the WWC project team requested a more frequent and closer involvement of
the QA department than usual. This resulted in weekly meetings between the
QA manager and project manager, focusing on process and product quality
topics.

96

• Personal commitment to product quality. All project team members clearly
committed to product quality. This ‘personal quality’ was one of the main
success factors.

4.4 Results of the improvements

The final product contained a very low number of defects during the first field
tests with the product. Only 2 defects were detected during the field test. These
defects could not have been found during the in-house testing process, since
these defects were rather complicated. However, the in-house testing process has
been changed as such that similar defects will be detected in the future.

The product cost reduction objective was reached. Although this was not one of
the objectives considered within the PROFES targets of the project, this result
does contribute to the success of the project. Also the product was delivered
within the planning limits, and therefor did not block the overall project on the
development of the new dispenser product family.

5. Experiences with PROFES application

PROFES methodology is highly usable. During application of the PROFES
methodology it appeared to be an approach that is highly usable in practice.
None of the companies had problems in applying the methodology.

Customisability of the methodology is major benefit. A strong point of PROFES
is that it a customisable approach to process improvement. Dependent on the
needs on objectives of a company the methodology can be applied. Some
companies may have a strong focus on improving along a scale such as CMM or
BOOTSTRAP. This is very well supported by PROFES. On the other hand there
are companies that use a product centred approach, which is also very well
supported by PROFES.

Product focused improvements are feasible and do pay off. Centring all process
changes around the expected impact on the product is feasible. Especially in the

97

embedded systems area this is a critical success factor. The link between process
and product is constantly evaluated and analysed.

There is still a lot to learn on product process dependencies (PPDs). The way in
which PPDs work in practice, how their effects can be optimised, which critical
context factors are present, is still unknown. Effects of PPDs appear to differ
over organisations: what works in one organisation does not necessarily have to
work in another. Past project experiences are sound input for PPDs.

Organisation and projects motivated to apply PROFES elements. The project
teams supported the application of PROFES. This was due to the components of
the methodology, to the goal-oriented character, and product orientation.

Recommendations from assessments were useful. The proposed improvement
changes from the assessments were clearly accepted, not only for the individual
projects but also on the organisational level.

Feedback sessions were valuable. Measurements trigger discussions within
project teams, and facilitate a group learning process. However, more time is
needed for measurement data analysis. The full integration of measurement in
PROFES methodology made available data already useful during the project.

6. Conclusions

Due to PROFES the embedded systems industry can now apply a product focus
in their process improvement programmes. Embedded system producers sell
products, not processes. These products not only consist of software, but also of
hardware. Improvements in the process should therefor always be aimed at an
improvement in the product area: cost, quality or timeliness.

PROFES methodology helps in focusing to those improvement areas that are
relevant for the specific organisation or project. Only effort is spent on product
attributes that have a priority for improvement. PROFES methodology showed
to be a useful and powerful approach to apply product focused SPI in practice.
Based on the specific needs of the individual company and the specific
development project, the applied improvement approach was customised fully

98

supported by the PROFES methodology. This is considered being the strongest
benefit of the PROFES methodology.

Results in the companies were revolutionary. Dräger was able to develop their
product exactly within a very tight schedule, and this product was very positive
received by hospital staff during the clinical tests. Dräger also increased its
development project maturity from almost level 2 to level 3 in less than one
year. Ericsson delivered their product with a design quality higher than their
baseline. Tokheim supported a reliability critical project with a product
reliability focused process improvement programme, resulting in just 2 defects.

7. Acknowledgements

The authors would like to thank Erik Rodenbach for his comments to an earlier
version of this paper. Furthermore, thanks to all members of the PROFES
consortium for their input and co-operation in the project. The work presented in
this paper is sponsored by the European Commission through the PROFES
project (23239).

99

References

[1] Basili, V., Caldiera, G., and Rombach, D., “Experience Factory” &
“Goal Question Metric Paradigm”, In John J. Marciniak, editor,
Encyclopaedia of Software Engineering, Volume 1, pages 469–
476 & pages 528–532. Wiley & Sons, 1994.

[2] Bicego, A., Khurana, M., Kuvaja, P., BOOTSTRAP 3.0: Software
Process Assessment Methodology, Proceedings of the SQM ’98,
1998.

[3] Birk, A., Järvinen, J., Komi-Sirviö, S., Oivo, M., Pfahl, D., PROFES:
A Product-driven Process Improvement Methodology, In
Proceedings of the Fourth European Software Process
Improvement Conference (SPI ‘98), Monte Carlo, 1998.

[4] Hamann, D., Järvinen, J., Birk, A., Pfahl, D., “A Product-Process
Dependency Definition Method”. In Proceedings of the 24th
EUROMICRO Workshop on Software Process and Product
Improvement. Pages 898-904. IEEE CS, Sweden, August 1998.

[5] Hamann, D., Järvinen, J., Oivo, M., Pfahl, D., “Experience with
explicit modelling of relationships between process and product
quality”. Proceedings of the 4th European Software Process
Improvement Conference, Monte Carlo, 1998.

[6] Humphrey, W., Managing the Software Process. Addison Wesley,
1989.

[7] Latum, F. van, Solingen, R. van, Oivo, M., Hoisl, B., Rombach, D.,
Ruhe, G., Adopting GQM-Based measurement in an Industrial
Environment. IEEE Software, 15(1):78–86, January 1998.

[8] Solingen, R. van, Berghout, E., The Goal/Question/Metric Method: A
practical guide for quality improvement of software
development, McGraw-Hill, 1999.

[9] Solingen, R. van, Uijtregt, A. van, Kusters, R., Trienekens, J.,
‘Tailoring product focused SPI: Application and customisation
of PROFES in Tokheim’, Proceedings of the PROFES’99
conference, Oulu Finland, June 22-24, 1999

100

101

SESSION 2:

Tools and Techniques in Software Process
Improvement

102

103

Effective Feature Analysis for Tool Selection

G. Antoniol*, G. La Commare**, G. Giraudo**, P. Tonella*
*ITC-Irst, 38050 Povo (Trento) - Italy

**Sodalia SpA, via V. Zambra, 1 - 38100 Trento - Italy

Abstract

The ESSI PIE ITALO project aims at improving the component test phase for
object oriented software. The main steps of the project include the selection of a
support tool and the set up of an experiment to quantify the effects of its
adoption.

Tool selection was performed according to the DESMET [3] guidelines for
feature analysis. Since the choice of a good support tool is crucial for the success
of the whole project, but the resources for the selection process were limited, the
feature analysis was performed so as to be extremely effective, i.e. able to give
the maximum discrimination at the minimum cost.

During each step of the feature analysis (feature elicitation, tool assessment and
score analysis) several Effective Feature Analysis Strategies (EFAS) were
adopted with the purpose of increasing the discrimination between tools and
reducing the cost needed to converge to the final choice. This paper reports on
that experience and highlights all the lessons learned in terms of acquired EFAS.

1. Introduction

The goal of ITALO (Improvement of the Testing Activities for the Development
of Object Oriented Software), the ESSI PIE (Process Improvement Experiment
European project n. 27912, is to improve Sodalia11 Object Oriented (OO) testing
phases by adopting automatic tools to complement and help programmers during

11 Sodalia is an Italian company developing telecommunication software; it is SEI
CMM level 3 assessed and ISO 9001 certified.

104

component testing activities. Components are defined as the smallest units
implementing and exporting a user recognizable functionality; component
testing [2][4], with current practice, has no automatic support ensuring a high
defect removal efficiency and requires almost the same effort as the coding
phase.

The approach to the component testing process improvement [1] involved the
acquisition of automatic tools, the identification of the baseline projects and the
set up of an experiment to apply the new testing process. The experiment [5] will
allow measuring the benefits obtained in terms of defect removal efficiency and
effort spent with respect to the current practice.

Two main areas are expected to be covered by the selected tool(s): Test
Management and Test Execution. Tools in the Test Management area provide
support to test case design, documentation, maintenance and report generation,
while Test Execution tools provide support to test script generation, test data
generation, and automatic result checking.

The evaluation procedure used in the tool selection phase is based on the
DESMET method [3] and aims at assessing the features of the tools against the
needs of the organization. DESMET is an appealing evaluation method because
it is conceived to help conducting an evaluation exercise in an unbiased and
reliable way, which is well formalized and not affected by current company
beliefs. In addition this method has been successfully applied by several
industries, which reported positively on it.

 The feature analysis used to select the best support tool was designed and
conducted so as o be extremely effective, where the effectiveness consists of its
ability to provide the maximum discrimination at the minimum cost. Since the
choice of the testing support tool was crucial, it had to be done with a clear and
complete picture of the differences between the alternative choices. On the other
side the resources allocated to the selection process were limited, both in terms
of the time in which the selection had to be completed, and in terms of the
people performing the task. More particularly, two tool assessors were available
full time during the selection, while the two available tool users could be
involved only for half a day each. Thus the output of the feature analysis was
required to be discriminating, i.e., able to put in evidence and highlight all
existing differences between tools. At the same time the maximum
discrimination had to be achieved at the minimum cost.

This paper reports on that experience and the way it could be packaged. In fact,
each step of the feature analysis could be made in an effective way by adopting
proper Effective Feature Analysis Strategies (EFAS). The main activities
performed during feature analysis will be described, together with the related

105

collection of EFAS. They were derived from one single case study (ITALO), but
they can be often interpreted in a very general way, so that they can represent
valuable pieces of knowledge also for other companies facing similar problems.

The paper is organized as follows: Section 2 introduces the basic concepts of
Feature Analysis. Section 3 discusses the EFAS associated to performing
Feature Analysis in an iterative way. The strategies that were used during the
construction of the feature list are presented in Section 4. Sections 5 and 6 are
devoted to the two iterations performed to select the test support tool, and to the
related EFAS. The analysis of costs and benefits, used for the final selection, is
described in Section 7. Conclusions are drawn in Section 8.

2. Feature analysis primer

The DESMET method, described in [3] was followed in the evaluation of the
candidate tools for the ITALO project. The DESMET method is aimed at
helping an evaluator in a particular organization in the design and execution of
an evaluation exercise, in order to select the best tool in an unbiased and reliable
way.

A DESMET evaluation is a comparison among several alternative options, with
the purpose of identifying which of the alternatives is best in specific
circumstances. Evaluations are context dependent, in that each specific tool is
not expected to be the best in all circumstances. An evaluation in one company
could result in one tool being identified as superior, but a similar evaluation in
another company could lead to a different conclusion.

The DESMET evaluation method separates evaluations that establish
measurable effects of using a tool from the evaluations that determine how well
a tool fits the needs of an organisation. Quantitative evaluations are based on the
benefits expected from a tool, and data are collected to determine if such
benefits are actually obtained. A qualitative evaluation, also termed Feature
Analysis, is based on identifying the requirements for a given set of activities
and mapping them to features that a tool should support.

2.1 Identifying features

The first step of Feature Analysis is the definition of a feature list. The resulting
features should be representative of the requirements of all tool users, and should
balance technical, economical, cultural and quality aspects. It is often convenient
to organize features in a hierarchy, in which features are decomposed into
subfeatures, and subfeatures can be in turn decomposed into subsubfeatures.

106

A good tool should include all the features that are considered the most
important for its users. The importance of each feature can be assessed by
ranking it in an ordinal scale that could go from Nice to have to Mandatory. A
tool that does not possess a mandatory feature is, by definition, unacceptable.

There are different gradations of desirability of a feature, and correspondingly
different ordinal scales could be designed. The following ordinal scale was used
to assess the importance of each feature in the ITALO project: Mandatory (M),
Highly desirable (HD), Desirable (D), Nice to have (N).

2.2 Scoring features

Tools are scored against the identified feature list. For this purpose a judgment
scale has to be defined, and tool assessors will use it to score the conformance of
each candidate tool to each feature.

A simple example of conformance scale, assessing the presence or absence of a
feature, is the two value (yes/no) scale. A more refined scale, actually used by
ITALO, is given in Table 1 (top), and was derived from [3].

Table 1: Example of conformance scale (top) and weighting factors(bottom).

Make things worse -1
No support 0
Little support 1
Some support 2
Strong support 3
Very strong support 4
Full support 5

M Mandatory 10
HD Highly desirable 6
D Desirable 3
N Nice to have 1

Individual scores can then be aggregated, provided that weighting factors are
defined for the different importance levels of the features. The weighting factors
in Table 1 (bottom), taken from [3], were used by ITALO. Even if there is no
defined rationale for preferring a set of weighting factors to another one, the
weights in Table 1 (bottom) seemed to properly quantify the different degrees of
importance of the features. The arbitrariness of this choice suggested to analyze
in detail the final results, with reference to the way they are affected by the
chosen weights.

107

For each aggregate feature the weighted sum of the scores is given as a
percentage of the maximum achievable evaluation (sum of weights times the
maximum score). An overall evaluation is also computed as the weighted sum
over all the features, and is still given as a percentage of the maximum
achievable score.

The main theoretical problem in computing aggregate scores is that ordinal scale
measures are involved in weighted sum calculations. Such relaxation on the
dictates of the measurement theory leads to the need of treating the resulting
figure of merit with caution. To be sure that aggregate results are not misleading,
particular attention should be paid to those high values produced by very high
scores on some features and very low scores on other features (see also EFAS
16).

3. Feature analysis iterative approach

When the score sheet is available from completing all feature Analysis steps, it
is possible to select the best tool, but in real cases one iteration of Feature
Analysis cannot give a high discrimination among the best scoring tools.
Therefore an iterative approach is usually adopted, and the initial tool list is
successively shortened, according to the outcome of the previous iteration. In
this way the risk of choosing a tool on a poor basis is avoided, since from each
iteration to the next one the features being assessed, the judgment scale and the
evaluation method are refined. On the other side performing several iterations is
expensive. Thus an effective Feature Analysis performed iteratively adopts a set
of strategies having the purpose of minimizing the number of iterations to
converge to the selected tool(s).

The strategies that resulted very effective during the ITALO project are
summarized by the following EFAS:

EFAS 1 Use feedback from previous iteration for new feature list definition.

EFAS 2 Use feedback from previous iteration for new assessment method
definition.

EFAS 3 Prune choices when the related features provide enough discrimination.

EFAS 4 Refine those features giving low discrimination.

EFAS 1 and 2 are related to the use of the feedback from one iteration to the
next one. During ITALO the assessment of conformance of the tools to the
needed features led to a refinement of the feature list and of the evaluation
criteria, that resulted very effective for the next iteration. In particular refining

108

those features giving low discrimination (EFAS 4) allowed a substantial
improvement in the next iteration. Of course, a further strategy is to prune as
much as possible in the current iteration (EFAS 3).

4. Feature elicitation

When features are being identified, a cost effective procedure has to be adopted.
To avoid spending lots of resources in the feature identification activity, proper
effectiveness strategies were adopted during the ITALO project. A detailed
analysis of the component test process in Sodalia generated several effective
features, so that the following EFAS could be abstracted:

EFAS 5 Analyze process activities to extract needed features.

Furthermore it should be noted that ITALO was conducted in the context of a
process improvement experiment, and therefore the process to be considered is
not simply the current one: the improved one has to be anticipated, to allow the
choice of the best support tool. A summary of the process analysis performed for
ITALO follows.

The Component Test is performed to ensure that a given software component
satisfies its specifications. It has to be conducted against the design
specifications of the component. The tested component can have a size varying
from a class to an architectural component.

The following activities represent the main steps of component test:

1 Component test strategy definition
2 Component test design
3 Component test construction
4 Component environment setup
5 Component test execution

The first activity relates to the selection of a proper component test strategy.
Such an activity involves managerial decisions that are hardly supported by
tools. Nevertheless the choice between black box and white box testing has an
impact on the family of tools that will be subsequently used. While test
management and execution tools are always needed, coverage or structural
testing tools are only optionally selected.

When performing the component test design, the features to be tested are
identified. They will be subsequently mapped into single test cases. A tool
supporting this activity should allow to link each feature to the associated test

109

case/suite. Thus the documentation facilities should give the feature from which
a test case was derived and all test cases associated to it.

Then test cases are built. Several tool features could help this important activity,
where test data are defined and support code is written. Possible tool support
could relate to documenting the test cases and aggregating them hierarchically.
Test case versioning aligned with code should also be supported. When possible,
the insertion of existing test cases inside the test suite under construction should
be encouraged. Automatic test case generation would be very beneficial. The
generation of code for stubs or drivers would also reduce the test case
construction effort.

As regards the environment setup, the possibility to specify environment
variables or initialize databases would be helpful.

When moving to the execution phase, the tool should enable the definition of a
test agenda, i.e., the selection of a group of test cases/suites for sequential
execution. The execution of each test suite should also be automated,
together with report generation. Furthermore, the tool should also support the
manual execution of those test cases which require the user interaction. In
cases where run time errors occur, the tool should be able to recover and
continue the execution of the test suite. Analysis of the results and reuse of old
test cases are included in the test execution activity. A regression check facility
would allow rerunning existing test cases. Automatic result check would
simplify the corresponding manual work.

In addition to considering the abstract component test process, a collection of
real use cases was extremely effective in isolating the needed features. In fact,
use cases are instantiations of the test process, according to the actually adopted
practices. A detailed analysis of such practices gave indications on the real needs
and on the real opportunities of improvement, coming from tool adoption:

EFAS 6 Collect use cases to identify the needed features.

Two additional sources that were effectively employed in the production of the
feature list are questionnaires (EFAS 7) and expert opinions (EFAS 8). The
questionnaires were filled in by the programmers who daily perform component
testing. They were asked to describe the way they perform component test, the
main difficulties, and the opportunities for automatic support.

EFAS 7 Define questionnaires to obtain suggestions on the needed features.

EFAS 8 Collect expert opinions on the needed features.

110

5. First iteration

For the first iteration the 7 following features were exploded into more detailed
subfeatures, against which tool conformance was evaluated:

1 Test management and execution
2 Advanced support
3 Interoperability
4 Learnability
5 Economic issues
6 Supplier
7 System requirements

The subfeatures of feature 1 cover the management and execution of the test
cases. The subfeatures of the feature 2 are related to the automatic generation
of code or scripts supporting the execution of tests. Interoperability (3)
requires that the selected tools be compatible with existing tools and can
exchange information with them. The tool should be simple to learn and use
(4). The tool, training sessions excluded, should cost less than the 27 KECU
in the project budget (5). The supplier should be a known reliable company,
with affiliates in Italy, better if already an official provider of Sodalia (6). The
tool should run with the UNIX (HP and Sun machines) and Windows NT
operating systems (7).

For space reasons, only the subfeatures of the first two features are given below:

1 Test management and execution
1.1 [D] Test case/suite documentation
1.2 [D] Test case aggregation into test suites
1.3 [HD] Test suite selection for execution (test agenda)
1.4 [D] Test suite versioning aligned with code
1.5 [HD] Test suite automatic execution
1.6 [M] Test execution report generation
1.7 [D] Existing test case use when building new test suites
1.8 [D] Test case execution error handling
1.9 [HD] Comparison of current and recorded output for regression check
2 Advanced support
2.1 [N] Generation of support code (stubs, drivers and simulators)
2.2 [N] Generation of test cases
2.3 [N] Automatic result check

The tool should have facilities for documenting and labeling the test
cases/suites (1.1). Such a documentation can be retrieved on demand and
automatically organized in the form of a description report. The individual test

111

cases can be grouped into test suites (1.2) and a test agenda can be defined
with the specification of which test suites are selected for execution (1.3).
Test suites are under configuration management (1.4) and aligned with the
source code. The test suites selected in the test agenda are automatically
executed (1.5) and an execution report is accordingly generated (1.6). When
defining new test suites, available test cases can be used (1.7). The occurrence
of run time errors or exceptions should be handled by the tool so that the
error event is traced and the test execution can continue (1.8). Regression
check facilities for the automatic comparison of the outcome of previous test
suite execution with the current one are also required (1.9).

Automatically generated code and scripts provide the stubs and drivers that
replace possible missing classes, set up the environment required for each test
case execution and substitute clients or servers that are not available with
simulators (2.1). An interesting feature would be the possibility to
automatically generate some of the needed test cases (2.2). Code or facilities
for the automatic check of the results, given some formal description of the
expected behavior, are also useful characteristics (2.3).

Features 1 and 2 could be covered by two different families of tools. In fact tools
for test management and execution are typically not expected to provide
advanced support facilities (like automatic code generation). For this reason they
will be considered two separate categories (category 1 and 2 in the following)
for which two families of tools are respectively looked for:

EFAS 9 Consider different families of tools for different categories of features.

In the first iteration the score sheet was filled by performing a screening of 9
tools against the selected features. Documentation about the tools was retrieved
from the Web and was asked to the suppliers. In order to conclude that a feature
is supported by a tool, the following criterion was followed:

if the available documentation explicitly states that the required feature is
supported and it describes how it is supported, a tick is added in the score sheet.

There are dubious cases in which a feature is nowhere considered, but could be
supported, or a feature is declared as supported in a very generic way, without
any technical detail. In such situations it was chosen not to mark the feature as
provided. The same criterion was adopted when answers to mails with questions
about the tools were evaluated. Generic answers stating that all features are
supported were not considered sufficient to mark all features of the tool.

Aggregate scores were not considered in this iteration since the high error
intrinsic to the documentation based attribution of a feature to a tool makes them

112

not much reliable. In fact, substantial differences could be due to the particular
interpretation that was given to a document or to the lack of specific technical
information. A detailed analysis of the score sheet was conducted instead:

EFAS 10 In the first iteration, do not aggregate scores, perform a detailed
analysis.

As regards the advanced support (category 2), no tool covered in a satisfactory
way the area of interest. In fact, the features offered by each tool were very
specific and narrowed to a very particular support to automatic testing. Category
2 was no longer included in the feature list for the next iteration. The strategies
underlying such a choice are based on the poor coverage (EFAS 11) offered by
the tools, which is a somewhat universal strategy, but also on extra information
not explicitly coded in the feature list (EFAS 12), about the technical approach
to providing advanced support to testing (e.g. generating a class driver which
invokes all syntactically available methods apparently covers feature 2.1, but
this is done in a way judged not practically useful).

EFAS 11 Exclude tools with poor coverage.

EFAS 12 Use also extra information acquired during the evaluation.

The application of EFAS 1 allowed the expansion of all features which needed a
finer evaluation, and the deletion of features for which the assessment had a high
degree of confidence or which were not to be considered any longer (e.g.,
category 2), since tools were not satisfactory. Addition and merge were also
performed to obtain an effective feature list for the second iteration.

The evaluation of specific constraints imposed by some tools on the testing
phase and of some specific features allowed excluding some tools from the
next iteration. For example ITEX was disregarded since it is tied to the TTCN
language for the specification of communication protocols, but Sodalia is not
going to use it. Therefore ITEX was not considered in the successive iteration.
The following EFAS can thus be derived:

EFAS 13 Prune choices according to unacceptable constraints emerged during
this iteration.

6. Second iteration

During the second iteration 3 main features were considered:

1 Test management and execution

113

2 Interoperability
3 Learnability

2 remaining tools, SMARTS and TestExpert, were assessed in this iteration. The
other 4 main features from the first iterations were deleted being surely provided
homogeneously by both tools or not provided by any of the considered tools.

The 3 features were expanded into subfeatures, and in turn each subfeature into
subsubfeatures, for a total of 58 items to be checked. After filling the score
sheet, using the conformance scale in Table 1, aggregate scores could be
computed and analyzed in detail for the final choice.

The score sheet was filled according to the following procedure. After installing
the two tools, for each of them the tutorial was followed to become familiar with
the basic functionalities. The user manuals were also studied in this phase and
consulted successively. A component of one of Sodalia’s previous projects was
selected, so that it includes several automatic and manual test cases with the
related documentation. The available test suites were manually tried by
following the steps described in the testing documentation. Then one automatic
test suite and one manual test suite were inserted both into SMARTS and
TestExpert. The functionalities of the two tools were experienced while
performing the task of inserting, documenting and executing the test cases and of
producing execution reports. The use of the tools on a real example taken from a
real project was very beneficial for an accurate evaluation of the tools. In fact,
many features that had not been deeply investigated during the tutorials were
looked for and tried:

EFAS 14 Exercise the tools on real examples (vs. tutorial).

Tool users were available only for a very limited time interval. Therefore their
contribution had to be maximized by avoiding wasting time in tool configuration
or set up. For this reason they were involved only after the successful insertion
of the test suites in both tools. Moreover, before involving them, the tool
assessors proposed a scoring on which they agreed. Only after the score sheet
was completely filled, the result was revised by the tool users (EFAS 15). They
had a tutorial presentation of the tools, and then they tried the tools on the tested
component. They were asked to say their opinion on the scores given by the
assessors for each feature. Their comments were taken into consideration for the
final version of the score sheet:

EFAS 15 To better exploit the limited availability of tool users, involve them
only after having configured the tool, set up all in field tests, and filled in the
score sheet.

114

Scores were then aggregated for subfeatures and for main features. Aggregate
scores for features are depicted in Table 2.

Table 2: Aggregate scores for features.

Feature SMARTS TestExpert
1 Test management and execution 38.2% 71.7%
2 Interoperability 18.0% 81.0%
3 Learnability 93.0% 85.0%
Overall 53.2% 76.8%

TestExpert is definitely better in its support to test management and execution
(1) and to interoperability (2). It offers superior facilities for documenting and
executing the test cases, and for their versioning. It records the information
attached to test cases and to executions in a database which can be accessed by
the user to produce customized reports. Explicit support to interoperability is
also provided. On the contrary, SMARTS has poor documentation
functionalities. It does not use a database and it records only few fixed
information, available through a rigid set of reports. Poor support to
interoperability is given. SMARTS results to be globally superior in learnability
(3). In fact it is simpler to get started with, but in part this is due to the lower
number of functionalities and to their lower sophistication level.

Aggregate scores were deeply investigated to avoid errors possibly
resulting from the summation of ordinal measures. An example is the global
learnability score, discussed above. Thus the following EFAS can be derived:

EFAS 16 In the second iteration, use with caution aggregate scores and add
interpretations to them.

The underlying technology on which the tool is based is usually reflected in the
functions offered to the user. Therefore it is not directly addressed in the feature
list, but it underlies several features. An example is the data store used by the
two selected tools. TestExpert stores information on test cases in a database,
while SMARTS uses plain ASCII files. This affects several features, like e.g.
interoperability, but it can also be considered as a further element to judge the
internal features of the tool. When possible such elements should be considered
to make feature analysis more effective:

EFAS 17 Consider the underlying technology as well.

115

7. Cost/benefit analysis

A detailed cost/benefit analysis will be available as a result of the three pilot
projects in the near future. Nevertheless the pilot projects have to be conducted
on one of the two selected tools, so that a preliminary gross grain analysis was
performed on the economical impact of the tool adoption, just to exclude one of
them. It is not meant to be very accurate, but it is enough deepened to provide
some support to include some economical evaluation in the decision making
process, in addition to the analysis of the features.

The tool should return the investment in a reasonable time, and, when compared
to other tools, it should give a higher net benefit. More formally, if T is the
annual cost of the testing activity potentially supported by the tool, α gives the
predicted saving on the testing activity cost, n is the considered life span of the
tool in years and C is the tool cost, including all needed licenses for n years and
training, the benefit B should be greater than the cost:

nT

C
CnTB crit =⇒>= αα

Thus a tool with estimated saving α is admissible, i.e. its cost is covered by the
benefits obtained during its life span, if:

critαα >
Given two admissible tools, their economic impacts can be compared by
computing the respective net (gross) benefits:

222111 CnTCnT −>− αα (net benefit comparison)

 2211 TT αα > (gross benefit comparison)

Note that the testing cost terms, 1T and 2T , are different for the two tools,
because the tools could impact different sets of activities, with a lower or higher
support.

When SMARTS and TestExpert were considered for admissibility, a quick
evaluation was sufficient for the first one, while the second one required a
deeper investigation. For such a purpose values were accurately assigned to the
three terms C, n and T, resulting in critα = 1%. Since the estimated saving from

TestExpert was higher than 1%, the tool was considered admissible.

EFAS 18 Prune non admissible tools.

116

Being both admissible, the one with the highest economic impact and saving on
the component testing activities is expected to be the one with the highest
feature coverage. In fact, the features offered by TestExpert could give a high
support to the component test phase, while the support from SMARTS is more
limited. In addition TestExpert could be adopted also during the
integration and system test phases. Therefore both α and T are substantially
higher for TestExpert. Comparing the net benefits was considered not
viable, because of the uncertainty involved in the estimation of the terms in
the related equation. Therefore the higher gross benefit of TestExpert and the
satisfaction of the admissibility condition were considered sufficient to conclude
that the economic impact of tool adoption was in favor of TestExpert:

EFAS 19 Use gross benefit coupled with admissibility condition when there is
uncertainty on the measures of costs and savings.

Of course such preliminary economic evaluation will be confirmed or
contradicted by the future experimentation with three pilot projects.
Nevertheless, anticipating such evaluation with the available data can be
important to make feature analysis very effective and to avoid the choice of a
tool that will not be considered practically adoptable by the whole company for
economic reasons.

Finally, the tool selection process itself was analyzed in terms of costs and
benefits. The two tool assessors conducted the two iterations of feature analysis
during a period of 47 days, including tool installation, configuration, and
insertion of all in field tests. Two tool users were involved only for half of a day
each. By exploiting the indications in [3], the screening of 9 tools followed by
the feature analysis with in field test of 2 tools can be estimated in about 50 to 60
total staff days. Thus the selection for ITALO could be performed with a total
cost slightly lower than the minimum predicted by [3]. Therefore the outlined
EFAS could actually provide a help in reducing the costs without diminishing
the discrimination.

8. Conclusion

In the context of the ESSI PIE ITALO project, a feature analysis was performed
to select a tool supporting component test activities. At each feature analysis step
all available strategies to make the analysis as effective as possible were used,
with the purpose of obtaining the maximum discrimination at the minimum cost.
An iterative approach was followed, and the adopted strategies allowed
convergence after two iterations.

117

The effectiveness of the performed feature analysis was analyzed in terms of
EFAS, but in general it is also due to the adopted approach, in which a
screening, based on available documentation and e-mail answers, was performed
against an accurately filled feature list, followed by a test of the remaining tools
on real data, with the involvement of the users:

EFAS 20 Develop an evaluation procedure structured around a screening
followed by an in field test on a real example.

If the individual EFAS are considered, a common characteristic emerges: many
of them are very general and can be adapted to different contexts in a simple
way. Sodalia had to perform another tool selection after the one for ITALO, and
the packaged experience of ITALO could be almost entirely reused in the new
situation. Reusing past feature analysis experience is another EFAS (21) that can
be adopted only if the acquired knowledge is not dispersed.

EFAS 21 Reuse effective feature analysis strategies that revealed successful in
the past.

References

[1] V. Basili, G. Caldiera, and D. H. Rombach. The Experience Factory,
Encyclopedia of Software Engineering. John Wiley and Sons, 1994.

[2] B. Beizer. Software Testing Techniques, 2nd edition. International Thomson
Computer Press, 1990.

[3] B. Kitchenham. A method for evaluating Software Engineering methods and
tools. Technical Report TR96-09, DESMET project UK DTI, 1996.

[4] J. D. McGregor and D. A. Sykes. Object-oriented software development:
engineering software for reuse. New York, Van Nostrand Reinhold, 1992.

[5] S. L. Pfleeger. Experimental Design and Analysis in Software Engineering.
SIGSOFT NOTES, Parts 1 to 5, 1994 and 1995.

118

Questionnaire based usability testing

Drs. Erik P.W.M. van Veenendaal CISA
Improve Quality Services / Eindhoven University of Technology

Eindhoven, The Netherlands

Abstract

Usability is an important aspect of software products. However, in practice not
much attention is given to this issue during testing. Testers often do not have the
knowledge, instruments and/or time available to handle usability. This paper
introduces the Software Usability Measurement Inventory (SUMI) testing
technique as a possible solution to these problems. SUMI is a rigorously tested
and validated method to measure software quality from a user perspective. Using
SUMI the usability of a software product or prototype can be evaluated in a
consistent and objective manner. The technique is supported by an extensive
reference database and embedded in an effective analysis and reporting tool.

SUMI has been applied in practice in a great number of projects. This paper
discusses three practical applications. The results, usability improvements, cost
and benefits are described. Conclusions are drawn regarding the applicability
and the limitations of SUMI for usability testing.

1. A closer look at usability
Several studies have shown that in addition to functionality and reliability,
usability is a very important success factor (Nielsen,1993) (MultiSpace,1997).
But although it is sometimes possible to test the software extensively in a
usability lab environment, in most situations a usability test has to be carried out
with minimum resources.

The usability of a product can be tested from mainly two different perspectives
“ease-of-use” and “quality-in-use”. Quite often the scope is limited to the first
perspective. The ease or comfort during usage is mainly determined by
characteristics of the software product itself, such as the user-interface. Within
this type of scope usability is part of product quality characteristics. The
usability definition of ISO 9126 is an example of this type of perspective:

119

Usability

the capability of the software to be understood, learned, used and liked by the
user, when used under specified condition (ISO 9126-1,1998)

Two techniques that can be carried out at reasonable costs evaluating the
usability product quality, are expert reviews and checklists. However, these
techniques have the disadvantage that the real stakeholder, e.g. the user, isn’t
involved.

In a broader scope usability is being determined by using the product in its
(operational) environment. The type of users, the tasks to be carried out, physical
and social aspects that can be related to the usage of the software products are
taken into account. Usability is being defined as “quality-in-use”. The usability
definition of ISO 9241 is an example of this type of perspective:

Usability

the extent to which a product can be used by specified users to achieve goals
with effectiveness, efficiency and satisfaction in a specified context of use (ISO
9241-11,1996)

Clearly these two perspective of usability are not independent. Achieving
“quality-in-use” is dependent on meeting criteria for product quality. The
interrelationship is shown in figure 1.

the extent to which a product can be used by specified users to achieve goals
with effectiveness, efficiency and satisfaction in a specified context of use (ISO
9241-11,1996)

Clearly these two perspective of usability are not independent. Achieving
“quality-in-use” is dependent on meeting criteria for product quality. The
interrelationship is shown in figure 1.

120

product
quality

quality
in use

depends on

influences

Figure 1 : Relationship between different types of usability.

Establishing test scenarios, for instance based on use cases (Jacobson,1992), can
be applied to test usability in accordance with ISO 9241. However, usability
testing with specified test cases / scenarios is a big step for most organization
and often not even necessary. From a situation where usability is not tested at all
one wants a technique that involves users, is reliable but still requires limited
resources.

Within the European ESPRIT project MUSiC [ESPRIT 5429] a method has been
developed that serves to determine the quality of a software product from a user’
perspective. Software Usability Measurement Inventory (SUMI) is a
questionnaire based method that has been designed for cost effective usage.

2. What is SUMI?

Software Usability Measurement Inventory (SUMI) is a solution to the recurring
problem of measuring users' perception of the usability of software. It provides a
valid and reliable method for the comparison of (competing) products and
differing versions of the same product, as well as providing diagnostic
information for future developments (Kirakowski and Corbett,1993). SUMI
consists of a 50-item questionnaire devised in accordance with psychometric
practice. Each of the questions is answered with "agree", "undecided" or
"disagree". The following sample shows the kind of questions that are asked:

• This software responds too slowly to inputs

• I would recommend this software to my colleagues

121

• The instructions and prompts are helpful

• I sometimes wonder if I am using the right command

• Working with this software is satisfactory

• The way that system information is presented is clear and
understandable

• I think this software is consistent.

The SUMI questionnaire is available in English (UK and US), French, German,
Dutch, Spanish, Italian, Greek and Swedish.

SUMI is intended to be administered to a sample of users who have had some
experience of using the software to be evaluated. In order to use SUMI reliably a
minimum of ten users is recommended based on statistical theory. Based on the
answers given and statistical concepts the usability scores are being calculated.
Of course SUMI needs a working version of the software before SUMI can be
measured. This working version can also be a prototype or a test release.

One of the most important aspects of SUMI has been the development of the
standardization database, which now consists of usability profiles of over 2000
different kinds of applications. Basically any kind of application can be
evaluated using SUMI as long as it has user input through keyboard or pointing
device, display on screen, and some input and output between secondary
memory and peripheral devices. When evaluating a product or series of products
using SUMI, one may either do a product-against-product comparison, or
compare each product against the standardization database, to see how the
product that is being rated compares against an average state-of-the-market
profile.

SUMI gives a global usability figure and then readings on five subscales:

• Efficiency: degree to which the user can achieve the goals of his interaction
with the product in a direct and timely manner

122

• Affect: how much the product captures the user’s emotional responses

• Helpfulness: extent to which the product seems to assist the user

• Control: degree to which the user feels he, and not the product, is setting the
pace

• Learnability: ease with which a user can get started and learn new features
of the product.

Figure 2: a sample profile showing SUMI scales.

Figure 2 shows an example of SUMI output; it shows the scores of a test and the
spreading of these scores (measured by the standard deviation) against the
average score of the reference database, reflected by the value 50. Consequently
the usability scores shown in the sample profile are positive, e.g. more than
state-of-the-art, with a reasonable level of spreading.

SUMI is the only available questionnaire for the assessment of usability of
software, which has been developed, validated and standardized on a European
wide basis. The SUMI subscales are being referenced in international ISO
standards on usability (ISO 9241-10,1994) and software product quality (ISO

123

9126-2,1997). Product evaluation with SUMI provides a clear and objective
measurement of users’ view of the suitability of software for their tasks.

This provides a solid basis for specialized versions of SUMI. Recently MUMMS
has been developed for MultiMedia products (Measuring Usability of Multi
Media Systems).

Any SUMI test must be carried out by asking people that perform realistic,
representative tasks. Employing a method such as usability context analysis
(NPL,1995) helps identify and specify in a systematic way the characteristics of
the users, the tasks they will carry out, and the circumstances of use. Based on
the results the various user groups can be described and used to define how these
user groups can be represented in the test.

3. Practical Applications

3.1 Project 1: Project Management Package

3.1.1 Approach

Subject to the usability evaluation by means of SUMI was a software package
offering project administration and control functionality. The software package
is positioned as a multi-project system for controlling the project time, e.g. in
terms of scheduling and tracking, and managing the productivity of projects, e.g.
in terms of effort and deliverables. The package has been developed by a Dutch
software house that specializes in the development of standard software
packages.

The SUMI test was part of an acceptance test carried out on behalf of a potential
customer. Due to the very high number of users, a number of different user
groups, their inexperience with project management software and the great
variety of information needs, usability was an important characteristic. It was
even looked upon as the critical success factor during implementation. Two
main user group were distinguished. One user group was mainly involved in

124

input processing of effort and time spent. For this user group especially
operability and efficiency is of great importance. Another user group was
characterized as output users. Especially receiving the right management
information is important for the output users. Per user group a SUMI test has
been carried out.

Regarding the usage of the SUMI technique for the usability evaluation a
specific acceptance criteria was applied. SUMI provides quantitative values
relating to a number of characteristics that lead to a better understanding of
usability. As part of the acceptance test, the SUMI scale was used that provides
an overall judgement of usability, the so-called “global scale”. Based on the data
in the SUMI database, it can be stated that the global score has an average value
of 50 in a normal distribution. This means that by definition for a value
exceeding 50 the user satisfaction is higher than average. In the test of the
project management package the acceptance criteria applied that for each user
group the global scale and the lower limit of the 95% confidence interval must
both exceed the value of 50.

3.1.2 Results

The "global scale" regarding both user groups was below the desired 50. For the
input user group the score was even a mere 33. The output user group showed a
slightly better score. Not only the “global scale” but also most other subscales
were scoring below 50.

Because the results did not meet the acceptance criteria that were set a number
of usability improvement measures needed to be taken. Examples of measures
that were taken based on the results of the SUMI test are:

• extension and adaptation of the user training

• optimization of efficiency for important input functions

• implementation of specific report generation tools for the output user with a
clear and understandable user-interface.

125

3.2 Project 2: PDM system

3.2.1 Approach

At the R&D department of a large copier manufacturer a Product Data
Management System (PDMS) is implemented. During the trial phase usability
appeared to be an issue and could become a major risk factor during
implementation. The time and effort needed to be spent on usability formed a
point of discussion between development and the user organization. It was
decided to apply SUMI to acquire an insight into the current user perception of
the PDMS.

A number of randomly selected users that were involved in the PDMS trail
phase were requested to fill out the questionnaire. Twenty six users were
selected in this way, of whom twenty-one returned the questionnaire. Six users
stated that they didn’t use the PDMS often enough. The feedback thus resulted
in a 77% response.

3.2.2 Results

The table below shows the overall scores for the various SUMI subscales:

 Global Efficiency Affect Helpfulness Control Learnability

 Median 36 31 43 36 36 35

Table 1: SUMI scores PDMS.

126

The various scores are relatively low all round. There didn’t seem to be a too
large divergence of opinion, except perhaps for learnability. An analysis of the
individual user scores did not show any real outlayer (see next table). Two users
(one and five) had an outlayer score for one scale (too high). Since it was only
on one scale, they were not deleted from the respondent database.

 G E A H C L

 User 1 60 52 59 69 47 32

 User 2 57 48 53 62 41 61

 User 3 25 19 46 35 22 33

 User 4 17 14 28 11 26 23

 User 5 61 63 55 44 60 64

 User 6 24 23 23 36 22 14

 User 7 53 62 44

 User

Table 2: SUMI scores per user.

As stated earlier the various scores were relatively low all round. In general one
can say that the user satisfaction regarding the system is too low and corrective
action is needed. Some more detailed conclusion were:

127

• Efficiency

 According to the users PDMS doesn’t support the user tasks in an
efficient way. One has to carry out too many and too difficult
steps. As a consequence one cannot work efficiently and has
the opinion that the system is insufficiently customized to their
needs.

• Helpfulness

 An important conclusion is the fact that the messages are often not
clear and understandable; as a consequence the system
doesn’t provide much help when one has to solve a problem.
The possibilities that the user has in each situation are not
clearly shown.

• Control

 The user often have the feeling that they are not in control and find it
difficult to let the system behave in the way they want it to.
They feel save when they only use commands they know.
However, they do find it easy to jump from one task to another.

On the basis of the SUMI evaluation it was decided to define a number of
follow-up actions:

• a detailed analysis of the problems as being perceived by the users. A
number of users is interviewed and asked to explain, by means of practical
examples, the answers given to the SUMI questions;

• a study on outstanding change requests and probably increase their priority;

• an improved information service to the users on changed functionality to
provide them with more knowledge on how the system operates;

• a re-evaluation of the training material with user representatives;

• a SUMI test was to be carried out on a regular basis (every two/three
months) to track the user satisfaction during implementation of the PDMS.

128

Currently the follow-up is in progress and no new SUMI test has yet taken place.
As a consequence nothing can be said regarding the improvement of the
usability. However, by means of the SUMI test usability has become a topic
within the PDMS project that gets the attention (time and effort) it apparently
needs.

3.3 Project 3: Intranet site

3.3.1 Approach

By means of MUMMS, the specialized multimedia version of SUMI, the
usability of an intranet site prototype of a large bank was evaluated. The intranet
site was set up by the test services department to get well-known and to present
themselves to potential customers. The fact that during the test only a prototype
version of the intranet site was available meant that some pages were not yet
accessible. For MUMMS a special subscale has been introduced, with the
objective to measure the users' multimedia “feeling”:

• Excitement: extent to which end-users feel that they are “drawn into” the
world of the multimedia application.

In total ten users (testers) were involved in the MUMMS evaluation. The set of
users can be characterized by:

• not having been involved during the development of the intranet site

• potential customers

• four users with internet experience

• six users without internet experience

• varying by age and background (job title).

129

3.3.2 Results

The table below shows the overall scores for the various MUMMS subscales:

 Affect Control Efficiency Helpfulness Learnability Excitement

 average

score

 69 74 62 67 67 68

 median

 71 77 67 69 67 72

 standard

deviation

 9 12 11 8 6 12

Table 3: Overall MUMMS score table

The various scores were moderately high all round. However, there seems to be
a divergence of opinion on the control and excitement scales. Some low scores
are pulling down the control and efficiency scales (see next table). Two users
from the sample were giving exceptionally low average scores. They were
analyzed in detail but no explanation was found.

130

 A C E H L E Average

 User 1 71 81 67 71 74 77 73

 User 2 74 74 74 71 67 71 72

 User 3 81 84 67 67 74 74 74

 User 4 54 51 54 57 64 44 54

 User 5 71 74 43 58 55 76 63

 User 6 64 84 67 81 67 69 72

 User 7 51 81 74 54 74 64 66

 User 8 71 81 64 74 71 81 73

 User 9 77 81 76 84 77 74 78

 User 10 64 47 51 57 57 44 53

Table 4: MUMMS scores per user.

As stated the usability of the Intranet site was rated moderately high from the
users’ perspective, although there seemed to be a lot of divergence in the various
user opinions. Some more detailed conclusion were:

• Attractiveness

 The attractiveness score is high (almost 70%). However some users (4,
7 and 10) have a relatively low score. Especially the questions
“this MM system is entertaining and fun to use” and “using this
MM system is exiting” are answered in different ways. It seems
some additional MM features should be added to further
improve the attractiveness for all users.

131

• Control

 A very high score for control in general. Again two users can be
identified as outlayers (4 and 10) scoring only around 50%, the
other scores are around 80%. Problems, if any, in this area
could be traced back to the structure of the site.

• Efficiency

 The average score on efficiency is the lowest, although still above
average. Users need a more time than expected to carry out
their task, e.g. find the right information.

On the basis of the MUMMS evaluation it was decided to improve the structure
of the internet site and to add a number of features before releasing the site to the
users. Currently the update of the intranet site is being carried out. A MUMMS
re-evaluation has been planned to quantify the impact of the improvement
regarding usability.

4. Applicability of SUMI

On the basis of the test carried out in practice, a number of conclusions have
been drawn regarding the applicability of SUMI and MUMMS:

• it is easy to use; not many costs are involved. This applies both to the
evaluator and the customer. On average a SUMI test can be carried in
approximately 3 days; this includes the time necessary for a limited context
analysis and reporting;

• during testing the emphasis is on finding defects, this often results in a
negative quality indications. SUMI however, provides an objective opinion;

• the usability score is split into various aspects, making a thorough more
detailed evaluation possible (using the various output data);

• MUMMS provides, after detailed analysis and discussion, directions for
improvement and directions for further investigation. SUMI can also be used

132

to determine whether a more detailed usability test, e.g. laboratory test, is
necessary.

However, also some disadvantages can be distinguished:

• a running version of the system needs to be available; this implies SUMI can
only be carried at a relatively late stage of the project;

• the high (minimum of ten) number of users with the same background, that
need to fill out the questionnaire. Quite often the implementation or test
doesn’t involve ten or more users belonging to the same user group;

• the accuracy and level of detail of the findings is limited (this can partly be
solved by adding a small number of open question to the SUMI
questionnaire).

5. Conclusions

It has been said that a system’s end users are the experts in using the system to
achieve goals and that their voices should be listened to when that system is
being evaluated. SUMI does precisely that: it allows quantification of the end
users’ experience with the software and it encourages the tester to focus in on
issues that the end users have difficulty with. Evaluation by experts is also
important, but it inevitably considers the system as a collection of software
entities.

A questionnaire such as SUMI represents the end result of a lot of effort. The
tester get the result of this effort instantly when SUMI is used: the high validity
and reliability rates reported for SUMI are due to a large measure to the rigorous
and systematic approach adopted in constructing the questionnaire and to the
emphasis on industry-based testing during development. However, as with all
tools, it is possible to use SUMI both well and badly. Care taken over
establishing the context of use, characterizing the end user population, and
understanding the tasks for which the system will be used supports sensitive
testing and yields valid and useful results in the end.

133

Literature

Bevan, N. (1997), Quality and usability: a new framework, in: E. van
Veenendaal and J. McMullan (eds.), Achieving Software Product Quality,
Tutein Nolthenius, ‘s Hertogenbosch, The Netherlands

Bos, R. and E.P.W.M. van Veenendaal (1998), For quality of Multimedia
systems: The MultiSpace approach (in Dutch), in: Information Management,
May 1998

ISO/IEC FCD 9126-1 (1998), Information technology - Software product quality
- Part 1 : Quality model, International Organization of Standardization

ISO/IEC PDTR 9126-2 (1997), Information technology - Software quality
characteristics and metrics - Part 2 : External metrics, International
Organization of Standardization

ISO 9421-10 (1994), Ergonomic Requirements for office work with visual
display terminals (VDT’s) - Part 10 : Dialogue principles, International
Organization of Standardization

ISO 9241-11 (1995), Ergonomic Requirements for office work with visual
display terminals (VDT’s) - Part 11 : Guidance on usability, International
Organization of Standardization

Jacobson, I. (1992), Object Oriented Software Engineering; A Use Case Driven
Approach, Addison Wesley, ISBN 0-201-54435-0

Kirakowski, J., The Software Usability Measurement Inventory: Background
and Usage, in: Usability Evaluation in Industry, Taylor and Francis

Kirakowski, J. and M. Corbett (1993), SUMI: the Software Usability
Measurement Inventory, in: British Journal of Educational Technology, Vol.
24 No. 3 1993

MultiSpace (1997), Report on demand oriented survey, MultiSpace project
[ESPRIT 23066]

National Physical Labotory (NPL) (1995), Usability Context Analysis: A
Practical Guide, version 4.0, NPL Usability Services, UK

Nielsen J. , (1993) Usability Engineering, Academic Press

134

Preece, J. et al, Human-Computer Interaction, Addison-Wesley Publishing
company

Tienekens, J.J.M. and E.P.W.M. van Veenendaal (1997), Software Quality from
a Business Perspective, Kluwer Bedrijfsinformatie, Deventer, The
Netherlands

135

Developing a Change Request Management Tool
for a Distributed Environment

Horst Lichter

Department of Computer Science

Aachen University of Technology

D-52056 Aachen

lichter@informatik.rwth-aachen.de

Manfred Zeller

ABB Utility Automation GmbH

P.O. Box 10 03 51

D-68128 Mannheim
manfred.zeller@deuta.mail.abb.com

Abstract

This paper presents the experience we obtained in a project aiming at developing
and introducing a tool supported systematic approach of change request
management. First, we briefly present product and software development at
ABB Utility Automation GmbH - Fossil Power Plants and its effort to
continuously improve its software engineering capabilities. Then we describe the
tool developed to support change management by presenting the basic
requirements, its overall architecture, the workflow defined to process change
requests and some aspects of the user interface and of tool administration.
Afterwards, we discuss the experience we obtained during the project grouped in
two categories. The paper concludes by presenting our future plans.

1. Background and Motivation

ABB Utility Automation GmbH - Fossil Power Plants (UTA/F for short) is a
company of the worldwide ABB group, employing 800 people, 70 of them in
research and development (R&D). The project presented here is focused on the
R&D organization. Their business is developing control and monitoring systems
for fossil power plants. The products range from controllers to operator stations
and engineering systems. Software is a major part of these products. Regarding

136

software development projects two different project types can be distinguished:
projects developing basic functionality and components and projects adapting
these components according to specific needs of customers. Due to UTA/Fs
organization product and software development is distributed over eight sites in
five different countries.

Having recognized the impact of good software engineering on software quality
as well as on software costs, ABB Kraftwerksleittechnik GmbH, the predecessor
organization of UTA/F, started in 1991 an initiative to improve its software
process maturity. This process has been continued by UTA/F.

Planning

System Test

Integration

Analysis

System
Integration Test

Subsystem Test

Conception Productisation

Implementation

Project Management

Quality Assurance

C
on

fig
ur

at
io

n
M

an
ag

em
en

t

C
ha

ng
e

R
eq

ue
st

 M
an

ag
em

en
t

Detail Design

Overall Design

Product
Monitoring

Figure 1: Software process model.

A major and important result of its continuous software process improvement
initiative is a software process model which takes into account all major aspects
of software projects: e.g. organization, planning, realization and control. The
quality assurance is integrated in this process model as well. This model is
embedded in UTA/Fs overall product life model. The software process model is
based on the traditional phased V-like model described e.g. in Bröhl (1995) and
defines the development phases as shown in figure 1. The process model is
applied by every development project and is tailored to the specific needs of
individual projects. More information on UTA/Fs improvement activities can be
found in Lichter (1995) and Welsch (1997).

137

In this paper we focus on presenting the experience made during the last three
years regarding the development and usage of a change request management tool
(CRM tool for short). Systematic change request management has been
encountered as an important factor to assess product and process quality as well
as monitoring quality assurance and maintenance costs. Therefore UTA/F has
developed in 1993 a tool supporting change request management activities. This
tool was built as a database application using a relational database management
system. It offers standard forms at the user interface to enter change requests and
to get information about the database content. After having used it for two years
the following pitfalls have been encountered:

• Since the system did not support the distributed usage of the CRM database
only a small part of the organization (located in Mannheim, Germany) had
access to it. Hence the system could not directly be used by engineering
organizations of other locations or at plant construction sites.

• As a consequence paper and electronic versions of change requests (CRs)
existed in parallel. This lead to several misunderstandings as well as to a CR
database content that was never up to date. Hence statistics regarding CR
processing did not correspond to reality.

• Since procedure and workflow were hard-coded the tool was rather
inflexible. Improvements and adaptations could not be implemented easily.
People involved in the CR workflow could not be informed of taking over a
CR for further processing via mail.

• The acceptance of the system was low, because it was not available on every
workstation and the processing of CRs could not be controlled and
monitored by the non-local submitters of CRs.

Based on these findings and due to the meanwhile distributed R&D organization
ABB UTA/F launched a project that aimed at introducing a systematic and tool
supported CR management that overcomes the problems mentioned before. In
the following, we present the main experience and findings of this project. First
we give an overview on the most central requirements and describe the overall
architecture of the tool together with the CR workflow. Then we present some
aspects of the user interface and of tool administration. Finally, we summarize
our experience gained so far. In the last section we briefly describe some
activities to enhance the current CRM tool that we plan for the future.

138

2. Essential Requirements

We expected the CRM tool to support the management of detected problems of
all UTA/F products. This includes products developed by UTA/F or by a
subcontractor as well as involved third party products. Problems may be
detected by the R&D organization itself or by any other organization dealing
with UTA/F products (test, training, engineering, sales, service, etc.). Therefore
the most significant requirements on the CRM tool were:

• worldwide availability within ABB at all UTA/F R&D organizations and at
all organizations dealing with UTA/F products

• workflow-controlled processing of CRs

• monitoring the current working state and the history of each CR

• generating CR statistics and reports

• selecting CRs according to online definable criteria

• archiving of fixed CRs

• easy and save worldwide tool administration

• flexibility regarding layout of workflow and user interface

• flexible allocation of persons to the roles defined in the CR workflow

• updating change requests after modification of administration data

After having evaluated some commercial tools supporting CR management we
had to realize that no single tool did satisfy our expectations. Either they did not
fulfill all of our essential functional requirements or they were not available on
ABB’s strategic platform. Looking for an individual solution we came into
contact with another ABB organization that had already developed a similar
application based on Lotus Notes. Due to its experience and because Lotus
Notes is a strategic ABB platform we decided to develop an own Lotus Notes
based CRM tool. Restricted by the features of Lotus Notes 3.x and by the poor
performance of 486er PCs we could not implement all requirements in the first
release. Due to the enhancements of Lotus Notes coming with versions 4.0 to 4.5
and being in the meanwhile equipped with powerful Pentium PCs, we were able
to gradually implement all our requirements in the succeeding releases of our
CRM tool.

139

3. The Overall Architecture

The central components of the CRM tool are two Lotus Notes databases: the
workflow database and the archive database (see figure 2). The workflow
database contains all CRs, the administration data, the request identification
numbers and the user’s guide. Two types of CRs are distinguished:

• Public change requests are CRs on already released products. They are
visible to all CRM tool users at any location.

• Private change requests are CRs on products being under development.
Developers can only create them.

The archive database is used to store closed public CRs in order to relieve the
workflow database. Archived CRs are visible to all CRM tool users but can not
be changed.

Archive
Database

Workflow Database

Change Request
Change Request

Change Request

CR workflow

Request
Numbers

Online users
Guide

Administration
Data

Figure 2: Architecture of the CRM tool.

140

4. The CR Workflow

In the following we explain the processing of public CRs. Private CRs are
processed in a much simpler manner. Public CRs are processed in a controlled
workflow. The workflow consists of ten different workflow states as depicted in
figure 3. A specific role is assigned to each workflow state. A person assigned to
the role of the current workflow state is called work agent of the CR. Only a
work agent can process the CR and forward it to a succeeding workflow state.

normal

possible

fixed

issued

in work

in final test

archived

deleted

returned

postponedin analysisrejected

Figure 3: The CR workflow.

Anyone detecting a problem on a product creates a change request using the
CRM tool and submits it to the development organization responsible for the
product. Then the CR gets the initial state issued. Its state changes to in analysis
as soon as the problem analysis is initiated by the development organization. It
remains in this state until the decision is made how to handle the problem. A CR
may be returned to its submitter, if more information is required for analysis or
if the CR is obsolete and should be deleted (the submitter only can delete a CR).
In case the CR is accepted a developer is responsible to eliminate the problem.
During this period the CR keeps the status in work. During the succeeding final
test the CR is marked by the state in final test. The state fixed indicates that the
final test has been successfully finished. After a non-successful final test the CR
is reset into the state in work.

In case a non-critical CR has been accepted by the development organization but
no resources (manpower, budget) are currently available it may be put into the

141

state postponed for later implementation. A not accepted change request is put
into the status rejected, e.g. if the reported problem is unfounded or if a
workaround for the problem exists. Rejected and fixed change requests are
transferred into the archive database after a predefined expiration time.

Within the CR workflow there are some situations where people involved in the
CR management have to be notified. Examples are:

• When forwarding a CR to a succeeding workflow state the person getting
the new work agent is automatically informed by a notification.

• The issuer of a CR automatically gets a notification if the CR leaves the
workflow i.e. the CR is postponed, fixed or rejected.

• The development project manager is automatically notified, if the decision
authority does not start the problem analysis within a given time after issue.

The CRM tool supports these notifications by automatically generating and
sending emails to the corresponding persons.

5. User Interface

The user interface of the CRM tool is build by means of forms composed of
standard Lotus Notes user interface widgets like text fields, buttons, combo
boxes etc.

The layout of the user interface is identical for public, private and archived CRs.
The user interface is divided into a number of sections (see figure 4):

• Overview: it contains e.g. CR No., title, CR type and priority.

• Product Identification: it is identified by product name, release and product
component.

• Problem Description: this field allows a detailed description of the detected
problem. Additional pages (e.g. screen dumps) may be attached.

• Problem analysis and result: this section documents the result of R&D’s
problem analysis as well as decisions that were reached.

142

• Workaround and actions taken: a workaround, if available is documented as
well as the actions taken by the individual roles involved in the workflow
process.

• Implementation and test result: the result of the implementation and of the
final test by an independent test group is used for the identification of the
succeeding workflow state.

• Workflow roles: The persons casting the individual roles within the
workflow are indicated. The CRM tool automatically fills in the issuer and
the product specific roles like test authority, development project manager
and product manager

• Logfile: it presents the complete history of the CR. Each step in the
workflow is documented with date, forwarding person, etc.

Figure 4: User Interface

143

Three field types are distinguished in the user interface: mandatory, optional and
computed fields. The type of each field is indicated by the color of the field title.
Depending on the value of mandatory fields some optional fields may become
mandatory too (e.g. if the value of field decision = accepted the optional field
solved with release becomes mandatory).

Because Lotus Notes does not offer features to create and format statistics we
were forced to develop two MS Excel based applications to generate CR
statistics and reports. A predefined set of selection criteria can be used to limit
statistics or reports to a subset of all existing CRs (e.g. a report may be restricted
on CRs of one specific product).

The statistics application generates time related and product related charts and
tables with the workflow state as parameter. Standard diagram types are
presented that can be changed by the user however.

The report application generates very compact reports only containing the most
important data for e.g. analysis and decision meetings.

6. Administration of the CRM Tool

One major requirement was adaptability as well as good support of tool
administration. In the following we list some features of the CRM tool regarding
these aspects.

Adaptability of workflow and user interface

The workflow is defined by workflow states. The work agent roles and the
possible successor workflow states are assigned to each workflow state. Hence,
the workflow can easily be adapted by changing these assignments if necessary.
The user interface consists of fields. Each field is defined by a field name, its
position in the layout and its attributes. The layout of the user interface can be
adapted to new requirements caused e.g. by workflow modifications by
changing the affected fields and their attributes.

144

Update of administration data

Changes of administration data (e.g. keywords, workflow definition, field
attributes etc.) normally affect existing CRs. To automatically update the
workflow and archive database appropriate macros are available ensuring the
consistency of the databases.

Distributed Tool administration

Any ABB company worldwide can be connected to the change request
management process by installation of the CRM tool on their local Lotus Notes
server. Distributed tool administration facilitates the worldwide operation and
maintenance of the CRM tool. It is organized through a two level tool
administration concept: The global tool administrator normally residing at the
main location of the R&D organization manages tool development and
maintenance, tool configuration and worldwide tool installation. He also
maintains the global administration data. Each local tool administrator manages
the local administration data regarding the ABB company he is responsible for.

7. Experience and Lessons Learnt

In this section we present our experience and the lessons we have learned. We
summarize the experience regarding tool development as well as usage of the
tool in our company.

But first we list some figures giving a better impression on the tool usage.

• Currently the CRM tool is installed on eight Lotus Notes servers in five
countries.

• The database contains 2900 CRs (1750 public CRs and 1150 private CRs).

• The size of the database is about 54 MB (18 Kbytes/CR in average)

• The database is replicated between the servers every four hours.

• Currently about 800 users are connected to the CRM tool, 220 users have
issuer rights.

145

7.1 Tool Development

We have chosen Lotus Notes as development platform, because we expected to
have many advantages in development, maintenance and administration of a
distributed CRM tool. On the other side we knew that there were some
constraints of Lotus Notes that we had to deal with.

Restricted by constraints of Lotus Notes 3 and by the poor performance of the
target machines, we first developed a CRM tool only implementing some of our
essential requirements. In order to get an application with acceptable
performance, we decided to implement for each workflow state a corresponding
input form with specifically defined access rights on individual fields. This
design results in a number of hard-coded forms with poor flexibility.
Adaptations regarding workflow or form layout as well as error correction were
very costly.

After being equipped with fast Pentium PCs and having Lotus Notus 4.x
available we could redesign our application to improve its flexibility and
maintainability. This was mainly reached by using only one input form, by
centralizing the administration data and by online computing access rights and
specific attribute values of input fields. Furthermore we could implement step by
step all requirements without too much loss of performance.

There are two major disadvantages of our implemented solution coming from
Lotus Notes constraints:

• All data must be part of each CR (viewed as a Lotus Notes document) in
order to select and present CRs in views categorized and sorted by arbitrary
field value. Splitting up the data and using shared data by referencing to
other Lotus Notes documents can not be used. This results in heavy weight
CR documents.

• After changing product or workflow specific administration data all affected
CRs must be updated. Additional development and test effort was necessary
to develop adequate update macros.

In summary we don’t regret having chosen Lotus Notes as development platform
especially because ABB regards Lotus Notes as one of its strategic platforms.

146

Therefore Lotus Notes is installed at each ABB company and its administration
has been established worldwide. This facilitates new installations of the CRM
tool. The replication of the CR databases is ensured by the existing Lotus Notes
infrastructure resulting in a simple procedure to upgrade all locations when a
new release of the CRM tool is available: a new release of the tool is installed at
the main location by the tool administrator. After one replication cycle it is
available at all other locations.

7.2 Tool Usage

In order to systematically introduce the new CRM tool several courses were
organized aiming at presenting the central concepts of CR management as well
as the main features of the new tool.

In the beginning there was some skepticism on the usefulness of the concepts
and the tool support. Particularly people argued against the visibility of public
CRs. Since public CRs are visible worldwide, the usage of the CRM tool leads
to an overall transparency concerning product related CRs. This situation was
pretty new for most people and they needed time to accustom to this situation. In
the meanwhile this is accepted and people now regard the worldwide visibility
of public CRs as a main advantage of the new CR management process.

At the beginning private CRs were not used frequently. Although private CRs
are only visible within a development team and their processing is not controlled
by workflow, developers did not see benefits in issuing private CRs. In the
meanwhile private CRs are used more and more, mainly to describe current
problems or to describe new ideas and future product features. Hence, private
CRs are currently also used to collect requirements for subsequent product
releases.

Another aspect we like to mention here regards CR management and its results
as a reasonable basis for overall product and project management decisions. Due
to systematically collecting and processing CRs we now have data available that
can be used to assess product quality as well as some aspects of the development
process quality. For example we are able to measure the time ellaped between
issuing a CR and its analysis (called A-time) as well as the time between issuing

147

and fixing a CR (called F-time). Based on these data we have realized that the
A-time has come down from several weeks to about two weeks in average. For
CRs classified as critical the A-time is about one week. Before using the CRM-
tool the F-time of CRs could not be measured. By means of our tool the F-time
is collected systematically for all CRs. Since its introduction this time is
decreasing continuously (six weeks in average). Although we use the report
facility of the CRM-tool for the monthly quality report, we do not systematically
evaluate all the data, but we plan to do more data analysis in future. For this we
have started to set up a company wide metric program (see Wünsche 1998)
defining basic product and process metrics and especially quality and error
metrics.

Besides the usefulness of the concepts of CR management the degree of
usability of the CRM tool was an important point concerning its acceptance by
the users. Since different user groups, e.g. product managers, department
managers or developers are using the tool it has to be customizable to the
specific needs of these groups. The feature of Lotus Notes to define private
views on a database is used to customize the user interface of the tool. Hence, a
user can work with predefined selection facilities of the tool or can define
private views presenting exactly those information he is interested in (e.g.
product specific CRs, workflow state specific CRs, CRs sorted by work agent
etc.). Because Lotus Notes is a strategic platform within ABB most CRM tool
users had experience in creating private views and using Lotus Notes
applications. This facilities the introduction and the acceptance of our tool.

8. Conclusions and Outlook

Before we present some ideas and features we plan to realize in future versions
of the CRM tool we would like to summarize our discussion by comparing the
pros and cons of our approach for systematically managing CRs.

We regard the following aspects as the main benefits of our solution:
• Due to the underlying features of Lotus Notes we were easily able to set up a

CRM tool that runs in a highly distributed environment. This supports
distributed product development as well as distributed product
responsibility.

148

• As a consequence, a CR now can be issued at any location where a problem
is detected.

• CRs are forwarded fast and secure to the location responsible for handling
the CRs.

• Because CR processing is under control of a defined workflow, we are able
to monitor CR processing. This makes it easy to detect those CRs that stay
unacceptable long in a certain workflow state.

• Because the user interface only allows a predefined set of terms to
characterize a CR, all CRs are describe in a uniform manner (facilitating
selection and grouping of CRs).

• Often new requirements could be implemented quickly because both the
user interface and the CR workflow were designed to be adaptable.

Of course, there are weak aspects too. We see the following ones:

• The degree of adaptability of the user interface that we have implemented
leads to a slower performance of the tool when it starts up.

• Because Lotus Notes does not offer typical database mechanisms like
locking, we had to define administrational workarounds to prohibit parallel
write access on CRs.

• Lotus Notes does not completely offer the standard Windows interface
widgets. Hence, the user interface does not have the standard Windows look
and feel.

The experience obtained in the project described in this paper was prevailing
positive. We were successful in both, developing a useable workflow based
CRM tool and in introducing it in a distributed environment. Nevertheless, there
is a lot to do to get all potential benefits from systematically collecting and
processing CRs. In future we plan to work on the following topics:

• Integrating our report and statistics application implemented by means of
MS Excel in the Lotus Notes based CRM tool (e.g. by an OLE interface).

• Defining and implementing an interface to the configuration and version
management tool used by the developers. This is a prerequisite to combine
CR processing data and corresponding version management data.

149

• As mentioned before we plan to systematically evaluate and assess the data
concerning CR processing. This needs a deeper definition of the metrics we
want to apply.

• Last but not least we plan to make the CRM tool accessible by internet.

References

Bröhl, A.-P., W. Dröschel (1995): Das V-Modell- Der Standard in der Software-
Entwicklung mit Praxisleitfaden, Oldenbourg Verlag.

C. Welsch, H. Lichter (1997): Software Process Improvement at ABB –
Commonn Issues and Lessons Learnt, Proceedings of Software Quality
Management SQM 97, Bath UK.

Lichter, H, C. Welsch, M. Zeller (1995): Software Process Improvement at ABB
Kraftwerks-leittechnik GmbH, In P.Elzer, R.Richter (eds.) Proceedings of
MSP'95 Experiences with the Management of Software Projects, Karlsruhe,
IFAC Conference Proceedings, Elsevier.

Wünsche, W. (1998): A Metric Program for Product Development (in German).
Studienarbeit Nr. 1724, Institut für Informatik, Universität Stuttgart.

150

151

SESSION 3:

Software Quality

152

153

Piloting as a Part of the Process
Improvement of Reviews – A Case Study at
Nokia Telecommunications Fixed Switching

Janne Kiiskilä
Nokia Telecommunications Oy and Infotech Oulu

Oulu, Finland

Abstract

This article presents some of the results received in a pilot of a review minutes
application called IRMA. Based on this pilot, several reasons for supporting the
piloting of any planned changes within an organisation can be derived. Some of
the reasons are, for example, finding defects, estimating more accurately the
training needs, support, costs and benefits of ongoing projects. In addition, a list
of suggestions has been provided for other instances intending to plan pilots. It is
hoped that this will aid others to successfully manage any changes in their
organisations.

1. Introduction

Piloting12 is discussed in the Software Engineering Institute’s (SEI) Software
Capability Maturity Model (CMM) Level 5 Key Process Areas (KPAs)
Technology Change Management and Process Change Management. It is used
as a means of estimating the impact of process improvement and technology
change on the software producing unit (Paulk et. al 1993).

12 I was asked what is the difference between piloting and prototyping. Prototyping is used as a
method to elicit requirements during requirements specification. Prototyping can involve for example
paper mockups or prototyping tools (Sommerville & Sawyer, 1997). However, a pilot can involve
shrink-wrapped software, which can not be modified according to the needs or can only be modified
in a very limited fashion. The objective of a pilot is to find out whether or not the software, method or
process suits the organisation. The main goal for prototyping is to find out poorly understood
requirements.

154

Estimating change is important, since, typically, the SPU is developing software
to meet deadlines, which is more important to the SPU in its imminent future
than long term improvement. However, investments in the improvement of the
SPU are also crucial in the long run, and sensible weighing of these, sometimes
contradicting, goals has to be done. Piloting should be an appropriate aid in
achieving this goal. Piloting, when conducted properly, should enable its
implementors to envision what kind of benefits the change can really introduce.
All the previous estimations are, in this light, only early estimations, and only
the piloting will indicate the first realistic results.

Piloting has been effectively used in Nokia Telecommunications (NTC) over a
relatively long period of time. It has been observed to be a crucial tool for
successfully evaluating and implementing changes within the organisation. This
article presents some of the results and valuable lessons learned during the pilot
of an in-house review application called IRMA (Inspection and Review
Management Application).

The application was originally created for the Base Station Controller (BSC)
unit, and was later adopted also by the Fixed Switching (FSC) unit. FSC’s
project coincided with BSC’s project and it was, thus, possible to use their
application after some minor modifications had been conducted. The actual
application is a Lotus Notes database with an accompanying on-line help
database. The application supports a slightly modified version of Fagan’s
inspection process (Fagan, 1976).

It was observed by the author that the CMM deals with the details of piloting
very briefly, which is why it is hoped that this article will shed some more light
on the reasons why piloting is so vital when implementing changes within an
organisation.

2. Background

After a current-state analysis conducted in the organisation, the introduction of a
review management and metrics collection application was seen as the next
logical step in the improvement of FSC’s review process (Kiiskilä, 1998). After
the selection of a suitable application had been conducted, a pilot was arranged

155

according to the company guidelines. The pilot lasted for two months, which
started in March 1998 and ended in May 1998. The participants in the pilot
project were recruited through a project in which they were participating at the
time, and the group consisted of thirty-two people with a variety of job
descriptions.

To start with, the participants received training, after which review meetings
were held in the usual manner, the only difference being that the review minutes
were written using the new application. Once an adequate amount of reviews
had been handled using the application in question, the participants of the pilot
were asked to fill in a questionnaire concerning the usage of the application. It
was observed that during the first training situations some problems occurred.
The problem was then traced to an incompatibility between Lotus Notes and
Windows NT 3.51 – a combination that did not occur elsewhere than in the PC
training class. However, it was observed, unfortunately only at this stage, that
this problem, most probably, would have been avoided had a pilot of the training
been conducted before the actual training began.

The questionnaire consisted of 24 questions on several aspects of the application
and its usage. The questionnaire aimed to measure, for example, the sufficiency
of the training, information content, applicability to all reviews, usability,
performance, usage of user’s guide and on-line helps. Also, participants could
comment on the general improvement, i.e benefits, of the application in
question, in comparison to the existing method, and whether or not they could
recommend taking IRMA into mandatory use thoughout the organisation.

Thirty-two participants returned the questionnaire, thus making the return ratio
very good (nearly 100%). One explanation for the high return rate could be the
fact that the questionnaires were given to each participant individually. Previous
personal experience has shown that when questionnaires are impersonally posted
or sent to recipients, the return ratio is relatively low. It must be remembered
that employees can be extremely busy, and filling in a questionnaire concerning
a project that they do not feel personally involved in, would most probably be an
unpleasant task. If, however, they have some level of personal contact with the
research or researchers in question they might well be motivated to provide
feedback.

156

3. Pilot Results
The results of the IRMA pilot conducted in FSC cannot be overestimated. In this
respect, the pilot proved to be invaluable. Throughout the duration of the pilot,
numerous improvement suggestions were received and some major defects in
the actual program and its usage were located. This aspect of the pilot was not
surprising, since IRMA had originally been created for BSC, not FSC, and
review practices can vary in different product lines within a company, as was the
case in this project. The results of the IRMA pilot are presented and discussed in
the following sections.

3.1 Usability

Several questions in the above mentioned questionnaire dealt with the usability
of IRMA. The questions were related to main functionality of the application
which are writing, approving and locating the review minutes. The results were
promising, since the majority of the feedback was positive.

Figure 1 illustrates the results of the pilot users’ opinions on how easy it is to
write the review minutes using IRMA. The results have some degree of
variation, although the majority of the feedback (65 per cent) is, once again,
more positive than negative.

4

13

1

6

2

0

2

4

6

8

10

12

14

I agree completely I agree Don’t know I disagree I disagree strongly

N
u

m
b

er
 o

f
an

sw
er

s

Figure 1. Usability results of writing the review minutes.

157

On the other hand, the results on whether it is easy to locate the review minutes
from IRMA showed a very strong positive trend. The results are illustrated in
Figure 2. Locating one particular review minutes can easily become a major
problem when the number of review minutes grows from a few hundred to
thousands, so this is an important aspect of the application as well.

9

18

4

0 0
0

4

8

12

16

20

I agree completely I agree Don’t know I disagree I disagree strongly

N
u

m
b

er
 o

f
an

sw
er

s

Figure 2. Usability results of approving the review minutes.

In several respects, enquiring about usability with a variety of questions is
important as it is relatively difficult to satisfactorily answer one general question
on the issue. Also, negative feedback in such a situation would not prove to be
very useful, since there is no way of knowing the exact location of the problem.
Unless the problem is known, there is no way of fixing it. Usability testing,
heuristic methods and other usability evaluation methods would, almost
certainly, provide more exact results (Dumas, 1993 and Nielsen, 1994).
However, the resources and equipment needed might be too expensive in some
situations and, in these cases, piloting might well shed some light on usability
issues as well.

A substantial amount of the improvement ideas received from the piloters
focused on the usability of the application. Usability is a very important aspect
of the application, since excellent ideas can be hindered badly by poor usability.

158

Poor usability frustrates the users and, thus, it will also increase resistance to
change.

Usability also affects the piloting and roll-out costs. If the user interface of the
application is not self-explanatory, the users will need more training. From the
organisations perspective, this is expensive as time spent on training means less
time spent doing productive work. There are also other costs related to training,
for instance, renting the training location and copying the training material.
From the trainer’s perspective, training the same thing over and over again can
be very strenous.

Usability also affects the amount of support needed by the users. If the
application is difficult to use, more error situations are prone to appear. Users
will then start calling the application owners and developers and, if the support
workload is high, it will hinder other work. Typically, the time spent providing
user support is less time spent in developing the tools and processes.

Usability also affects the overall productivity of the users. Human Computer
Interaction (HCI) researchers have conducted several studies showing the impact
of usability on overall productivity (Preece et. al., 1994).

3.2 Online Help

The IRMA application has both printed and online manuals. The developers
were interested to find out which of the two manuals were preferred by users.
Perhaps surprisingly, all the participants in the pilot preferred the online help, as
is illustrated in Figure 3.

159

10

11

3 3

2

0

2

4

6

8

10

12

I agree completely I agree Don’t know I disagree I disagree strongly

N
u

m
b

er
 o

f
an

sw
er

s

Figure 3. Results of on-line help preference.

However, it was found that users were unwilling to read instructions and help
texts, and more than a half (57 per cent) of the participants had not read the
instructions at all. This can also be seen as a clear indicator on the importance of
usability – the applications should be usable even without reading the manuals.

3.3 Support for Change

The piloting process is also a method of committing people to change. The users
were asked whether or not the IRMA application was considered an
improvement in comparison to the previous practices used in writing the review
minutes. Previously, the review minutes were written with a word processor, and
the files were stored in a VAX-based application called MEMO. The majority of
users were preferred the IRMA application, as is illustrated in Figure 4.

160

23

4

2

0

5

10

15

20

25

yes can’t tell no

N
u

m
b

er
 o

f
an

sw
er

s

Figure 4. Results for improvement over previous practices.

One additional benefit of piloting is democracy, as users get to decide on the
future of the projects. In this IRMA pilot project, users opinions were asked on
the future of the IRMA application and on whether or not they recommended the
IRMA roll-out for the R&D Management Team. The results are displayed in
Figure 5.

26

3
2

0

5

10

15

20

25

30

yes can’t tell no

N
u

m
b

er
 o

f
an

sw
er

s

Figure 5. Results on the roll-out recommendation for the R&D Management
Team.

161

The results would seem to indicate that the IRMA application was received
favourably by users, and this resulted in a roll-out decision from the R&D
Management Team. One of the users with a negative answer to this question
stated that the application in itself was all right, but the current server was
clearly insufficient. One of the findings in this pilot was the obvious need for a
more powerful server, which was later on acquired.

4. Reasons for Piloting

It would seem that piloting is often considered not worth the time or effort.
Adding a lengthy piloting phase to the project will mean a longer project, which,
in turn, will increase the costs as well. However, in the following sections
several reasons for piloting will be outlined.

4.1 Finding Defects

Defects are the enemy of any project. During the IRMA pilot phase many
defects in the actual application, the supporting online helps and training were
discovered. Some of the defects were fatal, and could have had disasterous
consequences should they have been discovered while the application was being
used by hundreds of users. The small piloting group ensured that the defects
only affected a relatively small group, the disasterous consequences were more
easily avoided and remedies communicated.

The users also made lots of improvement suggestions, many of which were
implemented rapidly. The visible changes gave the users a sense of power, since
they could directly influence the outlook and behaviour of the application. This,
in turn, helped commit the users to the change.

4.2 Estimating Training Needs

The piloting phase offers the perfect opportunity to test course material, as well
as the length and contents of the course. If feedback on the courses is collected
systematically, the courses can be adjusted to better fit the needs of the users.

162

The feedback form used for this purpose should contain, at least, the following
issues (adapted from a course evaluation form used at Nokia):

• Overall estimation of the course and relevancy of contents.

• Course objectives, meeting the objectives.

• Course documentation, presentation material and the actual presententation.

• Course pace and practical arrangements.

The course feedback form should also provide space for general comments,
since they often contain valuable information that could help to pinpoint the real
problem areas. The comments also often contain direct improvement ideas. The
course evaluations should also contain questions in the Likert’s scale (or
similar), which can be statistically evaluated. In Nokia, these evaluations are
used for rewarding the trainers for good performance.

In addition to these benefits, piloting can also help developers to estimate more
realistically how many users have to be trained. If the application is easy to use,
it will not be necessary to train all users. The differences between individual
users can be great: some of the users will learn the application as they use it,
others are not so willing to learn by doing. These late adopters can be reached
with prescheduled courses that they can attend if they wish. It is also generally
considered a good idea to organise a few larger kick-off lectures, supplemented
with demonstrations of the application. A large proportion of users will learn the
application just by seeing once how it is used. Online helps, manuals and the
frequently asked questions (FAQ) section can be upgraded based on the
questions people ask during the training situations.

4.3 Estimating Support Needs

The piloting phase offers the developers the first real opportunity to estimate the
amount of support that the application and its implementation might need. This
information is vital for a successful roll-out, since otherwise it can be very
difficult to predict the actual support needs.

163

In order to make a realistic estimate of the expected support requests the
application may generate, the number of support requests made by the pilot users
must be recorded, and this value then multiplied by the number of users in the
actual usage phase. The amount of support requests can be decreased, if:

• The pilot users faced some problems that can be solved and, thus, these
same problems will not cause problems in the final user base.

• The problems can be prevented from occurring by enhancing user training,
manuals or online help. However, a relatively large percentage of the users
do not use the manuals at all, so one must not depend excessively on this
(see section 3.2).

If the application is considered critical (large user base, daily usage, failures
affect operations), the support has to be extensive. Personal practice has also
shown that the more familiar the support is, the easier it is for the users to
contact it. Local power-users (users specialising in a certain application or
method) have been used in Nokia with promising results.

4.4 Estimating Costs and Benefits

The support needs, training costs, licence and hardware costs can be estimated
during the pilot in a precise manner. Firstly, the first real, numerical values of
these costs must be estimated. Secondly, the first similar results on the actual
results of this project – does this really improve our practices – must be
obtained? Thirdly, an estimate must be made on how badly the change will
interrupt daily routines, and on its possible impacts on the schedules of other
projects. It is possible that interruptions to the daily operations could be seen as
too severe at that particular time, and a more suitable moment for the roll-out
must be decided on.

The costs and benefits will provide the return on investment (ROI) -ratio for this
project, and this information is something that is vital in order to be able to make
well-informed, objective decisions. The information may also be of help when
trying to obtain the necessary support from senior management level (Humphrey
1990).

164

In the case of the IRMA pilot, it was discovered that a hardware upgrade of the
Lotus Notes server was necessary. Identifying this need before the actual roll-out
was important, not only for in estimating the related costs, but for the usability
of the application.

4.5 Helping the Roll-out Stage

If the project in question promises clear profits, the green light will most
probably be given, and the roll-out can take place. Depending on the size of the
organisation, this can be a monstrous task that might need phasing. Even in
relatively small organisations the roll-out can be consuming, and all possible
sources of assistance must be used. The piloting of the project should prepare
those concerned with the roll-out in several ways:

• It provides them with a clear understanding of the training needs – who, how
many, and how much. In the case of the IRMA application, it was possible
to reduce the IRMA Training course from a full day course to a half day
course, without decreasing the quality of the course. This, in itself, was a
significant saving.

• Knowledge of the most common problems that users will bump into is
obtained beforehand. This information can be communicated to the users
using newsletters, FAQs, online helps, etc. Or, if the users are directly in
contact with the implementers, the answers will be readily available. The
application in question has some of the most commonly asked questions, and
the answers, in the FAQ-section of the IRMA Online help and WWW pages.

• Concrete results from the pilot, which can be used to convince other users,
are obtained. The piloters can be asked to present convincing stories of the
improvements they witnessed. We simply used the results in Figure 4 and
Figure 5 for this purpose.

• If the piloters were able to influence the project with their requests, they will
most probably have a sense of ownership. It is highly likely that they will
discuss the project over coffee, and this, in turn, should convince others that
the coming change is for the better. In fact, during the IRMA pilot, it was

165

observed that some users started using the application simply because they
wanted to give it a try after what they had heard. This sort of feedback can
create the so-called “pull” or bottom-up demand for the change, as Gilb &
Graham have termed the phenomenon (Gilb & Graham, 1993).

• The piloters also act as a first line support, since the new users will most
probably ask questions from the closest source of information they know.
This will lessen the support burden of the project implementors.

The above mentioned reasons have been presented in order to assist developers
and decision-makers who have to decide whether or not to use a pilot project
whenever introducing changes into their organisations.

5. Suggestions for Piloters

Some factors that should be considered before starting a pilot of an improvement
project are listed below.

Pilot projects should be carefully pre-selected. Introducing unstable applications
or methods might cause unnecessary troubles during the pilot and can cause
overly negative response from the piloters. All applications should be properly
tested before piloting, and all process changes should be simulated and
reviewed. Pilots with no chance of survival are not of benefit to anyone.

Pilot users should be carefully chosen. It is vital to find users with versatile
background and job descriptions, so as to ensure better coverage for the different
aspects of the project. It should be checked that the pilot users have enough time
for the pilot, since if they cannot commit themselves to the pilot, they cannot
provide any useful feedback. Also, the number of piloters must be high enough
to bear some inevitable losses during the pilot. A number of piloters will change
jobs, switch sites and so forth. In the case of this pilot project, a few piloters
moved to Nokia oversees sites and were, thus, unavailable for the pilot later on.

The pilot should be carefully tracked, observed and measured. Measurable
goals, which confirm the improvement, must be set. The lightest version of this
is, for example, a questionnaire, which measures the user’s subjective feeling of

166

improvement in comparison to the previous practices. The pilot users need
constant attention, and it is of utmost importance to clear any obstacles they
might have and to keep them informed at all times. This will keep the morale up.
Support requests (what kind, when and how many) should be kept track of, and
the frequently asked questions section should be updated accordingly. If
something can be done to the application or the process to prevent support
requests, preparations should be made to change those areas, as unnecessary
support requests increase costs and could indicate that the usability of the
application is poor.

Changes in the project should be prepared for. If the pilot users can suggest
improvements and the project can implement them, the users will most probably
feel empowered. This could mean that the changes have to be implemented
quickly, since the pilots usually have a tight schedule. The developers schedules
should be considered, and sufficient time and resources reserved for
implementing the possible changes.

In addition to the above mentioned issues, getting a good start is vital. A proper
kick-off meeting, where the background, goals and expectations of the project
are outlined, should be planned. Training courses should be tested and/or piloted
in a friendly environment before any pilot personnel are trained. A training
course, which falls flat due to unexpected errors (the notorious demo-effect),
gives the piloters a very bad first impression which is often hard to shake off.

6. Conclusions

This article presented some of the results obtained from the piloting of an in-
house review application called IRMA. The most important result of the pilot
was the realisation of the usefulness of piloting. It allowed the developers to
refine and improve the application, the related documentation and online help.
Several bugs were located, many improvement ideas were created and a large
number of them were also implemented during the pilot phase. This created a
very positive feeling of ownership for the pilot users, since they were in control
of the application development. The pilot users were also asked to do the final
assessment on the usefulness and future of the application. The application was

167

found useful and the roll-out of the application was also recommended. Today,
the roll-out has proceeded for several months with excellent results.

Piloting was also strongly recommended in this article, and several reasons
demonstrating the usefulness of piloting were provided. One of the reasons is,
for example, finding defects, which are a constant threat to every project. A pilot
should help developers find defects and improvement ideas, as well as refine the
application or the method used. This should ease the roll-out, since the users
have had a chance to state their opinion and, thus, affect the project. Other
reasons include the chance to realistically evaluate the training and support
needs, since they greatly affect the costs of the actual roll-out project and
operational usage in the future. In this way, the costs and actual benefits of the
project can also be estimated with greater accuracy than in the early phases of
the project planning. This information enables the management level to make
informed and objective decisions on the future of the project.

If a pilot project is in the planning stage, some of the advice in this article may
also prove to be useful. It is always advisable to use human resources to do
productive work, and this also applies to piloting. The projects to pilot must be
chosen carefully, since pilots with no realistic chance of living beyond the
piloting stage are usually not worth the time or effort. Also, the pilot users
should be carefully chosen: a varied background and several different job
descriptions allow for better coverage of the application or method being piloted.
Pilot projects also require a considerable amount of attention: the progress of the
pilots must be tracked and monitored, and possible obstacles that the pilot users
might encounter must be eliminated. Developers and implementors should
maintain a flexible attitude and be prepared to change the project according to
suggestions made by the users. Change request made by users are usually valid
and useful, and the necessary resources in order to implement for the rapid
changes must be made available. Getting a good start to the pilot project is vital,
as first impressions are hard to shake off.

The improvement of Fixed Switching’s review process does not end with this
article – this is merely the beginning. Long-term plans covering the general
improvement of the in-house review practices have been made. Also, the
rigorous use of review metrics to estimate product quality and to track the
profitability and efficiency of our review process has been set as an aim. In

168

addition to these, the possibility to embed defect prevention process methods to
the review process (see Gilb & Graham 1993 for details) is undergoing
investigation. These tasks will inevitably raise an abundance of questions worth
future research. Currently the roll-out of the IRMA application is well on its way
in FSC, and it is hoped that some of the insights gained during this stage will be
published in the near future.

7. Acknowledgements

I would like to thank all the participants of the IRMA pilot project for their
feedback and support. I would also like to thank Jyrki Hokkanen for
implementing several change requests, always without any delay, during the
pilot project. Joanna Matthan also deserves big thanks for editing this article. In
addition, I offer my sincere thanks to all the team members of the Process
Management Department of the FSC R&D. Last, but not least, I would like
convey my deep gratitude to my wife, Virpi, for her constant support and
motivation.

References

Dumas, J. S. & Redish, J. C. 1993. A Practical Guide to Usability Testing.
Ablex Publishing Corporation. 412 pp. ISBN 0-89391-991-8

Fagan, M. E. 1976. Design and code inspections to reduce errors in program
development. In IBM Systems Journal, vol. 15, no. 3, 1976, pp. 182-211.

Gilb, T. & Graham, D. 1993. Software Inspection. Addison-Wesley Publishing
Company. 471 pp. ISBN 0-201-63181-4

Humphrey, W. S. 1990. Managing the Software Process. Addison Wesley
Publishing Company. Reprinted with corrections. 494 pp. ISBN 0-201-18095-2

Kiiskilä, J. 1998. Practical Aspects on the Assessment of a Review Process. In
Euromicro 98, Proceedings of the 24th EUROMICRO conference, volume II.
IEEE Computer Society Press, 1998, pp. 867 – 870.

169

Nielsen, J & Mack, R. L. (eds) 1994. Usability Inspection Methods. John Wiley
& Sons. 413 pp. ISBN 0-471-01877-5

Paulk, M. C., Weber, C. V., Garcia, S. M., Chrissis, M. and Bush, M.. 1993. Key
Practices of the Capability Maturity Model, Version 1.1. February 1993,
CMU/SEI-93-TR-25. Software Engineering Institute, Carnegie Mellon
University, Pittsburgh.

Preece, J. et al. (eds) 1994. Human-Computer Interaction. Addison-Wesley
Publishing Company. 703 pp. ISBN 0-201-62769-8

Sommerville, I. & Sawyer, P. 1997. Requirements Engineering – A Good
Practice Guide. John Wiley & Sons. 391 pp. ISBN 0-471-97444-7

170

Early testing of Embedded Software

Marcello Vergano
IAS s.r.l.

Torino – Italy
Ias@alpcom.it

tel + 39 11 9575155

Abstract

This paper presents the Autosim Process Improvement Experiment, ESSI project

n. 27585.

The company produces embedded software for factory automation systems. The

software integration phase in factory has always been a delicate phase for each

project, as the number of faults found and to be fixed in that phase is

unpredictable.

Autosim aims at introducing in-house test of embedded software based on the

simulation of its environment in the production facility. The software process is

enriched of two new phases, definition of simulation models of the factory, and

in house test of the embedded software against the models. It is expected that

these new activities will allow to find most integration faults in house, where

they can be fixed easily and at lower cost. Therefore integration in factory

should become predictable, with shorter duration and effort.

171

The experiment has two main parts: preparation and experimentation. In the

former a simulation tool is selected, know-how about simulation is acquired with

training, test procedures are defined and integrated in the quality system. In the

latter the new approach is applied to a baseline project (the enlargement of an

automated warehouse for electronic components) and the results are compared

with the current situation.

1. Background and context

In the following we describe the context of the Autosim PIE: the company in

which it is performed, the software process before the experiment, and the

phases planned for the experiment.

The company

 IAS business is the production of software and design of hardware in the domain

of basic automation and integrated supervision. In particular IAS specialises in

embedded software applications for material handling.

 As regards software, IAS covers all phases of development, from analysis of

requirements to installation. Requirements are usually produced by a system

integrator, which develops the whole production facility, and interacts with the

final customer. The software runs on networks of PCs or PLCs (Programmable

Logical Controllers).

 As regards hardware, IAS produces the hardware design for PLCs. IAS does not

cover hardware implementation, assembly and installation.

 IAS has already faced important organizational and technical changes. From a

small pool of technicians, IAS has grown to a software company. The

172

competition in a not growing market has increased, while productivity has not

increased and the customers’ demand for both reliability and cost effectiveness

has. IAS has therefore began an activity aimed at increasing the quality and

reducing developing costs for software. Introducing better tools and techniques

to test the embedded software is an answer to these objectives. Autosim aims at

introducing in-house test of embedded software based on the simulation of its

environment in the production facility.

 IAS is a very small company started by 4 technical people in 1989. In 1992 the

company totalled 8 people and was known for its technical competence. But it

was still more similar to a pool of associate technicians than to a structured and

managed company.

 In 1992/3 the first reorganisation occurred, in order to structure the company,

define clear roles and establish management procedures. In 1994 the company

had staff of 10 and was one of a few survivors to a crude competition that made

many similar companies in the region disappear. Given better management

practice and project accounting, it was now clear that not all projects had the

same profitability and the same quality, and that these two factors were related:

basically, lower quality means longer software integration phase and less profit

(or loose). The quality issue was raising more and more interest in management,

while customers (system integrators) were also asking for more quality and

ISO9001 certification by 1998 at latest.

 In 1995 it was decided to anticipate customer request, and the second

reorganization started, aimed at restructuring the company to introduce an ISO

9001 compliant quality system. Certification was achieved in February 1997.

 Today, IAS strengths are

173

 -flexibility and fast response to customer requests

 -good technical reputation

 -a well designed quality system is in place, effective and not too cumbersome

 -established know-how in the material handling domain

The software process in IAS

 A typical project in IAS undergoes the following phases: received call for

proposal, application analysis in order to to write proposal, proposal, contract

signed, analysis, hardware design (=electrical layout design, including PLCs),

software design and coding; stand-alone software test (carried out in house),

PC/PLC-to-host integration test (in house, host simulated), hardware test (= test

of connections to sensors, actuators and electrical connections, carried out in

factory), software installation (in factory), software integration test (in factory),

documentation writing (electrical layout, code, operator manual and user

interface description).

 PC software is developed in C or C++ , Oracle, occasionally Assembler. The

development environment is MS Windows based Borland or MS development

environment. The typical target environment is MS DOS (clients) or Windows

NT (servers) with Ethernet network.

 The tools used for hardware design are: EPLAN 4.11, AUTOCAD - SPAC. The

programming languages used are the PLC proprietary languages of each vendor

(Siemens, Telemecanique, Allen/Bradley, Omron, Hitachi, CGE). The same

applies for the tools for software design/coding. Control View, Usr, Genesys are

used to write supervision software modules.

174

 Projects have different levels of quality. To deliver the same level of quality to

the customer, late minute fault fixings at the customer site are often needed.

Since these fixings are not payed by the customer, this means that profit is traded

off for quality.

 Luckily, thanks to the quality system in place, it is quite easy to understand

where the problem comes from.

 The software integration test in factory does not give satisfactory results in that

in the case of unpredictable problems, the phase typically exceeds plans of 100 -

200%. Since other phases exceed at most a reasonable 5-10%, the performance

in the software integration phase decides whether an IAS project is profitable or

not.

 Faults discovered in software integration in factory originate from:

• hardware implementation and installation. Hardware design is carried out

by IAS, while implementation and installation are done by third parties,

contracted by the system integrator, and IAS has no control over this work.

Hardware can be inconsistent with the design because of faults introduced by

these third parties and because of changes made and not communicated to IAS.

The introduction of ISO9001 procedures enabled IAS to trace these faults (and

their cost) to those responsible for them.

• software design and coding. These faults are introduced by IAS and could be

reduced by using early testing.

 The stand alone software in house test has a limited coverage because more

testing would require the simulation of the external environment of the

embedded software. Recently a customer (system integrator) developed and

175

gave to IAS the simulation models of the external environment. Using these

models for thorough in house test, the software integration test in factory, made

by a third party company in an overseas factory, found virtually no faults.

The project phases

 The experiment consists of a preparation and an experimentation phase. During

the preparation phase a new process is defined to encompass simulation

activities, a suitable tool is selected, the staff is trained. In the experimentation

phase the new process and tool are experimented on a typical IAS project. In

parallel the process is modified and tuned as needed.

2. The experiment

We describe here the work performed in the first half of the experiment.

2.1 New phases added

 The idea of the experiment is to anticipate the phase in which faults are found to

the in house test. Until now this approach was not applied because, in the case of

embedded software, extensive test requires that the software be connected with

its environment, that is sensors and actuators linking it with the actual factory.

As the factory cannot be reconstructed in house, it should be simulated. This is a

long and costly activity that has not been performed until now. But today new

tools exist that facilitate this activity, and their use and integration in IAS

process is the scope of Autosim.

 The software process in IAS is modified as follows (activities in italics are new):

received call for proposal, application analysis in order to to write proposal,

176

proposal, contract signed, analysis, hardware design, definition of simulation

models of factory, validation of simulation models, software design and coding;

stand alone software test (in house), PC/PLC-to-factory test, using simulation

models (in house), PC-to-host integration test (in house), hardware test (in

factory), software installation (in factory), software integration test (in factory),

documentation writing.

 We describe here the activities in italics.

 Definition of simulation models of factory

 The embedded software receives inputs from sensors in the factory (proximity

sensors to recognise a piece or a machining tool is present/absent, weight,

pressure, force sensors, etc), processes these inputs and reacts, in function of its

state, controlling devices placed in the factory (alarms, engines, valves, ..). The

customer’s requirements, and analysis and hardware design phases, completely

define the environment of each PC or PLC. From these data, a simulation model

is built for each PC or PLC. The simulation model replaces the factory

environment and can be executed (usually on a PC) in house.

 It is particularly important that the simulation model is not defined by the person

charged of the hardware or software design. This could bias the model and

reduce its ability to test the hardware and software design of the embedded

software. In other words a specific role charged of defining simulation models

will be defined.

 Validation of simulation models

 The simulation model is now reviewed and executed to verify if it complies with

the customer’s requirement, with analysis and hardware design. The main

177

verification steps are: verification of the model itself, verification of input and

outputs to and from sensors and actuators (number, type, behaviour).

 PC/PLC to factory test

 The software is tested in house against the simulation model. The PC or PLC is

connected, using a dedicated card, to the PC on which the model is defined. The

software is executed, the model interacts with it. Faults in the software (and

possibly in the simulation model) are found and fixed.

 Defining early a simulation model of the factory environment of each PC/PLC

has many advantages. The hardware design is verified once more, and faults, if

any, can be found. The software can be tested thoroughly, and many faults can

be found. All the faults (hardware or software) found here would otherwise be

found in the software integration phase, where the cost of removal is much

higher.

2.2 Measures

The effect of the changes in the process will be controlled by using the following

measures. Measurements already taken are in normal font, measurements to be

added are in italics.

178

To monitor the in house test phase estimated effort, estimated duration,
actual effort, actual duration, number of
faults discovered, type of faults
discovered

To monitor the in house integration
test phase

effort, duration, number of faults
discovered, type of faults discovered,
simulation models effort (definition and
validation)

To monitor the in factory integration
phase

estimated effort, estimated duration,
actual effort, actual duration, number of
faults discovered, type of faults
discovered

An analysis of measures on past projects has been made too. Although the data
collected is not always completely reliable, some trends have been discovered.
Figure 1 plots effort and size per project. A linear relationship seems to apply,
also for the largest project considered.

Figure 2 plots density of non conformities versus size. Except for two outliers,

density seems to be not related with size, and always below a threshold. Finally,

Figure 3 shows density of non conformities versus productivity. Here the plot

seems to suggest that projects with higher productivity have also higher defect

density. Also, in many cases given the same productivity, defect density varies

widely. We will compare measures from the baseline project with these

measures from past projects to analyse the effect of simulation based early test.

179

Figure 1 – Effort vs. size for past projects

Figure 2- Density of non conformities vs. size

0.00

10.00

20.00

30.00

40.00

50.00

0 200 400 600 800

Size (Kbytes)

N
C

 d
en

si
ty

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 100 200 300 400 500 600 700

Size (Kbytes)

E
ff

o
rt

 (
h

o
u

rs
)

180

Figure 3- Density of non conformities vs. productivity

2.3 Tools

 We have analysed two categories of tools.

• general purpose, lower cost simulation tools with some capabilities of

interfacing the external world (i.e. piloting external I/O), such as Witness,

Arena, Simula++

• special purpose simulation tools (such as Simac), particularly apt to

simulating factory environments and to piloting external I/O

 Finally the choice was for Simac, given its more specific capabilities of

supporting simulation of embedded systems, and particularly factory automation

environments.

 The typical configuration of a simulation is shown in Figure 4

Figure 4 - Embedded software and simulation models

Embedded
software, running
on PC or PLC

Model of the
environment,
running on PC

IO

IO

0.00

10.00

20.00

30.00

40.00

50.00

0.00 10.00 20.00 30.00 40.00 50.00

NC density (NC/Kbyte)

P
ro

d
u

ct
iv

it
y

(K
b

yt
e/

h
o

u
r)

181

3. Conclusions

The Autosim project is now halfway from conclusion, and experimentation has

just started. However, a number of observations can already be made.

• Acquiring the skill to build effective simulation model is a demanding task,

the effort to be allocated for it should not be underestimated.

• Building simulation models should not be performed by the same person(s)

that build the programs to be tested. The main reason is that the programmer

would be tempted to build simulation models that demonstrate his program is

correct, instead of building models that find the most defects. Another reason is

that building models requires different skills than building the program.

• Currently we have a limited number of models, but it is already clear that a

library of models, a librarian charged of their maintenance, and a set of library

procedures are needed.

• We are building models on an ad hoc approach, project by project. However

experience from past projects suggests that models could be reused easily from

project to project, provided that they are designed with reusability in mind. We

think that models could be reused even more and with less problems than

modules in the applications.

4. Acknowledgements

This work was supported by the European Commission, under contract

Esprit/ESSI Autosim n. 27585.

182

Capture-Recapture Estimations for
Perspective-Based Reading – A Simulated

Experiment

Thomas Thelin and Per Runeson
Department of Communication Systems, Lund University

P.O. Box 118, SE-221 00 Lund, Sweden
{thomas.thelin, per.runeson}@tts.lth.se

Abstract

Inspections are established as important contributors to software quality. In order

to improve the quality control and the efficiency of inspections, new methods

and models are presented. Capture-recapture (CRC) models estimate the number

of remaining faults after an inspection. Perspective-based reading (PBR) focuses

different inspectors on different areas, thus reducing overlap in terms of

detection effort and faults found. The combination of PBR and CRC is, however,

assumed to give problems, since the prerequisites of the two techniques are

partly contradictory. In order to investigate whether this is a practical problem, a

simulated experiment is designed. The experiment results indicate that the CRC

estimators are rather robust to simulated PBR data. For three inspectors, Mh-JK

and DPM are superior, while for six inspectors, five out of six investigated

estimators show acceptable results. The DPM estimator gives acceptable

estimates for three inspectors, but not for the six-inspector case. The experiment

gives a basic understanding on the relation between PBR and CRC.

1. Introduction

Inspections are gradually growing into state-of-the-practice in software engineer-
ing as efficient contributors to improved software quality, and thereby reduced
costs [Fagan76, Gilb93]. During the last years, new techniques have been pre-
sented which add value to inspections, in terms of better quality control and
improved efficiency. Two new techniques are capture-recapture estimates which

183

has its origin in biology [Otis78], offers an opportunity to estimate the remaining
number of faults in a document after an inspection [Eick92, Eick93]. The per-
spective-based reading technique [Basili96] is aimed at providing more efficient
inspections by focusing the inspectors on different aspects or (CRC) and
perspective-based reading (PBR). The capture-recapture technique, perspectives
of the document during the inspection.

After the application of capture-recapture to software engineering was proposed,
different studies have been conducted on simulated as well as real data. The
purpose has been to understand the behaviour of capture-recapture estimation
models for software engineering data, and ultimately to find a superior model
[Vander Wiel93, Wohlin95, Briand97, Briand98a, Briand98b, Wohlin98,
Runeson98, Petersson99]. Only [Briand98b] analyses the impact of the PBR
technique on CRC estimates.

There is a contradiction between the principles of CRC and those of PBR. The
aim of PBR is that different inspectors should not find the same faults, while the
CRC estimators are based on the existence of an overlap among faults found by
different inspectors. The relation between PBR and CRC was intended to be
investigated on real data. However, the difference among the perspectives was
not significantly different [Regnell99], hence data for the investigation with PBR
characteristics are simulated. A chi-square test [Siegel88, pp. 191-200] is used in
[Regnell99] and in this paper to test whether the perspectives detect different
faults. The relations between the characteristics of the data are illustrated in Fig-
ure 1. The conformance between real and expected data (1) was not possible to
show statistically in [Regnell99]. Hence, in this experiment, data with expected
characteristics are simulated (2) to produce expected PBR data.

Figure 1. Relations between real, expected and simulated data in PBR
inspections.

The results of the study indicate that CRC estimators are rather robust to simu-
lated data with PBR characteristics. For three inspectors, two of the least
complex estimators are shown to be superior, while for six inspectors, five out of
the six investigated estimators show acceptable estimation results. The

Real PBR data Expected PBR data Simulated PBR data
1 2

184

experiment gives a basic understanding on the relation between PBR and CRC.
In order to validate the assumptions behind the simulated data, the study should
be followed-up by experiments with real data.

The paper is outlined as follows. In Section 2, the capture-recapture technique is
briefly introduced and in Section 3, the principles behind PBR are presented.
Section 4 presents the design of the simulation experiment and Section 5
analyses the results of the experiment. Finally in Section 6, conclusions from the
study are presented.

2. Defect Content Estimators

Capture-recapture is a method used to estimate the number of remaining faults in
a software document after an inspection. It was first applied to software inspec-
tions in [Eick92]. The size of the overlap among the inspectors indicate the
number of faults left in a document, and it is used as a basis for the CRC estima-
tion models. The larger overlap among the inspectors the more faults are
assumed to remain, and the smaller overlap the less faults are assumed to remain.

A number of different CRC models and estimators exist. Five CRC estimators
and one curve fitting estimator are used for simulating the behaviour of defect
content estimations in connection with PBR. The six estimators and their models
are shown in Table 1, which cover most models that have been applied to soft-
ware engineering.

185

Table 1. Defect content models and estimators used in the experiment.

Model /

Estimator

Prerequisites Abbrev./

Reference

M0 /

Maximum-

likelihood

All faults have the same probability to be

detected by one specific inspector

All inspectors have the same detection

probability of one specific fault

M0-ML

[Otis78]

Mt /

Maximum-

likelihood

All faults have the same probability to be

detected by one specific inspector

The inspectors’ individual probabilities to detect

faults may differ

Mt-ML

[Otis78]

Mh /

Jack-knife

Mh-JK

[Otis78]

Mh /

Chao

The faults probability to be detected may differ

All inspectors have the same detection

probability for one specific fault Mh-Ch

[Chao87]

Mth /

Chao

The faults probability to be detected may differ

The inspectors’ individual probabilities to detect

faults may differ

Mth-Ch

[Chao92]

Curve fitting /

Detection Pro-

file Method

The sorted and plotted data should resemble an

exponential function

DPM

[Wohlin98]

186

3. Perspective-Based Reading

Perspective-based reading assigns different perspectives to the inspectors to
apply when reading. The initial idea behind reading a document from different
perspectives is to gain better detection coverage of faults in a software
document. This is achieved by focusing the reading effort of different inspectors
on different aspects. Basili et al. [Basili96] use designer, tester and user as
inspections roles.

Model building is a central part of the three inspection techniques used for PBR.
The models used for inspecting a document stem from well-known techniques
used in the different software phases. Designers utilise structured analysis,
testers utilise equivalence partitioning and users utilise use cases. All these mod-
els are structured and adapted to be used as inspection techniques. By combining
the three perspectives, the resulting inspections are expected to achieve better
fault coverage of the inspected document and less overlap among what different
inspectors find. Hence the inspections are expected to be more cost-effective.

The principles behind PBR are, however, contradictory to the CRC estimation
models, which are based on the overlap among faults found by different inspec-
tors. If PBR works according to its principles, an inspection according to PBR
would provide less overlap among faults found than inspections conducted with
ad hoc or checklist reading techniques, given that the same number of faults
actually remains after the inspection. The CRC estimators would then estimate a
larger number of remaining faults for the PBR case.

4. A Simulated Experiment

4.1 Design and Assumptions

The scope of the experiment is to investigate the estimation performance of six
estimators when the fault data input to the estimators have PBR characteristics.
In order to investigate the behaviour of the six estimators, inspections with
varying characteristics are simulated, generating data correspondingly. All data

187

sets, except one, are generated to simulate PBR inspections. The experiment
includes some independent variables which are described below.

• Two different sizes of inspection teams are used. Teams with three
inspectors are chosen to reflect an industrial setting. Teams with six
inspectors are chosen to investigate whether some estimators change
behaviour when more input is provided.

• The number of faults in each simulated document is 30. This variable is cho-
sen based on empirical studies of PBR. Examples of empirical studies using
documents that contain about 30 faults are [Basili96, Porter95].

• The number of simulations for each case are 1000 to constitute a sufficient
data set for the statistical tests. In Table 2 the 19 simulation cases are shown,
where each of the simulation cases include 1000 simulated inspections.

• For every simulation case, three perspectives are used. It is assumed that a
document contains three different types of faults, which have different
probabilities of being detected. One perspective has high probability (p≥0.6)
to detect one third of the faults and low probability (p≤0.4) to detect the
other two thirds of the faults. In Table 2 the probability levels used for the
experiment are presented. For six inspectors it is assumed that two of each
perspective are used in each inspection, which means that two high
probabilities and four low probabilities are used.

• One combination of probabilities is 0.5, 0.5 and 0.5. These values represent
a reference inspection and are not part of the PBR data. The purpose for this
simulation is to investigate one simulation where all estimation model’s pre-
requisites are fulfilled. Also, it is used as a reference, which should not be
rejected by the chi-square test, see Section 4.2.

188

Table 2. The probability values for the 19 simulation cases. For six inspectors,
two high and two of every low probability values are chosen.

Perspective 1 2 3 4 5 6 7 8 9

Low 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Low 0.1 0.1 0.1 0.25 0.25 0.25 0.4 0.4 0.4

High 0.6 0.75 0.9 0.6 0.75 0.9 0.6 0.75 0.9

Perspective 10 11 12 13 14 15 16 17 18 19

Low 0.25 0.25 0.25 0.25 0.25 0.25 0.4 0.4 0.4 0.5

Low 0.25 0.25 0.25 0.4 0.4 0.4 0.4 0.4 0.4 0.5

High 0.6 0.75 0.9 0.6 0.75 0.9 0.6 0.75 0.9 0.5

The dependent variable is the estimation values of each estimator. This is char-
acterised by its mean and standard deviation values. The relative error is used in
the plots to easily compare the results. The definition of relative error used is:

faults ofnumber Actual

faults ofnumber Actual faults ofnumber Estimated
 ErrorRelative

−=

4.2 Analysis and Evaluation

This section discusses the statistical analysis conducted. First the Kolmogorov-
Smirnov test, Levene test, normal probability plots and residual plots were per-
formed. The tests and plots aim at investigating the validity of assumptions of
normal distribution and equal standard deviation that have to be fulfilled for
parametric tests [Montgomery97]. The validation procedure showed that the data
do not represent normal distributions. In addition, the data had not equal
standard deviation. As a consequence, non-parametric tests are performed in the
experiment [Siegel88]. In Table 3 the procedure of statistical testing is listed.

189

Table 3. The statistical test procedure.

No. Test Purpose

1 Chi-square Validate the simulation model

2 Kruskal-Wallis Investigate whether the means are equal

3 Mann-Whitney U Investigate whether each pair of means are equal

In the Mann-Whitney test (multiple paired tests), a significance level of 0.005 is
used and for the other tests a significance level of 0.05 is used.

4.3 Threats

The validity of the results achieved in experiments depends on factors in the
experiment settings. Furthermore, different types of validity can be prioritized
depending of what conclusions will be drawn from the experiment. In this case,
threats to four types of validity are analysed [Cook79]: conclusion validity, inter-
nal validity, construct validity and external validity.

Conclusion validity concerns matters on the statistical analysis of results and the
composition of subjects. In this experiment, well known statistical techniques are
applied and their assumptions are under control. Furthermore, the simulation
technique enables generating as many samples as needed, which reduces the
general problem in software engineering experimentation of small data sets.

Internal validity is about, for instance, matters that make the subjects act differ-
ently in the experiment than they would have done in a non-experimental situa-
tion. Again, the simulation approach makes the “subjects” act exactly according
to their probabilistic definitions.

Construct validity deals with generalisation of experiment results to concepts or
theory behind the experiment. It is assumed that the PBR inspections generate
fault detection data with certain characteristics, in terms of detection probabili-
ties. It is assumed that the inspectors have different detection probabilities for

190

different faults, depending on their perspectives. The experiment is conducted on
the basis of these expected PBR characteristics. If this assumption is not true, i.e.
the PBR inspection data do not show the expected characteristics, the experiment
results can not be generalized to real PBR inspections. On the other hand, if the
PBR data consistently do not show these characteristics, the PBR inspections do
not work as the basic assumptions state, and the value of applying PBR can be
questioned.

External validity concerns generalisation of experiment results to other envi-
ronments than the one in which the study is conducted. Again, as the study is
based on simulations, the external validity depends on how close the simulation
model is to real environments to which the results are to be generalised.

It can be concluded that the most important threat to the validity is the charac-
teristics of the inspection data. The results should be interpreted in the light of
this fact. If real data do not show the expected PBR characteristics, the results
can not be generalized to PBR inspections. However, in this case, applying PBR
can be questioned as well.

5. Analysis of Estimation Results

5.1 Analysis of PBR Data

Two statistical tests are discussed before further analysis. The tests are number 1
and 2, which are described in Section 4. It turned out to be the same results of
these tests for both three and six inspectors.

The result of the chi-square tests was that only one simulation case could not be
rejected, namely the simulation with probabilities equal to 0.5 0.5 and 0.5.
Hence, the other 18 simulation cases are considered to have PBR characteristics.
For future reference of data with PBR characteristics in this paper, only the 18
first simulation cases are considered.

Moreover, the Kruskal-Wallis tests show that H0 can be rejected for all simula-
tion cases. This means that at least one estimator’s mean differ significantly from

191

the others and thus paired test can be performed. The paired tests are discussed
during the analyses of mean and standard deviation values.

5.2 Analysis of Teams with Three Inspectors

In Figure 2 and Figure 3, the estimation results of the 19 simulation cases are
shown as bar plots of the mean and standard deviation values.

The overlap among faults found for inspectors applying PBR is assumed to be
less than the overlap for ad hoc inspections. Hence, PBR is assumed to force
capture-recapture estimators to overestimate. Figure 2 shows this assumption to
be true in almost all the simulated cases. The larger difference in detection
probability and the lower detection probability, the more they overestimate.

A pattern can be seen in all estimators except for Mth-Ch. If the two low
probabilities are constant and the high one increases the overestimation also
increases. The overestimation decreases when higher detection probability is
used. Hence, the more similar inspectors, the smaller overestimates.

Mh-JK and DPM are the estimators which show best estimation results. For all
simulation, cases except number 7 to 9, differences are statistically significant
(α=0.05). Despite the first three simulation cases where Mh-JK is much better,
they both show good estimation results. In some simulations Mh-JK is the best
one and vice versa. No pattern is shown when to use DPM or when to use Mh-
JK. Therefore both of them is recommended as they show low overestimation
and low standard deviation.

Figure 4 and Figure 5 show bar plots of the mean of all the means and the mean
of all the standard deviation values of the PBR simulation cases, i.e. the mean of
the simulation cases with PBR characteristics (1-18). In order to find an overall
best estimator for PBR characteristic data these plots are valuable. They show
the overall behaviour of the estimators used in the experiment. The overall and
significantly best estimator is Mh-JK using tests and these plots as a reference.
DPM is not significantly better than either M0-ML or Mt-ML. Nonetheless,
DPM has smaller standard deviation and is hence considered as a better
estimator than M0-ML and Mt-ML.

192

Figure 1. Bar plots of the mean values of relative errors.

Figure 2. Bar plots of standard deviation values. The numbers below the plots
refer to the simulation cases defined in Table 2. Note that the same scales are not
used in the plots filled grey.

193

not used in the plots filled grey.

5.3 Analysis of Teams with Six Inspectors

The analysis of six inspectors is carried out in a similar way as for three inspec-
tors. In addition, a comparison between three and six inspectors is discussed. The
probability values for the simulation of six inspectors are the same as for three
inspectors. This means that there are four inspectors with low detection probabil-
ity and two inspectors with high detection probability in each simulation case.

In Figure 6 and Figure 7, the estimation results of the 19 simulation cases for six
inspectors are shown.

The two best estimators for six inspectors using data with PBR characteristics
are M0-ML(and Mt-ML) and Mth-Ch. Both M0-ML and Mth-Ch are signifi-
cantly better considering all mean values. In all simulation cases, the means of
M0-ML and Mth-Ch differ significantly. Although they differ, it is not the same
estimator that is superior in all cases. The standard deviation values are small for
all estimators except DPM.

For three inspectors a pattern can be seen in several estimators’ estimation
results. When one inspector’s probability increases and the other two remain
constant, the estimations become larger, resulting in overestimations. The pattern
for six inspectors are reversed; when two inspectors’ probabilities increase and
four remain constant, the over estimation decreases.

Figure 3. The mean of the absolute
values of the means using data with
PBR characteristics.

Figure 4. The mean of the standard
deviation values using data with PBR
characteristics.

194

Figure 5. Bar plots of the mean values of relative errors.

Figure 6. Bar plots of standard deviation values. The numbers below the plots
refer to the simulation cases defined in Table 2. Note that the same scale is not
used in the plot filled grey.

195

Only DPM has the same pattern for three and six inspectors. This may depend on
changes in the overlap among the faults that the inspectors detect.

Most of the estimators can be used for data with PBR characteristics. None of
the estimators, except DPM, have large bias nor standard deviation. In Figure 7
and Figure 8, the mean of the mean values and the mean of the standard
deviation values of the simulations are presented. Considering both mean and
standard deviation, M0-ML, Mt-ML and Mth-Ch are the overall best estimators.
However, all estimators except DPM estimates accurately.

5.4 Interpretation of the Results

The major conclusion from the analysis is that capture-recapture can be used for
PBR inspections. Some of the estimators do not estimate very well for three
inspectors, however, that is not the case for ad-hoc inspections either [Braind97,
Briand98b].

The model Mth is expected to estimate best, since its prerequisites are less
restricted. However, this is not the case. For three inspectors, it estimates rather
poorly, on the other hand, for six inspectors, it estimates very good. This behav-

Figure 7. The mean of the absolute
values of the means using data with
PBR characteristics.

Figure 8. The mean of the standard
deviation values using data with
PBR characteristics.

196

iour is expected since Mth-Ch needs more data than the other estimators to esti-
mate accurately. The reason behind this may be that Mth has more degrees of
freedom and is more complex statistically than the other estimators, thereby
Mth-Ch requires a larger amount of input data to perform as well.

Model Mt is the other model expected to estimate well. The estimator in this
model, Mt-ML, estimates well using data with PBR characteristics. However,
M0-ML estimates at least as well as Mt-ML although it has more restricted pre-
requisites. Similar results are also discernible in other empirical studies
[Briand97, Briand98b, Thelin99]. Since more restricted models often are
preferable, this indicates that M0-ML is more appropriate to use for PBR
purposes.

For the reference simulation, the models M0 and Mt show best simulation
results. This was expected since the prerequisites of all models are fulfilled, and
thus a simpler estimator is preferable to utilise.

As a consequence of the analysis, fulfilling the models’ prerequisites seem not to
improve the estimation result, in particular not for the three-inspector case. This
confirms the results in [Thelin99].

DPM estimates very well for three inspectors and very poorly for six inspector.
Since DPM does not have similar prerequisites as the CRC estimators it does not
behave the same way as these either. The reason may be that when three more
inspectors with equal detection probabilities are added, the exponential curve is
raised and becomes more flat causing overestimation. As a result, DPM
estimates well for data with PBR characteristics for few inspectors and thus can
be used as a complement to the CRC estimators.

6. Conclusions

In this paper a simulated experiment of PBR is presented. The main goal is to
investigate CRC estimators’ behaviour when the input is data with PBR charac-
teristics. In order to judge whether the data have PBR characteristics, a chi-
square test is performed. The simulations are performed with both three and six

197

inspectors, since empirical results have shown that the number of inspectors are
critical to the performance of CRC estimators [Briand97, Briand98b].

The major conclusions drawn from the experiment are:
• Capture-recapture estimators can be utilised for perspective-based reading.

Some of the estimators do not estimate very well for three inspectors, how-
ever, that is not the case for ad-hoc inspections either [Braind97, Briand98b].
The detection probability have to be higher in the three-inspector case than
the six-inspector to achieve satisfactory results.

• For three inspectors, two of the estimators seem to be superior; these are
Mh-JK and DPM. Considering both mean and standard deviation these two
estimators are the most robust for data with PBR characteristics. Two of the
estimators are not recommended to be used for three inspectors; these are
Mh-Ch and Mth-Ch due to their large bias and standard deviation.

• For six inspectors, all estimators except DPM estimate well and are trustwor-
thy. The best estimators are M0-ML, Mt-ML and Mth-Ch. In a former study
[Briand97], Mth-Ch has shown to need more inspectors in order to estimate
well. This study confirms these results.

• The assumption that CRC estimators overestimate when using PBR data
seems to be true in most cases. For three inspectors this is true, however, for
six inspectors some of the estimators underestimate in some simulation
cases.

Future work with PBR in connection with CRC is to use real data which by the
chi-square test is shown to have PBR characteristics. This simulation study
should work as a basis for other empirical investigations, from which further
conclusions can be drawn concerning CRC and PBR.

7. Acknowledgement

The authors would like to thank Claes Wohlin and Håkan Petersson at the Dept.
of Communication Systems, Lund University, and the anonymous reviewers
who have carefully reviewed this paper. This work was partly funded by The
Swedish National Board for Industrial and Technical Development (NUTEK),
grant 1K1P-97-09673.

198

References

[Basili96] Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull,
F., Sørumgård, S. and Zelkowitz, M. V. “The Empirical
Investigation of Perspective-Based Reading” Empirical
Software Engineering: An International Journal, 1(2):133-
164, 1996.

[Briand97] Briand, L., Emam, K. E., Freimut, B. and Laitenberger, O.
“Quantitative Evaluation of Capture-Recapture Models to
Control Software Inspections” In Proc. of the 8:th
International Symposium on Software Reliability
Engineering, pp. 234-244, 1997.

[Briand98a] Briand, L., Emam, K. E. and Freimut, B. “A Comparison and
Integration of Capture-Recapture Models and the Detection
Profile Method” In Proc. of the 9:th International
Symposium on Software Reliability Engineering, pp. 32-41,
1998.

[Briand98b] Briand, L., Emam, K.E. and Freimut, B. “A Comprehensive
Evaluation of Capture-Recapture Models for Estimating
Software Defect Content” ISERN-98-31, 1998.

[Chao87] Chao, A. “Estimating the Population Size for Capture-
Recapture Data with Unequal Catchability” Biometrics,
43:783-791, 1987.

[Chao92] Chao, A., Lee, S. M. and Jeng, S. L. “Estimating Population
Size for Capture-Recapture Data when Capture Probabilities
Vary by Time and Individual Animal” Biometrics, 48:201-
216, 1992.

[Cook79] Cook, T. D. and Campbell, D. T. Quasi-Experimentation –
Design and Analysis Issues for Field Settings, Houghton
Mifflin Company, 1979.

199

[Eick92] Eick, S. G., Loader, C. R., Long, M. D., Votta, L. G. and
Vander Wiel, S. A. “Estimating Software Fault Content
Before Coding” In Proc. of the 14th International Conference
on Software Engineering, pp. 59-65, 1992.

[Eick93] Eick, S. G., Loader, C. R., Vander Wiel, S. A. and Votta, L.
G. “How Many Errors Remain in a Software Design
Document after Inspection?” In Proc. Of the 25th
Symposium on the Interface, Interface Foundation of North
America, 1993.

[Fagan76] Fagan, M. E. “Design and Code Inspections to Reduce
Errors in Program Development” IBM System Journal,
15(3):182-211, 1976.

[Gilb93] Gilb, T. and Graham, D. Software Inspections, Addison-
Wesley, 1993.

[Montgomery97] Montgomery, D. Design and Analysis of Experiments, John
Wiley and Sons, USA, 1997.

[Otis78] Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D.
R. “Statistical Inference from Capture Data on Closed
Animal Populations” Wildlife Monographs 62, 1978.

[Petersson99] Petersson, H. and Wohlin, C. “Evaluation of using Capture-
Recapture Methods in Software Review Data”, Accepted for
publication at the Conference on Empirical Assessment in
Software Engineering, 1999.

[Porter95] Porter, A., Votta, L. and Basili, V. R. “Comparing Detection
Methods for Software Requirements Inspection: A
Replicated Experiment” IEEE Transactions on Software
Engineering, 21(6):563-575, 1995.

[Regnell99] Regnell, B., Runeson, P. and Thelin, T. “Are the

Perspectives Really Different? - Further Experimentation on

Scenario-Based Reading of Requirements”, Technical

200

Report CODEN: LUTEDX(TETS-7172) / 1-40 / 1999 &

local 4, Dept. of Communication Systems, Lund University,

1999.

[Runeson98] Runeson, P. and Wohlin, C. “An Experimental Evaluation of

an Experience-Based Capture-Recapture Method in Software

Code Inspections” Empirical Software Engineering: An

International Journal, 3(4):381-406, 1998.

[Siegel88] Siegel, S. and Castellan, N. J. Nonparametric Statistics for

the Behavioral Sciences, McGraw-Hill, Singapore, 1988.

[Thelin99] Thelin, T. and Runeson, R. “Robust Estimation of Fault

Content with Capture-Recapture and Detection Profile

Estimators” Accepted for publication at the Conference on

Empirical Assessment in Software Engineering, 1999.

[Vander Wiel93] Vander Wiel, S. A. and Votta, L. G. “Assessing Software

Design Using Capture-Recapture Methods” IEEE

Transactions on Software Engineering 19(11):1045-1054,

1993.

[Wohlin95] Wohlin, C., Runeson, P. and Brantestam, J. “An

Experimental Evaluation of Capture-Recapture in Software

Inspections” Software Testing, Verification and Reliability,

5(4):213-232, 1995.

[Wohlin98] Wohlin, C. and Runeson, P. “Defect Content Estimation

from Review Data” In Proc. of the 20th International

Conference on Software Engineering. Pp. 400-409, 1998.

201

SESSION 4:

Novel Approaches in Software Process
Assessments

202

203

The Role of the Client-Supplier Relationship
in Achieving Software Quality

Jennifer Gasston
Software Quality Institute

School of Computing and Information Technology
Griffith University, Nathan Australia.

Abstract

This paper reports further on the findings from Gasston[1], with respect to
human and organisational issues which impact the quality of software products.
Within the context of this research project, the task of software development is
seen to consist of a number of socially constructed processes enacted by human
actors within an organisation. These processes are grouped into phases such as
those identified in most software development life-cycle models. The paper
explores the Software Requirements Phase of three projects within a medium-
sized software development organisation in Australia. The study included
assessment of both the processes used to produce the work products from the
phase, and an evaluation of the quality of the work products themselves.
Processes were assessed for both maturity and effectiveness. Software products
were examined for the high-level quality attributes: accuracy, understandability,
implementability, and adaptability [2].

The findings from the study suggest a mapping of human and organisational
factors, relevant to process effectiveness [1], to the quality-carrying properties
which contribute to the overall quality of the work products of the Software
Requirements Phase. The study suggests that these effectiveness factors will
have significant impact on software product quality. Addressing and managing
the factors early in software development, during the requirements phase, may
provide developers with the means of achieving the product quality goals of the
project.

204

1. Introduction

Developers of software systems are primarily concerned with improving
productivity, containing costs, particularly those associated with rework and
maintenance, meeting schedules and improving the quality of the products
produced so as to maintain or increase their position in a highly competitive
industry. One approach to achieving these objectives is the implementation of a
software process improvement program. Such programs are based on the
premise that the routine and regular achievement of quality products requires a
quality development process.

A top-down or bottom-up approach can be taken to process improvement. The
top-down approach involves the comparison of an organisation’s processes with
generally accepted “best-practices” using a framework such as the CMM [3]or
ISO15504 (SPICE) [4]. The aim is to implement changes to existing processes
to bring them in line with “best practice” and in doing so, improve the product.
On the other hand, the bottom-up approach relies on understanding the
organisational context, processes, products, business objectives and strategy.
Changes to processes should be guided by experience, not as in the top-down
approach, by a set of standardised practices [5].

Davis[6] identifies the focus of achieving software quality through process
maturity as a “quick fix” that is not sufficient in itself to achieve quality
improvement. Evaluation of the usefulness of process improvement programs
and other approaches to achieving quality software must be done within the
context of the organisation. Baskerville et al [7] point out that “the underlying
values of those proposing the methods [for example: The set of organisational
norms or culture implied by prescriptive improvement frameworks and Quality
Management Systems] and those of the analysts/developers applying the
methods may be in conflict with the values, norms and ontology of the
organisation”. Too often the focus of an organisation is on achieving software
process improvement without attempting to analyse the organisation’s goals with
respect to the product. Attempts must also be made to understand the context in
which the development of the product takes place.

A number of human and organisational issues have been found to impact the
effectiveness of software development processes [1,8]. Weinberg, Scacchi and

205

Demarco and Lister (cited in Curtis et al, [9]) argue that we must “understand
how human and organisational factors affect the execution of software
development tasks if we are to create software development technology that
dramatically improves project outcomes”[9]. This paper suggests that, if we
want to know what is really going on in an organisation with respect to the
company’s capability to produce high quality software products, software
improvement programs must focus not only on the process of development, but
also the development context and the products produced. Therefore, to explore
the potential impact of software processes and the development context on the
quality of the product, a case study was conducted in October 1995 in Australia.

The case organisation was ITCOSOUTH and two projects were examined
PROJECTA and PROJECTB. PROJECTA was initiated from a client-produced
specification document; whereas, PROJECTB, which was developed a year
later for the same client, began from a client brief and was at the stage of
systems testing at the time of the study. PROJECTA was examined historically
as the project had been completed three months prior to the site visits. All
project staff and documentation were accessible.

The tool, used in this study, is a framework for analysis, the Software
Process/Product Quality Model (SPPQM)[1,8]. The model aims to identify: 1)
potential areas for improvement; 2) organisational and human issues which
impact on the effectiveness of the processes operating within a software
development organisation; and 3) the extent to which software products exhibit
desirable quality attributes has been used in this study. The framework involves:

• an evaluation of the effectiveness of the processes in terms of the
organisational context (see Section 2.1);

• the assessment of the processes for process maturity (see Section 2.2);
• the examination of work products from the process in terms of their

achievement of high- level quality attributes using the instrument (see
Section 2.3).

Although the study involved the examination of a large number of processes
within various software development phases, this paper focuses on the Software
Requirements Specification process. Dromey [2] has identified the following
desirable attributes of Software Requirements Specifications.: accurate,

206

understandable, implementable and adaptable. Evaluating the accuracy of
requirements alone, will involve an examination of the specifications for
precision, correctness, completeness, consistency and traceability. Difficulties
occur in identifying quality-carrying properties such as these which relate to the
higher level quality attributes, making the assessment of the quality of various
work products from the phases of software development difficult.

The paper argues that the issues associated with the client/supplier relationship
within the case organisation had significant impact of the quality of the Software
Requirements Specifications produced from the two projects. The paper
discusses how the organisation, unable to harness the lessons learned on the first
project, repeated the same mistakes on the second. It is suggested that it is
essential that organisations identify and understand the human and organisational
issues, which impact upon process effectiveness and which have the potential to
significantly effect the quality of the products produced during the software
development process.

2. Research Method

It was necessary, in this study, to examine software development processes both
structurally (both from the perspective of the organisation and the organisational
unit in which they manifest) and as a social process to be shaped, designed and
used by human actors. If we are to increase our knowledge to the extent to
which it can be successfully applied in practice or contribute in some way to
improving software development within organisations, then it is necessary to
ensure that the strategy taken to carry out the study provides us with a rich
picture of software requirements specification processes in practice. Qualitative
research allows us to “describe and illuminate the context and conditions under
which research is conducted [10]” . A case study [11, p 54] can provide the
organisational context for the study of the relationship between the software
development process and the meeting of strategic business needs, which is an
important factor under consideration when attempting to assess the effectiveness
of that process. Therefore the case study methodology [11, pp99-102], in which
the SPPQM has been used as a tool to both guide the collection and
interpretation of data, has been used in this study.

207

2.1 Evaluating Software Process Effectiveness

Figure 1 [1], shows the indicators used in this study to evaluate software process
effectiveness. Multiple data collection methods were used to explore each
indicator. The use of focus group interviews [11,p335], both structured and
unstructured interviews with individuals, and documentation examination was
aimed at corroborating the same phenomenon, software process effectiveness,
addressing a broader range of historical, attitudinal and behavioural issues,
developing converging lines of inquiry. The focus group interview is a highly
efficient qualitative data-collection technique. The objective is to obtain high-
quality data in a social context where people can consider their own views in the
context of the views of others[11, p335]. During the structured interviews with
project team members who held different roles (eg. project directors, project
managers, systems engineers, software engineers, quality assurance staff, testing
officers), a questionnaire, based on the effectiveness factors identified in the
SPPQM (Figure 1) was used to uncover specific issues. Interviewees outside the
project team included the Quality Manager, Business Analysts, Account
Executives, Strategic Planners, and the Information Systems Development
Manager.

Various documents were examined to corroborate and augment evidence,
gathered during interviews and direct observation, of performance of the
processes under examination. Documents included, but were not limited to:
Planning documentation, High Level and Low Level Software Specifications
and Designs, and Review Records. Where documentary evidence proved
contradictory, further inquiry was made into the specific issues and processes
examined. This was done through focus and structured interviews.

208

Figure 1: Process Effectiveness Indicators [1]

2.2 The Software Product Profile

A framework for constructing software quality models has been suggested by
Dromey [2]. Suggestions are made as to how we might develop appropriate
models for the requirements, design and implementation processes in software
development. This framework has been used to develop the requirements
product quality model used in the case study reported in this paper. The
framework attempts to link tangible product characteristics to high-level
intangible quality attributes. Four high-level attributes of software requirements
are examined: accuracy, understandability, implementability, and adaptability
[2]. The next step in constructing the model is to identify a set of quality-
carrying characteristics which relate to the achievement of the high level
attributes in order to assess whether products of the requirements processes meet
desirable quality goals (Figure 2).

A set of questions, relating to the achievement of each characteristic, has been
used during the evaluation process. The number of instances of each quality
characteristic has been identified and recorded for each specification. The
validity of the approach has been tested through the examination of the work
products of the Requirements Analysis and Specification process within

Process
Effectivenes

Goal Consensus
Capacity
Job Satisfaction
Conflict/Cohesion
Skills/Training
Commitment
Knowledge

Commitment
Adaptation
Control
Planning

Rework
Cost
Defect
Counts

Adequacy,
Appropriateness
Efficiency of
Standards
Tools
Methods and
Technology

Human
Factors

Managerial
Factors

Economic
Factors

Technology
Factors

209

ITCOSOUTH using Version 1 of the questionnaire. The quality-carrying
properties listed under each attribute are those that have been found useful, at
this stage of the project, in reflecting the high level attribute.

Figure 2 Software Requirements Product Profile Attributes

2.3 Evaluating Process Maturity

A Software Process Assessment model was used to evaluate the maturity of the
processes under study. The Assessment model used was Part 5 Version 1.06 of
the SPICE Document Set (ISO 15504)[4], the embedded model within the
International Standard for Software Process Assessment. A Software Process
Assessment Plan was produced for each assessment undertaken. Prior to visiting
the research site to conduct the process assessments, a Process Performance
Questionnaire was provided to the Quality Manager for the organisation and
analysed to identify relevant interview and documentation review requirements.
Each assessment was carried out by an assessment team led by the author.
Checklists and unstructured interview questionnaires, as suggested in the SPICE
guidelines for assessment, were utilised during the assessment process. Data
gathered was analysed in terms of identifying process strengths and weaknesses
and opportunities for improvement. Preliminary results were presented to the

Precise
Correct
Complete
Consistent
Traceable

Software Requirements Attributes

Accurate Understandable Implementable Adaptable

Modifiable
reusable

Unambiguous
Self-
descriptive

Testable
Achievable
Constructable

Characteristics

210

project personnel in ITCOSOUTH on the final day of the assessment. Feedback
was obtained during this session and after presentation of the final assessment
report to management two weeks after the assessment.

3. Findings

3.1 Process Maturity

The ISO15504 Part 5 framework was found useful in assessing the maturity of
the processes examined. In order to satisfactorily assess the Requirements
Specification process within ITCOSOUTH, one process was selected from the
Engineering Process Category of the ISO15504 Framework, ENG 2 – Develop
Software Requirements, and two from the Customer Supplier Process Category,
CUS 3 – Identify Customer Needs and CUS 4 Perform Joint Audits and
Reviews. It must be remembered in interpreting the results of the Software
Process Assessment, that the version of the ISO15504 Part 5 framework for
assessment used in 1995 to carry out the assessment has undergone a number of
reviews and as a consequence is considerably different in structure to the current
version.

The purpose of conducting the assessments, from the company’s perspective,
was to support the following overall goals:

1. Self Assessment of the software development processes at ITCOSOUTH
2. Determining the organisation’s external capability.
3. Establishing best practices to guide the organisation in a process
improvement program.
4. Establishing the company’s position with regard to bench-marking
information available through the SPICE Trials.

The key findings from the process assessments across both projects were:

• Globally, there was a lack of clear quality goals, particularly from a product
perspective;

211

• There were particular weaknesses found in:

• CUS3 - Identify customer needs where no training of systems
development staff in domain knowledge was undertaken. Plans were
found not to cover risk mitigation strategies, contingency plans,
adequate scheduling of joint customer reviews and critical path analysis.

• CUS4 - Perform Joint Audits and Reviews were there was evidence to
suggest that the organisation was not really serious about joint reviews
with the customer. Results of reviews were not monitored, so that the
outcomes were not used for ongoing management. Most reviews
consisted on individual document review rather than intensive group
review processes.

The results of the assessment of ENG 2indicated a solid performance through
Level 2 Significant strengths were evident in the allocation, definition and
tracking of resource usage, particularly human resources At Level 3 capability,
progress was being made towards a establishing a clearly defined process for
developing software requirements. Generic Practice 3.1.1, Standardise the
Process, was not rated as Fully Adequate as the standard process within the
Quality Management System did not provide for base-lining of requirements. At
Level 4, there was no evidence of the establishment of measurable quality goals
for the work products of the process.

3.2 Evaluating Process Effectiveness

3.2.1 Organisational structure

From the evaluation of the effectiveness of the processes, the client-supplier
relationship was found to be critical to the success of the processes of elicitation,
development and specification of Software Requirements in the two projects
examined in ITCOSOUTH. Both projects were developed for the same client
organisation an internal division of the parent company. From the examination
of meeting minutes, email messages and data collected during interviews with
employees of ITCOSOUTH, who took part in the development of both systems,

212

it was evident that a very strained relationship existed between the client’s IT
department and the supplier organisation. This appears to be primarily due to
what the Quality Manager described as “historical baggage inherited at the
formation of ITCOSOUTH”. I must point out here that my analysis is limited to
an examination of the development organisation only. A richer picture of events
and perceptions may have been obtained had I been able to access the client
organisation during this study.

It is the belief of the employees of ITCOSOUTH that the client organisation
harbours a high degree of resentment towards them. The resentment, and some
even go as far as to say antagonism, originates from the decision made by the
parent company to take the IT/IS function out of individual divisions and to
create an IT organisation servicing all divisions and subject to all the business
requirements of any other division within the group.

Some IT staff within the client organisation transferred to ITCOSOUTH, but
have since left mostly due to management conflict. Five personnel, who are
responsible for conducting systems planning, systems identification and the
management of development work performed by ITCOSOUTH, remain within
the client company. Employees of ITCOSOUTH believe, based on numerous
conversations, that it is the client’s belief that the company charges too much for
systems development and that the same systems can be obtained from other
sources at cheaper prices or that the client organisation’s IT department is
capable of doing a better job themselves.

The Project Director advised that ITCOSOUTH encourages its clients to seek
quotations from outside organisations as the company is confident that they are
providing high quality services at a very reasonable cost. In some cases, he
suggested, the company would be very pleased if a “difficult” client, such as the
one discussed now, would seek services elsewhere.

3.2.2 Domain Knowledge

A distinct lack of domain knowledge was found within ITCOSOUTH regarding
client organisations, particularly with respect to internal divisions. No attempt
had been made to harness the knowledge of original employees by transferring

213

lessons learned across projects to organisational memory. There was no
evidence that management considered domain knowledge important to the
customer-supplier relationship, since its acquisition was not part of the
company’s induction procedure. The project manager for PROJECTB, a
contractor, stated that he considered his lack of domain knowledge with respect
to the client’s systems, had contributed greatly to his problems in establishing
an effective client-supplier relationship on that project. There was evidence that
email messages requesting clarification of requirements issues were ignored by
the client representative for the project.

Staff of ITCOSOUTH try to avoid being assigned to development projects for
the client. Often contract staff are put on the projects, which appears to
exacerbate the situation, since they lack domain knowledge and are often
unaware of the obstacles that may be placed in their way. The issues associated
with the client-supplier relationship on both projects were found to have a
significant effect on staff job satisfaction and morale.

There was consensus between the project managers that the main “antagonist”
within the client’s IT/IS staff is a former employee of ITCOSOUTH. The
contractor, assigned as project manager to PROJECTB, encountered
considerable problems in obtaining user requirements for the project. In many
cases it was suggested to him “… you should know what we need. You should
know all about our systems.” In general, the project managers suggested that
“the client is unprofessional and dealing with them is a nightmare. It is as if they
are saying to us “I’m the customer and you’ll do what I tell you. They were not
interested in listening to our ideas.” When PROJECTB’s manager tried to gain
access to client organisation to try to acquire some domain knowledge, barriers
were put up not only by the client but also by ITCOSOUTH. Pressure was put
on him, as a contractor, to perform and he suggested that his employer felt that
“wasting time at the client’s premises would be too costly.” Though there was
evidence from management meetings suggesting that management’s perception
is that “this particular client is entirely unreasonable’, there appeared to have
been little upper management involvement or support on both projects.

It appeared, form the point of view of the project team, that the client
representative’s goal was to demonstrate a lack of capability on the part of
ITCOSOUTH. There is a potential for goal disagreements to engender conflict

214

and political activity in organisations [12, p 69]. It is generally agreed that
power characterises relationships among social actors (an individual, sub-unit or
organisation) [12, p3]. The distribution of power within an organisation can
also become legitimated over time, so that those within the setting expect and
value a certain pattern of influence.

By adopting the role of single client representative, the “antagonist” has used his
position to control project team access to users and information vital to the
success of the requirements elicitation process. “In most cases, positions which
are given to powerful social actors as a consequence of their power also provide
those actors with additional power due to the information and decisions that are
within the purview of these positions” [12, p57]. By ignoring the situation,
management of ITCOSOUTH legitimated the power of the client representative
into authority. “…to negotiate the treacherous waters of computing demands
from different managerial and user groups, a developer needs political skills as
well as ones of systems analysis.” [13]. The implication is then, that
management sought to ignore the problem rather than address it by focusing on
the acquisition of domain knowledge and the development of an effective
relationship with the client.

3.2.3 Lack of User Involvement

The project team on PROJECTA were in intermittent contact with the client
representative who was a person from the IT/IS department of the client
organisation. It is a policy of ITCOSOUTH that the client organisation provide
users to conduct acceptance testing. It was not until this request was conveyed
to the client that the project team became aware that the development of the
system had not been known to the potential users. As a consequence it was not
until that time that substantial problems were identified with system
functionality and interfaces to existing systems. Six major changes to the scope
of the project became necessary just prior to the proposed release of the system.

Since the majority of the system analysis was performed by the client, it appears
that their own lack of user involvement may have been the main contributor to
the scope problems encountered both during the time of production of a
functional design, and in the later stages of the project implementation.

215

ITCOSOUTH’s project team should have also ensured that adequate user
representation was obtained from the client organisation. Client management
involvement, outside the client’s IT department, may have been necessary to
secure an adequate level of co-operation

3.2.4 Lack of Goal Consensus

The project managers and team leaders stated that the way in which job goals are
set up within the organisation causes difficulties. There is no time for full
induction processes. Employees are allocated time to learn new techniques and
skills, whereas learning the customer’s business is not seen as important. This is
largely due to the perception on the part of management, and many employees
themselves, that domain knowledge is not a marketable skill. There is a three
month induction program for new graduates which includes domain knowledge,
but no provision is made for new “experienced” employees or contractors. With
the increase in outsourcing and contract appointments in the IT industry,
appropriate and adequate induction processes, which focus on the acquisition of
client business knowledge, appears to be an essential requirement both now and
in the future. If information systems are to be utilised for competitive advantage
it is essential that analysts have the knowledge to identify information systems
development requirements that will strategically benefit the organisation.

3.2.5 Lack of Strategic Focus

At the time of this study, the adoption of a long-term strategic view to systems
development for client organisations had only just emerged within
ITCOSOUTH. Prior to that time, applications were, on the whole, developed
independently; there was no real integration of functions across client
organisations through the use of IT.

The services of ITCOSOUTH’s Strategic Planning Services Group were not
sought by the client on these two projects. The planning group has evidence,
from client satisfaction surveys conducted by the group, to suggest that a higher
level of system acceptance appears to be achieved from projects involving client

216

organisations who rely heavily on the services of the planning group. During the
planning process the following issues are analysed:

• Understanding the current situation;
• Business directions;
• What the client is hoping to achieve;
• The critical success factors or specific objective;
• The current systems; and
• Process modelling, business functions.

It appears that many of the problems incurred during the later stages of
PROJECTA were a result of an incomplete, often ambiguous set of user
requirements produced by the client organisation. The initial requirements
document produced by the client was used by the project team as the preliminary
specification. The ambiguity and lack of completeness can be linked to non-
achievement of the high-level quality attributes accuracy and understandability.
The project team’s interpretation of the system was not understandable to the
client and vice versa, and proved to be useless for effective communication of
requirements between client and supplier.

3.2.6 Limited Exposure to Client’s Business Needs

The specialist database group within ITCOSOUTH takes on almost a limited
liaison role between the client and the project team. The group’s role
encompasses data architecture, database design, and the provision of data
analysis and design skills and services to project teams. Although the manager
of the group suggested that his people have a broader view of the client’s
business with respect to data requirements and system interfaces, he admitted
that they have limited exposure to the actual client organisation. Discussions are
limited to certain requirements where they are able to detect impacts of changes
based on their understanding of the client’s complete data model. The group has
experienced similar difficulties in dealing with the client’s IT/IS department as
“they believe they know what they want and as a result it is harder for the
database group to gain acceptance.” The group manager suggested “.. the way
they [the client’s IS/IT Department] operate, a lot of requirements don’t surface
until the database group actually do the work … lots of scope changes because

217

the scope wasn’t broad enough. The original budget may only be 50% of what is
required.” The database group see the project team as their customer, and the
project manager confirmed the existence of a formal internal relationship
between the project and the design groups.

Unless a strong working relationship can be achieved between suppliers and
customers, difficulties such as those experienced by ITCOSOUTH and their
client will continue to occur. Particularly this is important right from the onset
of a project, due to the impact that an ineffective requirements analysis process
can have on the whole project. No attempt was made at that time, on the part of
management to address, either at the operational nor strategic levels, the
necessity to ensure client-supplier co-operation throughout the lifetime of
projects.

“The expertise of the IS professional could lie in knowing where to look for
information, knowing how to screen it and interpret it, and knowing how to
utilise it internally for specific purposes to create knowledge and expertise
within their own organisation.” [14]. Organisations must be aware that
individual members will acquire, disseminate and interpret information from
various sources of situated knowledge within the organisation and as a result
lead to behavioural change and performance improvement It is important
therefore that organisations identify these potential sources, so as to obtain
optimal benefits from software process assessment and improvement programs
[15].

“The importance of situated knowledge, of local experience and a grounded
understanding of priorities within particular application areas, confirms that
software development is still a highly interpretative process, at least for large
numbers of on-site workers (Fincham et al, 1994 cited in Beirne et al [13]).
From a series of case studies Beirne et al [13] found that most effective
developers were often considered to be those who could network informally
with users, and lay claim to organisational and commercial knowledge as well as
technical expertise.

218

PROCESS
MATURITY

PROCESS
EFFECTIVENESS PRODUCT PROFILE

• Weakness in
Training program
– induction
processes.

• Lack of Risk
mitigation
strategies,
contingency plans.

• Insufficient joint
customer reviews
scheduled

• Customer reviews
not monitored nor
outcomes
monitored

Management Factors
• No focus on

organisational learning
• Communication

problems – lack of client
confidence

• Customer satisfaction not
seen as important

Historical issues
organisational structure

Commitment:
• Lack of leadership from

management – ignored
situation, not proactive;

• Lack of commitment on
part of project team.

• Lack of strategic focus
Job satisfaction, Staff
Morale:

• Staff avoided projects for
client;

• Motivation,
Communication
problems:

• Work not acknowledged.

Lack of goal consensus:
• Client/Project teams.
• Management/Project

teams.
Conflict:

Project teams/Client

Understandability
Requirements often
ambiguous. Ambiguity
of terms.

Accuracy:
Terms used
inconsistently;
incomplete
requirements, not well
defined; requirements
missing. Lack of
traceability to source
documentation.

Implementable:
Not all requirements
testable;

Adaptable
Difficulties in
modifying requirements
found due to
documenting problems.

Table1: Issues shown to impact on the quality of the Requirements Specification
Documents

219

Table 1 summarises the findings of the study identifying the key weaknesses
within the process, the issues which contributed to ineffective processes and the
resultant evaluation of the attributes of the products, the Requirements
Specification documents.

5. Conclusions

The findings of this study suggest a mapping of human and organisational
factors, relevant to process effectiveness, to the quality-carrying properties
which contribute to the overall quality of the work products from the Software
Requirements Phase. The study also suggests that the effectiveness of software
development processes will have significant impact on software product quality.
The particular issues within the client-supplier relationship found in this study to
effect product quality are:

• Organisational structure;
• Domain knowledge of the software development team;
• Lack of user involvement;
• Political agendas;
• Lack of goal consensus;
• Lack of strategic focus;
• Limited exposure to client’s business needs.

These issues in turn, impacted staff morale, conflict/cohesion within the project
team and between the customer and the team, and management. The problems
identified in the company’s relationship with the client were apparently clear to
management during the first project, but by choosing to do nothing, management
exacerbated the situation.

The client has knowledge about business goals and organisational needs, and
unless project teams attempt to identify this information during the requirements
elicitation process, and attempt to link social system objectives to the technical
objectives, then implementation and system acceptance problems will occur.
Communication breakdown, and the political agendas that have taken place
within ITCOSOUTH have been found to hinder the elicitation process. By
identifying and addressing potential factors within the organisation that may

220

effect the quality of work products, software developers may be able to increase
their chances of developing high quality software products.

References

1. Gasston, J. (1996) “Process improvement: an alternative to BPR for software
development organisations”, Software Quality Journal, 5 pp171-183. Chapman
& Hall UK.

2. Dromey, R.G. “Cornering the Chimera”, IEEE Software,Vol 13, No. 1, Jan.
1996

3. Paulk, M.C.; Curtis, B.; Chrissis, M.B.; Weber, C.V.. (1993) CMU/SEI-93-
TR-24 Capability Maturity Model for Software, Version 1.1, SEI, Pittsburgh,
PA., February 1993.

4. ISO-SPICE (Software Process Improvement and Capability
dEtermination),Special initiative for Software Process Assessment
Standardisation, ISO/IEC JTC1/SC7/WG10, 1993-96.

5. McGarry, F. (1994) “Top-Down vs. Bottom-Up Process Improvement”, IEEE
Software Vol 11, No 4, July1994. Pp 12-13.

6. Davis (1993) “Software Lemmingineering”, IEEE Software, 1993, 10, 5, pp
79-84.

7. Baskerville, R., Travis J. and Truex, D. (1992) “Systems without method: the
impact of new technologies on information systems development projects”, in
The Impact of Computer Supported Technologies on Information Systems
Development, Kendall, K.E. et al (eds) Elsevier Science Publishers, North-
Holland, IFIP 1992.

8. Gasston, J. and Rout, T. (1994) “Can the effectiveness of software processes
be assessed?” Software Quality Journal, 3 pp153-166, Chapman & Hall UK.

9. Curtis, B., Krasner H., and Iscoe, (1988) “A field study of the Software
Design Process for Large Systems”, Communications of the ACM, November
1988, Volume 31, Number 11.

10. Kaplan, B. and Duchon, D. (1988) “Combining Qualitative and Quantitative
Methods in Information Systems Research: A Case Study”, MIS Quarterly, 12,
PP571-588.

221

11. Patton, M. Q. (1990) Qualitative Evaluation and Research Methods, Second
Edition, SAGE Publications, Inc. Newbury Park, CA. USA.

12. Pfeffer, J, "Power in Organisations", Pitman Publishing Inc.,
Massachusetts,USA, (1981).

13. Beirne, M. Ramsay, H. Panteli, A. for P. Thompson and C. Warhust (eds),
(1998) Workplaces of the Future, Macmillan Publishers, London. UK . “Close
encounters of the Nerd Kind: Control and contradiction in the computing labour
process”.

14. Swan, J.A. & Galliers, R.D.(1996) “Networking: The Future of
Information Systems” The DATA BASE for Advances in Information Systems ,
Fall 1996 (Vol 27, No.4)

15. Gasston, J. and Halloran, P. (1999) “Continuous Software Improvement
Requires Organisational Learning”, forthcoming in Proceedings of the 7th
International Conference on Software Quality Management, Southampton, UK
29/3/99 to 1/4/99.

222

 Improving Market-Driven RE Processes

Pete Sawyer, Ian Sommerville and Gerald Kotonya
Lancaster University

Lancaster, UK

Abstract

Orthodox requirements engineering process models have evolved to support the
needs of organisations developing bespoke software. These models adapt poorly
to the specification and development of market-driven software products. This is
unfortunate because market-driven software developers are economically
important and face quite distinct problems. Time-to-market is typically the
overriding constraint of market-driven products and, for many organisations, this
squeezes the resources available for performing the requirements process and for
its improvement. In this paper we examine the background to these problems and
propose pragmatic and lightweight measures that can help organisations adapt
orthodox requirements engineering good practice to their market-driven
businesses.

1. Introduction

Market-driven software poses particular problems for how requirements are
elicited and handled. While many of these problems have been addressed by the
requirements engineering community, they have been addressed outside the
context of market-driven product development. Several authors have examined
the problems of market-driven software [Lubars 93, Potts 95, Kamsties 98,
Deifel 98]. Our contribution is to synthesise a set of good practice guidelines
from their work and to place these within the context of our Requirements
Engineering Good Practice Guide (REGPG) [Sommerville 97, Sawyer 97].

Market-driven software comes in many forms and targets many different kinds
of market. Many of the problems that we discuss seem to be particularly acute
for small-to-medium enterprises (SMEs) [Kamsties 98] selling to niche markets.

223

We suspect that larger companies face similar problems but their size and
resources can distort the picture. For the purposes of this paper we are concerned
with the following categories of software product:

• End-user products. Examples include CASE tools, Internet browsers and
mail tools. Time-to-market is the overriding constraint on these systems’
development projects. If timely release is achieved, the generic properties
they must exhibit in order to consolidate their market include usability and
conformance to industry standards (e.g. look-and-feel, data formats,
communication protocols).

• Componentware (sometimes called commercial-off-the-shelf software -
COTS) intended to be integrated with other components to comprise end-
user applications. These include real-time operating systems, signal
processing algorithms, object request brokers and database management
systems. Time-to-market and conformance to standards are also crucial for
these products. Usability is an issue only in respect to the APIs and language
bindings that they offer the application programmer.

Some products don’t fit neatly into either category and many products can be
used stand-alone or as componentware. However, both categories of what we
will henceforth refer to as packaged software pose a number of problems that are
distinct from those facing bespoke software. The most crucial of these is that a
packaged software product that is late risks permitting a more timely competitor
to shape the market by absorbing latent demand and establishing a de-facto
standard. For market-driven products, time-to-market is not merely a constraint
but a "survival attribute" [Novorita 96]. Nor does time-to-market only constrain
the initial release. Once the product’s market share has been established, it needs
to be retained or expanded. This typically requires timely incremental releases
designed to increase functionality, track market and technological trends, and
rectify defects.

The rigid constraint of time-to-market restricts the available options when
projects fall behind schedule. Adding resources is often impractical, especially
for an SME. The preferred solution to schedule slip is normally to concentrate
resources on meeting the most critical requirements and so release the product

224

on time with the core functions intact, but with fewer cosmetic features than
originally planned.

For timely release to be effective, there must be user demand for the product and
orthodox requirements engineering practice stresses the need to elicit users’
requirements and use these as the basis for subsequent development. However, at
product conception, there will be only potential customers and it is unlikely that
these will share the product "vision". Hence, for packaged software,
"requirements are invented, not elicited" [Lubars 93].

Once the release has been achieved real users will exist and new requirements
will start to emerge. An implication of this is a need for a dynamic process of
elicitation, evaluation and prioritisation which must dovetail closely with an
iterative release cycle. Unfortunately, most requirements practices have evolved
to support bespoke software development and a more linear development
process model. Many market-driven software developers consequently
experience difficulty adapting these to their environment.

Many orthodox requirements practices act as an overhead in the short term and
so conflict with time-to-market. However, product longevity is also important so
the benefits of (e.g.) requirements management are of important in the long-
term. There is strong evidence [Kamsties 98] that many packaged software
developers waste resources compensating for the long-term deficiencies in the
quality of their requirements processes.

2. Requirements engineering process maturity

Good requirements engineering practice is applied only patchily throughout the
software industry [El Eman 95]. This seems to be particularly true in the
packaged software sector; not because of any inherent failing by the companies
developing packaged software, but because the particular demands of the sector
have not been the focus of the requirements engineering community.

Widening the use of good practice is how the software process improvement
(SPI) [Zahran 98] movement aims to stimulate overall improvements in quality.
Unfortunately, few SPI models or quality standards have much to say on

225

requirements engineering. In the Capability Maturity Model (CMM) [Paulk 93],
for example, the single explicitly requirements engineering -related key practice
area (KPA) is that of requirements management. This mandates that
requirements are allocated, that requirements changes are reviewed and that
resources and responsibilities are assigned accordingly. One of the effects of this
has been to stimulate awareness of the importance of requirements management.

Unfortunately, implementing requirements management is a major stumbling
block [Fowler 98] if organisations have insufficiently robust requirement
processes in place to ensure that requirements are allocated correctly, or that
requirements changes are identified and analysed. The CMM offers no help on
these underpinning measures and SPI programmes are often capped by
weaknesses in organisations’ requirements processes. "the CMM definition gave
scant attention to the issue of whether the requirements to be managed are the
’right’ requirements" [Hutchings 95].

In general terms, requirements processes are less well understood, less well
supported by standards and less mature than other software processes. This
motivated the REAIMS project to develop the REGPG to extend the principles
of SPI into the requirements process. The REGPG advocates incremental
improvement based upon the phased adoption of established good practice. It
recognises that different companies will have different maturity levels for
requirements engineering and uses a three-level maturity model similar to the
lower three levels of the CMM as shown in Figure 1 (see [Sawyer 97] for a fuller
discussion of the motivation for this architecture).

Initial level organizations have an ad hoc requirements process. They find it
hard to estimate and control costs as requirements have to be reworked and
customers report poor satisfaction. The processes are not supported by planning
and review procedures or documentation standards. They are dependent on the
skills and experience of the individuals who enact the process.

Repeatable level organizations have defined standards for requirements
documents and have introduced policies and procedures for requirements
management. They may use tools and methods. Their documents are more likely
to be of a consistent high quality and to be produced on schedule.

226

Defined level organizations have a defined process model based on good
practices and defined methods. They have an active process improvement
programme in place and can make objective assessments of the value of new
methods and techniques.

This exploits the CMM’s approach to goal-driven improvement and makes the
principle familiar to the many organisations already embarked upon wider SPI
programmes. The latter point is important because recognition of weaknesses in
requirements processes is often the result of undertaking an SPI programme.

Fig. 1. The 3-level REAIMS process maturity model

The REGPG is organised as a set of 66 good practices that address each of the
process areas listed in the next section. In recognition of the fact that good
practices vary in their ease of adoption and the support measures they need to be
effective, the good practices are rated according to whether they are basic,
intermediate or advanced. Basic practices represent fundamental measures
which underpin a repeatable process. In this paper, we concentrate exclusively
on identifying basic practices for packaged software development.

In its present form, the REGPG provides generic guidelines for requirements
engineering process improvement. In the sections below, we suggest how some
of these should be interpreted by packaged software developers and suggest a
number of packaged software-specific practices. Our ambitions are modest,
however. We concentrate on basic practices that can help develop a repeatable
process since the evidence is that the requirements processes of many packaged
software developers, particularly SMEs, are at the initial level.

Level 1
Initial

Level 2
Repeatable

Level 3
Defined

227

3. Requirements processes for packaged
software

Time-to-market means that when problems occur, resources, functionality and
quality are squeezed, typically requiring a reduction in planned functionality.
The challenge is to ensure that the available resources are concentrated on
meeting the most cost-effective requirements. Effective prioritisation and
cost/impact assessment are therefore key issues to help "make acceptable
tradeoffs among sometimes conflicting goals such as quality cost and time-to-
market; and allocate resources based on the requirement’s importance to the
project as a whole" [Karlsson 97]. How they are performed and integrated with
the requirements process is critical to the success of packaged software.

The REPEAT process [Regnell 98] is a successful example of how this can done
by focusing on the incremental acquisition, analysis and selection of
requirements for each release. Unfortunately, processes like REPEAT that
impose control on requirements handling and provide defences against
unforeseen project difficulties are rare for packaged software. It is normal for
organisations to have an ad-hoc process with little explicit guidance for choosing
the decision-making personnel, selecting the decision-making procedures to be
used or the recording of those decisions.

With ad-hoc processes, time pressure will tend to make the selection of which
requirements to implement less rational and may cause short cuts to be taken.
Examples might include skipped reviews, documents not being maintained, etc.
These may result in reduced quality of the product and/or of ancillary products
such as documents. [Kamsties 98] and [Lubars 93] highlight the fact that
delivery deadlines naturally lead to the longer-term benefits of many
requirements practices being traded off against short-term exigencies. For
example, while documenting and maintaining the customer requirements is a
cornerstone of most orthodox requirements processes, many packaged software
producers fail to do either [Kamsties 98]. This is often because: there is no
contractual requirement for such a document; document-based requirements
validation is seen as neither appropriate nor effective; the company may have
evolved from a small start-up company with a clear product vision and has never
evolved a document-based culture; and maintenance of requirements documents
is an overhead on an already stretched workforce.

228

We think that some of these are valid reasons for not producing a physical
requirements document. However, failure to maintain the requirements in some
persistent, retrievable and traceable form inevitably causes problems in the
medium and long term. For example, [Kamsties 98] describes companies which
fail to document their product’s requirements, allowing freedom to quickly
develop the product according to the product vision. However, the problem of
developing test cases stimulates the retrospective development of the
requirements. This risks wasting effort verifying the product, and commonly
leads to the discovery of new requirements that conflict with the implementation.
The need for expensive rework of tacit requirements is therefore common. Early
identification and documentation of the requirements would enable conflicts to
be identified and traded off far more inexpensively.

Perhaps the most obviously distinctive feature of market-driven projects is that
the product is conceived by the developer (perhaps a product visionary) rather
than commissioned by a customer. The orthodox view of the requirement
process is that one first understands the problem, then specifies the solution.
With packaged software, identification of the problem may follow identification
of the solution, which in turn may spring from identification of an opportunity
offered by a combination of market conditions and technology advances. Thus,
to paraphrase two possible scenarios for product conception, either:

• the marketing department says "market studies suggest there’s a market for a
product that does X, could we build one?"; or

• the technical arm of the organisation says "technology now allows us to do
X, is there a market for a product that does X?".

It is an article of faith in requirements engineering that requirements have to be
elicited from customers and, in particular, from those who will use the system. It
is recognised that elicitation is difficult and error-prone and a number of
techniques have evolved to help the process. Unfortunately, in the absence of a
commissioning customer, few of these techniques which allow direct developer-
user contact are directly useful. [Keil 95] shows that, at product conception,
marketing is by far the most common source of user requirements for packaged
software. Techniques such as QFD [Haag 96] can be used to help analyse and

229

weight the requirements but they cannot fully compensate for the absence of
direct user-developer contact.

This poses significant risk for the developer since they cannot be certain that
they have addressed users’ requirements until relatively late in the process.
Prototypes may be used to help validate the invented requirements and beta
versions may be released to favoured customers. However, the whole process of
developing a requirements baseline is very much less stable than for a well-
managed bespoke software project. In contrast to bespoke software, the
development organisation is initially the primary stakeholder in the product and
undertakes its development to meet their strategic business objectives. To be
successful, these need to be consistent with the requirements of their customers.

Once the product is released, real customers and users will exist and these should
be tapped as a source of requirement for subsequent releases of the product.
Technical support staff can be a crucial conduit for customer requirements [Keil
95] but the quality of the requirements information from technical support is
crucially dependent on their training and motivation. Once an effective conduit
for users’ requirements has been identified, a mechanism has to be provided to
allow the requirements to be handled.

The crucial point is that the developer’s association with their product should be
a long-term one. It is likely that far more effort will go into maintaining the
product through incremental releases than initial delivery. This contrasts strongly
with bespoke software where maintenance seldom colours the developer’s
requirements process even though maintenance frequently costs the customer
more than delivery. While recognising the need to get the original concept right,
the packaged software requirements process must be tailored to the needs of
long-term, incremental development in the face of evolving market conditions
and technological opportunities.

Below, we list the main distinctive features and requirements of a market-driven
requirements process. These are listed according to the activities and process
products used to organise the practices described in the Requirements
Engineering Good Practice Guide (REGPG) [Sommerville 97, Sawyer 97].

230

The Requirements Document: This is not a contractual requirement. There may
be no company culture of documenting requirements.

Requirements Elicitation: The developer is the primary stakeholder. Developer
requirements are derived from strategic business goals and market opportunities.
At system concept, there are only potential users/customers. User requirements
are normally elicited indirectly via market studies. Developer and user
requirements have to be balanced to derive the core requirements. Once in
service, users/customers will generate requirements for new versions/releases.
Some user/customer requirements will be in the form of bug reports. As the
company evolves or moves into new markets, it may lose up-to-date domain
knowledge that regular contact with bespoke system clients can give.

Requirements Analysis and Negotiation: Users/customers and the developer may
have very diverse requirements. Priority and cost must be balanced. Satisfaction
of some requirements may be deferred to a later version/release.

Describing Requirements: Requirements documents are not normally read by
customers.

System modelling: Conceptual models of customers’ business environments will
be speculative.

Requirements Validation: The requirements baseline will evolve for each
release. Customer/user validation may take place only once substantial
implementation investment has been made (e.g. at a trade fair)

Requirements Management: There may be no company culture of managing
requirements. The effort needed to maintain the product in the market will
exceed the effort needed to enter the market. Time-to-market constraints impose
a strong tension between between short-term expediency and the long-term
benefits of managing requirements. The requirements baseline may remain fluid
until late in the development cycle. Requirements processes will be enacted
concurrently with down-stream development activities.

Not all the characteristics listed above are unique to packaged software. For
example, many bespoke software developers have no company culture of

231

managing requirements. However, we believe that the characteristics are more
prevalent in packaged software. Our conclusion from this is that these are the
things that must be tackled in order to begin to effect an overall improvement in
handling requirements for packaged software.

A few development organisations, like those described in [Regnell 98] and
[Hutchings 95] are already well advanced with their packaged software
requirements process improvement programmes. Many other organisations will
deny that they have a problem. The empirical evidence from other sectors of the
software industry is that at least some of these organisations will find that
problems do emerge over time. Many more organisations are becoming aware of
problems as their products evolve, as their company size increases, as they are
forced to respond to market pressures or as they seek to adopt standards (e.g.
ISO9001-3).

Our core belief is that most organisations, especially those that have experienced
rapid growth from small beginnings, find it hard to adapt orthodox practices to
their requirements processes and have too few resources to devote to meta-level
activities such as process improvement. The challenge facing the requirements
engineering and SPI communities is to provide guidance on pragmatic measures
to begin a process of incremental improvement using trusted good practice with
clear benefits for the adopter.

4. Requirements practices for packaged software

This section lists the good practices that we think address each of the process
areas listed above. We do not claim that the practices are sufficient to deliver a
repeatable requirements process but we believe that they all necessary. The list
represents our interpretation of the observations and recommendations of [Deifel
98, Hutchings 95, Kamsties 98, Keil 95, Lubars 93, Novorita 96, Potts 95]. In
several cases we have directly adopted these authors’ recommendations.

Practices in italics are generic to all types of software and have been taken
directly from the REGPG. Note that not all of these are classified as basic
practices in the REGPG. However, in the special context of packaged software,
we believe that they are all basic. It does not necessarily follow from this that

232

their cost of introduction and application is high. However, some of the practices
will be relatively expensive. Unfortunately, space does not allow a detailed
discussion of the practices’ probable cost.

The Requirements Document

• At the product concept stage, document the business goals and user
requirements

• For each release, baseline the high-level requirements at a fixed cut-off time

• Define a Standard Document Structure

• Make the Document easy to change

Requirements Elicitation

• Define procedures for receiving, analysing and documenting requirements
derived from users’ in-service experience

• Train and motivate technical support staff

• Identify and consult system stakeholders

• Use business concerns to drive requirements elicitation

Requirements analysis and negotiation

• For new releases, evaluate the cost of meeting each requirement

• For each release, review all the requirements including those that weren’t
selected for the last release

• Prioritise requirements

233

Describing requirements

• Use standard templates for describing requirements

• Supplement natural language with other descriptions of requirements

System modelling

• Develop complementary system models

• Model the system architecture

Requirements validation

• Organise formal requirements inspections for each release

• Use multi-disciplinary teams to review requirements

• Define validation checklists

• Use prototyping to animate requirements

• Propose requirements test cases

Requirements management

• Uniquely identify each requirement

• Define policies for requirements management

• Define change management policies

• Use a tool to manage requirements

• Record rejected requirements

5. Summary and conclusions

In this paper we have synthesised a number of good practices for requirements
engineering for packaged software. We have exploited the results from a number
of recent papers that have examined the differences between packaged software
and bespoke software. These have drawn a number of conclusions about the
characteristics of requirements engineering for packaged software and, in some

234

cases, identified good practice. We have summarised the lessons and integrated
their packaged-software good practices with our own REGPG, explaining how
the REGPG’s existing good practices should be interpreted for packaged
software.

We believe that many of the problems experienced by packaged software
developers have their root in fundamental failings in their requirements
processes so we have concentrated on basic practices that, we believe, pay the
highest dividends. Most of these are organisational or procedural practices; very
few are technical in nature. Some of these may be quite expensive to adopt,
some may require a fundamental shift in company culture, and most will only
start to pay off in the medium to long term. However, we justify this by
observing that most packaged software developers aim to develop and maintain
products with a long shelf life. This means that they bear the direct cost of
maintaining their products’ market viability so their relationship with their
products and their customers is necessarily a long-term one.

There are other classes of software and software development models that, while
not specifically product-oriented, share many of the characteristics of the
packaged software to which we addressed this paper. These include Rapid
Application Development (RAD) where the emphasis is on tightly time-
constrained development cycles. The DSDM [Stapleton 97] consortium has
defined a RAD process model that advocates the substitution of close
user/developer relations for much of the detailed documentation mandated by
orthodox development models. This appears to be a close fit to the needs of
many packaged software developers except that as we have described, close
user/developer relations are hard to achieve for packaged software developers at
system concept. Once the product is on the market and has real users, however, it
is possible that approaches like DSDM may prove more readily adaptable for
packaged software developers.

235

6. References

[Deifel 98] Deifel, B.: "Requirements Engineering for Complex COTS", Proc.
Fourth International Workshop on Requirements Engineering: Foundations for
Software Quality (REFSQ’98), Pisa, Italy, 1998.

[El Eman 95] El Eman, K., Madhavji, N.: "Measuring the Success of
Requirements Engineering Processes" Proc. 2nd IEEE International Sympoium
on Requirements Engineering (RE93), York, UK, 1995.

[Fowler 98] Fowler P., Patrick, M., Carleton, A., Merrin, B.: "Transition
Packages: An Experiment in Expediting the Introduction of Requirements
Management", Proc. Third International Conference on Requirements
Engineering (ICRE’98), Colorado Springs, Co., 1998.

[Haag 96] Haag, S., Raja, M., Schkade, L.: "Quality Function Deployment
Usage in Software Development", Communications of the ACM, 39 (1), 1996.

[Hutchings 95] Hutchings, A., Knox, S.: "Creating Products Customers
Demand", Communications of the ACM. 38 (5), 1995.

[Kamsties 98] Kamsties, E., Hörmann, K., Schlich, M.: "Requirements
Engineering in Small and Medium Enterprises: State-of-the-Practice, Problems,
Solutions and Technology Transfer", Proc. Conference on European Industrial
Requirements Engineering (CEIRE'98), Hammersmith, UK, 1998.

[Karlsson 97] Karlsson, J., Ryan, K.: "A Cost-Value Approach for Prioritizing
Requirements", IEEE Software, 14 (5), 1997.

[Keil 95] Keil, M., Carmel, E.: "Customer-Developer Links in Software
Development", ", Communications of the ACM. 38 (5), 1995.

[Lubars 93] Lubars, M., Potts, C., Richter, C.: "A Review of the State of the
Practice in Requirements Modelling", Proc. IEEE International Sympoium on
Requirements Engineering (RE93), San Diego, Ca., 1993.

236

[Novorita 96] Novorita, R., Grube, G.: "Benefits of Structured Requirements
Methods for Market-Based Enterprises", Proc. International Council on Systems
Engineering (INCOSE) Sixth Annual International Symposium "Systems
Engineering: Practices and Tools", July 7 - 11, 1996 Boston, Massachusetts.

[Paulk 93] Paulk, M., Curtis, W., Chrissis, M., Weber, C.: Capability Maturity
Model for Software, Version 1.1, CMU/SEI-93-TR-24, Software Engineering
Institute, USA, 1993.

[Potts 95] Potts, C.: "Invented Requirements and Imagined Customers:
Requirements Engineering for Off-the-Shelf Software", Proc. 2nd IEEE
International Sympoium on Requirements Engineering (RE93), York, UK, 1995.

[Regnell 98] Regnell, B., Beremark, P., Eklundh, O.: "Requirements
Engineering for Packaged Software - A Baseline Process in a Situated
Improvement Programme", Proc. Conference on European Industrial
Requirements Engineering (CEIRE’98), Hammersmith, UK, 1998.

[Sawyer 97] Sawyer, P., Sommerville, I., Viller, S.: "Requirements Process
Improvement Through the Phased Introduction of Good Practice, Software
Process Improvement and Practice, 3, (1) 1997.

[Sommerville 97] Sommerville, I., Sawyer, P.: Requirements Engineering - A
Good Practice Guide, John Wiley, 1997.

[Stapleton 97] Stapleton, J.: DSDM Dynamic Systems Development Method:
The Method in Practice, Addison-Wesley, 1997.

[Zahran 98] Zahran S.: Software Process Improvement Practical Guidelines for
Business Success, Addison-Wesley, 1998.

237

Conformance Analysis of the Tailored CMM
with ISO/IEC 15504

Yingxu Wang, Alec Dorling, Judith Brodman* and Donna Johnson*
Centre for Software Engineering, IVF

Argongatan 30, S-431 53, Molndal, Sweden
 Tel: +46 31 706 6174, Fax: +46 31 27 6130

Email: {Yingxu.Wang, Alec.Dorling}@ivf.se
*LOGOS International, Inc.

8 Mackintosh LN, Lincoln, MA 01773, USA
Email: {brodman, johnson}@tiac.net

Abstract

This paper reports a case study on compliance analysis between software process
models. Conformance of the Logos tailored CMM (T-CMM) with the ISO/IEC
15504 process reference model is analysed. The method and coverage of this
work are based on the ISO/IEC 15504 requirements defined in the reference
model. Frameworks of the T-CMM model and ISO/IEC 15504 process reference
model are briefly described. Mappings between T-CMM and ISO15504 are
carried out in two-directions. Compliant level between T-CMM and ISO/IEC
15504 is analysed based on comparison and contrast of their frameworks and
mappings between the two models. This paper intends to develop a practical
approach to process models’ compliance analysis, and to provide a systematic
perspective and a number of interesting findings on the features of the T-CMM
and ISO/IEC 15504 models.

Keywords: Software engineering, software process, process assessment and

improvement, tailored CMM, ISO/IEC 15504, mapping, conformance analysis

238

1. Introduction

It is strongly expected to systematically and comparatively analyse the current
software engineering process standards and models in software engineering
research and in the software industry [1-6]. This paper reports a case study in
analysing the conformance of a CMM-derived process model, the Logos tailored
CMM (T-CMM) [7-8], with ISO/IEC 15504 [9-12]. This work is based on the
conformance requirements defined in [10] that cover model purpose, scope,
elements and indicators, mapping, and capability translation.

To enable the conformance analysis, frameworks of the T-CMM model and
ISO/IEC 15504 process and capability models are described and contrasted in
Sections 2 and 3 respectively. Then, in Section 4, mappings between T-CMM
and ISO/IEC 15504 are carried out mutually. Compliant level of T-CMM to
ISO/IEC 15504 is analysed based on comparison of their frameworks and
process rating methods, and quantitative mappings between the process models
in Section 5.

2. The T-CMM model

T-CMM [7-8] is a tailored SEI CMM [13-15] for small business, organisation
and projects conducted by Logos International in 1995. T-CMM was derived
based on the work in [16-17] and has been recognised by SEI and the sponsor of
the tailoring project [8].

The motivation for a tailored CMM was based on the Logos experience with
nearly 200 small organisations for process improvement. The Logos discovered
that small organisations and projects were encountering difficulties applying the
CMM to their software process improvement effort, because the CMM largely
reflects the practices of large software organisations [16-17]. As a result,
software organisations that are small or have small projects were experiencing
vast difficulty in implementing process improvement programs based on the
CMM and, thus, have not progressed very high on the software process maturity
scale.

239

The tailoring has been focused on improving SEI CMM usability on: a)
documentation overload; b) layered management: c) scope of reviews overkill;
d) limited resources; e) high training costs; and f) unrelated practices. The
strategy of the tailoring was to produce a tailored CMM that maintained the
intent, structure and key process areas (KPAs) of the CMM [13-15], and will be
suitable to small organisations. Therefore only the CMM key practices (KPs)
were tailored and revised to make them applicable for small organisations. The
tailoring has been carried out by: a) clarification of existing practices; b)
exaggeration of the obvious; c) introduction of alternative practices; and d)
alignment of practices with small organisations and projects’ structure and
resources. Despite the fact that 82% of the CMM KPs were modified in the
tailoring process, the changes that were introduced into the CMM did not
radically change its structure, especially at the KPA level.

This section describes the structure of T-CMM framework. The process model
and capability model of T-CMM are summarised in this section.

2.1 The T-CMM process model

The process taxonomy of the T-CMM is described by terms of system,

Table 1. The structure of KPAs in T-CMM

CL KPA Description

CL1 Initial

CL2 Repeated

KPA21 Requirements management

KPA22 Software project planning

KPA23 Software project tracking and
oversight

KPA24 Software subcontract management

KPA25 Software quality assurance

240

KPA26 Software configuration management

CL3 Defined

KPA31 Organisation process focus

KPA32 Organisation process definition

KPA33 Training programme

KPA34 Integrated software management

KPA35 Software product engineering

KPA36 Intergroup coordination

KPA37 Peer reviews

CL4 Managed

KPA41 Quantitative process management

KPA42 Software quality management

CL5 Optimised

KPA51 Defect prevention

KPA52 Technology change management

KPA53 Process change management

241

capability levels (CLs), key process areas (KPAs), common features, and key
practices (KPs). T-CMM identified a set of 18 KPAs and 150 KPs within five
capability levels [7-8]. A hierarchical categorisation of the KPAs in T-CMM is
shown in Table 1.

2.2 The T-CMM capability model

In the capability dimension of T-CMM, the process capability is defined at five
levels as shown in Table 2. Each capability level of T-CMM is featured by a
number of KPAs with defined KPs as shown in Table 2, except at level 1 there is
no defined KPAs since this level is treated as the baseline for an initial software
organisation in T-CMM. The capability maturity levels and the related KPAs in
assessment are predefined and fixed according to T-CMM model.

 Table 2. Capability levels of T-CMM

CL Description KPAs KPs

CL1 Initial 0 0

CL2 Repeated 6 62

CL3 Defined 7 50

CL4 Managed 2 12

CL5 Optimised 3 26

242

3. The ISO/IEC 15504 model

This section describes the ISO/IEC 15504 framework based on the ISO/IEC
15504 process reference model [10]. The process model and capability model of
ISO/IEC 15504 are summarised in this section.

3.1 ISO/IEC 15504 process model

A hierarchical structure of the ISO/IEC 15504 processes is shown in Table 3,
where the LC, PC and PR stand for life cycle, process category and process
respectively.

 Table 3. Hierarchical structure of ISO/IEC 15504 processes

LC PC PR Sub. PR Description

Primary Primary life cycle processes

CUS Customer-supplier

CUS.1 Acquisition

CUS.1.1 Acquisition preparation

CUS.1.2 Supplier selection

CUS.1.3 Supplier monitoring

CUS.1.4 Customer acceptance

CUS.2 Supply

CUS.3 Requirements elicitation

CUS.4 Operation

CUS.4.1 Operational use

CUS.4.2 Customer support

243

ENG Engineering

ENG.1 Development

ENG.1.1 System requirements analysis and
design

ENG.1.2 Software requirements analysis

ENG.1.3 Software design

ENG.1.4 Software construction

ENG.1.5 Software integration

ENG.1.6 Software testing

ENG.1.7 System integration and testing

ENG.2 System and software maintenance

Supporting Supporting life cycle processes

SUP Support

SUP.1 Documentation

SUP.2 Configuration management

SUP.3 Quality assurance

SUP.4 Verification

SUP.5 Validation

SUP.6 Joint review

SUP.7 Audit

SUP.8 Problem resolution

244

SUP.9 Measurement

SUP.10 Reuse

Organisational Organisational life cycle processes

MAN Management

MAN.1 Management

MAN.1.1 Project management

MAN.2 Quality management

MAN.3 Risk management

ORG Organisation

ORG.1 Organisational alignment

ORG.2 Improvement process

ORG.2.1 Process establishment

ORG.2.2 Process assessment

ORG.2.3 Process improvement

ORG.3 Human resource management

ORG.4 Infrastructure

Total 5 23 17

245

3.2 ISO/IEC 15504 capability model

In the capability dimension of ISO/IEC 15504, process capability is defined at
six levels and with nine intermediate process capability attributes as shown in
Table 4. These capability levels generally incorporate two process attributes
(sub-levels) except the level 1 (one attribute) and level 0 (no attribute).

Table 4. The ISO/IEC 15504 capability rating scale

Capability
level

Process attribute Description

PA5.2 Continuous improvement

PA5.1 Process change

CL5 Optimising process

PA4.2 Process control

PA4.1 Process measurement

CL4 Predictable process

PA3.2 Process resource

PA3.1 Process definition

CL3 Established process

PA2.2 Work product management

PA2.1 Performance management

CL2 Managed process

PA1.1 Process performance

CL1 Performed process
CL0 Incomplete process

246

4. Mutual mapping between T-CMM and ISO 15504

In this section, correlation between T-CMM and ISO/IEC 15504 is analysed in
both directions. Mutual mapping between T-CMM and ISO/IEC 15504 is carried
out.

4.1 Correlation between T-CMM and ISO/IEC 15504

According to the analysis in [1-3, 6], mapping between a pair of models is
insymmetric. Therefore correlation analysis and mutual mapping between T-
CMM and ISO/IEC 15504 are carried out in two directions as shown in Fig.1.

 CM M

KPA

KPA21

KPA22

KPA23

KPA24

KPA25

KPA26

KPA31

KPA32

KPA33

KPA34

KPA35

KPA36

KPA37

KPA41

KPA42

KPA51

KPA52

KPA53

 ISO 15504

Process

CUS.1
CUS.2
CUS.3
CUS.4

ENG.1
ENG.2

SUP.1
SUP.2
SUP.3
SUP.4
SUP.5
SUP.6
SUP.7
SUP.8
SUP.9

SUP.10

M AN.1
M AN.2
M AN.3

ORG.1
ORG.2
ORG.3
ORG.4

Fig. 1 Mapping between T-CMM and ISO/IEC 15504

247

In Fig.1, the left column lists the 18 KPAs of T-CMM; the right column lists the
23 processes of ISO/IEC 15504. The lines with two-directional arrows show the
correlation or equivalency between T-CMM KPAs and ISO/IEC 15504
processes.

Fig.1 shows there are one-to-one, one-to-many and many-to-one correlation
between the two models, since different organisation of process structures in T-
CMM and ISO/IEC 15504. In Fig.1, it can be found that all T-CMM KPAs are
covered by the ISO/IEC 15504 processes. The fact that all T-CMM KPAs can be
fully mapped onto ISO/IEC 15504 is the foundation that would enable T-CMM
conforming to ISO/IEC 15504. Although, reversibly, not all ISO/IEC 15504
processes are matched in T-CMM.

4.2 Mapping T-CMM onto ISO/IEC 15504

Based on the correlation net developed in Fig.1, T-CMM can be mapped onto
ISO/IEC 15504 at the KPA level [5,18]. A detailed mapping of T-CMM onto
ISO/IEC 15504 is shown in Table 5.

For characterising degrees of correlation between the two models, four confident
levels of correlation between processes are modelled in terms very high (V), high
(H), low (L) and not (N) correlation. This approach is designed to refine the
measurement of the degrees of correlation between processes, rather than to
provide a simple conclusion as ‘yes’ or ‘no’ as adopted in conventional methods
[18]. In Table 5, a letter in the squared brackets shows the confident level of
correlation in a mapping.

248

Table 5. Mapping T-CMM onto ISO/IEC 15504

 CL KPA Description Correlated process(es) in
ISO 15504 [with a

confident level]

CL1 Initial

CL2 Repeated

KPA2

1

Requirements management CUS.3 [H], ENG.1 [L]

KPA2

2

Software project planning MAN.1 [L]

KPA2

3

Software project tracking &
oversight

MAN.1 [L]

KPA2

4

Software subcontract management CUS.1 [H]

KPA2

5

Software quality assurance SUP.3 [V], MAN.2 [V]

KPA2

6

Software configuration
management

SUP.2 [V]

CL3 Defined

KPA3

1

Organisation process focus ORG.1 [H], ORG.4 [L]

KPA3

2

Organisation process definition ORG.1 [V], ORG.4 [H]

KPA3

3

Training programme ORG.3 [H]

KPA3

4

Integrated software management ENG.1 [L], MAN.1 [H]

249

KPA3

5

Software product engineering ENG.1 [H], ENG.2 [L]

KPA3

6

Intergroup coordination MAN.1 [L]

KPA3

7

Peer reviews SUP.6 [V]

CL4 Managed

KPA4

1

Quantitative process management SUP.9 [H], ORG.2 [L]

KPA4

2

Software quality management SUP.3 [H], MAN.2 [V]

CL5 Optimised

KPA5

1

Defect prevention SUP.4 [H], SUP.5 [L],
SUP.7 [L], SUP.8 [L]

KPA5

2

Technology change management ENG.1 [L], MAN.3 [L]

KPA5

3

Process change management MAN.3 [L], ORG.2 [H]

4.3 Mapping ISO/IEC 15504 onto T-CMM

Based on the correlation net shown in Fig.1, ISO/IEC 15504 can also be mapped
onto T-CMM at the process level [1,2,5]. A detailed mapping of ISO/IEC 15504
onto T-CMM is shown in Table 6. A letter in the squared brackets shows the
confident level of correlation in mapping as defined in Subsection 4.2.

250

 Table 6. Mapping ISO/IEC 15504 onto T-CMM

LC PC PR Description Correlated KPA(s) in CMM

[with a confident level]

Primary Primary life cycle processes

CUS Customer-supplier

CUS.1 Acquisition KPA24 [H]

CUS.2 Supply

CUS.3 Requirements elicitation KPA21 [H]

CUS.4 Operation

ENG Engineering

ENG.1 Development KPA21 [L], KPA34 [L], KPA35

[H], KPA52 [L],

ENG.2 System & software maintenance KPA35 [L]

Suppor

 -ting

Supporting life cycle
processes

SUP Support

SUP.1 Documentation

SUP.2 Configuration management KPA26 [V]

SUP.3 Quality assurance KPA25 [V], KPA42 [H]

SUP.4 Verification KPA51 [H]

SUP.5 Validation KPA51 [L]

SUP.6 Joint review KPA37 [V]

SUP.7 Audit KPA51 [L]

SUP.8 Problem resolution KPA51 [L]

SUP.9 Measurement KPA41 [H]

SUP.10 Reuse

251

Organi-
sational

Organisational life cycle
processes

MAN Management

MAN.1 Management KPA22 [L], KPA23 [L],
KPA34 [H], KPA36 [L]

MAN.2 Quality management KPA25 [V], KPA42 [V]

MAN.3 Risk management KPA52 [L], KPA53 [L]

ORG Organisation

ORG.1 Organisational alignment KPA31 [H], KPA32 [V]

ORG.2 Improvement process KPA41 [L], KPA53 [H]

ORG.3 Human resource management KPA33 [H]

ORG.4 Infrastructure KPA31 [L], KPA32 [H]

5. Conformance analysis of T-CMM with ISO
15504

Based on the mutual mapping as described in Section 4, the levels of correlation
and conformance between T-CMM and ISO/IEC 15504 are quantitatively
analysed in this section.

5.1 Correlation level in mapping T-CMM onto ISO/IEC
15504

For quantitatively analysis the complicated correlation between two process
models in forms one-to-one, many-to-one and one-to-many, a set of numeric
weights is introduced. The confident levels of correlation as shown in Tables 5
and 6 are weighted as: V := 10, H := 7, L := 3, and N := 0. Based on this, the
correlation levels of the 18 KPAs in T-CMM with regard to the ISO/IEC 15504
processes can be calculated as shown in Fig.2. The numeric weighting approach

252

has also enabled the development of mapping algorithms and tools between
process models [19].

0
5

10
15
20
25

21 22 23 24 25 26 31 32 33 34 35 36 37 41 42 51 52 53
CM M KPAs

corr e lation
 le ve l

Fig. 2 Correlation level in mapping T-CMM onto ISO/IEC 15504

In Fig.2, the highest correlative KPAs are KPA25 - software quality assurance,
KPA32 - organisation process definition, KPA42 - software quality management,
followed by KPA51 - defect prevention; The lowest correlative KPAs are KPA22

- software project planning, KPA23 - software project tracking and oversight, and
KPA36 - intergroup coordination. There is no KPA in T-CMM that can not be
mapped onto the ISO/IEC 15504 processes. This fact indicates there is a basis of
compliance between T-CMM and ISO/IEC 15504 according to the requirements
in [10].

5.2 Correlation level in mapping ISO/IEC 15504 onto T-CMM

In the same approach as developed in Subsection 5.1, the correlation levels of
the 23 ISO/IEC 15504 processes with the T-CMM KPAs are quantitatively
derived as shown in Fig.3. In Fig.3, the highest correlative processes are MAN.2

0

5

10

15

20

25

C.1 C.2 C.3 C.4 E.1 E.2
S.1 S.2 S.3 S.4 S.5 S.6 S.7 S.8 S.9

S.1
0

M
.1

M
.2

M
.3

O.1 O.2 O.3 O.4

ISO 15504 processes

correlation
 level

Fig.3 Correlation level in mapping ISO/IEC 15504 onto T-CMM

253

- quality management, SUP.3 - quality assurance and ORG.1 - organisational
alignment, followed by ENG.1 - development and MAN.1 - management.

It is noteworthy that, as shown in Fig.3, there are four processes in ISO/IEC
15504, such as CUS.2 - supply, CUS.4 - operation, SUP.1 - documentation, and
SUP.10 - reuse, without correlation to the T-CMM KPAs. However, this fact
does not affect the compliance level that T-CMM maps onto ISO/IEC 15504,
because a compliant mapping is defined in the reversed way as in [10].

5.3 Conformance between T-CMM and ISO/IEC 15504

Generally the compliant relationship between T-CMM and ISO 15504 is
summarised in Table 7, where the process models, capability models, capability
rating methods and rating results of T-CMM and ISO/IEC 15504 are
comparatively contrasted.

Table 7 shows that:

a) The process models of T-CMM and ISO/IEC 15504 are highly correlative,

especially at the KPA/process level. Although the fact that T-CMM KPAs
are assigned into separate capability levels is an exception, which contradicts
to the requirement of that “every process should can be evaluated in any
capability levels [10]” according to ISO/IEC 15504.

b) The capability models between T-CMM and ISO/IEC 15504 are also highly
correlative. Minor difference in the capability models is that ISO/IEC 15504
has 9 generic attributes for all processes; while T-CMM has 5 common
features for grouped KPAs.

254

Table 7. Degree of conformance between T-CMM and ISO/IEC 15504

Aspect CMM ISO/IEC 15504 Confident level

in correlation

Process
model

Grouped in 5 capability
levels

Modelled in 5 process
categories

L

18 KPAs 23 Processes V

150 KPs 201BPs H

Capabilit
y model

5 levels 6 levels V

5 common features 9 attributes H

Rating
method

{Φ} ➨ CL1

{KPA21 - KPA26} ➨
CL2

{KPA31 - KPA37} ➨
CL3

{KPA41 - KPA42} ➨
CL4

{KPA51 - KPA53} ➨
CL5

PR1 CL0

PR2 CL1

......

PR23 CL5

H

Rating
result

Capability level of

a project or organisation

Capability profile of

processes

H

Summary Average correla-
tion level: 7.29,

255

ie. V >
Average-

 level > H

 Notes: Confident level in mapping: V - very high equivalent, H - high equivalent, L - low equivalent,

 N - non equivalent

 CL
5
4
3
2
1
0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 CMM KPA or ISO 15504 process

Fig. 4. Domain of capability levels between T-CMM and ISO/IEC 15504

c) The rating method of T-CMM is a subset of ISO/IEC 15504 as shown in
Table 7 and Fig.4. In Fig.4, the T-CMM capability areas of the 18 KPAs are
marked by black colour. As a subset of ISO/IEC 15504 capability domain,
T-CMM rating method is conformance to ISO/IEC 15504.

d) The rating results of T-CMM and ISO/IEC 15504 have highly equivalent
meaning. Only difference is that ISO/IEC 15504 results in a capability
profile of a set of processes; while the T-CMM represents a single process
capability level for a project or organisation. A supplement method for
filling this gap has been developed in [4,6] that derives an aggregated
capability level at project or organisation level from the ISO/IEC 15504
process capability profile.

This section is designed to provide a complete perspective on the compliance
between the T-CMM and ISO/IEC 15504 models. As shown in Table 7, the
average compliant level between T-CMM and ISO/IEC 15504 is 7.29 in the
scale of 10, which indicates a confident conformance level between very high
(V) and high (H) correlation.

256

6. Conclusions

Objective conformance analysis between existing models is an important and yet
difficult research subject. This paper has analysed the compliant level between
T-CMM and the ISO/IEC 15504 process reference model based on the
conformance criteria as defined in [10]. The frameworks of the T-CMM model
and ISO/IEC 15504 process and capability models have been described.
Mappings between T-CMM and ISO/IEC 15504 have carried out in two-
directions. Conformance of T-CMM with ISO/IEC 15504 has analysed based on
the comparison and contrast of their process and capability models, as well as
their rating methods and rating results. The general findings is that, although
there are minor and historical differences, T-CMM is 72.9% compliant to
ISO/IEC 15504 in the aspects of process and capability dimensions, and in their
capability rating methods and results.

The work reported in this paper can be taken as a detailed case study of
conformance analysis between an established process model and the ISO/IEC
15504 standard. Based on this work, recommendations have been provided to
both T-CMM and ISO/IEC 15504 towards a completed compliance.

7. Acknowledgements

The authors would like to acknowledge many helpful discussions with
colleagues of ISO/IEC JTC1/SC7/WG10. We would like to thank the valuable
comments of the referees for improving the quality of this paper.

257

References

[1] Wang, Y., Court, I., Ross, M., Staples, G., King, G. and Dorling, A. (1997),
Quantitative Analysis of Compatibility and Correlation of the Current SPA
Models, Proceedings of the IEEE International Symposium on Software
Engineering Standards (ISESS’97), California, USA, pp.36-56.

[2] Wang, Y., Court, I., Ross, M., Staples, G., King, G. and Dorling, A.
(1997),Quantitative Evaluation of the SPICE, CMM, ISO 9000 and
BOOTSTRAP, Proceedings of the IEEE International Symposium on Software
Engineering Standards (ISESS’97), California USA, June, pp. 57-68.[3] Wang,
Y., Court, I., Ross, M., Staples, G. and Dorling, A. (1997),Comparative
Assessment of a Software Organisation with the CMM andSPICE, Proceedings
of the 5th International Conference on Software Quality Management (SQM’97),
March, Bath, UK, pp.S4.1-11.

[4] Wang, Y. (1999), How to Relate Process Capability Levels betweenCurrent
Process Standards and Models, Lecture Notes Session IX – Process Capability,
Proceedings of European Winter School on Software Process, EC ESPRIT Basic
Research WG – PROMOTER II, January, France, pp.IX.1- IX.89.

[5] Wang, Y., Court, I., Ross, M., Staples, G. and King, G. (1996), Towards
aSoftware Process Reference Model (SPRM), Proceedings of
InternationalConference on Software Process Improvement (SPI’96), Brighton
UK,pp.145-166.

[6] Wang Y., King, G., Doling, A. and Wickberg, H. (1999), A
UnifiedFramework of the Software Engineering Process System Standards and
Models, Proceedings of 4th IEEE International Software Engineering Standards
Symposium (ISESS’99), IEEE CS Press, Brazil, May, pp.P1.1-10.

[7] Broadman, J. G. and Johnson, D. L (1995), The LOGOS Tailored CMM[SM]
for Small Businesses, Small Organisations and Small Projects (V.1.0), LOGOS
International Inc., August, USA, pp. 1-26.

258

[8] Johnson, D. L and Broadman, J. G. (1997), Tailoring the CMM for
SmallBusinesses, Small Organisations, and Small Projects, Software Process
Newsletter, No.8, pp. 1-6.

[9] ISO/IEC JTC1/SC7/WG10 (1998), TR 15504-1: Information Technology –
Software Process Assessment - Part 1: Concept and introduction guide (V. 3.3),
pp.1 - 11.

[10] ISO/IEC JTC1/SC7/WG10 (1998), TR 15504-2: Information Technology –
Software Process Assessment - Part 2: A Reference Model for Process and
Process Capability (V. 3.3), pp.1 - 39.

[11] ISO/IEC JTC1/SC7/WG10 (1998), TR 15504-4: Information Technology –
Software Process Assessment - Part 4: Guide to Performing Assessments, (V.
3.3), pp.1 - 18.

[12] ISO/IEC JTC1/SC7/WG10 (1998), TR 15504-5: Information Technology –
Software Process Assessment - Part 5: An Assessment Model and Indicator
Guidance (V. 3.3), pp.1 - 121.

[13] Humphrey, W.S. and W.L. Sweet (1987), A Method for Assessing
theSoftware Engineering Capability of Contractors, Technical Report CMU/SEI-
87-TR-23, Software Engineering Institute, Pittsburgh, Pennsylvania, USA.

[14] Paulk, M.C., Curtis, B., Chrissis, M.B. and Weber, C.V. (1993),Capability
Maturity Model for Software, Version 1.1, Technical reportCMU/SEI-93-TR-24,
Software Engineering Institute, Pittsburgh, Pennsylvania, USA.

[15] Paulk, M.C., Weber, C.V., Garcia, S., Chrissis, M.B. and Bush, M.
(1993),Key Practices of the Capacity Maturity Model, Version 1.1,
TechnicalRreport CMU/SEI-93-TR-25, Software Engineering Institute,
Pittsburgh,Pennsylvania, USA.

[16] Brodman J.G. and Johnson D.L. (1994), What Small Business and
SmallOrganisation Say about the CMM, Proceedings of the 16th International
Conference on Software Engineering (ICSE16), Sorrento, Italy, pp.331-340.

259

[17] Johnson, D. L and Broadman, J. G. (1992), Software Process Rigors
YieldStress, Efficiency, Signal Magazine, August, USA.

[18] Paulk, M.C., Konrad, M.D. and Garcia, S.M. (1994), CMM Versus SPICE
Architectures, Software Process Newsletters, Spring , pp.7-11.

[19] Dorling, A., Wang, Y., Kirchhoff, U., Sundmaeker, H., Maupetit, C.,
Pitette, G., Pereira, J. and Hansen, S. (1999), ICT Acquisition Process
Assessment Methodology, The PULSE Consortium Publication, March, pp.1-87

260

261

SESSION 5:

Software Measurement

262

263

Empirical Studies of Inspection and Test
Data

Abstract

Inspections and testing represent core techniques to ensure reliable software.
Inspections also seem to have a positive effect on predictability, total costs and
delivery time.

This paper presents a case study of inspections and testing, done at the Ericsson
development department outside Oslo in Norway. This department develops and
maintains customer-defined services around AXE phone switches, i.e. the
functionality around the “star”'' and “square” buttons on house telephones.

AXE development at Ericsson worldwide uses a simple, local experience
database to record inspections and testing data. Two MSc students from NTNU
have been given access to such historical data in 1997 [Marjara97] and 1998
[Skaatevik99]. The results from these two diploma theses constitute the basis for
this paper.

The paper will study questions such as:

– The effectiveness and cost-efficiency of inspections,

– The cost-effectiveness and defect profile of inspection meetings vs.
individual inspections,

– The relation between complexity/modification-rate and defect density,

Reidar Conradi
NTNU,

Trondheim, Norway

Amarjit Singh Marjara
Gap Gemini AS,

Trondheim, Norway

Børge Skåtevik
STC,

Vatlandsvåg, Norway

264

– Whether the defect density for modules can be predicted from initial
inspections over later phases and deliveries.

The paper is organized as follows.

Section 1 summarizes some relevant parts of the state of the art, especially of
inspections.

Section 2 first describes the Ericsson context, and

section 3 describes questions hypotheses for the study.

Section 4 describes the organization of the study, and

Section 5 presents and discusses the results.

Section 6 sums up the paper and recommends some future work.

1. Introduction

The paper will present results from two MSc theses at NTNU, that have
analyzed historical defect data at Ericsson in Oslo, Norway -- related to their
AXE switches. Ericsson has practiced Gilb inspections for many years, and
collects defect data from inspections and testing in a small database.

These studies revealed that inspections indeed are the most cost-effective
verification technique. Inspections tend to catch 2/3 of the defects before testing,
by spending 10% of the development time and thereby saving about 20% of the
time (by earlier defect correction, a ``win-win'').

Inspection meetings were also cost-effective over most testing techniques, so
they should not be omitted. Inspection meetings also found the same type of
errors (Major, Super Major) as individual inspections.

265

We also found that there is a correlation between module complexity,
modification rate, and the defect density found during field use, but not during
inspections and test.

Due to missing data, we could not find out whether the defect density of modules
repeated itself across inspection/test phases and over several deliveries, i.e. we
could not predict ‘‘defect-prone’’ modules.

However, defect classification was unsatisfactory, and prevented analysis of
many interesting hypotheses.

2. State of the art

Quality in terms of reliability is of crucial importance for most software systems.

Common remedies are sound methods for system architecture and
implementation, high-level languages, formal methods and analysis, and
inspection and testing techniques. Especially the latter two have been extensively
described in the literature, and vast empirical materials have been collected,
analyzed and published.

This paper only refers to general test methods, so we will not comment on these
here.

Inspections were systematized by Fagan [Fagan76] [Fagan86] and represent one
of the most important quality assurance techniques. Inspections prescribe a
simple and well-defined process, involving group work, and have a well-defined
metrics. They normally produce a high success rate, i.e. by spending 10% of the
development time, we diagnose 2/3 of the defects before testing, and save 20%
of the total time -- a win- win: so quality is ‘‘free’’. Inspections can be applied on
most documents, even requirements [Basili96]. They also promote team
learning, and provide general assessment of reviewed documents.

Of current research topics are:

266

� The role of the final inspection meeting (emphasized by Tom Gilb
[Gilb93], see also [Votta93].

� When to stop testing?, cf. [Adams84].

� The effect of root-cause-analysis on defects.

� The role of inspection vs. testing in finding defects, e.g. their relative
effectiveness and cost.

� The relation between general document properties and defects.

� Defect densities of individual modules through phases and deliveries.

Our research questions and hypotheses deal with the three latter.

3. The company context

Ericsson employs about 100,000 people worldwide, whereof 20,000 in
development. They have company-wide and standardized processes for most
kind of software development, with adaptations for the kind of work being done.

Ericsson has adopted a classical waterfall model, with so-called "tollgates" at
critical decision points. In all this, verification techniques like inspections and
testing are crucial. Inspection is done for every life-cycle document, although we
will mostly look at design and code artifacts. Testing consists of unit test,
function test and system test, where the two latter may be done at some
integration site different from the development site (e.g. Stockholm).

We will only study results from design inspections, simplified code reviews and
partly testing in this paper.

The inspection process at Ericsson is based on techniques originally developed
by Michael Fagan [Fagan76] at IBM and refined by Tom Gilb [Gilb93]. The
process is tailor-made by the local development department. In addition there is
a simplified code review done by individual developers (data from code review

267

and unit test are sometimes merged into a “desk check''). Thus full inspections
are only done upon design documents in the context of this paper.

Data from inspections/reviews and testing are collected in a simple, proprietary
database and used for local tuning of the process. Defects are classified in Major,
SuperMajor and Questions (the latter is omitted later) -- thus no deep
categorization.

We have studied software development at the Ericsson site outside Oslo. It just
passed CMM level 2 certification in Oct. 1998, and aims for level 3 in year
2000.

The Oslo development site has about 400 developers, mostly working on
software. The actual department has about 50 developers, and works mostly on
the AXE-10 digital software switch, which contains many subsystems. Each
subsystem may contain a number of modules. The development technology is
SDL design language (SDT tool from Telelogic) and their proprietary PLEX
language from the late 1970s (own compilers and debuggers).

Special inspection groups are formed, called product committees (PC), to take
care of all impacts on one subsystem. In this paper, we will only look at
subsystem-internal inspections, not across subsystems.

The inspection process is indicated in figure 1 below, and follows Fagan/Gilb
wrt. overall setup, duration etc.:

268

Figure 1. Basic inspection process at Ericsson.

The different types of documents are presented in the table 1 below:
Table 1. Document types.
Document type Applicatin Information

ADI Adaptation Direction
AI Application Information
BD Block Description
BDFC Block Description Flow Chart
COD Command Description
FD Function Description
FDFC Function Description Flow Chart
FF Function Framework
FS Function Specification
FTI Function Test Instruction
FTS Function Test Specification
IP Implementation Proposal
OPI Operational Instruction
POD Printout Description
PRI Product Revision Information
SD Signal Description
SPL Source Parameter List
SPI Source Program Information

Entry Evaluation and Planning

Kickoff

Checking

Inspection Meeting

Causal Analysis

Discussion Meeting

Rework

Fol low-up and Exit Evaluation

The first level inspection process

10 - 15 minutes

maximum 2 hours

maximum 2 hours

optional

optional

DurationParticipants

Moderator

Whole team

Inspectors
(individually)

Whole team

Interested
parties

Interested
parties

Author

Moderator

(the specif ied preparation
rates must be followed)

(the inspection rates
must be followed)

269

4. Questions and hypotheses

4.1 Observation

O1: How cost-effective are inspections?

 4.2 Questions

Q1: Are inspections performed at the recommended rates?

Q2: How cost-efficient are the inspection meetings?

Q3: Are the same kind of defects found in initial inspection preparations and
following inspection meetings?

 4.3 Hypotheses

The hypothesis is paired: one null hypothesis, H0, which is the one that will
actually be tested and an alternative hypothesis, Ha, which may be considered
valid if the null hypothesis is rejected. For the statistical tests presented in this
paper, a significance of level of 0.10 is assumed.

We will present two hypotheses. In each case, the null hypothesis will represents
the positive conclusion, and the alternative hypothesis will conclude with the
opposite. The three hypotheses are:

H1: Is there a significant, positive correlation between defects found during
field use and document complexity?

H2: Is there a significant, positive correlation between defects found during
inspection/test and module complexity?

270

Is there a significant correlation between defects rates across phases and
deliveries for individual documents/modules? (i.e. try to track "defect-prone"
modules).

5. Organization of the study

We have performed two studies where we have collected and analyzed historical
data from software department at Ericsson in Oslo. Torbjørn Frotveit, our
middleman at Ericsson, has all the time furmishing with the requested data.

This paper presents results from these two studies of inspection and testing:

♦ Study 1: This is the work done in a diploma thesis from 1997 [Marjara97].
Marjara investigated inspection and test data from Project A of 20,000 man-
hours (14 man-years). Defect data in this work included inspection, desk
check, function test, system test and partly field use.

♦ Study 2: This is the follow-up work done in the diploma thesis from 1998
[Skåtevik99]. This thesis has data from 6 different projects (Project A-F),
including the project Marjara used in Study 1. It represent over 100.000
man-hours (70 man years). The test data in this work include only data from
inspection and desk check, since later testings were done by other Ericsson
divisions. However, it was possible to split desk check in code review and
unit test, and data from these to activities are presented. Data from field use
are not included, due to same reasons as for function- and system test.

Threats to internal validity:

We have used standard indicators on most properties (defect densities, inspection
rates, effort consumption etc.), so all in all we are on agreed ground. However,
wrt. Module complexity we are unsure, and further studies are needed. Whether
the recorded defect data in the Ericsson database are trustworthy is hard to say.
We certainly have discovered inconsistencies and missing data, but our
confidence is pretty high.

271

Threats to external validity:

Since Ericsson has standard working processes worldwide, we can assume at
least company-wide relevance. However, many of the findings are also in line
with previous empirical studies, so we feel confident on general level.

6. The results and evalutation of these

This chapter presents the results from the two studies described in previous
chapter, and tries to conclude the question and hypothesis stated in chapters 5.

Two definitions will be used throughout the chapter, effectiveness and
efficiency:

Effectiveness: in finding defects regardless of cost.

Efficiency: cost-effective (as above per time-unit).

 6.1 O1: How cost-effective are inspections?

In this section we shall describe, and compare the efficiency of inspections and
testing at Ericsson in Oslo. Table 2 is taken from Study 1 and shows the
effectiveness of inspections and testing, by comparing the number of defects
found per hour.

Table 2. Total defects found, Study 1.

Activity Defects
[#]

[%]

Inspection preparation 928 61.8
Inspection meeting 29 1.9
Desk check (code review + unit test) 404 26.9
Function test 89 5.9
System test 17 1.1
Field use 35 2.3

Total 1502 100.0

272

Table 2 shows that inspections are the most effective verification activity,
finding almost 64% of total defects found in the project. Second best is the desk
check that finds almost 27%.

To analyze which of the verification activities that are most effective, the time
spent on the different activities was gathered. Table 3 shows the time spent on
the six verification activities.

Table 3. Cost of inspection and testing, defects found per hour, Study 1.

Activity Defect

s [#]

Effort

[h]

Time spent to

find one defect

[h:m]

Time

spent on

defect

fixing

[h]

Estimated

saved time

by early

defect

removal

Inspection preparation 928 786,8 00:51

Inspection meeting 29 375,7 12:57
311.2 8196.2

Unit test 404 1257.0 03:07 - -

Function test 89 7000.0 78:39 - -

System test 17 - - - -

Field use 35 - - - -

When combining effort and number of defects, inspections proved to be the most
cost-effective. Not surprisingly, function test is the most expensive activity. It
should be noted that only human labor is included for desk check and function
test. The costs of computer hours or special test tools are not included. Neither is
the human effort in designing the test cases.

In Study 2 it was not possible to get defect data from function test, system test
and field use. Instead the data made it possible to split up the desk check, which
actually consist of code review and unit test. Table 4 shows the results.

273

Table 4. Total defects found, Study 2.

Activity Defects [#] [%]

Inspection preparation 4478 71.1

Inspection meeting 392 6.2

Desk check 832 13.2

Emulator test 598 9.5

Total 6300 100.0

Again, the data show that inspections are highly effective, contributing to 71.1%
of all the defects found in the projects. Desk check is second best, finding almost
13% of the defects in the projects. Compared to Study 1, there is an
improvement in the inspection meeting, whose effectiveness has increased from
2% to 6%.

Table 5 shows the effort of the different activities from Study 2.

Table 5. Cost of inspection and testing, defects found per hour, Study 2.

Activity Defects

[#]

Effort

[h]

Time spent

to find one

defect

[h:m]

Time spent

on defect

fixing

[h]

Estimated

saved time

by early

defect

removal

Inspection preparation 4478 5563 01:15

Inspection meeting 392 3215 08:12
11737 41467

Desk check 832 2440 02:56 -

Emulator test 598 4388 07:20 -

The inspection meeting itself has a much better cost efficiency in Study 2
(8h:12min per defect), compared to Study 1 (12h:57min per defect).

274

Although desk check on code seems to be the most effective method in Study 2,
this method is not as general as inspections, which can be used on almost any
phase/document of the process.

In Study 2, covering 100,000 man-hours, a total of 20515 hours were spent on
inspections. It has been calculated that inspections did save 41467 hours, which
would have been necessary to use on correcting defects otherwise found by
testing. That is, saving of 41% of the total project effort.

Study 1 covered 20,000 man-hours where 1474 hours were spent on inspections.
In this study it was calculated that they saved 8196 hours.

 6.2 Q1: Are inspections performed at the
recommended rates?

Here we want to see if the recommended inspection rates were applied in the
inspections. The results are presented in table 6. Note that not all document types
are included.

Table 6. Planned versus actual inspection-time consumption in Study 2.

Document information Actual Recommended
time

Defects

Document type Number of

documents

Total

num.

of

pages

Average

length of

doc

Actual time Planning

constant

Recom.

Time

Total

number

of

defects

Defect

density

per page

ADI 1 7 7.00 36 20 20 12 1.71

AI 29 241 8.31 1019 72 2088 197 0.82

BD 41 1038 25.32 1438 40 1640 468 0.45

BDFC 54 3376 62.52 3531 104 5616 802 0.24

COD 4 31 7.75 105 14 56 38 1.23

FD 33 1149 34.82 2432 38 1254 784 0.68

FDFC 19 897 47.21 1230 26 494 338 0.38

FF 14 366 26.14 868 20 280 363 0.99

FS 14 244 17.43 950 24 336 205 0.84

275

FTI 2 605 302.50 216 14 28 22 0.04

FTS 2 154 77.00 840 14 28 44 0.29

IP 3 65 21.67 257 15 45 73 1.12

OPI 5 61 12.20 130 20 100 14 0.23

POD 4 23 5.75 116 20 80 29 1.26

PRI 57 582 10.21 1651 96 5472 399 0.69

SD 4 59 14.75 300 18 72 47 0.8

SPL 27 141 5.22 417 80 2160 69 0.49

Total 313 9039 15536 19769 3904 0.43

According to the recommended rates, the inspections are performed to fast (see
table 6). 15536 hours are spent on inspections, whereas 19769 hours are
recommended expenditure. The defect average per page is 0.43.

Study 1 also concluded with the same result, i.e. that inspections at Ericsson are
performed to fast according to recommended inspection rates.

As reported in other literature, plots on preparation rate and defect detection rate
(se figure 1) shows that the number of defects found per page decreases as the
number of pages (document length) per hour increases. Inspection performed to
fast will then results in decreased detection rate.

Figure 2. Number of pages inspected and defect detection rate, Study 1.

276

6.3 Q2: How cost-efficient are the inspection meetings?

Table 7 together with figure 3, shows the time consumption for each step of the
inspections from Study 2. Effort before individual preparation and inspection
meeting has here been proportionally distributed on these.

Table7. Time consumption for inspection, Study 2.

Preparation Inspection

Meeting

Defect

fixing

Sum

Hours 5563 3215 11737 20515

[%] 27.12 % 15.67 % 57.21 % 100,00%

Time consumption - Inspection

0

2000

4000

6000

8000

10000

12000

14000

Preparation Inspection Meeting Defect fixing

Steps in inspection

H
o

u
rs

Figure 3. Time consumption for inspection, Study 2.

277

Table 8. Cost efficiency and defect classification from inspections, Study 2.

Major Super

Major

Sum

defects

Effort Efficiency

[defects/h]

[#] [%] [#] [%] [#] [h] [defects/h]

Preparation 4356 97.2% 122 2.7% 4478 3415 1.31

In meeting 380 96.9% 12 3.1% 392 1956 0.20

In defect log 4736 97.2% 134 2.7% 4870 5371 0.91

Table 8 from Study 2, shows the number of defects recorded in preparations, in
meetings, and the total. As mentioned, the defects are classified in two
categories:

♦ Major: Defects that can have a major impact later, that might cause defects
in the end products, and that will be expensive to clean up later.

♦ Super Major: Defects that have major impact on total cost of the project.

It turns out that 8% of defects found by inspections are found in meetings, with a
cost-efficiency of 0.2 defects per hour. Compared to function test and system
test, inspection meetings are indeed cost-effective in defect removal.

 6.4 Q3: Are the same kind of defects found in initial
inspection preparations and following inspection

meetings?

We will also like to investigate what type of defects are found during
preparations versus inspection meetings. Note: We do not have data on whether
inspection meetings can refute defects reported from individual inspections
(“false positive”), cf. [Votta93]. Our data only report new defects from
inspection meetings (“true negative”). Table 8 from Study 2, shows that 2.7% of
all defects from inspections are of type Super Major, while the rest are Major.

278

For preparation, the Super Major share is 2.7%. For meeting the share is 3.1%,
i.e. only slightly higher. We therefore conclude that inspection meetings find the
same “types” of defects as by individual preparation.

No such data were available in Study 1.

 6.5 H1: Correlation between defects found during
field use and document complexity

Intuitively, we would say that the faults in field use could be related to complex-
ity of the module, and to the modification rate for the module. The modification
rate indicates how much the module is changed from the base product, and the
complexity is represented by the number of states in a module. For new modules
the modification grade is zero. Correlation between modules and defect rates for
each unit, (i.e., not the absolutely number of faults, but faults per volume-unit)
has not yet been properly checked.

In Study 1, the regression equation can be written as:

where Nfu is number of faults in field use, Ns is number of states, Nmg is the
modification grade, and α, β, and λ are coefficients. H0 can only be accepted if β
and λ are significantly different from zero and the significance level for each of
the coefficients is better than 0.10.

The following values was estimated:

Nfu= -1.73 + 0.084*Ns + 0.097*Nmg

Nfu α βNs λNmg+ +=

279

Predictor Coefficient StDev t P

Constant -1.732 1.067 -1.62 0.166

States 0.084 0.035 2.38 0.063

Modrate 0.097 0.034 2.89 0.034

The values for estimated coefficients are given above, along with their standard
deviations, t-value for testing if the coefficient is 0, and the p-value for this test.

The analysis of variance is summarised below:

Source DF SS MS F P

Regression 2 28.68 14.34 9.96 0.018

Error 5 7.20 1.44

Total 7 35.88

It should be noted that the coefficients are not significant, but that the states and
modification rate are significant. The F-Fisher test is also significant, and
therefore the hypothesis, H0 can be accepted based on the results from the
regression analysis.

 6.6 H2: Correlation between defects found during
inspection/test and module complexity

The relevant data come from Study 2. Because just some of the modules are
found over several lifecycles, only 12 modules out of 443 could be used for this
analysis. 12 modules out of 443, shows that we should probably have checked
out more thorougly relations between phases in same lifecycle, not just between
different lifecycles.

Since data are collected for each document type, and each module in each phase
consists of different number of document types, one document type is selected
through all the phases. The document type selected is BDFC. Table 9 shows the

280

results. Field marked with “-“ means that the data are missing, or no module
exists. Because all the modules presented in this table only were included in
project A through E, project F were excluded.

Table 9. Defect data for BDFC documents over different modules and projects,
Study 2.

Project A Project B Project C Project D Project E
Module name

D
ef

/p
ag

e

C
om

pl
ex

ity

D
ef

ec
t

fo
un

d

D
ef

/p
ag

e

C
om

pl
ex

ity

D
ef

ec
t

fo
un

d

D
ef

/p
ag

e

C
om

pl
ex

ity

D
ef

ec
t

fo
un

d

ba
si

c
te

st

D
ef

/p
ag

e

C
om

pl
ex

ity

D
ef

ec
t

fo
un

d

ba
si

c
te

st

D
ef

/p
ag

e

C
om

pl
ex

ity

D
ef

ec
t

fo
un

d

ba
si

c
te

st

SUSAACA 0.04 72.0 25 0.28 80.5 3 - - - - - - - - -

SUSAACT 0.10 177.5 12 0.10 179.0 4 - - - - - - - - -

SUSCCTB 0.42 117.5 58 0.80 120.5 24 - - - - - - - - -

SUSCR - - - 0.13 95.5 11 - - - 3.80 89.00 - - - -

SUSCWC 0.29 - 23 0.10 - - - - - - - - - - -

SUSCWHF - - 11 0.50 - - - - - - - - - - -

SUSCWP 0.06 220.5 7 0.27 240.0 13 - - - - - - - - -

SUSSCR 0.08 244.5 22 - 295.5 34 - - - - - - - -

SUSACF 0.14 47.0 32 0.37 62.5 28 - - - - - - 0.24 66.0 -

SUSAP 0.26 67.0 42 - - 10 - - - - - - 0.04 78.0 -

SUSCCTA 0.34 269.5 118 - 297.5 132 1.00 299.5 3 - - - - - -

SUSCS 0.06 257.0 14 0.90 267.5 34 0.18 254.5 21 - - - - - -

Each project has data on defects per page found in inspections, the complexity of
each module, and number of defects found in unit test for each block.

Hypothesis 2, uses the data presented above, and checks whether there exist a
correlation between defects found during inspection/test and complexity for a
module.

The regression equation used to state this hypothesis can be written as:

Y = αX + β, where Y is defect density, X is the complexity and α, and β are
constants.

281

H0 can only be accepted if α and β are significantly different from zero and the
significance level for each of the coefficients is better than 0.10.

The following values was estimated: Y = 0.1023*X + 13.595.

Table 10 shows the estimated values:

Table 10. Estimated values, Study 2

Predictor Estimate Standard error t p

β 13.595002 18.52051 0.73 0.4729
α 0.1022985 0.093689 1.09 0.2901

It indicates that the linear regression line must be rejected if a significance of
level 0.10 is assumed, i.e. H0 must therefore be rejected.

However, Ericsson reports that the best people often are allocated to develop
difficult modules and more attention is generally devoted to complex software.
This may explain why no significant correlation was found. Mores studies are
anyhow needed here.

 6.7 H3: Correlation between defects rates across
phases and deliveries for individual

documents/modules

This hypothesis, from Study 2, uses the same data as for hypothesis 2. To check
for correlation between defect densities across phases and deliveries, we have
analyzed the correlation between defect densities for modules over two projects.
Because the lack of data in this analysis, only Project A and Project B where
used (see table 9).

Table 11 shows the correlation results

282

Table 11. Correlation between defect density in Project A and B, Study 2.

Variable Defect density –

Project A

Defect density -

Project B

Defect density –

Project A

1.0000 0.4672

Defect density –

Project B

0.4672 1.0000

With a correlation coefficient of 0.4672, we can not conclude that there exists a
correlation between the two data set. We had only 6 modules with complete data
for both projects for this test. The test should be done again, when a larger data
set are available.

7. Conclusion

After analysis of the data, the following can be concluded for Ericsson, Oslo:

q Software inspections are indeed cost-effective:

They find 70% of the recorded defects,

cost 10% of the development time, and yield

an estimated saving of 20%.

I.e., finding and correcting defects before testing pays off, also here.

q 8% of the defects from inspections are found during the final meeting, 92%
during the individual preparations. The same distribution of defects (Major,
Super Major) are found in both cases. However, Gilb’s insistency on finding
many serious defects in the final inspection meeting is hardly true.

q The recommended inspection rates are not really followed: only 2/3 of the
recommended time is being used.

283

q Individual inspections (preparations) and individual desk reviews are the
most cost-effective techniques to detect defects, while system tests are the
least effective.

q The final inspection meeting is not cost-effective, compared to individual
inspections, in finding defects.

q The identified defects in a module do not depend on the module’s
complexity (number of states) or its modification rate, neither during
inspections nor during testing.

q However, the defect density for one concrete system (Study 1) in field use
correlated positively with its complexity and modification rate.

q We had insufficient data to clarify whether defect-prone modules from
inspections continued to have higher defect densities over later test phases
and over later deliveries.

q The collected, defect data has only been partly analyzed by Ericsson itself,
so there is a huge potential for further analysis.

q The defect classification (Major and Super Major) is too coarse for causal
analysis in order to reduce or prevent future defects, i.e. a process change, as
recommended by Gilb. We also lack more precise data from Function test,
System test and Field use.

It is somewhat unclear what these findings will mean for process improvement at
Ericsson.

At least they show that their inspections are cost-effective, although they could
be tuned wrt. recommended number of inspected pages per hour.

On the other hand, a more fine-grained data seem necessary for further analysis,
e.g. for Root-Cause-Analysis (recommended by Gilb). Such defect
classsification seems very cheap to implement at defect recording time, but is
almost impossible to add later. However, Ericsson seems rather uninterested to
pursue such changes, e.g. since “approval from headquarters” is necessary to
modify the current inspection process.

284

Inspired by these findings, NTNU is anyhow interested to continue its
cooperation with Ericsson on defect studies in the context of the SPIQ project.
Their defect database seems underused, so these studies may encourage a more
active utilization of collected data.

References

[Adams84]) Edward Adams:
 "Optimizing Preventive Service of Software Products",
 IBM Journal of Research and Development, (1):2--14, 1984.

[Basili96] Victor R. Basili, Scott Green, Oliver Laitenberger,
 Filippo Lanubile, Forrest Shull, Sivert Sørumgård, and Marvin V. Zelkovitz:
 "The Empirical Investigation of Perspective-Based Reading",
 39 p., Empirical Software Engineering, 1996.

[Fagan76] Michael E. Fagan:
 "Design and Code Inspection to Reduce Errors in Program Development",
 IBM Systems J. Vol 15, No. 3, 1976.

[Fagan86] Michael E. Fagan:
 "Advances in Software Inspections",
 IEEE Trans. on Software Engineering, SE-12(7):744--751, July 1986.

[Gilb93] Tom Gilb and Dorothy Graham:
 "Software Inspections",
 Addison-Wesley, London, UK, 1993.

[Marjara97] Amarjit Singh Marjara:
 "An Empirical Study of Inspection and Testing Data",
 Technical report, NTNU, Trondheim, Norway, 22 Dec. 1997.

[Skåtevik99] Børge Skåtevik:
 "An Empirical Study of Historical Inspection and Testing Data at Ericsson” (forthcoming),
 Technical report, NTNU, Trondheim, Norway, 8 Feb. 1999.
 ca. 150 p., EPOS TR 3xx (diploma thesis).

[Votta93] Lawrence G. Votta:
 "Does Every Inspection Need a Meeting?"
 In Proc. ACM SIGSOFT 93 Symposium on Foundation of Software
 Engineering. ACM Press, December 1993.

285

A Process-Oriented Approach to

Improving Software Product Quality

Richard E. Fairley
Professor and Director

Software Engineering Program
Oregon Graduate Institute
Beaverton, Oregon, USA

Abstract

Production of high quality software depends on early detection of defects and,
better yet, prevention of defects. A process-oriented approach for improving
defect detection and defect prevention by systematically collecting and analyzing
defect data is described in this paper. The processes described here can be
embedded in the various process models for software development; they are
compatible with development models such as incremental, evolutionary, spiral,
and Cleanroom. Because the processes described here are primarily those of
software developers, they can be used in conjunction with other quality-
enhancing processes such as quality assurance and independent verification and
validation.

1. Introduction

The processes used to accomplish the work activities of software engineering are
important factors in software productivity, project predictability, and the quality
of the work products produced by software engineers. Quality factors for
software vary widely depending on the application domain and the needs of
users. Safety is the most important quality factor in software-intensive systems

286

that involve risk to human life; for example, the on-board software of the NASA
Space Shuttle, the control system of a nuclear reactor, or a medical system.
Security is the most important quality attribute in financial transaction systems,
while reliability and availability may be most important for telecommunication
systems. Ease of learning and ease of use are important quality attributes for
systems involving human-computer interaction; however ease of learning and
ease of use will be regarded differently by people having different backgrounds
and skill levels.

Lack of a necessary or desired attribute in a software system or software product
is caused by defects (or faults) created in the work products generated during
initial development or subsequent modification of the system. Defects result
when something is left out, when something is done wrong, or when something
unnecessary is added to software. A product failure results when a defect is
encountered during operation of a system. Different types of defects result in
different types of failures. A system crash is the result of one or more defects in
the system, and "hard to use," as judged by the target population of a human-
computer system, is also the result of defects in the system. Defects are thus
those attributes of a system that cause departures from specified or desired
behavior.

Software defects are created when humans make mistakes of omission (leave
something out) and mistakes of commission (doing something wrong or
something extra). In software engineering, human mistakes are the result of
faulty communication and coordination processes, lack of sufficient time to do
the job correctly, lack of adequate skills and tools, poorly designed products that
are difficult to modify, and human fallibility. Some software defects are
inevitable because humans are not infallible, our skills and tools are not perfect,
our systems (especially legacy systems) are often overly complex, our schedules
are often unrealistic, and our processes of communication and coordination are
not perfect.

Production of high quality software depends on early detection of defects and,
better yet, prevention of defects. A method for improving defect detection and
defect prevention by systematically collecting and analyzing defect data is
described in this paper. The processes described here can be embedded in the
various process models for software development; they are compatible with

287

development models such as incremental, evolutionary, spiral, and Cleanroom
[1]. Because the processes described here are primarily those of software
developers, they can be used in conjunction with other quality-enhancing
processes such as quality assurance and independent verification and validation.

Section 2 of this paper describes the model. Techniques for defect analysis are
presented in Section 3, considerations for defect prevention are presented in
Section 4, and Section 5 presents issues related to measuring the cost of software
quality. Process enactment is discussed in Section 6 and the summary and
conclusions are in Section 7.

2. A Process for Recording Defects and Tracking
Rework

A model for recording software defects and tracking rework effort is presented
in Figure 1. The term "rework" means effort spent fixing defects (correcting
mistakes). As illustrated in Figure 1, a work product is the private property of
the author(s) until it passes some pre-determined acceptance criteria; it then
becomes public property of the work group. Mistakes discovered and corrected
in a private work product by the developer are not counted as defects. Defects
are counted and rework is tracked when mistakes are found in work products
during application of the acceptance criteria or after they pass their acceptance
criteria and become public work products.

private
work
product

acceptance
criteria

public
work
product

defect
detected

rework
action
item

rework

initiated

Figure 1. A Defect and Rework Tracking Model

288

A "work product" is any artifact generated or modified by one or more members
of a project team that becomes public property of the project. To become a
public work product, an artifact must be evaluated and accepted by two or more
team members. Examples of work products include (entire or partial)
operational concept documents, requirements specifications, project plans,
design documents, interface specifications, traceability matrices, test plans, test
procedures, code modules, configuration management reports, quality assurance
audits, and so forth. Examples of acceptance criteria for various types of work
products are provided in the Appendix to this paper. A universal acceptance
criterion applied to all work products is that the intended receivers of a work
product must agree that the work product is an acceptable input to their work
processes or that the work product is acceptable for delivery to customers and
users.

All work products have the potential to contain defects and are thus candidates
for acceptance and control as illustrated in Figure 1. A complete artifact may be
generated in several steps or stages, so that the work products cited in Figure 1
may be small units of output generated and evaluated on a frequent (perhaps
weekly) basis. A work product, large or small, is not accepted until the
associated quality criteria are satisfied. Upon acceptance, the electronic file
containing the work product is placed under version control and cannot be
subsequently changed without agreement to do so by the affected parties. Work
products controlled in this manner are said to be under baseline control.

A version control system that includes mechanisms and procedures for check-in,
check-out, and controlled updating of work products is an important element of
this model. Once checked in, a work product is checked out in response to a
change in the requirements or to fix a defect (i.e., to correct a mistake).
Satisfying the quality criteria for a work product does not guarantee that the
work product is defect-free but that the quality is thought to be acceptable, as
determined by the criteria applied. If, at some later time a defect is found in an
accepted work product, an action item is generated and rework is accomplished
to correct the defect. When the defect is corrected, the work product is checked
in to the version control system, a new version of the work product is generated,
and all affected parties are notified of the change. This process is illustrated in
Figure 2.

289

Figure 2. The Change Control Process

The format of a rework action item is presented in Table 1. Rework action items
are entered into a tracking system, progress is reviewed periodically (perhaps
weekly), and each action item is tracked to closure. An action item is closed
when the corrected work product passes its acceptance criteria and a new version
of the work product is checked into the version control system. The problem
resolution system is thus a closed-loop, as required by ISO/IEC Standard 12207
[2]. A status report of rework in progress, as illustrated in Table 2, is a
convenient way to periodically report the status of on-going action items; each
rework action item that is in progress has a corresponding entry in the status
report.

Table 1. Format of a Rework Action Item

1. Action Item Number and Name
2. Defect Category
3. Actions to be taken: planned & actual
4. Responsible party: planned & actual
5. Resources applied: planned & actual
6. Milestones and dates: planned & actual
7. Completion criteria: planned & actual
8. Completion date: planned & actual

Impact
Analysis

Software Problem
Report (SPR)

Project
CCB

Change
Accepted

Make
Change

Verify &
Validate

Change
Communicated

Baselines established using
objective acceptance criteria

Work
Product
Version N

Accept

- Defer
- Deny

DUPL

Work Product
Version N+1

Initial
Version

290

Table 2. Rework-in-Progress Report

Date: 1 August 199x

Item
Number

Rework Issue Scheduled
Completion

Estimated
Completion

3.1.2 Correct the interface between
the VS and EXEC modules

12 Aug 12 Aug

 4.2.3 Synchronize the IN2
interrupt and BUFFER
routine

5 Aug 10 Aug

2.2.5 Correct the SIZE routine in
the WBS data abstraction

7 Aug 4 Aug

5.1.6 Fix the CURSOR routine
exit sequence

3 Aug 5 Aug

3.1.5 Change the navigation
sequence of user screens

7 Jul TBD

3. Analysis of Defect Data

Patterns of defect creation and detection and the rework effort required to fix
defects can be captured using the process illustrated in Figure 1 and Table 1.
Defect data is compiled from completed rework action item reports (Table 1)
and presented using the formats of Tables 3 and 4. In Table 3, for example, the
percent of requirements defects detected during requirements work activities can
be calculated as: (RDr * 100) / RDt; the percent of design defects that escape
design work activities is: [1– (DDd / DDt)] * 100]; and the percent of total
defects detected by users is: (OSt * 100) / TOTAL.

291

Table 3. Defects by Category

Legend:

XdY: X is type of defect: R = Requirements; D = Design; C = Code; T = Test
 d is defect
 Y is type of work activity in which defect is detected; Y is one of

R = Requirements; D = Design; C = Coding; T = Testing; O = Operation
ΣXd: total defects of type X; X is one of R, D, C, or T
ΣdYa: total defects of all types found during work activities of type Y

Tables in the form of Table 4 are used to report the amount of rework effort
required to fix defects of various types at various stages of work. The percentage
distributions of values in Tables 3 and 4 may be different, which would indicate
that some types of defects require more rework effort than other types of defects.

The information contained in Tables 3 and 4 can provide guidance for defect
containment and defect prevention activities. As is well-known, it becomes more
expensive to fix a defect the longer the time between defect creation and defect
detection [4]. For example, early detection and correction of requirements
defects and design defects is desirable because of the "amplification effect"
whereby two requirements defects might result in five design defects and twenty
code defects if not detected at the requirements stage. From the pattern of rework
effort in Table 4, it might be observed that the most effective place to focus
defect containment activities is in the design activity. Defect containment
activities might include better documentation and more extensive inspection of
interfaces, prototyping of algorithms, more attention to traceability, and so forth.
Information concerning a corrected defect should be entered in Tables 3 and 4
before a rework action item is closed.

Rqmts Design Code Test Ops Totals

Rqmts

Design

Code

Test

Totals

RdR RdD RdC RdT RdO

DdD DdC DdT DdO

CdC CdT CdO

TdT TdO

ΣRd

ΣDd

ΣCd

ΣΤd

ΣdOaΣdRa ΣdDa ΣdCaA ΣdTa TOTAL

Work Activity:

Defect
Type:

292

Table 4. Rework by Category

Legend:
XrY: X is type of rework: R = Requirements; D = Design; C = Code; T = Test

 r is rework
 Y is type of work activity in which rework occurs; Y is one of

R = Requirements; D = Design; C = Coding; T = Testing; O = Operation
ΣXr: total rework of type X; X is one of R, D, C, or T
ΣrYa: total rework of all types during work activities of type Y

 4. Defect Prevention

It is better to prevent defects than to detect and correct them, for two reasons: 1)
to reduce rework, thereby increasing productivity and 2) to deliver higher quality
products to customers and users. In many organizations, the level of rework
exceeds 25% (and in some cases 50%) of all software engineering work
activities [3], [4]. In a well-known case study, reported in [3], Raytheon
Corporation reduced rework from 41% in 1988 to 11% in 1992. An investment
of $1.8M (U.S.) resulted in a savings of $15.8M (U.S.) during the four year
period (and the savings continue into the future). Better defect detection and
prevention results in higher quality products delivered to users because defect
containment prior to product release is never 100% effective. If we create 20
defects per thousand lines of code and our defect containment effectiveness is
90%, we will release 2 defects per thousand lines of code to the users. If we
create 2 defects per thousand lines of code and our defect containment
effectiveness is 99%, we will release 0.02 defects per thousand lines of code.
The former example is typical of many organizations; the latter is typical of
safety-critical systems such as the Space Shuttle on-board software [5].

Rqmts Design Code Test Ops Totals

Rqmt
s

Design

Code

Test

Totals

RrR RrD RrC RrT RrO

DrD DrC DrT DrO

CrC CrT CrO

TrT TrO

ΣRr

ΣDr

ΣCr

ΣΤr

ΣrOaΣrRa ΣrDa ΣrCa ΣrTa TOTAL

Work Activity:

Defect
Type:

293

Each rework report, as illustrated in Table 1, categorizes the type of defect
corrected. For example, a requirements defect might be categorized as being
incomplete, incorrect, inconsistent, or ambiguous; while a code defect might be
categorized as an interface, logic, computation, data definition, or data usage
defect. Periodic review of rework action-items is accomplished in causal analysis
meetings [6]. Causal analysis will often reveal common, underlying reasons for
similar defects. If, for example, a large number of interface defects are found in
the design documentation, steps must be taken to improve the quality of the
interface specifications. Corrective actions to be taken might include changing
the notation used to document interfaces, improving the development
infrastructure (hardware platform, software environment, physical facilities),
acquiring new software tools, modifying development methods and procedures,
and/or training of personnel.

5. Measuring the Cost of Quality

In many organizations, the level of rework associated with defect detection and
correction is a major source of inefficiency (non-productive use of time and
effort) and ineffectiveness (failure to achieve the desired result). In these
organizations, improvement in early detection and prevention of defects more
than pays for the investment required - as in the Raytheon case - by reducing
rework and thus improving the efficiency and effectiveness of the software
development process. In a 1995 report, an SEI study of process improvement
efforts among 13 organizations reported an average return on investment of 5 to
1, with a range between 5 to 1 and 10 to 1 [7]. These efforts have clearly
returned more than invested to improve quality and productivity.

On the other hand, safety critical systems such as the NASA Space Shuttle’s on-
board software, have quality requirements so stringent that defect detection and
prevention activities, albeit very efficient, are so extensive that they increase the
time, effort, and cost of software development and modification. There is thus
the extreme of insufficient quality, which increases the time, effort, and cost for
rework and the extreme of extraordinary quality, which increases the time,
effort, and cost required to achieve the necessary level of quality.

294

This "bathtub" relationship is illustrated in Figure 3.

As portrayed in Figure 3, delivered defect densities greater than "Y" provide
opportunities for cost savings by investing in quality improvement (rework
reduction). Achieving defect densities less than "X" requires increased effort to
achieve the desired level of quality. It is apparent that every software
development organization that experiences defect levels greater than "Y" should
invest in improvements to their defect detection and defect prevention processes.
Experience shows that these activities will result in cost savings, schedule
reduction, and quality improvement (see [3]-[7]). Each development
organization and user community must decide whether defect levels less than
"X" justify the increased cost of quality associated with those defect levels.

In many organizations, we have observed values of "X" and "Y" in the range of
X = 0.1 and Y = 1 delivered defects per thousand lines of code, where delivered
defect density is measured as defects per thousand lines of code reported by
users during the first year of using the software. The data needed to determine
appropriate values of X and Y for a software development organization can be
obtained using the processes described in this paper.

Defect
Level

Total
Effort

X Y

Figure 3. Defect Level and Total Effort

295

6. Process Enactment

Enactment of the quality improvement process described here requires that
several roles be played in a software organization. These roles include those to
determine acceptance criteria for various types of work products; those to
generate work products; those to accomplish rework to fix work products; those
to apply the acceptance criteria; those to enact version control; those to collect,
validate, record, and analyze defect levels and rework activities; those to
recommend process improvements; and those to implement process
improvements.

Depending on the size and complexity of software activities within an
organizational unit, one person may play several roles, either concurrently or
serially, or one role may require several people for enactment. Titles assigned to
quality-process roles may include work product generator, work product
acceptor, version controller, work product reworker, data
collector/validator/recorder, rework analyzer, and process improver. Tasks that
must be accomplished to enact quality processes include development of
acceptance criteria for the various types of work products, and development of
acceptance mechanisms (such as peer reviews, analysis, testing, and
demonstration of work products); in addition, version control mechanisms and
procedures must be developed if they do not exist.

A typical organizational structure for software projects that adopt this model is
illustrated in Figure 4. As illustrated there, large projects are organized around
small teams. Each small team has a team leader and 3 to 5 team members.
Requirements for component features, interfaces, performance, memory usage,
and so forth are allocated to each small team. The product structure is thus
embedded in the structure of the project team that develops the product [8].
Each work product developed by each small team is subject to pre-determined
acceptance criteria (see the Appendix). The team leader of each small team is
responsible for ensuring that all work products generated by the team satisfy the
appropriate acceptance criteria. Keeping teams small makes it possible for the
team leader to serve as the first agent of quality control of work products. The
software architect for the project works with the team leaders to ensure that

296

decisions affecting multiple components and the interfaces among components
preserve the quality criteria for the software product.

and so forth are allocated to each small team.

7. Summary and Conclusions

Software defects are the result of mistakes made by individuals and teams of
individuals engaged in intellectual work activities that require close
coordination. People make mistakes because of failures in communication and
coordination; because of insufficient time to accomplish the work; because of
inadequate methods, tools, training, and experience; because of difficult-to-
modify legacy systems, and because people are human and subject to human
fallibility. The purpose of process improvement is to reduce the chance that
people will make mistakes, thereby improving software quality, reducing
software cost, and delivering software in less time within more predictable
schedules and budgets.

We cannot expect to produce defect-free software, but we can reduce the
opportunities to make mistakes by improving our work processes. This involves
learning from our mistakes, improving communication and coordination, and
applying appropriate methods and tools in a work environment where work-
related stress is reduced, thus reducing mistakes caused by human fallibility.

Rework (non-productive work) must be expended to correct detected defects.
Rework can be reduced by early detection of defects and by revising the work

Figure 4. Structure of a Software Project

Team
Leader #1

Project Manager

Team
Leader#2

Team
Leader #3

IV&V CM

Member Member Member Member

Chief Architect

QA

297

processes that result in defect creation. This paper has presented a systematic
process to reduce rework in several ways:

1. Predetermined acceptance criteria are applied to each work product. Work
products are generated in small increments, as illustrated in Figure 1, thus
controlling the number of defects that escape initial development or
modification of a work product.

2. Accepted work products are placed under version control, thus protecting
them from uncontrolled change and providing a defect tracking and
notification-of-change mechanism.

3. A rework action item is opened when a defect is detected in an accepted
work product, thus providing a mechanism to track rework effort.

4. Rework action items are tracked to closure, thus ensuring that rework is
completed in a closed-loop problem resolution system.

5. A corrected work product is not accepted until it satisfies the associated
acceptance criteria and a rework action-item report is completed, thus
ensuring that the defect has been fixed and that sufficient information has
been recorded to allow causal analysis of defects.

6. When a corrected work product is accepted, a new version number is
generated and all affected parties are notified of the change, thus ensuring
sufficient communication among team members and coordination of related
work activities.

7. Trends in defect creation, detection, and correction are identified using the
information in Tables 1-4, thus providing indicators of candidate areas for
process improvement.

8. Causal analysis meetings are held periodically (perhaps monthly) to
determine the underlying causes of similar defects and to recommend
process improvement initiatives that should be undertaken.

9. Process improvement initiatives are planned, monitored, and tracked to
closure as process improvement action items.

10. The quality measurement system is used to measure and evaluate the results
of process improvement initiatives, thus providing a closed loop quality
improvement system.

298

Quality improvement is a never-ending task. There will always be more
efficient ways and more effective ways to accomplish the complex tasks of
developing and modifying software artifacts - the intellectual work products
generated by teams of individuals engaged in work activities that must be closely
coordinated. The processes described in this paper provide some mechanisms
that can be used to improve software product quality.

References

[1] S.L. Pfleeger, Software Engineering Theory and Practice, Prentice Hall,
1998.

[2] ISO/IEC12207-1-1994, Software lifecycle processes.

 [3] R. Dion, "Process improvement and the corporate balance sheet," IEEE
Software, vol. 10, no. 4, July, 1993.

[4] B.W. Boehm and C. Papaccio, "Understanding and controlling software
costs," IEEE Trans. On Software Engineering, vol. 14, no. 10, Oct. 1988.

[5] C. Billings et al, "Journey to a mature software process," IBM Systems
Journal, vol. 33, no. 1, 1994.

[6] R. Mays et al, "Experiences with defect prevention," IBM Systems Journal,
vol. 29, 1990.

[7] J. Herbsleb et al, Benefits of CMM-Based Software Process Improvement:
Initial Results, SEI-CMU-94-TR-13, Software Engineering Institute,
Pittsburgh, USA

[8] M.E. Conway, "How Do Committees Invent?," Datamation, April, 1968.

299

Appendix

SOME ACCEPTANCE CRITERIA FOR SOFTWARE WORK
PRODUCTS

• Requirements
- traced to user needs/scenarios/use cases
- inspected by peers
 -validation tests / test scenarios generated
- signed-off by customer

• Design Documentation
- traced to requirements
- inspected by peers
- interfaces verified
- exception handling adequate
- sizing and timing analyzed
-associated integration tests generated
- signed-off by Chief Architect

• Source Code Modules
- traced to requirements and design
- inspected by peers
-unit tested
- signed-off by team leader
- interfaces inspected
- traced to executed integration tests
-performance verified
- signed-off by Configuration Manager

• Integrated Software Subsystem
-interfaces inspected
- traced to executed integration tests
-performance verified
- signed-off by Configuration Manager

• Integrated System (hardware/software)
- traced to executed system tests
-hardware interfaces exercised
-performance verified
- exception handling verified
- sign-off by system engineering or independent
testing

• Documentation
- inspected by peers
-validated by independent parties
- signed-off by independent evaluation group
(Documentation includes: end-user

documentation,
principles of operation, as-built design

specifications,
maintenance guides)

300

Quality first

Measuring a safety-critical embedded software
development process

E. Kesseler

National Aerospace Laboratory NLR

kesseler@nlr.nl

Amsterdam, Netherlands

Abstract

Software which is embedded in aircraft to which people entrust their lifes becomes safety-

critical and consequently must be of the highest quality. Failures of such software must be

virtually non-existent. Due to the high costs of aircraft, hypothetical software failures would

also incur major financial losses. To guarantee that the safety of aircraft is an uncompromisable

requirement, an independent government agency certifies aircraft as fit-for-use.

The experience with a software development process model accommodating both safety-critical

requirements as well as commercial requirements is described. The findings are based on

process and product metrics. The first two versions of the software product have successfully

passed the certification and are currently being flown in numerous aircraft. In fact the software

product is so successful that it will be adapted to other aircraft models.

Measuring the requirements evolution contributed to the change from a waterfall based

software development process to a spiral software development process. Design stability is

refelected in the module evolution but needs to be complemented by other information.

Requirements evolution and its implementation status combined with design stability help in

the trade-off between additional deliveries, their functions and their release dates.

301

1. Introduction

Software which is embedded in aircraft to which people entrust their lifes becomes safety-

critical and consequently must be of the highest standards. Failures of such software must be so

rare as virtually non-existing during the life time of all aircraft concerned. Due to the high costs

of aircraft, hypothetical software failures would also incur major financial losses, a further drive

to require the highest quality. It is clear that in aircraft safety is an uncompromisable

requirement.

To guarantee the safety of aircraft, an independent government agency certifies aircraft as fit-

for-use. Only after this certification the aircraft may be used commercially. To guarantee a

 world-wide equal level of safety, software airworthiness requirements are stated in one

document, [DO-178B]. This document contains information for both the certification

authorities and the developers.

A software development process based on the waterfall model is a well-proven way to produce

safety-critical software. [DEKK, KESS] provides an example where an ESA-PSS05 compliant

process is used. For complex technical systems like aircraft, the commercially determined

time-to-market mandates co-development of the various subsystems. Co-development will

inevitably result in requirements evolution. Even more so if complicated Human Machine

Interfaces are involved. The waterfall model is not intended to cope with such requirements

evolution.

The experience with a DO-178B compliant software development process which

accommodates a commercial time-to-market is described. The findings are based on process

and product metrics. The first two product versions have successfully passed the certification

and are currently being flown in numerous aircraft. In fact the software product is so

successful that it will be adapted to other aircraft models.

The sequel starts with a short description of the application. Subsequently some information

about the air transport safety requirements is provided, together with its influence on the

software development process to be applied. The experience gained during the production of

the embedded application is described, supported by metrics. The findings are summarised in

the conclusions.

302

2. Application description

To fly aircraft under all (adverse) conditions, pilots must fully rely on the data presented to

them, and on the correct and timely forwarding of their commands to the relevant aircraft

subsystems. The embedded avionics application discussed combines, controls, processes and

forwards the data between the subsystems and the flight deck. The flight deck may contain

conventional mechanical displays or a modern Electronic Flight Instrument System (EFIS) or

even a mix of these. The application generates all information for the flight deck as well as

processes all pilot inputs. This renders the application vulnerable to changes in the aircraft’s

Human Machine Interfaces.

The embedded application is designed to operate in both Visual Meteorological Conditions

(VMC) and Instrument Meteorological Conditions (IMC). In the former conditions, the pilot

can obtain part of the necessary flight information from visual cues from outside the cockpit.

These conditions limit the aircraft operations to good weather operations. The latter

conditions allow all-weather operations of the aircraft. Under these conditions the displays of

the flight deck are needed by the pilot to fly. This renders the correct functioning of the

displays safety-critical. A number of equipment items needs to be duplicated to achieve the

required low failure probability.

During normal operations the embedded application processes about 100 different flight

parameters, originating from 10 different sensors, some of which are duplicated. Two

processors are used in each of the duplicated hardware units. The delay times within the entire

embedded application should be guaranteed to be less then 30 milliseconds with a cycle time

of 25 milliseconds for the main processor. During the operational life of the embedded

application many extensions are expected, so 50% spare processor time shall be allowed for.

The I/O processor has a cycle time of 360 microseconds.

The influence of safety on the embedded application’s functions will be illustrated for data

input. Depending on the criticality of the flight parameter, the software validates it in up to four

complementary ways:

303

� coherency test: a check on correct length and parity of the data;

� reception test: a check on the timely arrival of the data;

� sensor discrepancy test: a comparison between the two data values produced by the two

independent redundant sensors; and

� module discrepancy test: a comparison between the two parameter values produced by the

same sensor; one value directly read by the system from the sensor, and one obtained from

the redundant system via a cross-talk bus.

[Kess, Slui] contains more information on the application.

 3. Air transport safety requirements

 3.1 Applicable software safety document

For safety-critical software in airborne equipment [DO-178B] has been developed. This

document provides guidance for both the software developers and the certification authorities.

 In civil aviation an independent governmental institution, the certification authority, performs

the ultimate system acceptance by certifying the entire aircraft. Only then the constituent

 software is airworthy and ready for commercial use. [DO-178B] provides a world-wide "level

playing field" for the competing industries as well as a world-wide protection of the air

traveller, which are important due to the international character of the industry. In NLR’s case

the certification authority concerned delegated some of its technical activities to a specialised

company.

Certifying the entire aircraft implies that when an aircraft operator wants an aircraft with

substantial modifications, the aircraft including its embedded software has to be re-certified.

 Substantial modifications are, for example, modifications which can not be accommodated by

changing the certified configuration files.

[DO-178B] was the first widely used document to address safety- critical software. Based on

amongst others the experience gained with this document, currently other more general purpose

standards are available, like [ISO/DIS 15026] and [IEC 61508]. [SAE ARP 4754] addresses the

304

certification considerations for highly-integrated or complex aircraft systems. [SAE ARP 4754]

is complementary to [DO-178B] and applicable hardware specific standards.

 3.2 Safety classification

Based on the impact of the system (i.e. aircraft) failure the software failure can contribute to,

the software is classified into 5 levels. The failure probability in flight hours (i.e. actual

operating hours) according to the Federal Aviation Requirements /Joint Aviation

 Requirements [FAR/JAR-25] has been added. [FAR/JAR-25] uses the general principle of an

inverse relationship between the probability of a failure condition and the degree of hazard

to the aircraft or its occupants. As [DO-178B] considers qualitative demonstration of software

compliance to such high reliability to be beyond the current software technology, the

[FAR/JAR-25] numbers are provided for information only.

Level A: Catastrophic failure

Failure conditions which would prevent continued safe flight and landing.

[FAR/JAR-25] extremely improbable, catastrophic failure < 1x10-9

These failure conditions are so unlikely that they are not anticipated to occur during the entire

life of all aircraft of one type.

Level B: Hazardous/Severe-Major failure

Failure conditions which would reduce the capability of the aircraft or the ability of the crew to

cope with adverse operating conditions to the extent that there would be:

� a large reduction in safety margins or functional capabilities;

� physical distress or higher workload such that the flight crew could not be relied on to

perform their tasks accurately or completely;

305

� adverse effect on occupants including serious or potentially fatal injuries to a small

number of those occupants.

[FAR/JAR-25] extremely remote, 1x10-9 < hazardous failure < 1x10-7

Level C: Major failure

Failure conditions which would reduce the capability of the aircraft or the ability of the crew to

cope with adverse operating conditions to the extent that there would be, for example,

� a significant reduction in safety margins or functional capabilities;

� a significant increase in crew workload or in conditions impairing crew efficiency, or

� discomfort to occupants, possibly including injuries.

[FAR/JAR-25] remote, 1x10-7 < major failure < 1x10-5

Level D: Minor failure

Failure conditions which would not significantly reduce aircraft safety and which would

involve crew actions that are well within their capabilities. Minor failure conditions may

include for example,

� a slight reduction in safety margins or functional capabilities;

� a slight increase in crew workload, such as, routine flight plan changes or some

inconvenience to occupants.

[FAR/JAR-25] probable, minor failure > 1x10-5

Level E: No Effect

Failure conditions which do not affect the operational capability of the aircraft or increase crew

workload.

306

 3.3 Software life cycle

[DO-178B] deliberately refrains from making statements about appropriate software life cycle

models. The life cycle is described rather abstract as a number of processes that are

categorised as follows:

� software planning process which entails the production of the following documents:

� plan for software aspects of certification. The main purpose of this document is to define

the compliance of the chosen software development process to [DO-178B] for the

certification authorities. This document contains many references to the project

documentation generated as part of the applied life cycle model;

� software development plan, which defines the chosen software life cycle and the

software development environment, including all tools used;

� software verification plan, which defines the means by which the verification objectives

will be met;

� software configuration management plan;

� software quality assurance plan.

� software development processes consisting of :

� software requirement process;

� software design process;

� software coding process;

� integration process.

� integral processes which are divided into :

307

� software verification process;

� software configuration management process;

� software quality assurance process;

� certification liaison process.

The integral processes are a result of the criticality of the software. Consequently the integral

processes are performed concurrently with the software development processes throughout the

entire software life cycle.

 3.4 Verification

In order to provide the developer with maximum flexibility, [DO-178B] allows the developer to

choose the software life cycle model. [DO-178B] enforces traceability to its general

requirements by verifying that the life cycle process provides all data it requires. Each

 constituent software development process has to be traceable, verifiable and consistent.

Transition criteria need to be defined by the developer to determine whether the next software

development process may be started. In case of iterative processes, like in the spiral model,

attention needs to be paid to the verification of process inputs which become available after the

subsequent process is started.

Verification is defined in [DO-178B] as "the evaluation of the results of a process to ensure

correctness and consistency with respect to the inputs and standards to that process".

Verification can be accomplished by review, analysis, test or any combination of these three

activities. Review provides a qualitative assessment of correctness.

Analysis is a detailed examination of a software component. It is a repeatable process that can

be supported by tools. Every tool needs to be verified against the Tool Operational

Requirements, the contents of which is prescribed in [DO-178B]. For software tools the same

documentation and configuration control procedures apply as for the airborne software. Every

software tool needs approval of the certification authority.

308

Testing is "the process of exercising a system or system components to verify that it satisfies

specified requirements and to detect errors". By definition the actual testing of deliverable

software forms only part of the verification of the coding and integration processes. For

software classified at [DO-178B] level A, a mandatory 100% code coverage applies. This code

coverage consists of :

� statement coverage (every statement executed, called statement testing in [BS7925-2]);

� decision coverage (every decision executed for pass and fail, called branch/decision testing

in [BS7925-2]), and

� the modified condition/ decision coverage (mc/dc, same name in [BS7925-2]). Mc/dc

requires that for every condition in a decision, its effect on the outcome of the decision is

demonstrated.

Code coverage will be shown at module level testing.

4. Software development process

The definition of the software development process has been guided by previous experience

with safety-critical software for spacecraft. More information on the spacecraft application is

provided in [Dekk, Kess].

The project team was set up consisting of 2 separate groups, a development group and a

verification group. The verification group was headed by a team member with sufficient

authority to report, at his own discretion, to the company management outside the project

hierarchy, in compliance with [DO-178B]. Furthermore the quality assurance manager was

independent from both teams and not allowed to produce deliverable code or tests. The quality

assurance manager needed his technical background in order to judge technical choices made.

The embedded application project started using :

� the DOD-STD-2167A life cycle model [DOD], which is based on the waterfall model ;

309

� customer supplied requirement specifications in plain English ;

� formal reviews after each life cycle phase;

� software analysis using Structured Analysis with Hatley and Pirbhai Real Time extensions

(SA/RT) [Hatl, Pirb] supported by a Computer Aided Software Engineering (CASE) tool;

� software design using Yourdon Structured Design (SD) supported by the same CASE tool;

� the customer prescribed C language;

� NLR’s proprietary C coding standard, with project specific enhancements and enforced by

a static analysis tool;

� execution of module tests and integration tests on the target system;

� an automated test tool to aid the construction and cost effective repetition of the functional

tests and code coverage tests;

� a proprietary configuration management tool;

� module and integration testing on the target with a simulated environment;

� integration with the aircraft avionics suite after integration of the embedded application.

5. Experience

5.1 DO-178B experience

Modern aircraft contain huge amounts of software, supplied by numerous independent suppliers

world-wide. Even a single aircraft contains software of many different suppliers. According to

the US National Transport Safety Board (NTSB), [DO-178B] works well as up to now no

310

catastrophic failure (i.e. fatalities or hull losses) can be directly attributed to a software failure

[IEEE]. An independent software engineering experiment using a [DO-178B] compliant

software development process by NASA confirms that no errors were identified in the

developed software [Hayh]. [DO-178B] contains sufficient information for first time users to

implement a compliant software process.

 5.2 Software classification

In the embedded application, software classified at levels A, B and E has been realised.

Partitioning software is produced to allow software of various level to run on the same

processor. At the end of the project 81% of the modules are classified at level A, 8% at level B

and 11% at level E. The increasing number of data fusion requirements lead to a larger share of

level A software at the expense of level B software. With the small amount of level B modules

remaining it is unclear whether the advantages of less rigorous testing of level B software

outweigh the more complicated software development process.

When software classified at different levels has to run on the same processor, special

partitioning software guarantees that software of one level can under no circumstance

compromise the functioning of software at other levels. This partitioning software consumed

only 1% of the total project effort. Even if all level B software would be developed as level A

software, the partitioning software remains necessary and cost effective for separation of level

A and level E (mainly maintenance) software.

 5.3 C language

The C programming language contains numerous constructs that are unspecified, undefined or

left to be defined by the compiler supplier [Hatt]. The C programming language is considered a

project risk. This risk was reduced by choosing an ISO C-90 (also known as ANSI-C)

compliant compiler complemented by a project coding standard defining, amongst others, a safe

subset of C. Compliance to this project coding standard can be verified automatically by

customising a commercial tool. The tool verification required by [DO-178B] revealed that the

version management by the tool supplier turned out to be inadequate. The tool was already

311

marketed world-wide since 1986 to hundreds of customers. This illustrates the rigour of the

applied verification processes.

 5.4 Requirements evolution

Due to the commercially defined short time-to-market, the customer defined the system

requirements concurrently with the software requirement process. Before the start of the

software design process the resulting analysis was subjected to a number of informal detailed

technical assessments, performing the formal requirements verification activities with the

exception of the certification authority involvement.

To aid the integration of the embedded application with the displays, co-developed by the

customer, and subsequently with the avionics suite of the aircraft, a first version of the software

with limited functionality was delivered before completion of the software requirements and

software design processes. The first version served its purpose well. A lot of feed-back was

obtained, resulting in many changes to and clarifications of the system requirements. Figure 1

depicts the resulting requirements evolution from the project start. Every point indicates a

 formal delivery of a working prototype or system to the customer. Figure 1 is cumulative: the

number of partially implemented requirements is added to the the number of fully implemented

requirements. Superimposed is the number of requirement changes for each delivery. The

status of a requirement in a delivery can be:

� fully implemented;

� partially implemented i.e. the delivery only partially complies with the requirement and

additional work is needed arrive at full compliance;

� not implemented, i.e. no part of the requirements is included in the delivery.

312

Fig. 1 Evolution of requirements and their implementation status.

The increase in the number of requirements and the reduction in the number of implemented

requirements after 300 and 520 working days are caused by new issues of the requirements

document.

The changes are caused by (in descending order):

� changes in the Human Machine Interfaces (HMI) of the aircraft. These changes originate

from pilot comments and can only be obtained from demonstrating a working prototype in

a realistic environment. Co-development of the displays and the embedded application

helps to reduce the amount of changes on system level;

� adding product features. Apart from marketing input, these changes also result from

experience with an actual prototype;

� integration of the embedded application with the displays and the aircraft subsystems.

Formal methods to specify these interfaces might have helped to reduce this class of

changes;

313

� ambiguities in the plain English specifications. Especially for HMI related features an

unambiguous specification method which is intelligible for pilots, HMI experts and

computer software experts is needed.

The requirements evolution combined with the need for intermediate versions resulted in a

change from the waterfall model to the spiral model. For the non-certified versions the formal

reviews were replaced by technical reviews with the same contents but without the external

attendants. The multiple deliveries implied frequent integration with the avionics suite at the

customer’s site. This resulted in the combination of our team with the customer’s display team

on one site. Of the 15 deliveries only the ones at 655 and 779 calendar days have been

certified. Note that the non-certified versions are not be used in flying aircraft.

 5.5 Design evolution

Figure 2 shows the evolution of the number of modules (files containing C code) and external

functions over time.

Fig. 2 Module evolution.

314

Up until the first certified version the number of modules increased only slightly, indicating that

all changes could be accommodated in the original design. Due to different verification

requirements, software of different levels was split into different modules for certified

versions. The sharp rise in the number of commonly developed modules just before the first

certified version is caused by this splitting. Evolving data fusion requirements influenced the

safety classification of some functions. Some simplifications of a communication protocol for

 the second certified version resulted in a minor reduction in the number of modules.

The number of external functions rose approximately continuously until the first certified

version, in accordance with the number of implemented requirements. The number of

functions remained virtually constant for the second certified version. This indicates that the

design remained relatively stable, most requirement changes could be accommodated in the

existing modules.

On average there are 5 functions per module. On average each file has been submitted to

configuration control 13 times. These changes are concentrated in one configuration item, the

second configuration item became stable after the version of day 536. The remaining 2

 configuration items remained unchanged after the version of day 438.

These results support the view that also in an environment with significant requirement

evolution a sufficiently mature design is needed before starting the coding process. The design

team leader ensured that the design remained uncompromised during the entire realisation

period.

 5. 6 Code size evolution

The code size evolution is shown in figure 3. Its continuous increase until the first certified

version corresponds with the continuous increase in the number of implemented requirements.

The subsequent slight reduction mirrors some requirements simplification.

315

Fig. 3 Code size evolution

The CASE tool used only allows to progress once from analysis to design and once from design

to code. It does not provide adequate support to incorporate analysis or design updates into the

next phases. The amount of effort needed for data input even makes updating the analysis or

design model cumbersome. After day 500 it was decided to retain the analysis model but limit

its depth in order to allow for its updating.

The design model was abandoned as the CASE tool data input effort became unaffordable with

the requirements evolution. Instead pseudo code was added to the code. The pseudo code

contains an abstract description of the code in about 27% of its size. Also all interface definition

information was added in extensive headers per function. This extra information explains the

considerable increase in the amount of comment before the first certified version. The comment

has a size of about 175% of the executable code.

On average each line of executable code has been modified 13.4 times, each comment line only

4.1 times. Changing the design information from the CASE tool to comment resulted in

considerable manhour savings, at the expense of a transition period with a less intelligible

design. The design team leader and the verification team leader had sufficient knowledge to

316

answer any question on the spot. With a maximum team size of 16 people located on one site

this turned out to be a workable solution. The changes break down in about 60% changed lines,

15% deleted lines and 25% added lines. As the product grew in size over time more lines were

added then deleted.

 5.7 Code breakdown

Fig. 4 Evolution of statement type distribution.

For testing purposes a division of statements is made into :

� decisions and loops (consisting of the "switch", "if", "for" and "while" statements);

� assignments;

� data e.g. tables.

317

The results are shown in figure 4. All statement types increase approximately continuously

until the first certified version, with a slight decrease up till the second certified version. The

system design was already based on maximum configuration possibilities using data files.

Adapting the software behaviour to specific aircraft configurations by configuration files has

the advantage of obviating re-certification. The real-time constraints caused some run-time

optimised solutions. Experience with the various prototypes lead to more sophisticated

solutions which comply with both the real-time requirements as well as with the requirements

evolution. In the second certified version for each executable statement there is 1.48 lines of

data. The statement type distribution refelects the design based on maximum use of data for

configuring the software behaviour. The run-time optimisations are not reflected in a change of

the statement type distribution.

 5.8 Verification

Each testable requirement is identified to allow traceability from requirements through all

development phases to verification. Every [DO-178B] compliant development phase contained

full traceability of each requirement, by including the requirement identification. This has

greatly helped the management of the virtually continuous requirement evolution. A lesson

learned is to allocate a separate identification to each verifiable part of a requirement. [Hayh

1998] reached this conclusion independently.

A standard applies for the software requirement process. It’s application has to be verified.

Some simple tools can be produced to cost-effectively reduce the analysis effort. The same

holds for the design standard.

For module tests the use of a Commercial-Of-The-Shelf (COTS) test tool greatly reduced the

time needed to prepare the tests and to perform the regressions tests for each delivery. The

actual test code is generated from Test Case Definition (TCD) files. On average each safety-

critical function (i.e. [DO-178B] level A+B) is called 3.8 times during the verification tests.

The non-comment part of the test case definition files equals 2.9 times the non-comment size of

the code. The test comment grew to about 70% of the executable test case size implying that

tool-assisted module testing still consumes a significant mount of effort. Due to the size of the

318

test case definition files, comment is needed to document their function, to aid traceability, to

improve readability, etc.

[DO-178B] requires data to be verified by inspection, only decisions and assignments can be

verified by testing. For each testable statement 20 checks have been performed. For global data

the test tool automatically checks that no global data is inadvertently changed, causing the large

amount of checks per testable statement.

Integration testing was based on the white box approach. It comprised the correct functioning

of combinations of functions. Integration tests also verified 19% of the requirements. These

requirements could not be verified by black box testing only. Examples of the latter are

spare processor time and spare memory requirements. During integration 184 tests have been

performed. The COTS test tool did not support the multiple-module integration testing.

During validation testing the requirements are verified using a black box approach. Several

requirements can be verified in one test. The 132 tests verified 90% of the requirements.

Analysis was used to verify 12% of the requirements. Note that some requirements can only be

verified by a combination of analysis, validation testing and integration testing. Consequently

the 3 percentages add up to more then 100%.

6. Conclusions

[DO-178B] compliant software processes have proven adequate for safety-critical software

development.

Measuring the requirements evolution (refer figure 1) combined with the co-development need

for intermediate versions resulted in the change from a waterfall software development process

to a spiral software development process.

For a certifiable, safety-critical product with a commercially determined time-to-market co-

development is a solution. The various prototypes, with increasing number of implemented

requirements (refer figure 1), provided by a spiral software development process support this.

319

A sufficiently mature design is needed before starting the coding process for the first prototype.

The design team leader has to ensure that the subsequent software modifications do not

compromise the design. The module evolution (refer figure 2) needs to be complemented by

other information to assess the design stability.

Metrics help in analysing and controlling the software processes. For example the evolution of

requirements with their implementation status (refer figure 1) and the module evolution (refer

figure 2), help in the trade-off between the date of the next delivery and its functions.

The CASE tool used did not adequately support design updates rendering it incompatible with

the spiral model. Detailed design and interfaces can be included as comment in the code, to be

automatically retrieved for the required documentation. The added source code (refer figure 3)

turned out to be acceptable.

The statement type distribution (refer figure 4) refelects the maximum use of data to configure

the software for each specific aircraft.

C combined with an appropriate coding standard and an automated analysis tool can be used for

safety-critical certifiable software.

For some analysis tasks simple tools can be produced which cost-effectively reduce the analysis

effort. The COTS test tool significantly reduced the testing effort.

References

[BS7925-2] British Standard software testing part 2: software components testing (august

1998)

[Dekk, Kess] Product Assurance For The Development Of The SAX AOCS Application

Software, G.J. Dekker, E. Kesseler (1996) ESA SP-377, NLR TP-96167

320

[DO-178B] DO-178B, Software Considerations in Airborne Systems and Equipment

Certification, (December 1992)

[DOD] DOD-STD-2167A Military Standard Defense System Software Development (1988)

[FAR/JAR-25] Federal Aviation Requirements/Joint Aviation Requirements FAR/JAR-25

[Hatl, Pirb] Strategies for real-time system pecification, Hatley, D.J., Pirbhai, A. (1988) Dorset

House Publishing

[Hatt] Safer C, Hatton L., (1995) Mc Graw-Hill

[Hayh] Framework for small-scale experiments software engineering, K. J. Hayhurst

[IEC 61508] IEC 61508 Functional safety:safety related systems, 7 parts, (June 1995)

[IEEE, 1998] IEEE, Developing software for safety- critical systems, J.Besnard, M. DeWalt, J.

Voas, S. Keene (1998)

[ISO/DIS 15026] ISO/DIS 15026 Information technology - System and software integrity

levels (1996)

[Kess, Slui] Safety and commercial realities in an avionics application, E. Kesseler, E. van de

Sluis, Second World Congress on safety of transportation, NLR TP 97669 (1998)

[SAE ARP 4754] Society of Automotive Engineers Aerospace Recommended practise 4754,

Certification considerations for highly-integrated or complex aircraft systems, (November

1996)

321

SESSION 6:

Experience Packaging and Transfer

322

323

Systematic Experience Transfer
Three Case Studies From a Cognitive Point of

View

Eva Wieser(1) , Frank Houdek(1,2), Kurt Schneider(1)

{eva.wieser, frank.houdek, kurt.schneider}@daimlerchrysler.com

(1) DaimlerChrysler AG (2) University of Ulm
 Research and Technology Computer Science Department

 P.O. Box 23 60 Software Engineering Group

 D-89013 Ulm, Germany D-89069 Ulm, Germany

Abstract

Individuals learn from experience no matter what they do. But what is natural for an
individual is far less straightforward in groups or companies. There are some
suggestions in literature how this hurdle can be overcome: The experience factory is a
concept tailored for the software domain. In the tradition of this domain, however, the
concepts are generally activity- or organization-focused and only rarely address
cognitive issues.

At DaimlerChrysler, we were asked to establish experience transfer at the
organizational levels in three business units. In three case studies, we saw a recurring
pattern of cognitive tasks. While these tasks were carried out quite differently, there is
a core to each of them that should not be neglected.

1. Introduction

In general, reuse is seen as a key to increasing quality or decreasing time-to-market or
development costs [2, 21, 26]. The spectrum of reusable components can range from
some lines of code and software architectures to project control metrics and complete
development processes.

324

In particular, the idea of reusing own experience at the group or company level is
fascinating, as it helps us avoid making the same mistakes over and over again. This
kind of knowledge is related to the own environment, therefore adoption is less
complicated due to the same constraints. Reusing experience means relying on insights
rather than theoretical models or textbooks. In this context, we define experience as a
‘collection of witnessings and insights gained by a human from the witnessings with
respect to the world or to himself’ [19]. Strictly, this implies that not experience itself
(tuple of witnessing and insight) but experience knowledge (the insight) can be
transferred. For the sake of simplicity, we use the term ‘experience’ instead of
‘experience knowledge’.

Reusing experience in the own software engineering environment implies being able to
capture experience in one project and to transfer and use it in another one. Since this
activity usually exceeds the scope of the two projects, an additional organization is
required to take care of it.

This idea founds the core concept of the experience factory approach proposed by
Basili and co-workers [4]: Every time a new project (or activity) starts, processes,
control metrics, products, etc. are selected from a collection of already-finished
projects and tailored according to the new project’s demands. After the new project has
been finished, the gained experiences are added to the collection of experience (in the
experience base). In this approach, a strong emphasis is put on the idea of
measurement-based experience (e.g. error models, effort distribution models or quality
models).

But from a cognitive point of view, this model makes some assumptions which do not
necessarily hold true in practice: (1) all relevant experience can be collected, and (2)
there is real need for experience knowledge, i.e. there are people willing to reuse it.

In our work at DaimlerChrysler AG, we observed experience collection and reuse in
real projects where we learned to pay significant attention to the cognitive issues, i.e.
how to transfer experience from a human-oriented point of view. In this paper, we
analyze and reframe three projects as case studies for this cognitive task. By doing so,
we demonstrate how varied experience transfer is.

325

The most important findings of our observation can be summarized as follows:

� There is a great variety of methods for learning and experience transfer. The
measurement-based one is only one alternative among others.

� Experience transfer can happen by pull or push, i.e. it can be driven by concrete
demands or by offering the available elements. In the second case, continuous
encouragement and motivation is essential.

� At the beginning of a systematic experience transfer initiative, the role of external
knowledge can become important for the achievement of first improvements.

 1.1 Structure of this Paper

In Section 2, we shortly describe the organizational and cognitive frameworks used for
experience transfer, the experience factory paradigm, and the cognitive experience
transfer cycle. Section 3 presents our case studies on experience transfer. In Section 4,
we discuss our observations and give conclusions for future activities. A discussion of
our future steps (Section 6) end this paper.

2. Experience Transfer

Experience has always been seen as one of the assets of an organization. The software
business is often characterized as depending on rapidly changing technologies and a
high turnover in the workforce. Thus, an organization has to be able to learn from a
small number of examples within a short time. This constellation requires a systematic
approach to experience handling.

 2.1 Experience Factory Approach

With the advent of the learning organization, growing attention has been drawn to the
learning software organization [12, 17, 25]. The primary approach that was inspired by
software engineering (rather than business or economics, as in [6, 27]) is the so-called

326

experience factory (EF). The EF approach was first introduced by Basili at NASA-SEL
[3]. Despite the fact that it gained new attention as an instantiation of a learning
organization, the EF was initially a reply to the concept of a software factory [8]. Basili
claimed that the software as such should not be the focus for reuse in a factory, but
instead the experience behind the software.

From an activity-oriented point of view, the EF is basically a mechanism for the
institutionalization of feedback loops. In publications, the organizational view of an EF
is often emphasized [3, 4, 15] (see Figure 2). It shows a distinct EF unit facing several
project units and a strategic planning unit. Whereas this clear distinction indicates EF
independence of any project, arrows symbolize communication, interaction, and the
back and forth of information. In several cases, we have seen how important it is to
keep the balance between involvement and distance from project concerns [15].

The aspects of activity (what to do) and organization (where to do it) need to be taken
into account when one establishes and runs an EF. Furthermore, we argue that it is
essential to pay significantly more attention to the cognitive view of an EF (how to do
it from a human-oriented point of view). In this respect, our model provides an
additional dimension that we have found crucial in our EF projects. This dimension
helps us to better understand what is going on around an EF, and it helps prepare us for
aspects that could slip through the fingers in both organizational and activity views.

Strategic planning

Project 1

Project n

Project planning

Execution
Project
control
QA

Experience Engineering
 Formalizing
 Generalizing
 Tailoring

Project support
 Analysis
 Synthesis

Experi-
ence
Base

Project organization Experience factory

Figure 1: Experience Factory (EF)

327

In a sense, we are most interested in the interplay of project organization and the
experience factory organization when we recognize that this interaction is carried out
by humans with their own interests, barriers, and motivations: What are the cognitive
constraints on the arrows of Figure 2, and what needs to be done to keep experience
and information flowing? We have seen in the case studies that a good answer to this
question may be the most essential prerequisite for acquiring systematic learning from
experience.

 2.2 Cognitive Experience Transfer Cycle

We see the EF concept as a means to implementing systematic learning from
experiences. Learning, however, is always influenced by cognitive factors [10, 30]. It
takes place in a situational context that may dominate the importance of the contents to
be learned: Depending on the learner’s time pressure through work duties, for instance,
and motivation in general, learning may face stiff challenges. Independent of content
and the soundness of experience, poor motivation can be a reason for a stalled
experience transfer. And motivation is nurtured more by the way people feel about
information transfer than whether it is their task to carry it out or not. In other words,
how and where experiences and derived advice is presented and the details of what is
actually presented may be equally important. The same holds for eliciting experiences.
When we neglected the cognitive dimension, we often failed to either solicit or to reuse
experiences [15].

In order to cover the cognitive tasks, we adopted and adapted a model of
organizational learning in the workplace [12]. Its origin lies in the field of Computer
Supported Cooperative Work (CSCW). It has also been extended to bridge the gap
between collaborative working and learning [20]. We agree that systematic learning
shares several characteristics with group processes, so that the model can be applied
analogously.

Collection

Activation Storage

Reinfusion

Figure 2: Cognitive Experience Transfer Cycle

328

Four tasks are placed in a cycle (see Figure 3). They all describe how experience (or,
as in the original, design knowledge [12]) can flow from one place to another. All four
tasks are crucial, and a poor job in carrying out only one of them can stall all of the
other efforts, as well. This may seem obvious at the superficial level of task
interpretation. However, when we take a slightly closer look, challenges and pitfalls
become more interesting.

� Activating experience: This task deals with a problem that is known in the field
knowledge engineering [16, 24]: Even people who have expert knowledge of a
subject may be unable to convey their knowledge or experience. One typical
reason is that people do not know what kind of information others need or what
they consider to be experience. Another typical reason is that people often do not
even know what they know. Polanyi calls this tacit knowledge [23]. Unconscious
experiences of this kind need active help to become surfaced and voiced.

� Collecting experience: Depending on where and how experience is activated, there
are different opportunities to capture it as it surfaces. In the easiest case,
experience knowledge may be verbalized or written down by the person who has
the experience. In more complex cases, experiences may be activated in daily
work, but then there must be an easy way of capturing it [22, 25]. This requires
some means of storing it, means of communicating it to the EF, and the motivation
of the participating people to use both [29]. When activation of experience is
planned, the chance to be there when it happens is also improved.

� Processing and storing experience: Theoretically, storage is not an issue.
Everything from databases to the Internet is available to store data in. In practice,
however, storing becomes a problem of prioritization and decision. Not everything
can be stored electronically. Limited resources, and more especially limited
motivation, force any EF to develop a pragmatic and feasible concept of what and
how to document and store – completeness is inachievable [1].

� Making information relevant to the task at hand (reinfusion): This task is most
often neglected. We found that many people consider it to be merely a technical
problem of making results available. Nowadays, the Internet or Intranet seems to
be the solution. From a cognitive perspective, however, pure delivery of results is
far from sufficient [12]. Much more emphasis must be put on making this
information helpful or relevant. An experience or experience derivative is rarely
helpful in general. It only can be helpful for carrying out a certain task. Knowing
what task needs to be worked on is, therefore, a prerequisite to collecting and
processing gained results into something useful [17].

329

3. Case Studies

The case studies took place in real projects within Daimler-Chrysler. The topics which
were the focal point of experience transfer were (1) defect detection, i.e. experience
about the effectiveness of early defect detection techniques in the software lifecycle,
(2) project management, i.e. experience about project control and project tracking, and
(3) software contracts, i.e. experience about writing contracts for outsourcing software
development activities.

 3.1 Case Study ‘Defect Detection’

In this case study, we deal with measurement-based experience, which is most closely
related to experience transfer as intended by the experience factory approach. Unlike
the other two studies, the result of the activation-collection-storing activities are
abstract models rather than concrete advice for software development.

 3.1.1 Context

The observed project is concerned with the development of embedded software for
automotive systems. Software is developed in increments, where each increment can
be seen as a small project of its own.

Since these kinds of systems have to meet the highest quality demands, much effort is
spent on defect detection activities. In this environment, the mission of the experience
factory was to establish more efficient defect detection processes in order to reduce the
effort required for rework on errors recognized too late in the process chain.

This mission was broken down into the following rough steps: Introducing software
inspections for program code for all of the increments, assessing the quality of the
inspections, and reusing the findings on the efficiency of the inspection in order to
improve not just the inspection process but also the development process. To assess the
quality of the inspections, we measured the inspection data (i.e. effort, preparation
time, number of defects found, etc.) and the amount of errors found in field testing.

330

The experience factory implementation used here is, therefore, based on measurement
programs.

 3.1.2 Experience transfer

As is usual in measurement initiatives according to GQM (which was the selected
approach, see [5]), we carried out interviews with the project leader and various
developers in order to be able to identify those not so obvious facts to look for, such as
particular error classes. By establishing the measurement program, e.g. forms or
measurement processes, the people involved became more sensitive with respect to the
topic observed.

The data on the defined metrics was collected both during inspections (e.g. effort,
preparation time, number of defects) and in the later field-testing activities (e.g.
number of defects and related modules). This data was validated through discussions
with the developers involved and afterwards processed in charts and figures. Figure 4
depicts one of these charts. It shows the relationship between defect detection intensity
and preparation time. The numbers inside the graph denote the sizes of the documents
in terms of number of pages.13

0

50

100

150

200

250

0 20 40 60 80 100 120

Pages read per hour

D
ef

ec
ts

 d
et

ec
te

d
pe

r
pa

ge

3

6

5

8 10 17 3513 4123

Figure 3: Relationship between preparation time (pages read per hour)
and efficiency (defects found per page)

331

This figure illustrates that larger documents were read less intensively than smaller
ones and, therefore, fewer defects were detected in these documents. The main reason
for this was the enormous time pressure which made it impossible for the inspectors to
spend more time on their preparation.

Another finding which was gained by measuring testing activities is depicted in
Figure 4. This graph shows that more field-errors were reported in larger modules than
in smaller ones. A more detailed analysis (i.e. comparing inspection intensity and field-
errors for each module) confirmed this trend.

The experience gained in inspection intensity and its influence on field-errors was
reported to the project manager. On the basis of these findings, he decided to expend
one additional week of effort solely for inspection activities.

Further measurement will show whether the proposed hypothesis ‘more preparation
time will reduce the number of field-errors’ will hold or not.

13 The real numbers are re--scaled to protect company internal information.

Figure 5 Experience Factory (EF)

25%75%80%62%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

all modules large modules middle-sized
modules

small modules

Figure 4: Distribution of field-errors with respect to module size

332

 3.1.3 Cognitive perspective

As the underlying mechanism of experience collection used here (QIP [4]) is well
defined, the cognitive tasks were also performed in an orderly fashion. Activating,
collecting, and processing the experience correlated with goal identification, data
collection, and data analysis, respectively. But there is no one-to-one correspondence.
Goal and metric identification (primarily activation) has a great deal to do with
collection (e.g. deployment of abstraction sheets [9]) and storage (e.g. documentation
of the results of the interviews and discussions).

The outcome of this measurement-based experience collection was a quantitative
model rather than concrete advice upon a specific problem. This makes the reinfusion
step much harder since there is no task at hand for which the created experience
package is immediately relevant. It is the duty of the experience manager to advertise
the findings hoping that someone will be interested in them (in our case, this was the
project manager, who was willing to reuse the experience by modifying his process).
This makes the risk of ‘push’ obvious; the produced experience packages might not be
reused.

 3.2 Case Study ‘Project Management’

In this example of experience reuse, the knowledge of how to track projects was
transfered. It started with external knowledge infusion and was initiated by a ‘pull’
effect, a request for information. Later, ‘push’ actions dominated, as the detailed
tracking of projects must be carried out continuously and thoroughly.

 3.2.1 Context

The experience reused in this case is about how to plan and track projects so that the
current state of work is well recognized at any time, including any reasons for delays.
Process improvement activities served as the source of the experience gained. They
were carried out beforehand and were continued interweavingly. In the projects, highly

333

complex embedded real-time systems were developed that range from middle-sized to
large.

 3.2.2 Improvement activities

The results of an extensive characterization of the organization identified project
planning as a primary field for improvement. Methods of project planning in literature
were examined and tailored to the concrete needs. First results were a better planning
template and several metrics to track project progress and planned vs. unplanned
activities. For the data analysis, two procedures were written that allowed automatic
evaluation. Feedback on the measurement program lead to minor changes and
enhancements of the evaluation procedures.

 3.2.3 Creating experience packages

Processing the gathered information resulted in several experience packages describing
the best practice of project planning and tracking as well as effort estimation and
tracking. Their basic structure is depicted in Figure 5.

The packages (gray shaded boxes) were put into HTML pages following the Quality
Pattern structure [14], which, together, form a Quality Pattern System [18]. The white
boxes sketch attached, but not further processed documents.

 3.2.4 Experience transfer

examples
registration sheetexamples

examples
planning template

examples
evaluation procedures

measurement plans
project planning project tracking

effort trackingeffort estimation

prerequisite

pr
er

eq
ui

si
te

va
lid

atio
n

validation

pr
er

eq
ui

si
te

validation

Figure 5: Structure of experience package system

334

The experience packages were reused in another project for which planning also turned
out to offer a chance for improvement. The first exchange was carried out through an
interview where both the leader of the old and the leader of the new project took part.
They exchanged information about their projects, discussed commonalties and
differences.

The meeting served as a starting point for active project support which the leader of the
old project rendered to the new one. In our role as mediators, we had the chance to
capture characterizations of the projects that would serve as a basis for future
tailorings, i.e. how to deal with different project lengths, different phases in the
development process, different strategies in changing requirements, different test
strategies, etc.

The improvement of project management showed its success. The continuous analysis
of the project led to process improvement actions that resulted in the project being on
time.

 3.2.5 Cognitive perspective

The experience cycle started with the step ‘make experience relevant to the task at
hand’ based on the need for information that can be characterized as a ‘pull’ effect.
External experience, i.e. literature, had to be made relevant by adjustment.

Despite the automated evaluation procedures, the awareness that tracking projects
better helps to keep the schedule (as you are able to recognize delays earlier) and to
build a profound basis for future estimations and planning had to be upheld through
many discussions and continuous training, which indicates a clear ‘push’ situation.

Without personal coaching, the transfer between the two projects might easily have
failed: the access to the information and a one-time explanation are simply not enough
for a successful transfer, as some earlier efforts within the first project proved. A
second advantage of personal coaching was given by the fact, that the information to
be exchanged cannot always be prepared in time, despite the usefulness of a nice form.

335

Transferring the information about project planning activated implicit knowledge, as
the project leaders, upon their turn to talk about project planning, came to exchange
tips and tricks about how to lead projects. We also found the acceptance of our
initiative on planning and tracking quite dependent on the personality of the people
concerned. If the mission contradicts the interests of someone, she will not carry out
the mandatory tasks thoroughly enough.

 3.3 Case Study ‘Contracts’

In this case study, quotations and tips in contract design were exchanged. We
encountered a ‘pull’ situation in which experience is requested for reuse before it has
been collected and stored. The qualitative techniques deployed show quite different
perspectives on the cognitive tasks as in the first two cases.

 3.3.1 Context

Software development is not considered a core competence in all of the
DaimlerChrysler business units. As a consequence, software development is often out-
sourced, leaving DaimlerChrysler with the task of carrying out acceptance tests. When
the experience factory started in this part of the company, a one-day workshop was
devoted to finding goals and defining topics of interest. Acceptance processes were
selected as the primary target. This area was identified as one in which there was room
for improvement.

We started to activate experiences about acceptance processes by a series of interviews
in order to gain a better understanding for the concrete problems and possible solutions
that had been tried. For this purpose, open interviews seemed most appropriate. An
interviewer was equipped with about a dozen rather general questions. During the
interview, the respondent was encouraged to answer beyond the strict limits of the
questions put. No sequence was imposed, and the interview should flow and be more
like a conversation.

336

Another technique for opening up a business unit for experience transfer, a half-day
workshop, was also implemented. People who had been carrying out actual acceptance
processes were brought together to discuss questions on these issues (some of which
had been raised in the interviews).

 3.3.2 Experience transfer

Two of the people involved in the interviews or the workshop mentioned contracts and
their influence on their acceptance efforts. One respondent reported a negative
experience during acceptance due to a bad contract, while the other was proud to be
able to tell that some contractual agreements helped them tremendously during
acceptance testing. Those statements were documented but not immediately pursued.
The main topic of interest was still the late phase of acceptance testing in the narrow
sense.

Some weeks later, there was a request by someone else in the same business unit who
had heard about the experience factory. Being in the phase just before signing a
contract, he felt uneasy and wanted to make sure there were no known flaws in the
draft contract. Even though all contracts are thoroughly checked by lawyers and
business people, software engineering concerns had sometimes been neglected in the
past. When this person asked the experience factory for assistance, he found that there
had so far not been much experience or knowledge collected on the subject.

Nevertheless, this situation seemed to provide a unique opportunity: to demonstrate
how the early phases (such as requirements and contracts) determined the success of
late phases such as acceptance testing. Therefore, we started with immediate research
on the topic, and the following steps were taken within fewer than two weeks as the
contract had to be signed by a certain date:

1. Review interview protocols in which contracts were mentioned.

2. Carry out follow-up interviews with these people that were now focused on
contractual issues.

3. Copy interesting parts of contracts and agreements that had been referenced in the
interviews.

337

4. Check company standards and literature.

5. Carefully read through draft contract and comment on it.

6. Summarize three top recommendations, including a passage taken from one of the
other contracts. We urged the problem owner to consider these issues even if there
should not be enough time left to work through all of the other findings.

7. Institute a short follow-up meeting with the problem owner and discuss what we
consider important and why.

8. After a few months, the problem owner reported on the project again, supporting
many of our recommendations.

This process was not ideal, and we do not claim complete results for this kind of ad-
hoc research. Some interesting results were achieved:

� The result helped where and when it was needed.

� The topic was recognized as an important area for experiences that have since then
grown.

� We encountered several analogous situations in which a marginal topic was
addressed and had to be dealt with within a few weeks.

Consequently, these kinds of situations must be taken seriously from a pragmatic point
of view.

 3.3.3 Impacts

Contractual agreements have since been turned into one of the most active experience
exchange issues in that experience factory. It could start from a reasonable seed [10] of
material:

� the response to our advice as well as some later feedback,

� a neutralized experience package that dealt with the most important questions
raised during the interviews,

� a list of known pitfalls, such as blind reliance on ISO 9000 certification.

338

Several projects have received the experience package in the meantime. There was
generally a personal meeting afterwards to explain the experiences and gather new
input.

 3.3.4 Cognitive perspective

The topic area of contract review was not approached using measurement. The
experience on this topic was neither intentionally pursued nor activated, but an anchor
remained in the interviewers’ minds. Only later was there a need to reuse experiences
that someone believed we had collected. How to make the findings relevant to the task
at hand was not a concern: the task was perfectly clear, and the request (‘pull’) proved
that there would be no motivational problems. The cognitive experience transfer cycle
started at the make relevant... part which then triggered one fast turn of the cycle:

� fast activation with focused interviews

� straightforward collection in interview protocols and written recommendations

� storing the data was not a high priority. Almost immediately this was tailored to be

delivered. Intermediate storage happened in brains and on scrap paper. Afterwards,

the findings and results were neutralized and documented.

339

There is always the temptation to quickly satisfy pull requests but to never document
them. If this happens, one operates in the (usually well-known) fire-fighter mode. It is
mandatory for any unit that wants to learn from experiences systematically to solicit
feedback on what the advice did and then to go through all of the cognitive steps –
even if it happens after the pull activities.

4. Conclusions and Discussion

Learning from experience at the group or company level is a complex and multi-
faceted task. This is true both for activity- and organization-based issues as well as for
cognitive ones. Table 1 summarizes our activities in the three projects with respect to
the cognitive experience transfer cycle.

Cogn.
task Defects Project management Contracts

Activate GQM goal
identification;
Interviews, abstraction
sheets; Feedback

Interviews;
GQM goal identification;
External knowledge
acquisition

By chance: mentioned in
different context;
Later by focused interviews

Collect Measurement;
Protocols;
Feedback meetings

Measurement program
documents;
Meetings with involved
people

By interviewers, using
question-lists;
Copying contracts

Process
and store

Statistical data
analysis;
Feedback with
participants;
Store in database

Store in a web-base;
Presentation and
feedback sessions with
all potential users

Excerpt, compare from
contracts; Neutralize and
abstract;
Write three-page sheet with
hints and ‘recommended
wording’

Make
relevant,
reinfuse

Presentation for
project manager in his
planning phase

Meeting for direct
exchange;
Personal coaching

Simple, since reuse was
requested (pull): phone call
or short meeting

Table 1: Implementation of the cognitive tasks in the case studies.

340

Beyond the differences in the concrete actions (e.g. holding a feedback session or
copying contracts), there are also superficial differences. In the defect detection study,
the situation can be characterized as a push situation, where the‘contract’ study shows
a clear pull situation. The ‘project management’ study shows a combination of both.

Figure 6: Instantiation of the cognitive cycle in push and pull situations

Another major difference is the source of experience. In theory, when following the
concept of reusing (own) experience, external knowledge might be ignored, since it is
not derived from witnessings in the own environment. In practice, there will be always
a combination of internal and external knowledge. In the project management study,
external knowledge was used for first improvements.

The two characteristics (pull/push, internal/external) have a great impact on the
cognitive tasks, as well. Figure 6 illustrates this graphically for the pull/push
characteristic. There, the numbers denotes the order of tasks and the width of the
arrows indicates intensity and clarity assigned with the corresponding tasks (e.g. in an
pull situation, it is clear how to reinfuse the gained experience, whereas in a push
situation this task is most uncertain).

There are some implications of our cognition-based observations with respect to other
experience transfer activities:
� As a rule, experience is not available as is. It has to be activated (tacit knowledge)

or even exposed (e.g. by measurement activities). In particular, collecting data is
not enough. Rather, measurement data is little more than the trigger for insight into
deeper software developing issues, and this insight is the actual purpose an
outcome of measurement.

’Push‘ Situation ’Pull‘ Situation

Activation

Reinfusion

Storage

Collection1) 2)

4)

Activation

Reinfusion

Storage

Collection

3)

1)3)

2) 4)

341

� The delivery of experience packages is a necessary prerequisite for reuse, but it
alone is not sufficient. Experience packages must be offered at the right time for
the right task in the right form.

� Reuse depends not only on organizational issues but also on the attitude of the
people involved. In particular in push situations, you have to motivate and
encourage them until they are with you.

� The presented cognitive experience transfer tasks (Figure 3) describe a mental
model rather than a fixed sequence of steps. Their concrete implementation (both
at the individual level and across different activities) can look very different.

Especially in pull situations there is always the temptation to neglect the storage task,
as this task competes with reinfusion activities as, for example, making presentations.
For sure, providing automated support for processing and storing lowers this
temptation.

5. Future Work

We have shown three different case studies that shed light on the cognitive dimension
of running an experience factory. Given that activities like the three cases described in
this paper are successful, there will be a steadily growing flow of experiences. Not all
of those experience items, however, will stay valuable forever. Some will become
outdated, others will contradict each other. There the management of experiences
becomes a crucial topic. Fischer et al. [13] have treated this problem and presented
their so-called Seeding-Evolutionary Growth-Reseeding Model (SER model). So far,
our cases are all busy ’seeding’ experience collections. We are currently reaching
’evolutionary growth’. Once a critical mass has accumulated, we will focus more on
issues of experience ’reseeding’.

The cognitive experience transfer cycle presented in Figure 3 and used as a reference
throughout the rest of the paper also has implications for our future work. Among other
things, such as building decision tables to select appropriate activation strategies in
different situations, we are interested in tool support.

As a rule, an EF will have an electronic storing component. Up to now, we have
experimented with the Intranet as an ubiquitous medium for information exchange. Not

342

surprisingly, one single way of putting in experience is seldom an adequate way of
activating experience. As the case studies have shown, different approaches from
measurement to interviews to workshops can be applied. When a tool is involved, there
may be even more options [7, 11, 25, 29]. Fischer et al. [10] talk about ‘reflection-in-
action’ as the mode in which a knowledge-worker can reach previously tacit
knowledge. The same is true for experience. Fischer argues that we need to create
‘breakdowns’ intentionally to stimulate such a reflection act [10]. Either a person or a
tool has to activate knowledge: Both will use approaches that are most suitable for
their kind of contact to the problem owner.

Along the same line, the role of a tool in experience distribution is far more ambitious
than a mere database query. The challenge is to say the right thing at the right time in
the right way [28]. When we try to embed experience delivery into a tool that is used to
carry out the task at hand, we have a much better chance of making it relevant to that
task.

The above observations will shape the tools that we wish to develop in the future: tools
that reach from interview experience collection forms to sophisticated Intranet
components. Analyzing the cognitive aspect of systematic learning from experience
has reminded us of the final goal: better helping man to avoid making the same
mistakes over and over again!

6. Acknowledgements

The authors wish to thank our colleagues involved in the EF initiatives, especially
Heike Frank. Their contribution is gratefully acknowledged. Comments by Stefanie
Lindstaedt helped to improve this paper.

References

1. Ackermann, M.S. Augmenting the organizational memory: A field study of Answer Garden.
In Proc. Conf. on CSCW, Chapel Hill, 1994.

343

2. Basili, V.R. and Rombach, H.D. Support for comprehensive reuse. Software Engineering
Journal, pp. 303-316, 1991.

3. Basili, V.R., Caldiera, G., McGarry, F., Pajersky, R., Page, G., and Waligora, S. The
software engineering laboratory – An operational software experience factory. In Proc.
14th Int. Conf. on Soft. Eng. (ICSE’92), pp. 370-381, 1992.

4. Basili, V.R., Caldiera, G., and Rombach, H.D. Experience factory. In: Marciniak, J. (ed.):
Encyclopedia of Software Engineering, vol. 1. John Wiley & Sons, New York, pp. 469-
476, 1994.

5. Basili, V.R., Caldiera, G, and Rombach, H.D. Goal question metric paradigm. In:
Marciniak, J. (ed.): Encyclopedia of Software Engineering, vol. 1. John Wiley & Sons,
New York, pp. 528-532, 1994.

6. Brown, J.S. and Duguid, P. Organizational learning and communities-of-practice: Toward
a unified view of working, learning, and innovation. In Organization Science 2 (1), pp. 40-
57, 1991.

7. Conklin, P. and Begeman, M. gIBIS: A hypertext tool for exploratory policy discussion. In
Trans. of Office Information Systems, 6 (4), pp. 303-331, 1988.

8. Cusumano, M. Japan's software factories: A challenge to U.S. management. Oxford Univ.
Press, New York, 1991.

9. Differding, C., Hoisl, B, and Lott, C.M. Technology package for the goal question metric
paradigm. Tech. report 281-96, University of Kaiserslautern, 1996.

10. Fischer, G. Turning breakdowns into opportunities for creativity. In: Special Issue on
Creativity and Cognition, Knowledge-Based Systems 7 (4), pp. 221-232, 1994.

11. Fischer, G., Henninger, S.R., and Redmiles, D.F. Cognitive tools for locating and
comprehending software objects for reuse. In 13th Int. Conf. on Soft. Eng. (ICSE’13), pp.
318-328, 1991.

12. Fischer, G., Lindstaedt, S., Ostwald, J., Schneider, K., and Smith, J. Informing system
design through organizational learning. In Proc. Int. Conf. on Learning Sciences
(ICLS'96), pp. 52-59, 1996.

13. Fischer, G., Seeding, Evolutionary Growth and Reseeding: Constructing, Capturing and
Evolving Knowledge in Domain-Oriented Design Environments. In Automated Software
Engineering Journal, Vol. 5, No.4, October 1998, pp. 447-464.

14. Houdek, F. and Kempter, H. Quality patterns – An approach to packaging software
engineering experience. Soft. Eng. Notes, 22 (3), pp. 81-88, 1997.

15. Houdek, F., Schneider, K., and Wieser, E. Establishing experience factories at Daimler-
Benz: an experience report. In Proc. 20th Int. Conf. on Soft. Eng. (ICSE’98), pp. 443-447,
1998.

344

16. Kidd, A.L. (ed.): Knowledge Acquisition for Expert Systems. Plenum Press, New York,
1987.

17. Landes, D. and Schneider, K. Systematic analysis and use of experiences from software
projects at Daimler-Benz. In Oberweis, A. and Sneed, H.M. (eds.): Software Management
‘97. Teubner, Stuttgart, pp. 63-73, 1997 (in German).

18. Landes, D., Schneider, K., and Houdek, F. Organizational Learning and experience
documentation in industrial software projects. In Proc. Workshop on Building,
Maintaining, and Using Organizational Memories (OM’98), 1998.

19. Lexikon-Institut Bertelsmann, Dictionary, Bertelsmann, Gütersloh, 1979 (German).

20. Lindstaedt, S. Group memories: A knowledge medium for communities of interest, Ph.D.
Diss., University of Colorado, Boulder, 1998.

21. McClure, C. Extending the software process to include reuse. Tutorial at the 1997
Symposium on Software Reusability, (SSR’97), 1997.

22. Ostwald, J. The evolving artifact approach: Knowledge construction in collaborative
software development. Ph.D. Diss., Univ. of Colorado, Boulder, 1995.

23. Polanyi, M. The tacit dimension. Doubleday, Garden City, New York, 1966.

24. Puppe, F. Systematic introduction to expert systems: Knowledge representation and
problem-solving methods. Springer, Heidelberg, 1993.

25. Schneider, K. Prototypes as assets, not toys. Why and how to extract knowledge from
prototypes. In Proc. 18th Int. Conf. on Soft. Eng. (ICSE’96), pp. 522-531, 1996.

26. Software Productivity Consortium Services Corp. Reuse adoption guidebook. 1993.

27. Senge, P. The fifth discipline - The art & practice of the learning organization. Random
House, London, 1990.

28. Stolze, M. Visual critiquing in domain oriented design environments: Showing the right
thing at the right place. In Gero, J.S. and Sudweeks, F. (eds.): Artificial Intelligence in
Design’94; Kluwer Academic Publishers, pp. 467-482, 1994.

29. Terveen, L.G., Selfridge, P.G., and Long, M.D. From folklore to living design memory –
Human factors in computing systems. In Proc. INTERCHI’93, pp. 15-22, 1993.

345

An Experience Report on Decoding,
Monitoring, and Controlling the Software

Process

Luigi Benedicenti Stefano De Panfilis
Faculty of Engineering EngineeringIngegneria Informatica S.p.A
University of Regina Via dei Mille, 56
3737 Wascana Parkway Roma
Regina, SK, Canada S4S0A2 00100, Italy
(306) 585-4701 +39-6-492011
Luigi.Benedicenti@dist.unige.it depa@mail.eng.it

Giancarlo Succi Tullio Vernazza
Department of Electrical & DIST – Università di Genova
Computer Engineering Via Opera Pia 13
The University of Calgary 16145 Genova
2500 University Dr. N.W. Italy
Calgary, AB, Canada +39-10-3532173
+1 403 220 8357
Giancarlo.Succi@enel.ucalgary.ca Tullio.Vernazza@dist.unige.it

Abstract

This paper reports on the experience in modeling the software process of a major
business software producer located in Italy. The experience was conducted over a
period of sixteen months, and was made possible by the European Community ESSI
program (PIE no. 23699, DECO’). The modeling technique employed is object
oriented coupled with activity based costing for process accounting. The baseline
project used to model the process is the development of the information system for a
large Italian municipality. The approach is innovative in that it empowers the actors of
the process as process monitors, in addition to increasing their process awareness and

346

understanding. Moreover, it tackles the problems of a distributed organization, which
involve not only internal synchronization issues, but also the lack of precise
communication rules with the customer. The main results are three. Decoding the
process gave developers and managers complete visibility of the activities in the
project: this identified the communication problems with the customer. Monitoring the
process allowed profiling the activities, improving them especially in terms of role
interchangeability. Controlling the process was therefore possible in a unified way,
where side effects of any control action become immediately visible.

 Keywords

Software Process, Modeling, Control, Experience Report

1. Introduction

This paper presents our experience in modeling the software development process of a
major business software producer located in Italy: Engineering Ingegneria Informatica
S.p.A.. While North American companies look favorably at innovations coming from
both Business Process Modeling and Reengineering, European companies are not so
willing to take the risks of a reengineering action. Therefore, the modeling effort
described here acquires additional importance.

This experience was made possible for the following reasons:

• The software company is enjoying a period of good health, being ahead of the
market and large enough to allocate the resources needed.

• The European Union is helping process improvement efforts in companies
through special grants. This Process Improvement Experiment has been
awarded such a grant (PIE no. 23669, DECO’).

347

• The Software Production Engineering Laboratory at the University of Genova,
in cooperation with the University of Calgary, has produced a methodology for
process modeling and reengineering.

2. State of the art

The software development process is receiving more and more importance, both from
a theoretical and from a practical point of view.

Leon Osterweil [15][16] was one of the first to detect and point out similarities
between software development processes and software itself. Since then, two main
approaches have been consistently followed to deal with process modeling: a formal
approach and an empirical approach.

The formal approach is based on very strong model semantics. Semantic clarity is
indeed very useful for precisely defining a modeling base. Examples of this thread are
the models based on Petri Nets [4][5][6], system dynamics [1][2], data flow diagrams
[14], and state diagrams [10].

Formal models are perfect in all the situations where a formal development process is
already in place and rigorous development methods are followed. However, when no
such formal method is in place, they often lack the capability to cope with the sudden
twists and variations that an informal business process may take.

In 1992, Curtis et al. [9] identified a series of objectives for software process
modeling. They were as follows:

• Communication

• Improvement

• Management

• Automatic guidance

• Automatic execution

348

The objectives can be met provided that the process modeling method meets the
following requirements:

• Shareable common model

• Reference basis

• Common process definitions

• Automated process handling tools

• Automated process enacting tools

Formal methods account for these requirements. However, there is still a general
problem: the hermeneutics problem [3]. The hermeneutics problem consists of the
impossibility to couple the formal semantics with meaningful extensions to account for
variability introduced by the modeler’s decisions.

Empirical methods often allow unclear semantics. Jacobson [12], for example,
proposes a framework under which the modeler acquires control over the modeling
process and semantics. Aksit [3] proposes a hermeneutic method that accounts for
unclear semantics, adding semantically significant interpretations. Any addition is part
of the model and therefore changes its semantics in a dynamic fashion. This solves two
problems:

• The quantization problem

• The contextual bias

The quantization problem arises when the modeler operates a binary decision: if there
is not the possibility to record the decision and backtrack from it, then the model is too
rigid and the modeler may incur in quantization errors.

The contextual bias is introduced by the influence of the context on a certain decision.
This influence is not easy to quantify.

Many empirical modeling methodologies rely on object orientation. Object orientation
provides a framework on which it is easy to build. However, ill-conceived methods

349

may lead to misunderstandings and model failure. The first empirical modeling
methods were only loosely based on formal techniques. Ivar Jacobson [12] has
presented a much more reliable method. His object oriented process reengineering is
firmly set in an object oriented framework. However, his conceptual framework lacks a
template object taxonomy. The knowledge within each model is tied to the modeler’s
experience and point of view. Thus, replication of the model is possible only if
performed by its creator.

Recently, the focus of the modeling and reengineering efforts has shifted to the cultural
issues, that play a central role in every successful reengineering action [18].

Thus, the main qualities searched in a process modeling method are:

• Simplicity

• Independence from the modeler

• Validation

We believe that the modeling technique we developed has these qualities.

3. Modeling the process

3.1 Context

The company has recently acquired a large project for the development of significant
parts of the information system supporting a large Italian Municipality. This
information system aims at fulfilling the new and increasing responsibilities of Italian
local administrations. It has a lot of characteristics that make it particularly suitable for
the proposed experimentation:

• The project is divided into four interrelated subprojects, devoted to different
subsystems: protocol, taxation, commerce, transparency (of administrative acts and

350

procedures to citizens). This guarantees the temporal alignment of the experiment
with the baseline application without introducing delays.

• The project foresees both the customization of corporate packages and the
development from scratch. This requires the joint work of the Production Centre of
Roma and the Package Department, located in Padova and Bologna; to some extent,
the distributed nature of the company is under test.

• The contract imposes cogent quality, time and cost constraints that require deep
levels of technical and economic control and good confidence in assuring quality.

The project is a good sample of the kind of projects the firm is normally involved in,
because of its size, its distributed structure, its constraints, and its scope; this makes
easy the internal transferability of the experience. The current wealth of the company is
such that the project does not pose any particular problem, and thus there is no critical
point in it. The project is structured in two different teams:

• the first, located in Roma, is in charge of the customer interfaces, system
integration, “ad hoc” software development, installation and data conversion,
system test and user acceptance;

• the second, located in Padova and Bologna, is in charge of the customization of the
involved packages on the basis of the project needs. The first is a package for the
complete management of city taxes, monitoring of evasions, and revenue planning.
The second is a platform for the integration of information systems in managing
administrative procedures. This allows simultaneous work on various aspects of the
same dossier, gives management complete visibility of the process, and offers the
citizen the means to examine and check how his or her dossier is proceeding.

Basically the Production Centre of Roma plays the client role with respect to the
Package Department. Indeed, not only it presents to the Package Department the end-
user requirements, but also the specific quality and productivity requirements.

351

A global Project Manager is in charge for the correct co-ordination and co-operation of
the two teams with a specific care of their respective roles. The subprojects are planned
to perform in parallel, and so it is. The involved staff includes:

• 1 Technical Manager

• 4 Project Managers (2 in Roma, and 2 in Padova/Bologna)

• 4 Analysts (2 in Roma, and 2 in Padova/Bologna)

• 8 Programmers (2 in Roma, and 6 in Padova/Bologna).

The part of the project modeled started in June 97 and ended in June 98, with a total
effort of more than 10 man-years.

 3.2 Methodology

The methodology was developed by the University of Genova in cooperation with the
University of Calgary, and consists of the integration and enhancement of two existing
techniques: Object Oriented Business Modeling and Activity-Based Costing
[11][12][17]. The former technique employs object orientation to model the business
process. The latter is an accounting technique that keeps track of the resources spent in
cross-functional activities (Figure 1).

Activity Based CostingJacobson’s methodology

System Architect
support

Guidelines for the
modeler

Customized for
the environment

The concept

Figure 6: Development of the methodology

352

A full description of the methodology is in [8]. The details of the adaptation are not
presented here, since they are a critical asset for the company.

 3.3 Endeavor

The object oriented model was built as follows:

• Identification of use cases - A use case is a textual description of a process. Its
shows the dynamics of a process. The modeler interviews the firm’s employees to
obtain the required information.

• Identification of people - This phase identifies an explicit set of people. The
modeler examines the use cases and records every mentioned person.

• Construction of People Interaction Diagrams (PIDs) - PIDs provide a graphical
representation of use cases from the perspective of people involved and messages
exchanged.

• Identification of roles - People are related to activities by means of roles.
Activities can work even if people are interchanged to play different roles in
different times, as long as one person is assigned to each role an activity requires at
any given time. The roles the modeler identifies must fit the use cases.

• Identification of activities - The modeler extracts the activities from the use cases.
An activity is a set of operations performed to achieve a goal. An activity may
require the cooperation of many people. Activities are atomic processes. Atomic
processes can not be decomposed in simpler activities. Albeit simple, atomic
processes must not be trivial. Activities are classified in three categories: Interface,
Control, and Execution

• Construction of Activities Roles People (ARP) snapshots - The ARP snapshot
grasps in a single diagram the interactions occurring in a use case. An ARP
snapshot establishes links between people, roles, and activities.

• Construction of Activities Interaction Diagrams (AIDs) - AIDs provide a
graphical representation of use cases from the perspective of activities involved
and messages exchanged.

353

• Construction of Activities Roles People (ARP) diagrams - An ARP diagram
focuses on the description of an activity as far as roles and people are concerned.
The modeler constructs an ARP diagram for each identified activity.

Throughout all the modeling stages, modelers were supported by a drawing and
reporting tool customized for the modeling environment.

Data collection
(ABC)

Modelling
(Jacobson)

Model assessment

Figure 2: Interactive model building

The model was built in iterations following the scheme in Figure 2. The model was
stable after 3 iterations. Additional information can be found in [7].

4. Results

The project yielded three results:

1. Process visibility. The process model refined with the coming of activity based
costing data succeeded in giving managers and developers a uniform view of the
process, allowing informed discussion and improvement strategies: “Decoding the
process”.

2. The individual and group activity profiles: “Monitoring the process”.

3. Knowledgeable and informed project management: “Controlling the process”

The adaptation of the methodology to the firm analyzed is useful to the modelers, that
have gained precious real-life experience on the field, but is rather specific, and shall
not be discussed here.

354

 4.1 Decoding the process

The process model depicting the interactions among the different activities and roles
presented a clear picture of the working environment (Figure 3).

Product Dev. Manager

Project Supervisor

Products Manager

Products Manager

Project Supervisor

Product Dev. Manager

Kindling

Blacky

Redded

Redded

Blacky

Kindling

Support Action Type Choice

Enaction of Support Action

Support Request Analysis

Plays

Plays

Plays

Plays

Plays

Plays

Figure 3: The communications problem

355

This represented a significant advancement in the knowledge of the development
process itself, especially when considering the two separate units contributing to the
project. In fact, the managers of the single units were aware only of the part of the
process being developed in their area. When it came to comparing the two
development processes, some inconsistencies were found.

The principal inconsistency was found to be incorrect communications between each
unit and the customer. As it is shown in Figure 3, there are three people involved with
communications with the customer. This makes it impossible to identify a single
person playing the interface role with the customer.

In addition, a fourth person, who was not intended to have any direct relationship with
the customer, was acting as the company’s representative for minor issues which
would be dealt with without even a record of them. The person would do this only
occasionally, and did not allocate any time to the activity, that was thus missing in the
model. This was intended to improve the project’s efficiency but ultimately resulted in
unnecessary repetition of unneeded tasks.

The identification of this problem was only possible by carefully analyzing the data
coming from the model and the activity based costing forms. The AIDs were then used
to locate the actual communication taking place between the client and each separate
activity, and PIDs were used to locate the actual persons in charge of the activities.

 4.2 Monitoring the process

Monitoring the software process was one of the main goals of the project, especially
from the management point of view.

In fact, top manager sponsored the project as the core of a new strategic effort to
understand the company not only from the financial and marketing point of view, but
also from the operations management point of view. On the other hand, process
monitoring through activity based costing and object oriented process modeling would

356

give operation management a much better view over the entire development cycle,
allowing the optimization of the phases and possibly better control over productivity.

However, we did not want to transform process monitoring in a means to obtain
individual productivity scores, and therefore the data coming from the single persons
was always aggregated on a team basis.

Table 1 shows the high-level aggregated activity profile for both operating units during
two months (February and March 1998). The numbers represent the percentage of the
total man power (effort) and the total infrastructure use (including non-human
resources such as computers) for the two months. Note that some of the activities did
not take place: this is partly due to the optimization of the communications problem
(see the following section), and partly due to the fact that in the time frame considered,
those activities did not take place.

Table 1: Activity profiles

Activity Effort
 (%)

Infrastructures
 (%)

Project Management 9,43 5,90

Customer Management (1) 3,86 ,67

Personalization 16,70 12,68

Infrastructures
Management

,43 ,00

Ad-hoc Software
Development

29,38 40,29

Process Management (1) ,64 ,67

Technical Development 34,71 37,46

Customer Management (2) ,00 ,00

Process Management (2) 1,42 ,80

Customer Management (3) ,00 ,00

Conversion service ,00 ,00

Residual Efforts 2,52 1,52

Idle Time ,11 ,00

Transfers ,80 ,00

357

Table 1 is useful to modelers and control managers. However, to present the data at top
manager meetings, we employed a clearer representation which better conveys the
information in Table 1 (see Figure 3 and Figure 4)

,8%

,1%

2,5%

1,4%

34,7%

,6%
29,4%

,4%

16,7%

3,9%

9,4%

Transfers

Idle Time

Residual Efforts

Process Mgmt (2)

Technical Dev

Process Mgmt (1)
Ad-hoc SW Dev

Infrastructure Mgmt

Personalizations

Customer Mgmt (1)

Project Mgmt

Figure 4: Effort profile chart

Moreover, this presentation was invaluable in showing the effectiveness of the
modeling effort throughout the company, to establish a corporate process modeling
culture, and to present valuable data to the top management.

358

1,5%

,8%

37,5%

,7% 40,3%

12,7%

,7%

5,9%
Residual Efforts

Process Mgmt (2)

Technical Dev

Process Mgmt (1) Ad-hoc SW Dev

Personalizations

Customer Mgmt (1)

Project Mgmt

Figure 5: Infrastructures profile chart

 4.3 Controlling the process

Although process control has always been the goal of the software company we
analyzed, we discovered that what was currently seen as “Process Control” was an
enhanced kind of project control. The process itself was not analyzed nor modified, but
rather, each project manager was held responsible for keeping in synch with the main
project schedule.

This way of conceiving the work has hindered true process control. For example, each
project manager was accustomed to work with a small subset of the personnel in the
company, and therefore would prefer resources from that small pool, regardless of any
other possible equivalent choice.

To tackle this problem, the process modeling activity defined role equivalence classes
based on the skills possessed by each single person in the company. This was

359

extremely useful when, due to internal rearrangement, more than half of the people in
the project we tracked had to be reassigned.

Another form of process control is shown in Table 1: there is no effort allocated for
Customer Management (2) and Customer Management (3). These two activities belong
to the customer relations sections in Padova and Bologna. This was the result of an
explicit, informed decision that demanded the relationship with the customer to a
single activity (i.e., Customer Management (1) taking place in Rome), giving it full
responsibility for customer relations. This interface activity acted thereafter as the
central repository for any information from and to the customer, and as a
dispatcher/router for the delivery of all customer requests.

5. Conclusions

This paper presented our experience in modeling the software development process of
an Italian company during the development of an information system for a large
municipality. The results highlighted the advantages of understanding the process
(decoding), monitoring its progress, and the new capability to control it.

Two are the main lessons learnt:

• There can not be process control without a clear understanding of the process
itself. Although this seems evident, the overall business situation in Italy is that of
non-standardized business processes, which are very difficult to depict,
understand, and control. The modeling methodology helped identifying the
software development process and highlighted the differences between the
perceived process and the actual one. As a consequence of this, the teams have
started coordinating with each other, and process optimizations have been possible.

• The software development process is a not a crisp entity: it fades in infinite levels
of abstractions, up to the most trivial or overly general activities (such as for
example “thinking”). There must be a compromise between the model’s depth and
the model’s effectiveness, and this is given by the understandability by the
modeling group. This does not overcome the contextual bias but provides a
uniform criterion for selecting the level of abstraction required in a model. When

360

the criterion is adopted, it results in replicable process models: the level of detail is
necessary and sufficient for replication, and the model can be shared among
modelers.

There are still some open issues. The model needs to be extended to capture partial
ordered sequences of events and activities. Interaction with workflow models might
prove useful.

Moreover, the process measures need to be integrated with a more general view of the
firm. The authors are complementing the model with a scoreboard technique that
allows to obtain a “control panel” of the company.

6. Acknowledgements

This experience was made possible through the European Union European Software
Systems Initiative (ESSI), through a Process Improvement Experiment grant (PIE
Project No. 23699, DECO’).

References

1. Abdel-Hamid, T. The slippery path to Productivity Improvement. IEEE Software,
July 1996, pp. 43-52

2. Abdel-Hamid, T. and S. Madnick. Software Project Dynamics: An Integrated
Approach. Prentice-Hall, Englewood Cliffs, NJ., 1991

3. Aksit, M., F. Marcelloni. Reducing Quantization Error and Contextual Bias
Problems in Object-Oriented Methods by Applying Fuzzy Logic Techniques.
Proceedings of the Modeling Software Processes and Artifacts Workshop, ECOOP
97, 1997, Jyvaskyla, Finland

361

4. Bandinelli, S., A. Fuggetta, and C. Ghezzi. Software Processes as Real Time
Systems: A case study using High-Level Petri nets. Proceedings of the
International Phoenix conference on Computers and Communications. Arizona,
April 1992

5. Bandinelli, S., A. Fuggetta, C. Ghezzi, and S. Grigolli. Process Enactment in
SPADE. Proceedings of the Second European Workshop on Software Process
Technology. Trodheim, Norway: Springer-Verlag, 1992

6. Bandinelli, S., M. Braga, A. Fuggetta, and L. Lavazza. The architecture of the
SPADE-1 Process-Centered SEE. 3rd European Workshop on Software Process
Technology. Grenoble, France, 1994

7. Benedicenti, L., N. Morfuni, P. Predonzani, G. Succi, and T. Vernazza, The
Effects of Process Modeling in a Software Engineering Firm, Proceedings of the
Acquire ICT’98 International Conference, February 1998

8. Benedicenti, L., P. Predonzani, G. Succi, T. Vernazza. Gertrude: OO for BPR.
Proceedings of the 6th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA'97). Los Angeles, CA, September 1997

9. Curtis, B., M.I. Kellner, and J. Over. Process Modeling. Communications of the
ACM, Vol. 35 No 9, pp. 75-90, 1992.

10. Gruhn, V., W. Schafer. Software and Business Process Technology. Tutorial at
ICSE 97, Boston, Ma

11. Innes, J., F. Mitchell. I costi di struttura – Metodologie di analisi e di gestione.
Egea, 1994.

12. Jacobson, I., M. Ericsson, and A. Jacobson. The object advantage - business
process reengineering with object technology. ACM Press, 1995.

362

13. Kaplan, R. S., and D. P. Norton. The Balanced Scorecard - Measures that Drive
Performaces. Harvard Business Review. January - February 1992, pp. 71-79.

14. Mayer, R.J., IDEF family of methods for concurrent engineering and business
reengineering applications. Technical report, Knokledge Based Systems, Inc.,
1992.

15. Osterweil, L. J. Software Processes are Software Too. Proceedings of the Ninth
International Conference of Software Engineering, pp. 2-13, Monterey, CA, 1987

16. Osterweil, L. J. Software Processes are Software Too, Revisited: An Invited Talk
on the Most Influential Paper of ICSE 9. Proceedings of the 19th International
Conference of Software Engineering, pp. 540-548, Boston, MA, 1997, ACM Press

17. Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, NJ., 1991

18. Teng, J.T.C., S.R. Jeong, V. Grover. Profiling Successful Reengineering Projects.
Communications of the ACM, Vol. 41, No. 6 (June 1998) pp. 96-102, ACM press

363

Tailoring product focused SPI

- Application and customisation of PROFES in Tokheim -

Rini van Solingen14, Tokheim & Eindhoven University of Technology
Arnim van Uijtregt15, Tokheim & Eindhoven University of Technology

Rob Kusters, Eindhoven University of Technology & Open University Heerlen
Jos Trienekens, Eindhoven University of Technology, The Netherlands

Abstract

Management problems in the development of software have been addressed by a
focus on improvement of the development process the last years. However, in
most cases the product is sold, not the process that created it. Therefor, process
improvement should have a product focus. This paper presents the practical
implementation of a method for product focused software process improvement
in Tokheim, and describes experiences in one development project. The main
conclusions are that product focused SPI puts the product in a central position,
addresses the specific needs of the company very well, and results in early
availability and better visibility of benefits. As a result, commitment of the
product development team to this kind of improvement programmes is
established. Furthermore, it appears that the benefits of method application
outweigh the (relatively low) cost already in an early phase of the project.

1. Introduction

When striving towards software product quality, two main approaches can be
distinguished: the process approach and the product approach. The process
approach tries to improve product quality indirectly by improving the process,
while the product oriented approach tries to create product quality directly.

14 Contact the authors via: R.v.Solingen@tm.tue.nl
15 Currently employed by Dräger Medical Technology, Best, The Netherlands

364

The process approach assumes a positive correlation between software process
improvement (SPI) [3] and product quality. However, when quality improve-
ment activities focus too much on the process without being clear about the
expected impact on product quality, it is possible that effort is invested in
activities that barely effect product quality. Also, it is possible that the process
improvement activities have effect on quality areas where the product quality is
already according to user needs, while quality areas that need attention are
overlooked. It is therefore important to invest in process improvement activities
that focus on product quality, and to invest in those activities that have the best
effect on product quality.

Software Development
ProcessRequirements

Software Process Improvement

Software
Product

??

Figure 1: Relation between SPI and product quality.

This paper presents the way in which the PROFES methodology [1] is
customised to Tokheim. Furthermore it contains a description of applying the
approach in a development project. The PROFES methodology has been
developed in the EU project PROFES (23239), which customised successful
approaches into one single embedded systems specific methodology that links
product quality objectives directly to the software development process. The
approach presented in this paper is also based on a project of Tokheim and
Eindhoven University of Technology: SPIRITS (Software Process Improvement
in embedded IT environments).

 1.1 Tokheim

Tokheim is world market leader in equipment and services for self-service petrol
stations. Tokheim has a yearly revenue of 750 million US dollar, and 4,800
employees. Tokheim products are Fuel Dispensers, Point of Sales, EFT
equipment, Back-Offices and Forecourt Controllers.

365

 1.2 Tailored method for product focused SPI

For Tokheim the PROFES improvement methodology [1] had to be integrated in
the day to day process. Therefor integration and tailoring has been carried out.
To make the PROFES methodology for product focused SPI more explicit and
operational, the flowchart of Figure 2 has been constructed which presents the
PROFES methodology on an operational level for Tokheim.

Identify product
quality needs

Estimate or
measure current
product quality

Adapt software
development

process

Evaluate effect

Knowledge base

Figure 2: The tailored phases for product focused SPI.

The tailored method combines software process improvement activities with
software product quality activities. The method focuses on those areas of the
software development process that are not able to meet the product quality
objectives. The knowledge base contains models of the expected impact of
process improvement actions on product quality. Such a knowledge base is
therefore essential for product focused process improvement.

The main source for process changes in this method is the comparison of product
quality targets with the actual product quality or estimated product quality if
there is no product. The differences between target and actual product quality are
the main product quality goals that should be worked on. Process improvement
actions that address these product quality goals will be selected after
consultation with the project team. In this negotiation it may prove to be

366

impossible to reach some quality targets. In such cases the target can be adjusted
accordingly.

Each step in Figure 2 will be presented in detail in the next sections. Also case
study results on applying these steps are provided. These results have been based
on the development project that will be introduced in the following section.

 1.3 Case study project description

The family of Outdoor Payment Terminal products (OPT) consists of products
that provide the facility to purchase fuel without requiring the intervention of a
station operator or cashier. The fuel purchaser can initiate and complete a fuel
purchase transaction with the use of an OPT. For this purpose the OPT is
equipped with several peripherals :

• card reader to pay with credit, debit, or private cards.

• cash acceptor to pay for the fuel with cash.

• user keyboard to interact with the system.

• user display to interact with the system.

• receipt printer to provide a receipt of the transaction.

2. Product quality specification

The objective of this step is to set the targets for product quality. With these
targets the most appropriate development process can be selected, and also
product quality evaluation can be carried out once the product is created. Two
approaches [6] are applied for the specification of product quality. Firstly, an
embedded software specific questionnaire is used to provide a global overview
on required product quality.

Secondly, a more extensive survey of product quality needs is applied. All
product stakeholders that are involved with the product in some way are
consulted [5]. In open interviews with these stakeholders the quality
requirements are gathered. For each of the requirements metrics are specified to

367

enable measurement. The feasibility of the requirements is discussed with the
project manager. Some of the requirements are rejected which means that no
effort will be spend in order to reach the requirement. The ‘identify product
quality needs’-phase is presented in Figure 3.

The first step is to gain commitment. Following this, a global survey of quality
needs is carried out using a questionnaire. The project manager completes this
questionnaire, because the project manager is responsible for the product and is
the one most likely to possess the required information. This results in a global
overview of product quality needs which is used as input for the extensive
survey of quality needs [5]. This survey is needed, because it generates more
detailed information. Open interviews are held with the various stakeholders.

Gain commitment

Global survey
quality needs

Extensive survey
quality needs and

feasibility study

Product Quality
Profile

(quality needs)

MPC-chart
Initial Product
Quality Profile
(quality needs)

Figure 3: Identify product quality needs phase.

The initial quality needs help to guide the interview to a certain extent, because
the interviewer already has some insight in the required product quality. During
the interviews quality requirements are gathered, and metrics are determined for
the requirements, which enables checking whether the product meets the
requirements. Later these metrics are used to evaluate the conformance of the
product to the requirements. The result of this phase is a ‘product quality profile’
in which the required product quality is documented.

368

 2.1 Case study results

During the specification of the product quality targets, 62 requirements were
stated during four interviews with product stakeholders. These requirements
were specified in natural language, classified over the ISO 9126 quality
characteristics [4], prioritised, evaluated by the project manager, and specified
with metrics. For each metric a current value, ideal value, and target value was
specified as well.

3. Product quality assessment

The objective of this step is to make the current product quality explicit, in order
to compare it with the product quality targets. The differences between current
and wanted product quality identify improvement areas for the product. If there
is no version of the product available, estimation is carried out on what the
product quality will be using the ‘normal’ process.

Product quality assessment can be done in two ways:

1. Measure current product quality. In other words, evaluate the extend to
which the product complies with the product quality targets.

2. Estimate product quality. Make a prediction what product quality will be
when using the ‘normal’ process. This presupposes an understanding of the
current process. A development process model can be used to support this
task, as can the result of a process assessment.

The PROFES method uses SPICE conformant assessments (e.g. BOOTSTRAP
[2]). Part of the assessment is the investigation and identification of the current
way of working, i.e. how the software development process functions at this
moment. The assessment report contains processes and activities of the
development process. By applying the process-product relationship models from
the knowledge base (Figure 2) the contribution to product quality for each
specific process or activity can be estimated. Therefor it is possible to estimate
the product quality that is created by following the ‘normal’ process.

369

Product quality
measurement or

estimation

Product Quality
Profile

(estimated quality)

Process
assessment report

Knowledge Base

Current or previous
version of the

product

Figure 4: Estimate or measure current product quality phase.

 3.1 Case study results

The process assessment of the OPT project identified that 34 actions are
currently taken in the software development process which impact product
quality. An estimate was made for product quality by applying the process-
product relationship models from the knowledge base, together with a
description of these 34 actions. This estimation represented the product quality
that would probably be reached when using the current process, as long as
nothing was changed.

In Figure 5 both the product quality targets and estimated product quality are
presented. This figure presents the quality profile of the OPT product along the
six product quality characteristics [4]: functionality, reliability, usability,
efficiency, maintainability and operability.

370

0

1

2

3

4
Functionality

Reliability

Usability

Efficiency

Maintainability

Portability

Target Value

Expected ValueA

B

C

D

-

Figure 5: Quality needs vs. estimated quality for the OPT.

4. Changing the development process

Based on the differences between current product quality and the product quality
targets, the development process can be changed. Decisions will be taken on
where to change the software development process, in order to arrive at a
process that is capable of creating the required product quality. Based on the
product quality targets, an analysis is done to tailor the software development
process to the product quality requirements.

The ‘adapt software development process’-phase is presented in Figure 6. It
starts with an analysis of the product quality targets from the previous phases, in
order to identify problem areas for which the development process is not
sufficiently suited to meet the quality needs. For these problem areas, candidate
improvement actions are identified. In Tokheim a tool is available that contains
process-product relationship models. Finally, the Process Improvement Plan is
created and carried out.

371

Comparison needs
vs. estimation

Identify candidate
improvement actions

for problem areas

Knowledge Base

Product Quality
Profile

(quality needs)

Product Quality
Profile

(estimated or current
product quality)

Implement process
improvement actions

in project

Process Improvement
Plan

Select process
improvement actions

Figure 6: Adapt software development process phase.

 4.1 Case study results

Figure 5 presented the quality profile of the OPT product along the six product
quality characteristics [4]. The main conclusion from Figure 5 was that for the
product quality characteristics: usability, efficiency and portability the current
process was likely to reach the quality target. For maintainability the current
process would probably do better. However, two problem areas were identified:

1. It was expected that functionality (in this case the sub-characteristic suitability)
of the product was at risk. This was mainly because there were many unknown
country specific requirements, to which the product had to comply.

2. It was expected that reliability (especially the sub-characteristic maturity)
might not be sufficient. In the development process actions were taken that
should improve reliability, but these actions were not executed completely.

Based on these findings, a meeting with the project team was held in which the
results of the investigation were presented. Also candidate improvement actions to

372

address the improvement areas were proposed in this meeting. The following
decisions were taken during that meeting.

• Action is taken by marketing to collect the country specific requirements.

• The project team members were surprised by the analysis with respect to
reliability , because in their perception the customers of the development team
are quite happy with the reliability of the product. Measurement of product
reliability in the field is therefor started.

• Also for the OPT reliability, there is a large dependence on service department
product testing. In order to identify the extend in which this is actually done, a
system test checklist for the service department will be created.

5. Evaluation of effects

After the software development process definition and the start of the project,
the effect on process and product quality is evaluated. The evaluation is done in
two ways. First, the evaluation of product quality is carried out. This evaluation
identifies whether the current version of the product meets the quality needs.
Second, the evaluation of impact of certain process improvement actions on
product quality is carried out.

Product quality
evaluation

Measurement
programme to check
process action effect

Update Knowledge
Base

Knowledge Base

Implement process
improvement actions

in project

GQM Base

Analyse data

Measurement

data

Feedback
information

Product Quality
Profile

Current version of
 the product

Needed Quality
Estimated Quality

Figure 6: Evaluate effect phase.

373

Goal-oriented measurement programmes [7][8] are designed to measure process
and process aspects for the above listed evaluation purposes. The detailed steps
of this phase are depicted in Figure 6.

 5.1 Case study results

The final phase is the evaluation of the effects of the process improvement
actions and the evaluation of the product quality at the end of the project.
Although the OPT project is not finished yet, one example is presented from the
set of available measurement material.

Product reliability was measured by looking at the distribution of failures after
release. Figure 7 shows that in total 43 problems have been reported. The
distribution is shown over failures reported per month.

0

5

10

15

20

Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Figure 7: Distribution of failure reports over months.

The main conclusion drawn by the project team from these first measurements
was that OPT reliability was sufficient. The measurements would be continued,
especially when the OPT was installed in the field. Other measurements were
taken also to identify other product reliability details.

374

6. Cost/Benefit analysis of the case study

A cost/benefit analysis has been carried out on method application in the OPT
project. Cost can be deducted by measuring the effort in person hours, but it is
very difficult to express benefits in financial terms, because they are often
indirect and not objectively measurable. For example, a sales increase is rarely
caused by increased product quality alone.

The cost/benefit analysis will be done as follows. The calculated cost (measured
in man hours) will be valued against both financial and non-financial benefits.

 6.1 Cost

The costs are measured in person hours. Table 1 contains the effort spent on
method application in the OPT project.

Table 1: Effort needed for the OPT case study (in person hours).

Phase Quality
Engineer

Quality
Manager

Project
Manager

Software
Engineers

Total

Identify product quality needs 50 4 8 10 72
Estimate product quality 4 4
Adapt software development process 30 1.5 1.5 3 36
Evaluate effect 79 1.5 4 10.5 95
Total 163 7 13.5 23.5 207

In total 207 hours have been spent on the quality activities, of which only 18%
were spent by the project team. During the OPT project the project team spent
about 1% of their time on these quality related tasks.

 6.2 Benefits

It is difficult to relate specific benefits to method application directly and
express them in financial terms, such as increased sales or reduced cost. This is
especially difficult, because the application of the method has not been
completed yet and the project is still running.

375

However, benefits can be linked to the influence of the application of the method
and can be determined in non-financial terms. These benefits can then be
balanced against the costs. The benefits are divided in direct and indirect
benefits. The direct benefits are benefits that are directly related to the method.
The indirect benefits are the positive side effects of method application.

The direct benefits of the OPT case study include:

• The quality requirements for the OPT product are made explicit and
measurable.

• Strengths and weaknesses of the development processes were discovered.

• Based on the differences between the quality needs and the strengths and
weaknesses of the software development process, problem areas have been
identified for the project, where the development process is expected to be
insufficient to meet the quality needs.

• The main national requirements for the OPT are now available, after effort
was being invested as a result of the quality investigation.

• For the OPT a test checklist is created for the service department, which is
expected to improve the testing process and in that way OPT reliability.

• The status of OPT reliability is now much clearer due to the measurements.

The indirect benefits of the OPT case study includes:

• The co-operation between quality assurance and the OPT project team has
improved considerably.

• Direct attention and priority to software quality has increased quality
awareness in the project team.

 6.3 Are the benefits worth the cost?

In the previous two subsections the cost and benefits of both projects are
presented. The question remains whether the benefits are worth the cost.

376

Because of the improved relationship between the quality assurance department
and the OPT development team, the benefits seem to outweigh the cost,
considerably. The cost, 207 hours, are low. The increase of attention towards
quality by the project team, and the co-operation with the quality assurance
department are major benefits. In this light, the effort has to be split into: effort
of the quality assurance department and effort of the project team.

The cost for the project team consists only of 37 person hours, which is very
low. The effort of the quality assurance department, 170 person hours, would
otherwise be spent on quality activities like ISO 9001 audits and process
assessments. The advantage of the new approach is that the quality assurance
department co-operates much more with the project team, which is experienced
as very beneficial. Also the gathering of quality requirements, the creation of the
checklist and the insights in OPT reliability contribute to the justification.

7. Conclusions

This paper has presented the results of tailoring the PROFES methodology to
Tokheim, illustrated with experiences of a real-life development project.

The main conclusion is that product focused SPI puts the product in a more
central position. Therefor the specific product needs of the company are well
addressed, and benefits are available soon and well visible. As a result, high
commitment of the product development team to this kind of improvement
programmes was established. The PROFES methodology was experienced as
highly applicable, and tailoring it to Tokheim was carried out easily.
Furthermore, it appeared that the benefits of applying the method outweighed
the (relatively low) cost already early in the case study. It is expected that the
benefits will still increase over time.

8. Acknowledgements

The authors would like to thank the engineers and managers responsible for the
OPT development project for their participation and enthusiasm. Also, thanks to
all partners in the PROFES and SPIRITS projects. Furthermore, the authors

377

thank Erik Rodenbach, Shyam Soerjoesing, and Roy de Jonge for their
contributions to the results presented in this paper.

References

[1] Birk, A., Järvinen, J., Komi-Sirviö, S., Oivo, M., Pfahl, D., PROFES – A
Product-driven Process Improvement Methodology, Proceedings of the
Fourth European Software Process Improvement Conference (SPI ‘98),
Monte Carlo, 1998.

[2] Bicego, A., Khurana, M., and Kuvaja, P., “BOOTSTRAP 3.0 – Software
Process Assessment Methodology”. Proceedings of the SQM ’98,
1998.

[3] Humphrey, W.S., Managing the Software Process, Addison Wesley
Publishing Company, 1989.

[4] ISO/IEC, ISO 9126: Information Technology - Software quality
characteristics and metrics, ISO/IEC, 1996.

[5] Kusters, R.J., Solingen, R. van, Trienekens, J.J.M., User-perceptions of
embedded software quality, Proceedings of the Eighth international
workshop on software technology and engineering practice (STEP’97),
pp. 184-197, London, July 14-18, 1997

[6] Kusters, R.J., Solingen, R. van, Trienekens, J.J.M., Strategies for the
identification and specification of embedded software quality, to be
published in: Proceedings of the Tenth international workshop on
software technology and engineering practice (STEP’99), 1999.

[7] Latum, F. van; Solingen, R. van; Oivo, M.; Hoisl, B.; Rombach, D.; Ruhe,
G., Adopting GQM-Based Measurement in an Industrial Environment,
IEEE Software, January 1998.

[8] Solingen, R. van, Berghout, E., “The Goal/Question/Metric method: a
practical guide for quality improvement of software development”.
McGraw-Hill, ‘http://www.mcgraw-hill.co.uk/vansolingen’, ISBN 007
709553 7, 1999

378

379

SESSION 7:

Process Modelling and Assessment

380

381

Software Process Improvement
in

Small Organizations
Using

Gradual Evaluation Schema

Naji Habra
Eustache Niyitugabira,

Anne-Catherine Lamblin
and

Alain Renault
Institut d’Informatique

 Technology Transfer Center

University of Namur

Namur, Belgium

Abstract

This paper relates a technology transfer experience which aims at
supporting the introduction of software process improvement in small
businesses, small organizations and/or small projects. The experience is
born from a European interregional collaboration between two university
research teams (France and Belgium) and a public technology center
(Luxembourg). One of the contributions of this experience is the design of
a Software Process Improvement approach particularly adapted to small
units on the one hand, and to regional context, on the other hand. The
proposed approach is gradual. It is based on three nested evaluation
models ranging from an extremely simplified model (the micro-evaluation
model) to a complete standard model supporting SPICE. The
intermediate model, called the mini-evaluation model, can be viewed as a
tailoring of SPICE and can be used by itself as a definitive model by
small businesses and small organizations.

382

1. Context and Motivation

The project is mainly addressed to the Small and Medium Enterprises
(SMEs) and small public organizations of the Walloon region, i.e., the
French speaking part of Belgium, which is one of the oldest industrial
region in Europe. Similarly to other old European industrial basins, the
region suffers from heavy aged industrial structures, e.g., iron and steel
industry, coal-mining… The region is achieving a phase of slow
conversion to modern industrial structures including small businesses
which are active, among other, in the domain of Information Technology
(IT).

The main characteristics of the regional environment are the persistence
of some old-fashioned bureaucratic management style, the coexistence of
new small dynamic businesses and old big industries, the small size of IT
businesses and the very small size of the majority of IT units in other
industries and in public organizations. A regional study made by the
Technology Assessment Group (CITA) of our university about Walloon
SMEs [1] gives some significant data: in about 30% of businesses, only
one person has software (in general) in his charges; and among the SMEs
developing and/or managing Information Technology, 60% achieve these
tasks with less than 5 persons. Such a very small size makes businesses
highly dependent on some projects, some actors and/or on some technical
capabilities, though they could be sometimes very innovative in their
domains.

Another characteristic of the SMEs of that region lies in the fact that they
are surrounded by rapid growing dynamic regions (French Lorraine
Region, Grand Duchy of Luxembourg,…) and they evolve in a European
context where the market is more and more open, and consequently, with
an increasing competition. In this context, it is obvious that software
quality in general becomes a crucial issue for Walloon SMEs even though
their resources are very limited.

383

The OWPL16 project, supported by a public funding of the Walloon
region, aims at assisting SMEs in their Software Process Improvement
(SPI). In particular, the main goal is to provide SMEs and small public
organizations with very simplified adequate models to initiate SPI
approaches.

In fact, standard models like CMM were initially designed for bigger
structures. So, they should be, more or less deeply, tailored and/or
adapted to very small organizations like our target SMEs. The first
reason is the cost of an evaluation process (+/- 25000$) and its duration
(+/- 8 month) [2] which are disproportional to the available resources. In
addition, the maturity level our target SMEs would get according a
general assessment model like CMM, would be very low. Brodman and
Johnson ([3],[4]) show that a great number of process improvement plans
based on the CMM encountered problems and that an important rate of
those problems (53%) were related to the size. The success of a CMM
process improvement plan actually grows with the number of people
having software process in charge.

There is also a similar need of adaptation with the SPICE model, even
though this model is intended to be suitable to SMEs. The cost and effort
remain too much important for very small organizations. A very simple
adapted model would be more suited for them (at least) as a starting point.

Another important point, lies in that the number of actors involved in
software process is very small. Several roles can be in charge of the same
single person . This makes the use of such models very complex for small
organizations.

In addition, actors in SMEs are far from being all Software Engineering
specialists ; so adapting the vocabulary is necessary to allow the model to
be used for self- assessment or for an assessment with a light support.

16 The acronym OWPL stands for Obsrevatoire Wallon des Pratiques Logicielles, i.e., Walloon
Observatory for Software Practices .

384

In summary, regional SMEs have a critical lack of software process
improvement in order to be competitive in a short or medium term. But,
due to their very small sizes and their limited resources, they need an
adapted model they can put in practice immediately and in a simple way.

The remainder of this paper describes the experience of the OWPL
project whose aim is namely to produce and experiment such a tailored
model. The project is undertaken by the Technology Transfer Center of
the university of Namur and funded by the Walloon Region (Belgium).
Meanwhile, our center collaborates with the University of Nancy (France)
and the Center of Public Research of the Grand-Duchy of Luxembourg in
a European ESSI project SPIRAL*NET17. This project has the more
general goal to increase the visibility of regional SMEs and to improve
the SMEs software process in general by the generalization of their best
practices. The target of the European project is the French speaking area
composed of the Grand Duchy of Luxembourg, the Walloon part of
Belgium and the French Lorraine.

2. The OWPL Approach

The main original idea of the OWPL approach of software process evaluation
and improvement is to proceed using three nested models which can be used
either separately or as successive stages in the SPI.

1. A first extremely simplified model (called the micro-evaluation
model) which is designed to have as lower cost as possible but also to
allow giving a first pertinent diagnostic to the assessed organization.
The rationale is twofold, to make the assessed SME aware of its
weakness but also of the potential effective improvement it can
expect, on the one hand, and to determine the priorities of subsequent
stages of evaluation and improvement procedures, on the other hand.

17 SPIRAL*NET is the ESSI ESBNET project 27884.

385

2. An intermediate model (called the mini-evaluation model) which is
the core of the OWPL approach. This model can be viewed as a
tailoring of SPICE model (with significant influence of CMM and
Bootstrap) particularly adapted to the context described in the above
section. This model can be used by itself and would be sufficient for
the majority of small businesses and small organizations. It can also
be used as a stage that prepares a full evaluation according to one of
the standard models.

3. The third model is the evaluation model we propose to organizations
having a certain maturity level and seeking for a more in depth
evaluation of one or more selected processes in reference to an
international standard . In such cases we propose the use of the SPICE
model.

Hereafter we give some details about the three nested models we propose.

 2.1 The micro-evaluation model

The aim of the micro-evaluation is to give a first outlook of the evaluated
organization, to make a diagnostic and guide the next steps of software
process improvement. The main requirement that drives the design of this
model is to be as less costly as possible, in time and money.

So, the designed model corresponds to a half an hour interview based on
a well-prepared questionnaire. The questionnaire covers six key axes we
select as the most pertinent and the most prior to our target organizations
on basis of former experience with SMEs evaluation.

These axes are the following:

1. quality assurance,

2. customers management,

3. subcontractors management,

4. project management,

386

5. product management, and

6. training and human resources management.

The questionnaire includes a few dozens of questions covering the axes
above. Questions are open, and each of them is associated with one or
more sub-questions allowing the interviewer, if need be, to adjust and
refine the information he gets. Evaluations are performed by members of
our software quality team, the interviewed person should be the one who
has the software quality in his charges in the evaluated organization ; this
corresponds usually to one of the executive staff members or to the
quality engineer, if this function exists.

Answers are interpreted according to a fixed grid. Two types of questions
can be distinguished. On the one hand, questions that concern essential
practices related to the general organization are rated on a linear scale
according to the quality of the practice assessed. On the other hand,
questions that concern the software practices are rated in a double-entry
grid according to the quality of the practice and to its effective
implementation in the evaluated organization (only for some critical
projects, for all projects,...). Detailed description of the micro-model can
be found in [13].

The result of the micro-evaluation is drawn up in a report of a dozen of
pages. A typical report first presents briefly the approach, then it develops
the results of the questionnaire and summarizes them according to the six
axes, then it analyses those results according the situation of the evaluated
organization (the age, the history, the declared goals,..) and finally gives
some recommendations to help the assessed unit to improve.

The micro-model has been experimented on a sample of two dozens of
representative organizations (IT small companies, IT services in other
businesses, public administrations using IT). Figures 1, 2 and 3 below
give examples of the resulted grids for three different situations. The first
grid is the detailed evaluation results according to the selected practices
while the second one is a summarized pictures according to the six
selected axes.

387

One can notice, that the first two cases show an evident weakness in the
process of software development itself. This corresponds actually to an
amateurish development without any well-distinguished phases or even
any notion of a lifecycle. Though, these two units have some strengths in
the subcontractor management, for example. A software process
improvement for these units should obviously start by the elaboration of a
lifecycle and of a development methodology.

The third example corresponds to a more mature unit which can expect, in
the short or the middle term, a good evaluation according to a more
complete model. Some weaknesses in the given assessment correspond, in
fact, to some good practices which are applied only to some projects but
not generalized to all the projects.

Figure – 1

Commitment towards quality (1)

Source of quality (2)

Requirements formalization (3)

Change management (4)

Customers integration (5)

Subcontractors selection (6a)

Subcontractors tracking (6b)

Project phasing (7)

Development methodology (8)

Project planning (9)

Project tracking (10)

Problems management (11)

Verification (12)

Versionning (13)

Product structuring (14)

Training and human resources
management (15)

Quality Assurance (A)

Customers management (B)

Subcontractors management (C

Project management (D)

Product management (E)

Training and human resources
management (F)

388

Figure – 2

Commitment towards quality (1)

Source of quality (2)

Requirements formalization (3)

Change management (4)

Customers integration (5)

Subcontractors selection (6a)

Subcontractors tracking (6b)

Project phasing (7)

Development methodology (8)

Project planning (9)

Project tracking (10)

Problems management (11)

Verification (12)

Versionning (13)

Product structuring (14)

Training and human resources
management (15)

Quality Assurance (A)

Customers management (B)

Subcontractors management (C)

Project management (D)

Product management (E)

Training and human resources
management (F)

389

Figure – 3

 2.2 The mini-evaluation model OWPL

The mini-evaluation model is the main task of the project OWPL which
aims at adapting quality models, e.g., CMM and SPICE, to the context of
the regional SMEs described in Section 1. The micro-evaluation model
above could be viewed as a preparatory phase preceding the use of the

Commitment towards quality (1)

Source of quality (2)

Requirements formalization (3)

Change management (4)

Customers integration (5)

Subcontractors selection (6a)

Subcontractors tracking (6b)

Project phasing (7)

Development methodology (8)

Project planning (9)

Project tracking (10)

Problems management (11)

Verification (12)

Versionning (13)

Product structuring (14)

Training and human resources
management (15)

Quality Assurance (A)

Customers management (B)

Subcontractors management (C)

Project management (D)

Product management (E)

Training and human resources
management (F)

390

mini-evaluation model. This latter one should be sufficient by itself for
the majority of small organizations.

 2.2.1 The adaptation principles

The adaptation of standard models that underlies the elaboration of the
OWPL tailored model follows the key ideas below.

– The OWPL model is mainly based on a tailoring of SPICE but it is
also influenced by CMM and Bootstrap. A certain traceability between
the tailored model and SPICE is preserved.

– The tailored model focuses on evolution aspects rather than evaluation
ones. In fact, our target SMEs would probably get a very low CMM
maturity level, for example. Though, they need to know their strengths
and weakness and they particularly need guidelines to improve their
process.

– The tailored model uses a simplified vocabulary and avoid as much as
possible the use of technical terminology. In fact, certain terms used in
the classical models (or at least in their translation to French) appear
too technical and troublesome.

– More generally, forms and questionnaires are simplified to avoid the
model utilization to appear as a cumbersome task which involves extra
bureaucratic work (see e.g., [5]). Small business resources are too few
and necessary to their immediate production tasks.

– Different tasks in the different practices of the model are considered to
be possibly (and even likely) assigned to the same person. So, the
model clearly indicates that the different terms used for the tasks
description designate different roles but not necessarily different
persons. The fact that two different tasks are (or must be) assigned to
different persons should be given explicitly.

– The model emphasizes the importance for an organization to define
explicitly its objectives in general and those of its software process in
particular. The model invites the assessed organization to refine its

391

objectives into goals and sub-goals and to relate them to the processes
and the practices of the OWPL model. We believe that making explicit
the relationship between the outcomes of processes and practices on
the one hand, and the declared goals of the organization on the other
hand, would be motivating in the improvement process. The
importance of making explicit the definition of goal is pointed out by
the GQM approach [6][7].

– The model is associated with methodological guidelines concerning
the action of software process evaluation as well as the awareness
actions, the communication of results,..

 2.2.2 The structure of the mini-evaluation model OWPL

Practically, the structure of OWPL model involves processes, practices
and success factors (see Figure-4 below).

The mini-evaluation model OWPL defines 8 processes each decomposed
into a number of practices (between 3 and 12) and is supported by some
success factors. The OWPL processes are issued from the SPICE and
CMM ones by assembling and simplification. In particular, a number of
high-level practices are regrouped in a process called “capitalization and
leveraging”. This process actually includes all practices related to the
generalization of acquired basic practices and their utilization in order to
improve in the medium term and the long term.

The identified processes are thus the following ones:

1. quality assurance process,

2. requirements management process,

3. configuration management process,

4. subcontractors management process,

5. development process,

6. project planning process,

7. project tracking and oversight process,

8. capitalization and leveraging process.

392

Each of the above processes is assigned a general goal in accordance with
the organization defined objectives. It involves a number of practices and
is supported by a number of success factors. One can notice the
traceability between the above process and the key axes used in the micro
evaluation model (Section 2.1).

Each practice is defined by its goal, its inputs and outputs, the resources
assigned to support it and its weight. This last attribute is an indicator of
the importance of the practice for the whole process improvement, its
possible values are normal, high or critical.

Success factors are general requirements related to the environment of the
process which determine its effective success. They correspond in fact to
CMM Common Features, or to SPICE Attributes. They includes
organizational, management, technical and human resources factors. A
detailed description of the OWPL model can be found in [8].

393

 2.3 The complete evaluation model

Some evaluated organizations may have (or may reach) a sufficient
maturity level that allow them to expect a good rating in the scale of
recognized models; such rating could also be critical for them to maintain
or to advance their situation in a highly competitive market. We do not
actually develop a new complete model for such situations, instead we
propose a SPICE evaluation focused on some processes which have been

SME global Objective

ContributeConditions

SME Software Objectives

Defined according to

Process

Condition

Support

Contains

Organized into

Supported by

Management

Success Factors

Organization

Human Resources

Technology

Input

Weight

Goal

Output

Support

Practices

Figure 4 : OWPL Model Architecture

Process Goal

394

identified (by means of the mini-evaluation) to be the most critical ones.
SPICE , as an international standard, is attractive for those SMEs seeking
for recognition. Actually, at this stage of our experience, a very small
number of SMEs are already at such an appropriate level.

OWPL in Practice

This section summarizes our experience with the OWPL approach. In practice,
the project duration is three years, the final goal is to provide the sought tailored
model and to propose it as a candidate to become a standard with some regional
recognition.

The strategy we adopted is cyclic. The idea is to produce a first release of
the models (for micro and mini-evaluations), then to experiment them on
some representative case studies, to refine them, to re-experiment them
again, and so on.

Practically, we started with an awareness action where the regional SMEs
were invited to a conference-debate on Software Quality. The important
audience at this conference confirmed us in our believe about the situation
of regional SMEs and their demand of software process improvement.
The next step was the experimentation of the micro-evaluation model on
the demanding organizations. The sample is composed of above 20
organizations and includes administrative units, IS services in medium
size businesses, small companies providing computer related services
and/or electronics components. The experience showed that the micro-
evaluation model is very attractive as a tool to start with, mainly because
of its extreme simplicity. All of the assessed organizations declared to be
happy with the results and the great majority demanded to continue the
SPI with our team, either through a second micro-evaluation, through
personal guidance, through the supply of information on SPI subjects or
through a mini-evaluation. We are now experimenting the OWPL
mini-evaluation model on a number of organizations which have been
evaluated according the micro-model. A new release of the model taking
into account the current experimentation is planned for the next
September.

395

Bibliography

[1] (CITA) Cellule Interfacultaire de Technology Assessment, “Utilisation
des Systèmes d'Information Inter-Organisationnels [SIO] par les PME
Belges”. Research Report of SIO, Cita-Computer Sciences Dept.,
University of Namur, Novembre 1997. In french

[2] Basque R. «CBA-IPI : How to Build Software Process Improvement
Success in the Evaluation Phase ?». In Software Process Newsletter,
IEEE Computer Society, No. 5, pages 4-6, Winter 1996.

[3] Brodman J. G. & Johnson D. L., “What Small Businesses and Small
Organisations say about CMM ?" Procedings of the 16th International
Conference on Software Engineering, Sorrento, Italy, May 1994.

[4] Johnson D.L. & Brodman J.G., “Tailoring the CMM for Small
Businesses, Small Organizations, and Small Projets” Software Process
Newsletter, N° 8, Winter 1997, IEEE

[5] Bach J., “The Immaturity of the CMM” in American Programmer, Sept.
1994.

[6] Basili V.R., Caldiera G. and Rombach H.D., “Goal/Question/Metric
Paradigm.” In Marciniak J.J., editor, Encyclopedia of Software
Engineering, volume 1, pages 528-532. John Wiley & Sons, 1994.

[7] Rombach H.D., “Practical benefits of goal-oriented measurement”. In
Fenton N. and Littlewood B., editors, Software Reliability and Metrics.
Elsevier Applied Science, London, 1991.

[8] Habra N., Niyitugabira E. and Renault A. “Modèle OWPL: Evaluation et
Amélioration des Pratique Logicielles dans les PME Wallonnes” Rapport
Technique 1/99, Institut d’Informatique, University of Namur 1999, in
french.

396

[9] Humphrey W.S., “Managing the Software Process”, SEI Series in
Software Engineering, Addison-Wesley, 1991.

[10] Koch G., “Process Assessment: the Bootstrap Approach” Information and
Software Technology, Vol30, N°6/7, 1993.

[11] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis and Charles Weber
Capability Maturity Model for Software, Version 1., SEI, CMU/SEI-93-
TR-24, Pittsburgh, Pa, Feb. 1993.

[12] ISO/IEC JTC 1/SC 7, ISO/IEC TR 15504, 1998

[13] Renault A. “Micro-évaluation des Pratique Logicielles ” Etude de cas,
Institut d’Informatique, University of Namur 1999, in french

397

Process Re-engineering Patterns

Masao Ito
Nil Software Corp.

2-17-7, Kinuta, Setagaya-ku, 157, JAPAN

Kouichi Kishida
Software Research Associates, Inc.

3-12, Yotsuya, Shinjuku-ku, Tokyo, 160, JAPAN

Abstract

In this paper, we describe process re-engineering patterns (PRPs). Process re-
engineering includes re-configuration of process structure. The purpose of PRP
is to provide knowledge needed for such operation as a set of patterns. In the
first chapter of the paper, various concepts related to software process are
clarified. And then, four fundamental PRPs are described in the second chapter.

1. Introduction

 1.1 Process Orientation

The basic strategy for software process improvement is as follows:

(1) Explicitly describe the process (Process modeling as a standard).

(2) Observe the process status (Quantitative process monitoring).

The first step corresponds to the level 2 or 3 in CMM, and the second step
corresponds to the level 4. During the past decades, a number of process
modeling and/or monitoring methods have been developed and studied (e.g. [1]).

398

On the other hand, there has been almost no effort to study process re-
configuration and analyze its impact. Process re-configuration is a technique
needed for rather non-continuous innovational process optimization than
continuous successive process improvement.

Of course, there are many best practice reports. But, most of these reports are
just success stories of the introduction of some tool/methods written from the
viewpoint of managers. There is no discussion from pure process-oriented
viewpoint.

 1.2 Definition of Terms

At first, we define some terms used in this paper. PROCESS is "all of real world
activities to develop/maintain software products". ACTIVITY is "a step in the
process, which creates externally recognizable status change". In this paper,
process is treated as a more abstract concept than activity. Activity is related to
the roles of agents (human participants or tools) or products.

In some cases, activity is also treated as an abstract concept. Let’s think about a
development activity performed by multiple persons. For example, "coding
activity" is broken down into "developer d1 codes module m1" and "developer d2
codes module m2", etc.

Like the distinction between class and instance in the object oriented
methodology, there is the distinction between a generic "coding activity" in an
abstract sense and a specific "coding module_m activity by developer_d" as an
instance.

In the instance-level, there are two types of relationships between activities: the
relationship with other instances of the same class activity and the relationship

399

with instances of other class activities. These two types of relationships can be
represented two-dimensional network diagrams18.

 1.3 Process Economics

In this paper, process economics means the discussion about profit/loss of
process planning/execution/management only based upon process structure. As
defined in the previous section, instance activities have a structure shown in
following diagram.

Figure 1. Structure of Instance Activities

As shown in this diagram, it is possible to distinct the body of an activity to
achieve its goal from other necessary operations like the preparation (interaction
with foregoing activities, planning for execution, etc.) and the confirmation

18 In the class-level, the relationship between activities becomes a two
dimensional network. But, this network only describes constraints of activity
execution. In the instance level, the third dimension of activity decomposition is
added to this picture.

Execution
Te

Interface Ti

Interface Ti

Preparation
Tp

Confirmation
Tc

link to an instance of the different activity

link to an instance of the same activity

400

(verification of products, preparation for delivery, etc.). Also, it is possible to
recognize the interfaces between other activities of the same class.

In general, it can be said as follows:

• The number of the instances is related to the possibility of decomposition of
the activity.

• The number of instances is proportional to the possibility of monitoring
(through confirmation).

• The longer execution time of the instance, the more risk of the schedule
delay.

Therefore, from the viewpoint of process execution, it is desirable to increase the
number of instances. But it is necessary to consider about the overhead of Tp,
Tc, Ti,

Let's think about two class activities A and B. Each has instance activities a1, a2,
and b1, b2. If we merge A and B into a single activity C, the execution time will
be same:

Te(c1 + c2) = Te(a1 + a2) + Te(b1 + b2).

But the preparation time Tp and the validation time Tc are expected to decrease,
because

Tp(c1 + c2) < Tp(a1 + a2) + Tp(b1 + b2), and

 Tc(c1 + c2) < Tc(a1 + a2) + Tc(b1 + b2).

When an activity is finished, some kind of product is delivered and should be
validated. So, activity merging decreases the opportunity for monitoring.

Next, let's think about merging instance level activities. For example, merging a1

and a2 into single instance a12. In this case, Ti (a12) becomes zero and Ti (a1) + Ti
(a2) will be included within Te (a12).

401

It is expected that the increment in Te(a12) is less than Ti(a1) + Ti(a2). If two
instance activities a1 and a2 are almost same size, and the resource provided for
the merged activity a12 is almost same, it will be possible to do validation at the
same timing as before. So, there will be no risk from the viewpoint of
monitoring. But the risk of schedule delay will become bigger than before.

These are the basis of the economic discussions about class and instance
activities in process reconfiguration. In the next chapter, we will present four
fundamental patterns of process re-engineering and discuss about process re-
configuration and its impact using these patterns.

Process Re-engineering Patterns

In this chapter, we present the four types of patterns useful for process re-
engineering. They are (1) Simplifying, (2) BPR, (3) Pipeline, and (4) Spiral
pattern. And the purpose, motivation, applicability, structure, and consequences
of each pattern are described within each pattern.

These four patterns are different in their structures. There are various trade-offs
caused from those structural differences. Following trade-off factors should be
considered when we adopt these patterns for re-engineering:

(a) Turnaround Time

(b) Overhead Time (Tp, Tc, Ti)

(c) Easiness of process monitoring

(d) Maximum amount of resources needed

(e) Risk (Schedule delay etc.)

(f) Organization

The easiness of process monitoring is simply measured by the number of
confirmation, namely the number of instance activities. In some cases, there may
be environments or tools that enable to monitor process during its execution. But

402

it may be a rather unusual situation. We treat the progress of an instance activity
as a black box.

In our pattern descriptions, we use CSP-like notations as follows:

• i : A Activity A with name i

• A1 ; A2 Normal execution of activity A1 followed by A2

• *A Repetition of activity A

• A1 || A2 Parallel execution of activity A1 and A2

• A1 ||| A2 Activity A 1 and A2 interleave

This provides the simple expression of the activity and the relations between the
activities. And we also depict the process by graphical notation. In it a square
shows an activity and a circle indicates the channel between activities, that is, an
information that will be stored as a document.

 1.4 PRP 1 - Simplifying Pattern

This is the most fundamental pattern of process re-engineering. It removes a
particular activity from a process.

Purpose

Minimize overhead in a process by removing an activity whose role is
degenerated.

Motivation

Reorganizing the pre-defined process, when it becomes out-of-date because of
the change in the adopted development methodology or product characteristics.

403

Applicability

• When the actual process looks different from the given standard process.

• When it is possible to change the process by switching human agents
around.

Structure

Remove unnecessary activity A2, or merge it into A1 or A3.

Consequences

(a) Turnaround time: shorter

(b) Overhead: less

(c) Easiness of monitoring: same (or less)

(d) Maximum amount of resource: same (or more)

(e) Risk: same (or more)

(f) Organization: same (or partially co-exist)

Related Pattern

In the BPR pattern, multiple activities are merged into single activity.

Pnew = A1 ; A3P = A1 ; A2 ; A3

404

 1.5 PRP 2: BPR Pattern

Merging multiple process elements and make them to be executed concurrently.
This pattern is adopted in BPR (Business Process Re-engineering).

Purpose

Decrease process execution time by the partition of the product and unified team
activities.

Motivation

When a process is decomposed into many fine-grained activities, it is difficult to
manage the interaction between those activities. In such situation, many agents
with different roles participate in the process, and it is difficult to maintain
unified process goal. If it becomes necessary to modify the process goal, each
activity can not adapt them for the change. If the interrelationship between
multiple products delivered from the process is not so strong, or there are no
cross relationships between them, the process can be divided product-wise, and
each product can be produced by a number of parallel sub-processes executed by
different small group of agents.

Applicability

• Software product can be divided into units with almost no interrelationship.

• Each sub-process is executed small group of human agents with a specific
goal. It is necessary that there is a possibility of sharing common
knowledge and experiences within the group.

405

Structure

Consequences

(a) Turnaround time: shorter

(b) Overhead: less

(c) Easiness of monitoring: uncertain

(d) Maximum amount of resource: same

(e) Risk: same

(f) Organization: large scale change

Usually, each activity has a single or small number of goals. In this BPR type
pattern, all of the roles (agents) participate with a single activity. As a result,
communication between agents increases. So, they should be organized as a
small physically closed group.

Related Pattern

The spiral pattern has the same goal of increasing turnaround time. But the spiral
pattern is used to develop products incrementally, on the other hand, BPR
pattern’s main goal is just to increase turnaround time.

Pnew = 1:P || 2:P || 3:P

P = A1 ; A2 ; A3

406

 1.6 PRP 3: Pipeline Pattern

Purpose

Shorten process execution time introducing parallelism.

Motivation

Parallel execution of the activities is the most effective way to increase
turnaround time. But, the introduction of the parallelism is not so simple because
there are some interdependency between activities.

Applicability

This patter is applicable when there is a basic system and introduce a kind of
change all over the system components. An example is the case of applying
specific changes all over the subsystems within a maintenance process. More
typical example is the case where a same agent can not execute needed for a
product continuously because each activity needs specific expertise: for
example, one person develops the functional specifications for all products, and
the other agent will defines user interfaces of all products.

When activities interleave like:

A1 = A11 ||| A12 ||| A13

A2 = A21 ||| A22 ||| A23

A3 = A31 ||| A32 ||| A33

a pipeline can be configured as follows:

407

Figure 2. The Execution of Pipeline

In this case, the average amount of resources: 9/5 = 1.8, and the cycle time
becomes 5/9 = 0.56.

Structure

Consequences

(a) Turnaround time: shorter

(b) Overhead: same

(c) Easiness of monitoring: same

(d) Maximum amount of resource: more

(e) Risk: same

(f) Organization: To be changed

Pipeline 1

Pipeline 3

Pipeline 2

A11 A21 A31

A12 A22 A32

A13 A23 A33

Pnew = A1 || A2 || A3

P = A1 ; A2 ; A3

408

In principle, each specific agent executes each activity. Then, to minimize
communication error, it is necessary to implement an organizational change to
assure that each activity can be assigned to a specific agent (e.g. an agent only
participates execution of A11, A12, and A13).

Related Pattern

It is same as spiral type in the sense of repetitive application of activities of the
same class. But the repetition is not concurrent. It occurs different point on the
time axis.

Misc.

As we stated earlier, it is difficult to introduce parallelism without using
pipeline type patterns. But, in the case of some development methodology, it is
partially possible. In Shlaer-Mellor’s Recursive Development, a method is
proposed to perform application analysis and decision of the implementation
mechanism concurrently after the decomposition of the target problem [2].

 1.7 PRP 4: Spiral Pattern

Execute development activities like analysis-design-test repetitively.

Purpose

• Decrease risks.

• Increase user satisfaction.

Motivation

In the discussion of software lifecycle, there are many spiral patterns. The most
famous one is the spiral model of software lifecycle [3]. Major motivation
behind this lifecycle model was early validation. Users wanted to validate the
behavior or appearance of the software system earlier. And developers wanted to
confirm the feasibility of implementation. Also, managers wanted to have more

409

reliable schedules in their hands. To achieve these goals, cyclic development of
prototypes and risk analysis is performed. This model was invented to overcome
the fatal defect of the classic waterfall model, where users can not see the shape
of product until final building phase is completed.

Applicability

This pattern is applicable when you can get the full appreciation from users.

Structure

P = *(A1 ; A2 ; A3) or P = A1; *(A2 ; A3) or P = A1 ; A2 ; *A3

There are several different ways to introduce repetition. Total sequence of
activities can be repeated, or some partial sequence of activities can be repeated.

Consequences

(a) Turnaround time: same or longer

(b) Overhead: more

(c) Easiness of monitoring: more

(d) Maximum amount of resource: more

(e) Risk: less

(f) Organization: same

This pattern does not contribute to the shortening of the process execution time,
but the development schedule become more reliable. Total amount of the effort
will be increased, but the quality of the products will be improved.

Pnew = *(A1 ; A2 ; A3)P = A1 ; A2 ; A3

410

Related Pattern

In the case of P = *(A1; A2; A3), if A1 is repeated before the completion of
A3, this pattern is same as pipeline.

Related Studies

There have been a number of studies using the term process patterns. Ambler
defines process pattern as "a collection of general techniques, actions, and/or
tasks (activities) for developing object-oriented software" [4]. He sorted the
elements of object oriented software development process as task, step, and
phase according to their granularity, and provided the desirable process. In
Catalysis Approach, there is a clear distinction between development context
and phase, and the methodology provides necessary process for each level [5]. In
the case of OPEN, they do not use the term process pattern, but the execution
procedure of each tasks are shown as patterns [6].

Common strategy in the above is as follows: It is impossible to solve all the
problems with one single method and process. At first, break down the total
problem solving process into the elements (phase in Catalyst, task in OPEN),
provide effective methods for each process elements, and give a guideline how
to use them in a combined way. For that purpose, the concept of process pattern
is used. Similarly, Beedle defined a pattern language for the business process re-
engineering [7].

PRPs described in this paper are purely oriented to the process structure. We
have no concern about the contents of each process element. And it’s also able to
apply non-object-oriented processes. In that sense, our approach is more
abstract. It is a meta-approach for the process re-engineering problem.

Summary

In this paper, we have discussed about the fundamental patterns in process re-
engineering. Before describing these patterns, we clarified the distinction
between process and activity, and also class/instance level in activity analysis.

411

Usual discussions of process scheduling are at the instance level, but our PRPs
mainly deal with class-level activities.

In this paper, the emphasis was put on the structural analysis of the process to
derive the possible patterns of change. But, the socio-psychological aspects of
the process re-engineering are also important, because human agents execute
most part of process. For example, in the case of BPR type pattern, people of
different roles participate into a single activity. They can share a common goal
for the product. It is better than the situation where the process is divided into a
number of activities and not easy to establish total perspective, and the quality of
the product will be improved naturally.

The concept of PRP proposed here is considered as a powerful tool to implement
an optimized process (CMM level 5). To achieve that goal, it is needed to do
more detailed study on the psychological aspects of process and to enrich PRPs
with collecting a number of best practices.

References

1. Garg, P. K., et al., Process-centered software engineering environments,
IEEE, 1996.

2. Shalaer, S., Mellor, S., "Recursive Design", Computer Language, March,
1990.

3. Boehm, B., "A Spiral Model of Software Development and Enhancement",
ICSE, 1985.

4. Ambler, S., PROCESS PATTERNS, Cambridge University Press, 1988.

5. D’Souza D., F., et al., OBJECTS, COMPONENTS, AND FRAMEWORKS
with UML, Addison-Wesley, 1998.

6. Graham, I., THE OPEN Process Specification, Addison-Wesley, 1997.

7. Beedle, M. A., "Pattern Based Reengineering", OBJECT magazine, Vol.6 No.
11, 1997.

412

Modeling Framework and Supporting
System for Process Assessment

Documents

Makoto Matsushita1, Hajimu Iida2, and Katsuro Inoue1

1Osaka University, Osaka, JAPAN
2Nara Institute of Science and Technology, Nara, JAPAN

Abstract

Process is usually assessed by comparing with the assessment documents,
though the information for the assessments are scattered; it is a time-consuming
job to gather them. In this paper, we investigated the method to obtain
information for process assessment by means of SPICE (Software Process
Improvement Capability dEtermination). First, we extracted the information
related to processes, products, and levels. Then, to construct the SPICE
documents based on that extracted information, SGML (Standard Generalized
Markup Language) was adopted. Based on the constructed SPICE documents,
we have made prototypes of two tools, a tool that shows the information about
process assessment on the display, and a tool that investigates relations between
processes and products. These tools enable us easily to get information for
process assessment, and to improve process assessments greatly.

Introduction

Improving software development processes are the important issues to achieve
effective software production or to reduce the cost of software development. To
improve this, first we should evaluate what the target of software development
process is going on.

Recently there are various studies of software process assessment and software
quality assurance, and the fruits are widely used in software development
organization [4,8]. There are lots of evaluation methods and reference model,
including CMM (Capability Maturity Model) [6,7], of SEI, ISO-9000 series

413

standards [14], SPICE (Software Process Improvement Capability
dEtermination) [17], etc.

Software process is usually assessed with examining the documents of the
projects or having interviews with the engineers and managers, by the experts of
software process assessment standards. However, such procedure is a time-
consuming job to execute, and the costs of this are very large; it seems that it is
difficult to do [4,11].

In this paper, we have designed the simple model that does not introduce our
original interpretation of software process assessment standards. The model
consists of three elements and relationships between them. The model is
described with SGML (Standard Generalized Markup Language) tag. We
reorganized software process assessment documents as SGML documents.
Using these documents, these standards can be easily handled formally and
implemented easily.�We have also designed a process assessment supporting
system for self-assessment, and implemented two process assessment supporting
tools.

SPICE

SPICE is one of software process assessment standards19, and now it is
standardized by ISO. The whole document of SPICE is about 400 or more pages.
SPICE arranges the whole activities in software development environment into
five “process categories”. Each process category consists of a set of “processes”,
and process is consists of a set of “base practice”. SPICE has yet another axis of
activities for evaluating the capability for each software development activity
named “capability level”. Each capability level consists of a set of “common
features” which represent the characteristics of activities. Each “common
features” consists of a set of “generic practice” (fig.1) [21].

19 Current version of SPICE was changed described in this paper. However, our proposed framework
is independant from old SPICE specification; we think that adapting current SPICE to our framework
should be possible.

414

The rough procedure to evaluate a software development process has three steps;
first, it should be decided what to be evaluated. Then, information is gathered
from the target process. Finally, information is evaluated checking with the
standards to sum up the result [20].

Figure 1: The classification of activity and the decision of assessment in SPICE
framework

Generic Modeling for Software Process
Assessment Standards

In this section, we show our modeling approach of generic software
development process in the assessment standards with the SPICE framework.

 1.1 Modeling Policy

The whole of software development activities focused in the software process
assessment standards are modeled with following three types of elements and
four types of relationships of these elements.

415

Elements

l Task: Task represents a set of activity in software development
environments. Process categories, processes, base practices in SPICE will
be candidates.

l Level: Level represents the achievements of software development work.
Capability levels, common features, and generic practices in SPICE will be
candidates.

l Product: Product represents generated materials and/or documents when
tasks go on, or prepared when the tasks start.

Relationships

l Task – Product: Relationship about “a product is needed to enact a task”.

l Task – Task: Relationship about “an another task is performed to enact a
task”.

l Level – Task: Relationship about “a task is performed to achieve a level”.

l Level – Product: Relationship about “a product is needed to achieve a
level”.

The elements defined in our model can be extracted from the elements of SPICE
standards, and the relationships can be extracted from the descriptions of SPICE
standards. Actual description of our model is shown in section 3.2.

 1.2 Model Description with SGML

In our approach, the model proposed in section 3.1 is described with SGML
(Standard Generalized Markup Language) tags that are inserted into the original
documents. In general, formed documents are structured as SGML documents; it
enables to process documents, to build documents databases, to exchange
document formats [10].

416

We define two tags to markup the documents, ELEMENT and RELATION for
elements and relationships of our model, respectively. The information of each
element and relationship is described as attributes of these tags, and it represents
clearly the meanings written in software process assessment standards. We also
define other tags to represent the structure of document itself, including the
preamble, a name of base practice, etc. Figure 2 shows a fragment of document.

Figure 2: An example of a SPICE document with SGML

Supporting System

This section describes an experimental supporting system for software process
assessment. The system employs SPICE as an assessment standard, and uses
tagged documents, which describes in the previous section. The purpose of this
system is to evaluate own software development process by developers or
managers themselves.

The system supports to view the documents, find a relationship of documents, to
apply logical operation, to maintain correspondences between the standard and
actual software process, to show assessment information, and to
register/accumulate assessment results.

417

The system consists of two tools and associated database (figure 3). There are
two tools; a tool that investigates the information about process assessment
document itself, elements and relationships written in the documents, and a tool
which manages the result of software process assessment. Each tool uses SPICE
documents that is tagged based on our model, and saves the analyzed result to
the database. The result of software process assessment is also saved to the
another database.

Figure 3: System overview

 1.3 Document Viewer

The document viewer shows the information described in SPICE documents, the
graphs of reference between tasks etc. Figure 4 shows a screen-shot of the
document viewer. This tool has following features:

l Word searching: The tool shows a fragment of documents corresponding to
a user’s input.

418

l Keyword searching: The tool enumerates the name of task and/or products
corresponding to a user’s input. In addition, corresponding documents are
shown by selecting enumerated one.

l Relation searching: The tool traverses the relationships in the documents.
Traversing may be recursive, so derivative relations can be found.

l Logical operation: Operations described above can be combined each other
by logical operations, such as getting intersection of two search results.
Operation results can be piped to other operation’s input.

Figure 4: The document viewer

The document viewer shows the result of these features visually. If the result
will be a set, the tool shows the result as a list; if the result will be a tree
structure, the tool shows the graph of the tree. In figure 4, the result of tasks that
are referred from a task is shown as tree structure.

 1.4 Evaluation Supporting Tool

The evaluation-supporting tool is for self-assessments of software process.
Figure 5 shows a screen-shot of this tool. This tool has following features:

l Document viewer: It is a subset of document viewer tool previously shown.
This tool shows a definition of words, task or products. If tasks are already
evaluated, its results are also shown.

419

l Database for mapping the standards and an actual environment: The tool
manages the relation between elements described in assessment documents
and actual software development environment. These relations are sorted
and showed in a table, and stored into a database. The files registered to
database can be displayed.

l Database of assessment result: Users may enter the result of the assessment;
specify a task, or a task and associated level, then enter the evaluation (two-
level or four-level evaluation) with a dialog. Evaluation result can be
selected with a button. These results are stored into a database.

l Collecting assessment results: The tool collects the result of evaluation,
then sums up each process category with a table. In addition, the tool sums
up each capability level and process category, then shows the results with
their capability maturity percentages.

Figure 5: The evaluation supporting tool

We have implemented and evaluated a prototype of this system with a software
development environment based on ISPW-6 [2].

420

Discussion

 1.5 Modeling Approach

Our modeling approach described in section 3.1 can retrieve the information
described in a large software process assessment documents such as SPICE. In
general, designing an assessment supporting system requires own interpretation
or explanation that is pre-defined by tool designer, then implements a system
with this requirement [3]. This approach may include a wrong interpretation of
assessment document to the system design, and may lead to a wrong result of
assessment. Our approach uses the original definition or relationships written in
the original document; it is less different from the original interpretation of
assessment.

 1.6 Tagged Document

In this work, we employ SGML as a description language of our model, design
and implement a tool based on tagged documents. SGML is commonly used for
various objectives such as reusing document or full-text database [5,9].
However, these applications are intended to handle many files in the same
format. Our system handles large single file and provides a feature to operate a
file. In addition, there are many SGML-based documenting support
environments [12,15,16], and they become popular tools for electric documents.
However, these environments have so many features and we want to keep the
whole system to be simple.

Recently, WWW (World-Wide Web) and HTML (HyperText Markup Language
[1]) are widely used in many places, especially in the Internet. There are many
tools or environments for HTML and we may use these powerful tools.
However, our purpose requires our own tag definition and implementation and it
requires some extension to HTML format; it should lose the portability of
HTML, so it should be avoided. We are now investigating an XML as our model
representation format.

421

 1.7 Supporting System

Our system is for the self-assessment, to support to give a hint of the process
improvement. Such assessment methods are not verified and guaranteed by
external organization, however, it is easy to execute with appropriate assessment
criterion; software assessment activities are widely used in lots of software
development organization.

It is a long term to proceed a software process assessment to an actual software
development project. Our tools has evaluation results database, so that
suspending and resuming the evaluation procedure is quite easy; it can be used
for long term evaluation. Our tools also support a database for relation of
assessment standards and actual environment, so it may supports the decision of
evaluation.

Our current prototype supports two types of activities in software process
assessment, gathering an information for evaluation, and calculation of the
evaluation result. These features are designed and implemented with the
procedures defined in an assessment standards [20], so users can do the right
way to assess a target process. Software process improvement based on the
assessment result will bring about better and effective software development.
This prototype currently depends on SPICE standards. However, our model does
not depend on it; adapting other standards to the prototype is possible.

Conclusion

We have proposed a model of software process assessment documents, and
defined it as SGML documents. We also designed and implemented a prototype
of software assessment supporting system. Using our approach and system,
software assessment documents can be formalized easily and the result of system
brings simple software assessment method.

As a further work, validation of our model and environment through
experiments and applying other software process assessment standards to our
model are planned. In addition, supporting other phases in process evaluation
(preparation, improvement planning, etc.) is needed to our system.

422

References

[1] Berners-Lee, T. and Connolly, D.W., “Hypertext Markup Language - 2.0”,
RFC1866, Massachusetts Institute of Technology Laboratory for Computer
Science / The World Wide Web Consortium, ftp://ds.internic.net/rfc/rfc1866.txt,
1995.

[2] Kellner, M.I., Feiler, P.H., Finkelstein, A, Katayama, T., Osterweil, L.J.,
Penado, M.H. and Rombach, H.D., “Software Process Modeling Example
Problem”, In Proceedings of the 6th Int. Software Process Workshop, pp.19-29,
1990.

[3] Omoto, N., Komiyama, T. and Fujino, K., “Software Process Assessment
Support System SPATS”, IPSJ Technical Journal, 95-SE-102-28, pp.159--164,
1995.

[4] MacLennan, F. and Ostrolenk, G., “The SPICE Trials: Validating the
Framework”, In Proceedings of the 2nd International SPICE Symposium, pp.109-
-118, 1995.

[5] Morita, U., Suzuki, M., Miyagawa, K. and Hamanaka, H., “A Trial For
Development of DTD for "JOHO KANRI" and "JOHO KANRI" Full Text
Database by Using HTML”, IPSJ Technical Report, 95-FI-37-2, pp.7--14, 1995.

[6] M. Paulk, B. Curtis, M. Chrissis, and C. Wever, “Capability Maturity Model
for Software, Version 1.1”, Software Engineering Institute, CMU/SEI-93-TR-
24, 1993.

[7] M. Paulk, B. Curtis, M. Chrissis, and C. Wever, “Key Practices of the
Capability Maturity Model, Version 1.1”, Software Engineering Institute,
CMU/SEI-93-TR-25, 1993.

[8] H. Saiedian, and R. Kuzara, “SEI Capability Maturity Model's Impact on
Contractors”, IEEE Computer, Vol.28, No.1, pp.16--26, 1995.

[9] Takayanagi, Y., Sakata, H. and Tanaka, Y., “Full-text Database System
Based on SGML”, IPSJ Technical Report, 93-CH-18-5, pp.35--42, 1993.

423

[10] Tanaka, Y., “Standardization of SGML”, Journal of IPSJ, Vol.32, No.10,
pp.1118--1125, 1991.

[11] I. Woodman, and R. Hunter, “Analysis of Assessment Data from Phase 1 of
the SPICE trials”, Software Process Newsletter, No.6, pp.1--6, 1996.

[12] DocIntegra, http://www.hitachi.co.jp/Prod/comp/soft1/open/docint.htm,
Hitachi Ltd., 1995.

[13] ISO 8879, “Information Processing - Text and Office System - Standard
Generalized Markup Language (SGML)”, 1986.

[14] ISO 9000-3 Guidelines for the Application of ISO 9001 to the
Development, Supply, and Maintenance of Software, 1991.

[15] OLIAS, http://www.fujitsu.co.jp/hypertext/granpower/topics/olias/olias.
html, Fujitsu Limited, 1996.

[16] Panorama Pro, http://www.sq.com/products/panorama/panor-fe.htm,
SoftQuad Inc., 1996.

[17] The SPICE Project, “Software Process Assessment -- Part 1: Concepts and
Introductory Guide”, Version 0.02, 1994.

[18] The SPICE Project, “Software Process Assessment -- Part 2: A Model for
Process Management”, Version 0.01, 1994.

[19] The SPICE Project, “Software Process Assessment -- Part 3: Rating
Process”, Version 0.01, 1994.

[20] The SPICE Project, “Software Process Assessment -- Part 4: Guide to
conducting assessments”, Version 0.02, 1994.

[21] The SPICE Project, “Software Process Assessment -- Part 5: Construction,
Selection and Use of Assessment Instruments and Tools”, Version 0.02, 1994.

424

An architecture for defining the processes

of the software and systems life cycles

Terence P. Rout and Peter Bernus

Software Quality Institute and

School of Computing and Information Technology

Griffith University

Queensland, Australia

Abstract

Attempts to define consistent reference models for systems and software life
cycle processes have been hindered by the lack of an acceptable underlying
architecture for such models. The use of existing enterprise architecture models
is put forward as an appropriate solution to this problem. By assigning
processes to identifiable entities in the enterprise model, problems arising from
the lack of definition of scope and of the relationship between different
processes can be resolved. The use of appropriate enterprise models as the basis
for process reference models is proposed as a resolution of the problems
associated with the development and application of process reference models for
the software engineering domain.

Introduction

Over the past five years there have been several attempts to define a set of
standard definitions for the processes of the software and systems life cycle.
These attempts have been hindered by lack of consensus over the structure and
content of an appropriate reference model, but substantial progress has been

425

made. This paper addresses one of the key remaining unresolved issues in this
task.

 Background

The first comprehensive set of definitions of software life cycle processes was
contained within ISO 12207 - Software Life Cycle Processes [1]. During the
development of ISO 12207, the SPICE Project developed a set of definitions in
the form of a Baseline Practices Guide [2] having a different (though similar)
architecture to that of ISO 12207; over the next few years, this model was
modified and brought into strong alignment with ISO 12207, and finally
approved as ISO/IEC TR 15504-2, a “Reference model for processes and
process capability” [3].

The model originally defined in ISO 12207, while promising, had a number of
deficiencies which detracted from its wide application. Principal among these
was the fact that the standard was developed from the perspective of process
implementation, rather than definition. The process descriptions in 12207 are
based around prescriptions of tasks and activities that need to be performed in
order to implement the process, and the intent of the process is described only in
terms of the performance of these activities. The Baseline Practices Guide has a
similar problem, though it included statements of basic purpose of each process
in the model. In ISO/IEC 15504, there was the emergence of a consensus - at
least within the standards community - as to how the standard descriptions of
processes should be formulated: processes are defined by describing the purpose
and the outcomes of successful implementation. There is also general agreement
on the nature of these descriptions; for example, ideally, each outcome would
have the following characteristics:

• capability-neutral (“capability” is used here in the sense of 15504)

• role-independent

• succinct

• not a restatement or functional decomposition of the purpose

• phrased in terms of a continuing responsibility to:

1. produce and maintain an artefact;

426

2. achieve and maintain a state; or

3. meet a constraint.

This approach leads to generally acceptable descriptions of processes of the
software life cycle, and early experience indicates these are also applicable to
other domains, including that of systems engineering. The development of
ISO/IEC 15288 - Systems life cycle processes [4,5], however, has highlighted
the lack of consensus on another critical aspect of this debate - the need for a
common architecture for the process models. The lack of a common
understanding of this issue is so pervading that a current proposal for resolution
avoids the issue totally, putting forward a view that would result in a
“repository” of process descriptions rather than a true reference model.

 The need for a common process architecture

A common architecture for life cycle process models is needed if the models
thus defined are to have truly universal application, and are to avoid problems of
incompatibility and interpretation between different uses and domains of
application. The architecture shows the relationships between processes, and
describes clearly how a given process contributes to the relevant process life
cycle.

The initial architecture proposed was that of ISO 12207, which established three
classes of processes: Primary, Supporting and Organizational. The Primary
processes included all of the product life cycle phases for software, together with
processes for Supply and Acquisition. The Baseline Practices Guide proposed
five Categories of processes: Customer-Supplier, Engineering, Project, Support
and Organization. The five categories were retained but extensively revised for
ISO/IEC 15504; they are now named Customer-Supplier, Engineering, Support,
Management and Organization. The processes are also now strongly mapped to
the architecture of ISO 12207 - the first two categories comprise the Primary
Processes, while the last two comprise the Organizational Processes. Figure 1
shows the processes of ISO/IEC 15504-2, and their relationship to the classes
and processes of ISO 12207.

427

With the System Life Cycle standard, however, a considerably different
architecture has been adopted (Figure 2).

There are obvious differences in the granularity of processes in the two models -
for example, all of the “supporting processes” in ISO 15504 are subsumed into
“activities” in the Assessment and Control processes in this model. There are
also differences in the relationships between the different processes; ISO 15504
implies a relationship between Project Management, Quality Management and
Risk Management (for example) that is absent in the draft for ISO 15288. While
a simple mapping between the two models is obviously possible, there is little
possibility of full-scale integration, without major change in accepted views.

Acquisition
Acquisition preparation
Supplier selection
Supplier management
Customer acceptance

Supply

Requirements elicitation

Operation
System operation
Customer support

Development
System analysis and
design
Software requirements
analysis
Software design
Software
implementation
Software integration
Software testing
System integration and
testing

Maintenance

Documentation

Configuration
management

Quality assurance
Verification
Validation
Joint review
Audit

Problem resolution

Management

Project management

Quality management

Risk management

Organizational alignment

Infrastructure

Human resource
management

Measurement

Reuse

Improvement
Process establishment
Process assessment
Process improvement

PRIMARY PROCESSES SUPPORTING PROCESSES

ORGANIZATIONAL PROCESSES

Figure 1 - Processes defined in ISO/IEC 15504-2

428

Figure 2 - Proposed Processes for the Systems Life Cycle

Part of the problem is that there is no recognised basis for the definition of a
suitable architecture, beyond the views of the domain experts that specific
groups of processes are in some way related.

Enterprise Models and Life Cycle Processes

A possible solution to the conflict is to adopt an architecture based upon an
existing framework for modelling that has shown its value and relevance in
spheres beyond that of systems and software engineering. One strong candidate
for a suitable framework is in the field of enterprise modelling, where a generic
architecture for modelling enterprises and related entities exists and has been
extensively evaluated.

PROJECT
MANAGEMENT
PROCESSES

Planning

Assessment

Control

AGREEMENT
PROCESSES

Acquisition

Supply

Negotiation

ENTERPRISE
PROCESSES

Multi-projects
Management

Investment
Management

Enabling
Infrastructure

Improvement
Management

Human
Resources

Risk
Management

Quality
Management

TECHNICAL
PROCESSES

Stakeholder
Requirements

Definition

Component
Implementation

System
Integration

System
Verification

System
Installation

System
Validation

System
Requirements

Definition

System
Architectural Design

429

 GERAM - an overview

GERAM (Generalised Enterprise Reference Architecture and Methodology) [5]
defines a tool-kit of concepts for designing and maintaining enterprises and their
products for their entire life-history. GERAM is meant to organise existing
enterprise integration knowledge. The GERAM framework unifies two distinct
approaches of enterprise integration, those based on product models and those
based on business process design.

The framework has the potential for application to all types of enterprise entities
meaning all entities the life of which is worthy of consideration in connection
with the enterprise. Several applications exist in the industry to date. The
framework organises methods, models and tools needed to build and maintain
the integrated enterprise [6] and its products. GERAM is the basis for
ISO 15704-Requirements for enterprise-reference architectures and
methodologies[7].

The GERAM framework identifies, in its most important component GERA
(Generalised Enterprise Reference Architecture), the basic concepts to be used in
enterprise engineering and integration (for example, enterprise entities, life-
cycles and life histories of enterprise entities). GERAM distinguishes between
the methodologies for enterprise engineering (EEMs) and the modelling
languages (EMLs) which are used by the methodologies to describe and model,
the structure, content and behaviour of the enterprise entities in question. These
languages will enable the modelling of the human part in the enterprise
operation as well as the parts of business processes and their supporting
technologies. The modelling process produces enterprise models (EMs) which
represent all or part of the enterprise operations, including its manufacturing or
service tasks, its organisation and management, and its control and information
systems. These models can be used to guide the implementation of the
operational system of the enterprise (EOSs) as well as to improve the ability of
the enterprise to evaluate operational or organisational alternatives (for example,
by simulation), and thereby enhance its current and future performance.

The methodology and the languages used for enterprise modelling are supported
by enterprise engineering tools (EETs). The semantics of the modelling
languages may be defined by ontologies, meta models and glossaries which are
collectively called generic enterprise modelling concepts (GEMCs). The

430

modelling process is enhanced by using partial models (PEMs) which are
reusable models of human roles, processes and technologies.

The operational use of enterprise models is supported by specific modules
(EMOs) which provide prefabricated products like human skill profiles for
specific professions, common business procedures (e.g. banking and tax rules) or
IT infrastructure services, or any other product which can be used as a
component in the implementation of the operational system (EOSs).

A key component of GERAM is GERA, the Generic Enterprise Reference
Architecture, which defines the generic concepts recommended for use in
enterprise engineering and integration projects. These concepts can be classified
as human oriented; process oriented; or technology oriented concepts.

The process-oriented concepts defined in GERA are: enterprise entity life-cycle
and life-cycle phases; life history; enterprise entity types; and enterprise
modelling with integrated model representation and model views. Life-cycle
activities encompass all activities from inception to decommissioning (or end of
life) of the enterprise or entity. The different life-cycle phases define types of
activities which are pertinent during the life of the entity. As one enterprise
entity operates, it implements life-cycle functions of another entity - eg. as an
engineering project operates, it may support the design and implementation
activities of the product life-cycle. The different classes of entity recognised in
GERA include:

Repetitive Service- and Manufacturing Enterprise Entity which are
enterprises supporting one or more types or a families of
products, produced in a repetitive or sustained mode.
Examples are service enterprises, manufacturing plants,
engineering firms, infrastructure enterprises, etc.

The products of the repetitive enterprise may be diverse, ordinary
products or products which are enterprises themselves, e.g. a
plant, or a project.

Project Enterprise Entity (often with a short life history) created for the
one-off production of another enterprise entity. (E.g. one of a
kind manufacturing projects, engineering projects, etc.)

The project enterprise are normally created by repetitive service and
manufacturing enterprises. and are closely linked with the life-
cycle of a single product or service. The products of project
enterprises may be diverse, such as large equipment,
buildings, systems etc., or an enterprise in its own right (e.g. a
plant, or an infrastructure enterprise).

431

Product Entity - a very large class of entities including any artificial
product, such as customer goods, services, hardware
equipment, computer software, etc. These entities are not
enterprises themselves, but their life-cycles are described by
GERAM.

GERA provides an analysis and modelling framework which is based on the
life-cycle concept and identifies three dimensions for defining the scope and
content of enterprise modelling:

Life-Cycle Dimension: providing for the controlled modelling process of
enterprise entities according to the life-cycle activities.

Genericity Dimension: providing for the controlled particularisation
(instantiation) process from generic and partial to particular.

View Dimension: providing for the controlled visualisation of specific views of
the enterprise entity.

Figure 3 shows the three dimensional structure identified above which represents
this modelling framework.

,QVWDQWLDWLRQ

/LIH�F\FOH

SKDVHV

9LHZV

'HVLJQ

3UHOLPLQDU\�GHVLJQ

'HWDLOHG�GHVLJQ

,GHQWLILFDWLRQ

&RQFHSW

,PSOHPHQWDWLRQ

2SHUDWLRQ

'HFRPPLVVLRQ

5HTXLUHPHQWV

5HIHUHQFH�$UFKLWHFWXUH

3DUWLFXODU�$UFKLWHFWXUH

*HQHULF

3DUWLDO

3DUWLFXODU

Figure 3 - GERA Modelling Framework

432

Within this framework, process modelling is the activity that results in various
models of the management & control as well as the service and production
processes, and their relationships to the resources, organisation, products etc. of
the enterprise.

Process modelling allows us to represent the operation of enterprise entities and
entity types in all their aspects: functional, behaviour, information, resources and
organisation. This provides for operational use of the models for decision
support by evaluating operational alternatives and for model driven operation
control and monitoring. It is this feature of GERAM that establishes its
suitability for supporting the process reference models for the software and
systems life cycles.

 An enterprise-based process model

The nature of the enterprise-related entities associated with an undertaking - in
this instance, a software engineering project - are shown in Figure 4. The
architecture of the processes associated with an undertaking of this type is
determined by associating the processes each to their relevant entity. Thus, the
basic processes of the software product life cycle - from Software Requirements
Analysis through to Software Operation - are associated with the product entity.
The processes classed in ISO 12207 and ISO 15504 as “supporting” are
associated with the Project entity, while other, organization-wide processes can
be associated with the “Company” entity.

433

Figure 4 - Enterprise-based model for the software life cycle

The example in Figure 4 shows a relatively small sample of what would, if fully
described, be a very complex architecture. Some of the strengths of this
approach can be seen if the issues of acquisition and supply of the “product”
entity are considered; Figure 5 displays some of the entities that would be
associated with these functions, and show a possible classification of life cycle
processes consistent with the architecture. In this expanded model, enterprise
entities are identified for the Supplier; the Acquirer; and the Developer.

Decommissioning

Operation

Implementation

Detailed Design

Preliminary Design

Requirements

Concept

Identification

Design

Decommissioning

Operation

Implementation

Detailed Design

Preliminary Design

Requirements

Concept

Identification

Design

Decommissioning

Operation

Implementation

Detailed Design

Preliminary Design

Requirements

Concept

Identification

Design

Decommissioning

Operation

Implementation

Detailed Design

Preliminary Design

Requirements

Concept

Identification

Design

Software

Engineering

Software

Engineering

Product Entity

Customer

Entity

Develops,
builds

Develops,
builds,

supports

Identifies,
specifies

434

Separate entities can be identified for the various projects - the Acquisition
Project, Supply Project, and Development Project - with interactions between
the various primary entities.

Figure 5 - Enterprise Entities and Life Cycle Processes

Each of the Project Entities is associated with the Product in different ways. The
model shows how a common set of processes can be associated with all of these
various entities, enabling a common understanding of the operations required to
achieve the joint undertaking to be shared between all of the parties involved.

We are not attempting in this paper to describe a complete architecture for the
set of life cycle processes; our intent is to demonstrate the value of an
architecture based upon existing enterprise architecture models, and to perhaps
lay the foundations for more detailed work to fully enunciate such a model.

Benefits of the proposed architecture

In examining the benefits of adopting a process model such as outlined above, it
is necessary to first explore the reasons for the development and adoption of
reference models for the life cycle processes. The primary justification for such

Strategic
entity

Operational
entity

Project
entity

Product
entity

Strategic
Enterprise
Processes

Operational
Enterprise
Processes

Project
Entity

Processes

Product Life
Cycle

Processes

IT - User

Acquirer Acquisition
Project

Product
(System or
Software)

Supplier

Developer

Supply
Project

Development
Project

435

a model is that of establishing a common vocabulary and understanding of the
processes associated with the product life cycle. The existence and widespread
acceptance of a set of standard descriptions of processes associated with a
specified domain - be it software engineering, systems engineering, or (for that
matter) conventional manufacturing is that it provides all of the stakeholders in
an undertaking with a common vocabulary for expressing their understanding of
the processes to be employed and controlled to achieve the goals of the
undertaking.

The use of an established architecture as a framework for the process
descriptions provides several benefits. In developing the reference model itself,
the architecture provides structure and helps to “anchor” the definitions against
accepted entities. The architecture helps also to provide a scope within which
the process is intended to function; the lack of an evident scope for existing
definitions can cause difficulties in interpreting the models.

In the application and use of the reference model, the existence of a well-
structured architecture also has demonstrable benefits. It permits, for example,
the specification of an appropriate set of implementable processes for a virtual
enterprise - a relevant context for systems engineering. It also provides a bridge
between the modelling concepts and techniques applied in integrated
manufacturing approaches, and the sophisticated (and primarily personnel-
based) life cycle concepts used in software engineering.

Summary and conclusions

There are inconsistencies and unresolved problems in the existing and proposed
reference models for systems and software life cycle processes. In order to
provide a firm foundation for integrated approaches to systems and software
engineering, it is important that these differences are resolved. The problems
reflect in large part the absence of a firm underlying architecture for the process
models.

We propose that the existing and well defined architectures of enterprise
modelling can provide the basis for a suitable architecture. In our proposal,
processes are related by their association with established entities in enterprise
models - product, project or enterprise entities. An examination of some

436

examples of appropriate indicates that the use of such an architecture can resolve
at least some of the existing problems and inconsistencies.

It is concluded that the lack of a sound underlying architecture is the basic cause
of the problems and inconsistencies in existing process reference models for the
software and system life cycles. The use of enterprise modelling principles to
establish suitable architectures is proposed as a resolution to the issue.

References

[1] ISO/IEC 12207: 1995, Information Technology – Life Cycle Processes
[2] SPICE Project (1995), Software Process Assessment – Part 2: A model for

process management, Version 1.00.
[3] ISO/IEC TR 15504: 1998, Information Technology – Software Process

Assessment - Part 2: A Reference Model for Processes and Process
Capability

[4] J.G. Lake (1997), Report on Development of ISO Standard 15288 -
System Life Cycle Processes, INCOSE ’97, Los Angeles.

[5] ISO/IEC JTC1/SC7 WG7 (1998), Life-Cycle Management — System Life
Cycle Processes, Working Draft 3.

[6] IFIP / IFAC Task Force (1997), Generalised Enterprise Reference
Architecture and Methodology Version 1.5.

[7] P. Bernus, and L. Nemes, A Framework to Define a Generic Enterprise
Reference Architecture and Methodology, Proceedings of the International
Conference on Automation, Robotics and Computer Vision (ICARCV’94),
Singapore, November 10–12, (1994). also in Computer Integrated
Manufacturing Systems 9,3 (July 1996) pp 179-191.

[8] ISO 15704: 1998, Requirements for enterprise reference architectures and
methodologies.

437

EFQM/SPICE INTEGRATED MODEL: THE
BUSINESS EXCELLENCE ROAD FOR

SOFTWARE INTENSIVE ORGANISATIONS

Elixabete Ostolaza and Ana Belen Garcia
Software Process Improvement Guidance Product Line

Summary:

This paper presents the EFQM/SPICE Integrated Model, a framework for
business management of software intensive20 organisations. It offers a
descriptive representation of the processes of an organisation that aims to
achieve business excellence through continuous improvement. It combines
the strengths of two well-known and accepted models: EFQM and SPICE
(ISO 15504). The model is the answer to how to apply TQM to software
intensive organisations maintaining the EFQM holistic approach, while taking
advantage of the effective process-based approach of SPICE for improvement
purposes.

The paper focuses on describing: the principles of the model; its structure (based on
processes and focused on business results); and the way to apply and integrate it into
business operations through tools and techniques such as assessment methodologies
and improvement cycles (in particular ESI EFQM/SPICE Assessment Methodology and

ESI IMPACT cycle). Additionally, it describes the experience gained with two trials
performed with the model.

Software Process Improvement Guidance Product Line.

EUROPEAN SOFTWARE INSTITUTE (ESI). Parque Tecnologico # 204. E-48170
Zamudio, SPAIN. Ph.: ++34-94 420 95 19, fax: ++34-94 420 94 20

Email {gorka, marisa, anabelen, elixabete, zorriketa}@esi.es

20 Software Intensive Organisation. An organisation which produces software as part of its product
development or which develops software for internal operation towards achievement of business
performance.

438

1. Introduction

The Total Quality Management (TQM) concept is gaining momentum
throughout all industry sectors as a quality and management philosophy that
drives organisations towards business excellence, i.e. towards a sustained
improvement of the organisational practices and results that guarantees the
continuity of the business. The increasing success of models like those of EFQM
and Malcolm Baldrige proves the interest of the international community in
TQM.

However, many organisations cannot take full advantage of TQM because they
do not have the ability to suit those models to their own particular context (e.g.
software companies). On the other hand, improvement of software processes in
traditional Software Process Improvement models is not oriented to business
goals leading to business excellence.

In order to help overcome these problems, the European Software Institute (ESI)
has developed the EFQM/SPICE Integrated Model.

The EFQM/SPICE Integrated Model is a process-based model for continuous
improvement that integrates SPI (Software Process Improvement) into the wider
context of TQM. For this reason it could be considered as the business
excellence road for software intensive organisations. It is the result of merging
two well-known and accepted models: SPICE and EFQM.
é The European Foundation for Quality Management (EFQM) and their

Model for Business Excellence represents the Total Quality concepts.
é SPICE - Software Process Improvement and Capability dEtermination –

(ISO/IEC 15504) is a continuous model for process improvement containing
good practices for software engineering.

EFQM is a model for business excellence, which is not specifically oriented to
software intensive organisations. It does not provide any help in the difficult
task of defining the key processes for a software organisation and how to
improve them to achieve concrete business goals.

On the other hand, traditional software process improvement models are not
TQM oriented. They manage software processes as isolated from the rest of
organisation’s key processes. These models focus on measuring the process in

439

order to control it and guarantee its continuous improvement. However, they
lose the global picture of the company and often measures are not tied to
business goals. The EFQM/SPICE Integrated Model provides a wider and
holistic approach by emphasising the business results of process improvement.
In this way, quality means meeting customer expectations, not just conformance
to a model. In fact, business results will be the starting point for the definition of
the business and process goals and improvement opportunities. The link between
the software process improvement programme and the business results is
therefore guaranteed and the software organisation ensures that improvement is
performed in the right way.

The EFQM/SPICE Integrated Model provides software intensive organisations
searching for continuous improvement toward business excellence with a unique
model, which also takes into account the improvement of software processes.
SPICE is a continuous model for process improvement chosen for its flexibility,
essential for adapting the processes to specific business goals or company
context.

The EFQM approach provides the integrated model with the necessary
framework to allow companies to link results with specific business goals and
makes a link possible between quality concepts, improvement and business
management. In addition, quality systems and business management should not
be separate activities but should operate concurrently as part of the overall
business system so that they are not inconsistent. Quality is not something that
should be added on to a business: the whole business should be managed in a
quality way.

The EFQM/SPICE Integrated Model has also inherited from the EFQM Model
its important focus on stakeholders: customers – internal and external, current
and potential; employees; shareholders; society and subcontractors. These
stakeholders are not sufficiently considered by other models or are only
considered as part of a contractual relationship, so the organisation tries to be
conformant to a set of requirements rather than caring about customer
satisfaction. The new model is based on concepts like partnership and
establishing win-win relationships with the stakeholders. It recognises the
organisation’s people as one of its most valuable assets (this is especially true for
software intensive organisations). It focuses on customer satisfaction and not just
in conforming to customer requirements. This is considered essential for
achieving long-term company success.

Alongside the EFQM/SPICE Integrated Model, ESI has developed an
assessment method. The main goal of the assessment method is to provide
software intensive organisations with a tool, based on the integrated model, to

440

determine their strengths and areas of improvement in their work to continuously
improve processes towards business excellence. This is possible thanks to
integrated model’s approach of processes based on best practices.

2. EFQM/SPICE Integrated Model: Technical
Description

The EFQM/SPICE Integrated Model, represented by figure 1, is the result of
combining the strengths of two well-known and accepted models: SPICE and
EFQM.

Figure 1 - Structure of the Integrated Model

The integrated model maintains the wider external structure of EFQM but is
internally configured like SPICE, based on processes, base practices and work-
products. There is a process category for each enabler criteria and in each of
these categories there are as many processes as there are subcriteria for the
relevant enabler criterion. SPICE processes play an important role in the model
as candidates for key processes. A mapping between the candidate SPICE

LEADERSHIP

PROCESSES

BUSINESS

RESULTS

PEOPLE

MANAGEMENT

PEOPLE

SATISFACTION

POLICY &

STRATEGY

CUSTOMER

SATISFACTION

RESOURCES IMPACT ON

SOCIETY

Customer-Supplier

Engineering

Organisation

Management

Support

Key
Processes

441

processes and the business goals will determine the key processes for the
software organisation.

Like SPICE, the integrated model has two dimensions:

é The processes and results dimension: a descriptive representation of both the
processes that a software intensive organisation aiming at TQM should
implement and the quantitative data it should gather to check that it is
achieving the right results.

é The capability dimension: a mechanism to measure the maturity of the
processes, the excellence of the results, and the scope of these maturity and
excellence levels.

442

 2.1 Processes and Results Dimension

 2.1.1 Processes

There are three types of processes in the integrated model (figure 2): enabler
processes, key processes and the measurement process. They share a common
process structure, which is:

é Process name

é Process purpose

é Process outcomes

é Base practices

é Work products (inputs and outputs).

Figure 2 – Structure of the Processes and Results Dimension

Enabler processes

The EFQM/SPICE Integrated Model consists of five process categories, one for
each EFQM enabler criteria. These are Leadership criterion process category,
Policy and Strategy criterion process category, People Management criterion
process category, Resources criterion process category and Process criterion
process category. Each process category has as many processes as subcriteria in
the corresponding enabler criteria of the EFQM Model.

Results

ENABLER processes

Key processes

Measurement process

443

Key processes

The model provides a set of candidate processes directly extracted from SPICE;
processes that characterise software organisations. Processes that are already
covered by other enabler processes (corresponding to other EFQM criteria) are
not considered key process candidates.
A mapping between the candidate SPICE processes and the business goals,
derived from the policy and strategy of the organisation, will determine the key
processes.

The SPICE processes proposed by the integrated model as candidates for key
processes are: Supply, Requirements elicitation and Operation processes from
the Customer-Supplier category; Development and System and software
maintenance processes from the Engineering process category; Documentation,
Quality assurance, Verification, Validation, Joint review and Problem resolution
processes from the Support process category; Project management, Quality
management and Risk management processes from the Management process
category; and Reuse process from the Organisation process category.

Measurement process

The measurement process identifies, collects and analyses data relating to the
organisation’s results. Its purpose is to demonstrate objectively the performance
of the organisation in achieving its business goals and satisfying the
stakeholders.

 2.1.2 Results

The integrated model contains a set of results, grouped by type and subtypes, to
which the measurement process is applied.

• Each type of result corresponds to an EFQM result criterion.

• Each subtype of result maps with an EFQM result subcriterion.

• Each type of result has two subtypes: the perception subtype, which
contains a list of attributes to measure the perception of the results by the
customer, people or society; and the performance subtype, with a list of
attributes that measure the performance of the organisation in satisfying the
needs of customers, people, society and shareholders.

444

 2.2 Capability Dimension

The EFQM/SPICE Integrated Model’s second dimension, the capability
dimension, has two aspects: one for processes and another for results.

The ‘process capability dimension’ is defined on the basis of the combination
of two factors (see figure 3):

• LEVEL – measures the degree of excellence of the process performance and
implementation approach. Like SPICE, there is a six point ordinal scale that
enables capability to be assessed from the bottom of the scale, Incomplete,
through to the top of the scale, Optimising.

• SCOPE – measures the degree of deployment of the process throughout the
organisation. Like EFQM, there is a percentage scale that enables the scope
of the application to be assessed from ‘not applied in relevant areas’ to
‘applied in all relevant areas and activities’.

Figure 3 – The Process Capability Dimension

Process A
Process B

Process C
Process D

0%

25%

50%

75%

100%

1

3

2

4

0

1

2

3

4

5

Level

Process

Scope

The Process Capability Dimension

0%

25% 4

50% 2

75% 3

100% 1

Process A Process B Process C Process D

445

The ‘results excellence dimension’ is also defined on the basis of the
combination of two factors:

• EXCELLENCE - measures the excellence of the results based upon a set of
five attributes: Pertinence, Trends, Targets, Comparisons and Cause. Like
EFQM, there is a one hundred point cardinal scale that enables excellence to
be assessed from the bottom of the scale (0), No Results, through to the top
of the scale (100), Best in
Class.

• SCOPE – measures the
degree of coverage of the
organisation’s relevant
missions, business goals,
areas and activities. There
is a percentage scale that
enables scope of the
results to be assessed from
‘not applied in relevant
areas’ to ‘applied in all
relevant areas’.

3. Applying the EFQM/SPICE Integrated Model

The EFQM/SPICE Integrated Model provides a framework for business
management of software intensive organisations. It offers a descriptive
representation of the processes of an organisation that aims to achieve business
excellence through continuous improvement.

The model itself is a static reference point, a structured group of good practices
for organisation and process management, that allows top management to
understand what TQM means for their software company. Applying this model
to an organisation implies combining it with a set of dynamic tools and
techniques that integrate TQM and SPI into business management.

Pertinence

Trends

Targets

Comparisons

Cause

0 1005025 75

Scope

The Results Excellence Dimension

Figure 4 – The Results Excellence Dimension

446

The EFQM/SPICE Integrated Model could be used solely for assessment
purposes or for business planning and improvement. The latter incorporates
assessment, and particularly self-assessment, as a strategic step in business
management based on TQM concepts. To support the application of the model,
ESI has developed:

é An Assessment Methodology (assessment method description, plus training
material and tool-set to support the assessment execution).

é An adaptation of the ESI Business Improvement Cycle, IMPACT (Initiate,
Measure, Plan, Act, Confirm, Transfer), to an organisation aiming to
implement TQM.

A description of the integration of the Model with the IMPACT continuous
improvement lifecycle is included below, in order to clarify the application of
the EFQM/SPICE Integrated Model in the business management context.

é INITIATE business improvement. The aim of this phase is to guarantee that
the business improvement programme is closely linked to the organisation’s
business needs and objectives. From the EFQM/SPICE point of view, this
implies a review of the organisation from the stakeholder perspective
(customers, employees, society, shareholders, and partners), in order to
clarify and define the organisation’s mission and objectives in relation to its
stakeholders. The business objectives will be quantified in terms of the
RESULTS of the EFQM/SPICE Integrated Model, so that the improvement
cycle is driven by the optimisation of these business results. In addition, the
key processes for the business will be selected as a result of mapping the
SPICE candidate processes of the integrated model with the business goals.
Finally, this phase of clarification and definition of the business mission and
improvement goals should be performed jointly with the business planning
activities. This will ensure that quality and improvement are understood as
an embedded part of the global strategic business planning rather than as an
external constraint that is later added to the system.

é MEASURE current situation. The aim of this phase is to understand the
current situation of the organisation, in relation to the previously defined
business goals and target results. This implies performing an assessment
using the EFQM/SPICE Integrated Model as the framework against which
the organisation is compared. Following the TQM philosophy, the
assessment should be carried out in two steps:

447

Þ Assessment of the RESULTS: what the organisation is currently
achieving in relation to the quantifiable results that characterise the
business objectives and that were defined in the INITIATE phase. The
performance gap is determined between the targets defined in the
INITIATE phase and the current results.

Þ Assessment of the PROCESSES: based on the principle that the
organisation’s processes generate the organisation’s results, this
assessment determines the cause of the performance gaps found in the
results assessment. Both key processes and enabler processes are
assessed. To reduce the scope and cost of the assessment, a preliminary
study can be performed to determine the set of processes that are most
likely to affect the business results and business goals, so that only those
processes are assessed. ESI has developed an interdependency analysis
between the criteria and sub-criteria of the EFQM Model to support the
selection of adequate processes to assess.

The result of the assessment is a description of the strengths and areas for
improvement of both the results and the processes relating to the
organisation’s business goals.

é PLAN the improvement. The aim of this phase is to prioritise and plan the
actions to be taken, based on the assessment results and business goals.
Actions will mainly include improvement of existing competencies and
processes or creation of new processes. The EFQM/SPICE Integrated Model
could be used as a source of good practices for defining the process
improvements. A Measurement Plan should be developed following the
practices recommended by the Measurement Process of the EFQM/SPICE
Integrated Model. This will be essential for the future verification of the
improvements and for evaluating the overall effectiveness of the business
management system in fulfilling the business goals.

é ACT to improve. The aim of this phase is to implement the actions
following the defined plan. Managing the change is a critical step in making
improvements happen. It is important to maintain continuous control over
the implementation activities in order to avoid deviations. This phase is not
covered within the scope of the EFQM/SPICE Integrated Model.

é CONFIRM and sustain the improvement. The aim of this phase is to review
and verify improvement and to ensure that it will be sustained in the future.
The verification method will be the re-assessment of the processes and
results of the EFQM/SPICE Integrated Model that have been involved in the
improvement. The assessment of the quantifiable results will be possible

448

thanks to the application (during the ACT phase) of the Measurement Plan
that was designed during the PLAN phase. This plan will have provided the
appropriate data to evaluate fulfilment of the objectives of the plan. The
activities and controls necessary to ensure that the improvements will be
sustained in the future should be analysed and put into action.

é TRANSFER the benefits. The aim of this phase is to complete the
improvement life cycle by documenting the benefits obtained, the
experiences gained and the lessons for the future. This makes it possible to
establish and maintain the organisational knowledge, culture and assets.
These are the key elements to long-term successful improvement. The
TRANSFER phase of IMPACT implies achieving these goals not only in an
individual organisational context but also in a collaborative international
context, sharing experiences for the benefit of all. This is an important
principle of the EFQM interpretation of TQM. ESI provides a Repository of
Experiences that allows the institutionalisation of improvements across
Europe.

In summary, the EFQM/SPICE Integrated Model provides a process based
framework for software intensive organisations to implement a management
strategy for software process improvement, aimed at business excellence, based
on continuous improvement cycles.

3. Validating the EFQM/SPICE Integrated Model

The European Software Institute (ESI) has carried out in the second semester of
1.998 two trials of the integrated EFQM/SPICE Model in the Software
Departments of two large Organisations.

The ESI objectives of the trials were to validate the efficiency of the
EFQM/SPICE integrated model in a real context and to evaluate the
EFQM/SPICE assessment method.

The Software Departments objectives were to obtain a picture of the actual
situation of their departments. As a trial result they got a report of three parts:

- A list of the main strengths and areas for improvement.

449

- For each of the assessed process, a complete list of the strengths and areas
for improvement found and, the profiles of each process.

- A list of recommendations for starting an initiative of improvement.

The first step was to ask Department Managers to describe their business
goals. Once the business goals were clearly identified, the assessor team
first selected from the candidate SPICE key processes the appropriate
ones to be assessed considering the defined business goals and next, the
appropriate Enabler processes to be assessed were selected. The process
selection method applied for the SPICE processes was the one that ESI
has developed to define their BIG-guides21. The Enabler processes were
selected taken into account the software department context (is the
organisation involved in a total quality management initiative? Does the
software department have an independent budget? Do they have
autonomy to define the human resource management policy?,…).

The goal of the assessment was to get a picture of the current situation of
the Software Departments, both from the organisational point of view -
focusing on leadership, people management and financial aspects in an
EFQM assessment manner – and from the projects point of view –
assessing design, project management, relationship with customers for the
project,… in a SPICE like manner -. That is, the goal was to perform an
EFQM and SPICE integrated assessment.

Positive aspects observed when performing an integrated EFQM/SPICE
assessment were:

- The ability to refine or redefine the initially stated business goals with
the assessment results.

- The assessments highlighted the extent of the role which software has
in an organisation.

- The assessments enabled organisational managers to get a better
understanding of how software is developed.

21 BIG-guides: Series of Business Improvement Guides that relate the software process
improvement (based on SPICE) to static business goals. ESI has developed three BIG guides: BIG-
TTM – with Time To Market as business goal -, BIG-ISO – with ISO 9000 as business goal - and
BIG-CMM – with CMM level 2 as business goal -.

450

- The assessment demonstrated gaps between organisational business
management and the software management raising awareness of the
need to manage software based on organisational needs.

- The SPICE like process assessment approach made easier to software
practitioners to interpret the EFQM criteria.

- The SPICE like process structure of the EFQM/SPICE integrated
model provides an interpretation of EFQM for software intensive
organisations that is very useful to provide strengths and improvement
areas for the software organisation or department assessed.

Some weaknesses detected during the integrated assessments:

- Some organisational processes related with organisational issues such
as leadership or policy and strategy are difficult to assess at the
department level when the full organisation is not involved in a total
quality management improvement initiative. The organisation top
management commitment and participation is therefore essential for
the complete success of this type of initiatives.

- The capability dimension of ENABLER processes is, in some cases,
complicated for rating purposes. Further work on this aspect is
required to improve the model.

4. Conclusions

The EFQM/SPICE Integrated Model presented in this paper provides software
intensive organisations with a unique model that combines the strengths of two
well- known and accepted models: EFQM and SPICE. The model can be used
for assessment purposes or for business improvement and planning purposes. Its
process approach, taken from SPICE, makes the model a flexible tool.

 4.1 Added Value with Respect to SPICE

The added value of the EFQM/SPICE Integrated Model with respect to SPICE
is:

é It offers a holistic process description of the software organisation, so it
covers organisational issues that are partly or completely outside the scope

451

of SPICE. For example, this includes leadership, people management and
financial aspects.

é Software process improvement and quality activities do not follow a
separate direction to business management activities. They should be
integrated as part of the global management strategy so that quality is built
into the system rather than added to it as an external requirement.

é The EFQM/SPICE Integrated Model focuses on business results and implies
measuring those results. SPICE only looks at measuring processes to control
them and guarantee their continuous improvement at process level. It does
not fully address the global organisational picture. The new model measures
business results as the starting point for defining the appropriate measures to
control and improve the processes. Measuring the results provides valuable
information about the real business improvement.

é The new model shows a clear relationship between how the software
intensive organisation operates (processes) and what it achieves (results). It
allows an improvement approach clearly driven by the business needs and
goals. SPICE is not able to guarantee so clearly that the right improvements
are being implemented.

 4.2 Added Value with Respect to EFQM

The added value of the EFQM/SPICE Integrated Model with respect to EFQM
is:

é The EFQM/SPICE Integrated Model is an interpretation and adaptation of
the general EFQM Model for the software development world. It facilitates
its applicability to these kind of organisations by making it easier for
software practitioners to understand.

é It shows what TQM means for a software intensive organisation. It describes
a set of good practices for implementing the EFQM Model in a software
intensive organisation.

é It is process focused, so it is possible to apply it to software intensive
organisations (in assessments, improvement programmes, etc.) in a more
flexible way (e.g. considering only the processes, which have an impact on a
sub-set of results).

452

é The new model includes a set of clearly defined capability levels for the
processes that allows a more objective assessment of the maturity of the
processes (sub-criteria in the EFQM Model). In addition, the capability
levels define a way to manage and improve a process and so support the
definition and implementation of improvement programmes.

5. Bibliography

Conti, Tito Building Total Quality. A guide for management. English language
edition 1993. ISBN 0 412 49780 8

Conti, Tito Organizational self-assessment. First edition 1997. ISBN 0 412
78880 2

EFQM European Foundation for Quality Management. Self-Assessment 1997.
Guidelines for Companies

SPICE ISO/IEC TR 15504 Software Process Assessment’s Parts 1-9,
Technical Report type 2, 1998

Rementeria, Santiago Software management effectiveness in a wide
organizative context. Paper, 1997

Garro, Inigo Improvement for the business. Iñigo Garro & Giuseppe Magnani.
European Software Institute (ESI). Paper, 1998

453

A Reading-based Scenario for

ChaRacterising and Exploiting Process
components

Maria Tortorella* and Giuseppe Visaggio**

* Faculty of Engineering, University of Sannio

Palazzo Bosco Lucarelli, Piazza Roma, 82100 Benevento, Italy

(martor@ingbn.unisa.it)

** DIB - Dept. of Informatica, University of Bari,

Via Orabona 4, 70126 Bari, Italy

visaggio@di.uniba.it

 Abstract

The improvement of the existing software processes requires the adoption of
innovative process components, and the exploitation of the process components
that are already used in other contexts. But it can happens that only an informal
description of the process components is available. Therefore, before adopting a
process component, it is necessary to formalize it for suitably comprehending
the information available and evaluate if they can be candidate for integration
into a software process to be improved. The authors of the paper propose a
characterization framework for helping to comprehend and candidate a process
component. This paper describes an experimentation to validate the framework
by using a scenario. The unexpected result obtained indicated the framework
more effective without using the scenario. This event encouraged the authors to

454

make a more probed analysis of the available data. Two lessons learned resulted
by this analysis: the first one assured that the use of the framework is as much
effective as more difficult the source of information to be understood is; the
second one suggested some modifications to the framework to make the
scenario to be more effective.

1. Introduction

The requirements of improvement of the software product quality
imply the continuous improvement of the software
processes [1], [2], [9] and [14]. This can be achieved by
integrating innovative process components into the
working software processes to be improved. The
expression process component is used to indicate either
a guideline (a simple set of rules), or a technique (an
algorithm or a series of steps whose execution requires
some knowledge and competence and produces a
certain effect), or a method (a particular management
procedure to apply techniques), or a simpler process (a
set of methods and interrelationship to combine each
other and necessary to reach a specific goal).

The improvement intervention can be referred to the following aspects: the
extension of an existing process by introducing one or more innovative process
components; the substitution of one or more components of the process with
innovative ones that are semantically equivalent; the modification of one or
more components in the software process. This definition includes also the
aspects of construction of a new software process.

There exist a fair amount of process components available for improving a
software process. However, it is not always apparent to the manager which of
those to invest in, and whether they pursue the improvement goals established
and are integrable into the working process to be improved. The improvement
intervention involves the following tasks:

455

1. identification and description of the improvement goals and the
characteristics of the process components in order to be integrated into the
process to be improved and to be adequate to the production environment;

2. identification of the process components that are to be substituted or added
in order to reach the predefined improvement goals;

3. definition and/or identification of the process components to be integrated;

4. evaluation by using a quantitative approach of the quality and integrability
of the process components identified and risks their adoption involves.

Tasks 1 have already been faced in the literature [1], [2], [14].
Task 2 is committed to the manager decisions. Task 3
involves the searching in literature or in other information
sources. Task 4 is treated in this paper.

The exploitation of the process components requires they are
understood in order to be evaluated and candidate,
choose the most suitable one between the ones
candidate and integrate it into the software process. This
requires the extraction of complete and correct
information about process components from the
documentation. But, unfortunately, This task is not always
easy owing to the lack and ambiguity of the information
published. Therefore, it is difficult to completely
comprehend them and all the attributes necessary for
evaluating their conformity and adequacy to the other
process components to be interfaced.

These problems are still scarcely faced in the existing literature. In [10], [11] and
[12], Song and Osterweil propose an approach for comparing project and
development methods but this depends strongly on the process component being
evaluated and takes no account of whether it could be integrated and made
operative in the process to be improved. Discussion of these problems in greater
depth is made in [13], while the lack of immediate applicability of the above

456

approach has been demonstrated in [5], the authors were only able to apply the
evaluation schema to High Performance Systems after substantial modifications
had been made.

The approach REP (chaRacterising and Exploiting Process component) aims to
extracting and exploiting innovative process components in order to construct a
new process or improving an existing one [6]. REP is based on a
characterization framework useful for the analysis and evaluation of the process
components. The framework can be modified and specialized to the particular
context the process component has to be used in, [6]. In fact, the improvement
requirement of a process requires information that depends on the general goals
of a process and the specific ones of a project. Then, the framework of REP can
be modified on the basis of the specific goals of the software process and
project. Besides, it guides to comprehending the analysed technology and helps
to identify the inconsistencies, ambiguities and incompleteness of the
documentation available.

The paper presents a controlled experiment aiming to verify whether the
characterisation framework improves comprehension of the process component
being analysed and whether the evaluation can be further on improved by using
an approach based on reading through a scenario. The results obtained showed
that the reading from an informal description to construct an applicable
formalism presents problems of correctness and completeness that are not easily
solvable by using a technique based on scenario. The paper presents some
shrewdness to be adopted when a scenario is defined.

 The following section briefly describes the REP approach and its
characterisation framework. Section 3 presents the experimental design and the
probed analysis. Finally, the last section states lessons learned and further work.

2. The REP approach

 The REP approach aims to support a user to innovate a software process by
adopting a process component described in literature [13]. It is based on the
formalization and characterization of the process components to be analysed.

457

 The formalization task consists on analysing the documentation available about
a process component, interpreting the ambiguous and incomplete information,
and describing the process component in a formal and unambiguous model. This
task is pursued by adopting a Modelling Formalism chosen by the software
engineer. The one adopted in the REP approach is the one supported by the
Process Conceptual Modeler (PCM), a tool in the PROMETHEUS (PROcess
Model Evolution Through Experience Unfolded Systematically) environment
[4].

 The characterisation task involves the instantiation of a characterisation
framework whose aim is to help a software engineer to recognise those process
components that satisfy the requirements of the improvement process, evaluate
them and choose the one best suited to his purposes from among a set of process
components with similar features [13]. Then, it can act as a guide to formalising
process components and helps to identifying inconsistency, ambiguity and
incompleteness in the documentation published in literature

 The characterisation framework synthesises into homogeneous categories all the
information necessary for evaluating the integration of a process component into
a software process to be improved. The aim is to verify if the characteristics of
the process component analysed are conform to the correspondent ones in the
process to be improved. The main categories considered are the following:

 Input, to define the characteristics of the objects necessary for the process
component to operate. Seven questions are considered to investigate about the
typology of the input deliverables necessary to the process component to
operate and their mappability, conformance and adequacy to the deliverables
available in the process to be improved;

 Output, to define the characteristics of the objects the process component
produces. Even in this case, seven questions are considered to analyse the
conformity of the deliverables produced by a process component as output, to
the deliverables the process to be improved expects from it;

 Emphasis, one question has to be answered to identify the process component
goals and their conformance to the goals of the process improvement;

458

 Domain, one question is considered to collect the characteristics that are to be
satisfied by the input objects in order for processing by the process component
to be possible;

 Environment, two questions are used to analyse the starting state of the external
environment necessary for the process component to operate, and the ending
state produced by its application;

 Techniques, one question is considered to outline the technological
characteristics of the process component;

 Formalisation, one question has to be answered to define the rigorousness with
which the process component is expressed;

 Quality, six questions are used to express the quality of the process component
and output objects produced: the automation level of the process component
and its possible improvement, if quality parameters and econometric models
are used, and its scientific and experimental maturity.

 For brevity, the full characterisation framework is not shown here. A detailed
description can be found in [6].

 The framework can be considered as composed of a general part that can be
reused in any context and a specialised one that has to be adapted to the
particular kind of process component to be analysed. The general part is
composed of questions general purpose that can be applied to every context and
any kind of software process. The specialized part is composed of questions that
mould the framework to the particular context of the software process to be
improved. For example, the experimentation illustrated below was an application
to the field of the reverse engineering and the framework included questions
specialized to this context, i.e. questions investigating the possibility to recover
the unstable knowledge residing in the minds of men who have a good working
knowledge of the programs, the possible modification of the input deliverable,
the scientific and experimental maturity, and so on. Being composed of a general
part and a specialized one, the framework can evolve, be improved as new
experience is gained, and modified to consider new aspects as occasion may
arise. From this point of view, the characterisation framework can be considered

459

as an accumulator of experience and it is reusable, as a framework should be,
and can be specialised for each application domain using the experience
accumulated concerning the target domain.

2.1. The scenario

In order to support an evaluator to correctly apply the REP
approach, an instrument based on reading was defined.
This instrument aims to guide the evaluator to extract the
needed information from the documentation of a process
component and minimize the subjectivity when answering
the questions of the framework. Then, a scenario of REP
was elaborated. It indicates to the evaluator exactly which
information are needed for evaluating a process
component. In it, the construction of the Process Model
occurs together with the instantiation of the
characterization framework. In fact, the scenario is based
on the assumption that in order to answer a question of
the framework, it is not necessary to analyse all the
objects in the process model. Then, each question is
preceded just by the formalization steps defining the
process model objects necessary to answer it.

Table 1 shows a fragment of the scenario to answering the first
question of the framework. Question 1 is referred to the
input mappability whose evaluation regards the
information about the deliverables input to the analysed
process component and their structures and it is
preceded form Steps 1 and 2 aiming to formalize this
information.

460

Table 1 – Scenario fragment for the input category

Step 1. Identify the components for each Input Deliverable and describe
them in the DBS

Step 2. Create the Deliverable Report of each Input Deliverable in the DBS.
It will contain the following:

− the deliverable structure: the deliverables that are simple are to be
managed like information tokens; the compound deliverables are to be
described by using the chain, alternative e repetitive operators (Deliverable
Structure);

− a textual description of the deliverables (Deliverable Description).

I1. Are the input deliverable required by the process component mappable to those
available?

M1. Input_mappability
Domain of values : {not mappable; partialy mappable; fully mappable; under-

mappable; over-mappable }

Scenario: Identify at the context level the input deliverable DIP:
− Substitute the deliverable in DIP that are at an abstraction level higher than

the available deliverables in DIA, with their sub-components described in the
DBS

− Substitute the deliverable available in DIA that are at an abstraction level
higher than the input deliverables in DIP, with their sub-components

− Verify the equivalence of the deliverables in DIP to the ones in DIA:
DIP ∩ DiA ≠∅: Input_mappability = partialy mappable;

DIP ∩ DiA = ∅: Input_mappability = not mappable;

DIP = DIA : Input_mappability = fully mappable;

DIP ⊂ DIA: Input_mappability = over-mappable;

DIA ⊂ DIP : Input_mappability = under-mappable;

461

3. Experimentation

The experimental subjects involved in the experimentation were students
attending Software Engineering II, a course in the fifth year at the Department of
"Informatica" of the University of Bari.

The analysis of the experimental results was made from two perspectives. The
first perspective aimed to verify if the characterization framework could be
considered an adequate tool for better comprehending the informal description
of a process component. The second perspective aimed to evaluate the
effectiveness of the scenario as a reading technique helping to make uniform the
comprehension of the different analyzers. The analysis from the first perspective
is briefly described below. A detailed description is given in [6]. This paper
discusses in details the analysis made from the second perspective.

3.1. Experimental design

All the experimentation considered six independent variables.

1. The training to the use of the characterization framework. It took place
through theoretical lessons and practical sessions. Table 2 lists the topics
treated during an initial training, and the hours were dedicated to each topic.
The initial training was followed by an initial experiment during which the
experimental subjects could apply the knowledge gained to a simple process
component. The comparison experiment occurred after further training,
necessary to solve the difficulties met in the initial experiment. Two more
complex process components were analysed during the comparison
experiment. The training was the treatment variable for the first perspective of
the experimentation.

462

Table 2 – Topics discussed before the initial experiment

 Topic Hours Groups
Attending

Process modelling 4 A, B, C, D

Basic concepts regarding the need for, and
meaning of, the process innovation

1 A, B, C, D

Methods for reusing process components
published in literature and developed in
research environment

3 A, B, C, D

The framework, its contents and use in
evaluating a process component

2 A, B, C, D

The scenario based on reading techniques 8 C, D

2. The team composition. The experimental subjects were randomly grouped

into four groups, A, B, C and D, of nine people each. Groups A and B were

asked to apply the REP approach by using a Checklist. Groups C and D
applied the scenario. The four groups were trained differently. The third
column in Table 2 shows which groups was trained in each topic. This
variable analysed the selection effect and was used to show if, with
regard to the particular method applied, the results obtained were
influenced by the composition of the teams.

3. The analysis round. Three rounds taking place in three different days.
The initial experiment was performed in the first round, TRIAL; while
the comparison experiment was carried out in two rounds, ROUND1
and ROUND2. This variable measured the maturation effect, and was
considered to analyse if, after an adequate training to the use of the
framework, all the following evaluations of process components
provided the same results.

463

4. The process components to be analysed. Three process components
were analysed: LWD [7] was analysed during the TRIAL round by
Teams A and B, CLV [3] and SND [8] were considered during ROUND1
and ROUND2. This variable was considered to measure the
instrumentation effect and it aimed to verify if, after an adequate
training, the evaluation of the process components was influenced by
its complexity and application domain.

It is important to highlight that the two process components, CLV and
SND, had characteristics that were remarkably different. In fact, CLV
was realized in an academic context and considered mainly scientific
aspects, while SND was defined in an industrial context and paid more
attention to technical aspects. The same opinion was expressed by the
experimental subjects, which highlighted, also, that CLV was more
difficult to be understood than SND.

5. The component order. As it is shown in Table 3, the four teams did
not analyse the two process components of the comparison experiment
in the same order. This variable needed to analyse the presentation
effect and if the order in which the different process components were
evaluated altered the results.

6. The approach adopted. Two approaches were adopted, the Checklist
and the Scenario. This variable was analysed to compare the results
obtained when the scenario was applied and when it was not. This
variable was the treatment variable for the second perspective of the
experimentation.

464

Table 3 – Experimental design

Round Process component Checklist teams Scenario teams

CLV A CROUND1

SND B D

CLV B DROUND2

SND A C

Three dependent variables were considered correctness, completeness and
similitude rate.

Correctness indicates the rate of the correct answers (#correct
answers) given by the experimental subjects on the total
number of questions answered (#answered questions).
While completeness measures the rate of the answers
given by the experimental subjects (#answered
questions) on the total number of questions in the
framework (#questions), in this case 26:

 #correct answers

correctness = ___________________

 # answered questions

 #answered questions

completeness = __________________

 #questions

The similitude rate evaluates how homogeneously the experimental subjects
answered to the question of the framework. Let S1, S2, …, Sk be the k
experimental subjects, and C1, C2, …, C26 be the 26 questions of the
characterization framework. The similitude rate, ρp, of the generic question Cp is
given by:

465

()
)!2(!2

!
/,

..11;1..1
, −

 ρ=ρ ∑

+=−= k

k
SS

kjki
jijip

where:

• ρij (Si, Sj) = 1, if Si and Sj give the same answer the question CP;

• ρij (Si, Sj) = 0, otherwise.

The values of the similitude rate can vary between 0 and 1. If k=0 then ρp=1 and
if k=1 then ρp=0. Moreover, the highest value for question CP is obtained when
all the experimental subjects give the same answer to CP, while the lowest value
is obtained when a couple of subjects giving the same answer does not exist.

3.2. First Perspective Analysis

Figure 1 depicts the correctness and completeness rates obtained for the three
process components analysed through box-plots. The results obtained for LWD
in the initial experimentation are worse than the ones obtained for CLV and
SND in the comparison experiment. This proves that a better knowledge of the
framework improves both the correctness and completeness values.

466

Figure 1 – Correctness and completeness rate for the checklist approach

The statistical analysis was performed by one-way
analysis of variance (ANOVA analysis) for all the
independent variables, to identify the individual
variables that could explain a significant amount of
variation in the rates. The ANOVA analysis evaluates if
one or an aggregate of independent variables has a
significant effect on a dependent variable through the
calculation of the P-value. When P-value, evaluated for
one or more independent variables and a dependent
variable, is less that 0.05, it means that the independent
variables have a meaningful effect on the dependent
variable.

Table 4 highlights that for both the correctness and
completeness, the only independent variable that
evaluated a P-value lower than 0.05 is the treatment
variable, the training. This means that the training has a
significant effect on the completeness and correctness
values obtained for LWD in the TRIAL experiment and
those obtained for CLV and SND in the comparison
experiment, after further training. Then, the improvement

±Std. Dev.

±Std. Err.

Mean

Box & Whisker Plot: CORRECT

PR_COMP

C
O

R
R

E
C

T

0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

CLV SND LWD

±Std. Dev.

±Std. Err.

Mean

Box & Whisker Plot: COMPLETE

PR_COMP

C
O

M
P

LE
T

E

0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0
1,1

CLV SND LWD

Correctness for checklist

Completeness for checklist

467

obtained was influenced by the experimental subjects’
better knowledge of the framework. On the contrary, P-
values higher than 0.05 were obtained for the other four
independent variables. This means that any improvement
obtained in the evaluation of the two process components
was not influenced by the experimental subjects’ greater
experience in understanding process components
(maturation effect), by the characteristics of the process
components analysed (instrumentation effect), by the
team composition (selection effect), and the order in
which the process components were analysed
(presentation effect).

Then, when sufficient knowledge of the framework was gained,
and if it did not change, any independent variable
considered did not affect the validity of the
experimentation.

Table 4 - Correctness and completeness P-values of the old experimentation

 1.15.1.3

Independent

Variable

 1.15.1.4 Components

compared

Correctne
ss

P-value

Completenes
s

P-value
1.15.1.4.1 LWD - SND 0.0025 0.0076Training

(treatment variable) LWD - CLV 0.0032 0.0051

Analysis round
(maturation effect)

Round1 - Round2 0.1319 0.8547

Process components
(instrumentation
effect)

SND - LNV 0.7915 0.8547

team composition
(selection effect)

Group A - Group B 0.6399 0.0512

CLV Group A – CLV Group B 0.46 0.2144Component order
(presentation effect) SND Group A – SND Group B 0.188 0.1653

468

3.3. Analysis of the results with scenario

Figures 2a and 2b depict the correctness and completeness rates
obtained in the experimentation for the approach using
the scenario. In this case, the correctness and
completeness rates are lower than those obtained for the
checklist. The justification of the completeness results
comes is that a step of the scenario could be performed
only if all the previous steps were applied. This process
requires

Figure 2 –Correctness and completeness rate for the scenario approach

more than four hours to be completely applied. Therefore, the worst
completeness values were probably due to the greater tiredness of the
experimental subjects using the scenario.

Table 5 shows the ANOVA analysis for the correctness and completeness for the
second perspective of the experimentation. None of the independent variables
had effect on the correctness value (all the P-values are major than 0.5). While,
the variable analysis round, checking the maturation effect, influenced the

±Std. Dev.

±Std. Err.

Mean

Box & Whisker Plot: CORRECT

PR_COMP

C
O

R
R

E
C

T

0,50
0,55
0,60
0,65
0,70
0,75
0,80
0,85
0,90
0,95

CLV SND

±Std. Dev.

±Std. Err.

Mean

Box & Whisker Plot: COMPLETE

PR_COMP

C
O

M
P

LE
T

E

0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0
1,1

CLV SND

Figure 2a - Correctness for approach based on Scenario

Figure 2b - Completeness for approach based on Scenario

469

completeness values (P-value<0.05). This meant that an improvement on the
completeness value was influenced by the experimental subjects’ greater
experience in applying the scenario, and the major experience required less time
for applying it during ROUND2. Moreover, the completeness value was
influenced by the variable component order, but, only when the most difficult
process component, CLV, was analysed. This confirms that the major benefits of
the scenario can be obtained when the process component to be analysed is very
difficult, and this result is reached with the major experience. Table 5 shows that
the sixth independent variable, approach applied, has a significant effect on the
completeness, while do not affect the correctness. The effectiveness on the
completeness value was obtained because the approach based on the scenario
required more time to be applied than the one based on the checklist.

Table 5 - Correctness and completeness P-values for the scenario approach

 1.15.1.5 Independent
Variable

 1.15.1.6 Components
compared

Correctnes
s

P-value

Completene
ss

P-value
analysis round
(maturation effect)

Round1 – Round2 0.9635 0.023

process components
(instrumentation
effect)

SND – CLV 0.6979 0.8054

team composition
(selection effect)

Group C – Group D 0.132 0.1165

CLV Group C – CLV Group
D

0.3542 0.0009Component order
(presentation effect)

SND Group C – SND
Group D

0.2412 0.6902

 1.15.1.7approach
applied

 Scenario-Checklist 0.3762 0.0052

Figure 3 shows the values of the similitude rate obtained for CLV
and SND and both the approaches. The worse values of
the similitude rate were obtained with the scenario, and
the answers given by the experimental subjects applying
the checklist had an higher similitude rate than those
applying the scenario.

470

The better results obtained for the approach applying the
checklist were unexpected and, as this was not
explicable by a superficial analysis, the authors were
induced to probe into the analysis of the available data.

Figure 3 – Similitude Rate of the answers provided for both CLV and SND

3.4. Probed analysis

The poor results obtained for the approach based on the scenario
were due to the poor usability of the scenario in the
context where it was applied during the experimentation
and the time the experimental subjects had at their
disposal. Figure 4 shows that the time spent by the
experimental subjects applying the scenario was longer
than the time spent by the other ones. The figure shows
that

±Std. Dev.

±Std. Err.

Mean

Box & Whisker Plot: TASSO

APPROACH

T
A

S
S

O

0,3

0,4

0,5

0,6

0,7

0,8

0,9

checklis scenario

±Std. Dev.

±Std. Err.

Mean

Box & Whisker Plot: TASSO

APPROACH

T
A

S
S

O

0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

checklis scenario

Similitude Rate for CLV

Similitude Rate for SND

471

Figure 4 – Analysis of the time spent for the approach adopted

the medium time used to apply the checklist was of about 3.47 hours, and a good
value of completeness was reached (medium value equal to 0.89 about), while
the one to apply the scenario was about 3.83 hours without reaching a good
completeness value (medium value equal to 0.65 about).

Moreover, Table 6 shows the ANOVA analysis of the variable Time spent. It
highlights that the approach applied had a significant effect on the dependent
variable Time spent (P-value < 0.05). The time spent to apply the Scenario
increased with the complexity of the process component. In fact, Figure 5
highlights that CLV required more time when the scenario was applied than
SND, and, as stated above, CLV was the most difficult process component to be
analysed. On the contrary, the analysis of CLV and SND using the checklist
required about the same time. Even the ANOVA analysis in Table 6 shows that
the approach applied had a significant effect on the time spent when CLV was
analysed by using the scenario (P-value < 0.05). The increasing time necessary

±Std. Dev.

±Std. Err.

Mean

Box & Whisker Plot: TIME for approach

APPROACH

T
IM

E

3,0

3,2

3,4

3,6

3,8

4,0

4,2

checklis scenario

472

Table 6 – ANOVA analysis for the dependent variable Time spent

 1.15.1.9 Independent

Variable

 1.15.1.10

Components

compared

Time

P-value

Scenario – Checklist 0.000009

Scenario – Checklist
(SND)

0.0136

Approach applied

Scenario – Checklist
(CLV)

0.0002

CLV-SND 0.3277

CLV-SND (Checklist) 0.7787

Process component to
analyse

CLV-SND (Scenario) 0.0116

Figure 5 – Analysis of the time spent for analysed
process component

when the process component is more difficult can be caused by
the usability of the scenario and, sometime, the
difficulties to provide univocal and well-defined answers
some questions of the framework.

TIME_CLV

TIME_SND

Line Plot (Time for components.STA 3v*36c)

2,4

2,8

3,2

3,6

4,0

4,4

4,8

Case 1
Case 2

Case 3
Case 4

Case 5
Case 6

Case 7
Case 8

Case 9
Case 10

Case 11
Case 12

Case 13
Case 14

Case 15
Case 16

Case 17
Case 18

TIME_CLV

TIME_SND

Line Plot (Time for components.STA 3v*36c)

3,2

3,4

3,6

3,8

4,0

4,2

4,4

Case 19
Case 20

Case 21
Case 22

Case 23
Case 24

Case 25
Case 26

Case 27
Case 28

Case 29
Case 30

Case 31
Case 32

Case 33
Case 34

Case 35
Case 36

Time for Checklist

Time for Scenario

473

A more careful analysis of the documentation about CLV and SND revealed that
some questions of the framework could not be answered because the information
published and useful to answer them were either ambiguous or incomplete. The
experimental subjects that applied the checklist were not constrained to choose
their answers in a predefined value domains, and they could give answers like
ambiguous or not defined when a clear answer was not available. In particular,
the questions that could not be precisely and correctly answered by using the
scenario were eight for SND and nine for CLV. The major complexity of CLV
made the survey of the ambiguities and incompleteness and, then, of the number
of questions that could not be answered in a complete and correct way more
difficult in CLV than in SND. Even if the different number of questions with
incomplete or ambiguous answers for the two process components is not too
relevant, they could have weighted differently in the evaluation of the
correctness and similitude rate.

It was decided to evaluate the correctness and similitude rate for both the
approaches and SND and CLV by considering only the questions having
answers well defined. Figure 6 shows the scenario contributed to increase the
correctness values when the questions with ambiguous or undefined answers

Figure 6 – Correctness obtained for the answers to the unambiguous
questions

±Std. Dev.

±Std. Err.

Mean

Categorized Plot for Variable: CORRECT

APPROACH

C
O

R
R

E
C

T

0,58
0,62
0,66
0,70
0,74
0,78
0,82
0,86
0,90

checklis scenario

±Std. Dev.

±Std. Err.

Mean

Categorized Plot for Variable: CORRECT

APPROACH

C
O

R
R

E
C

T

0,55
0,60
0,65
0,70
0,75
0,80
0,85
0,90
0,95
1,00

checklis scenario

Correctness for CLV

Correctness for SND

474

 Figure 7 - Similitude Rate of the answers to the unambiguous questions

were not considered. Moreover, the correctness increases more for the most
complex process component, CLV.

Analogous results were obtained for the Similitude Rate. The discharge of the
ambiguous questions caused the reverse of the results in the Similitude Rate
respect those previously obtained. Figure 7 shows that the best results were
obtained for the most complex process component, CLV, where the similitude
rate increases considerably compared to the one of the checklist.

4. Lessons learned and further work

The paper has presented the approach REP for analysing,
evaluating and exploiting innovative process
components. The experimentation has shown that a good
level of correctness in the evaluation can be obtained by
using this approach. The training to the use of the
framework is the most important variable to obtain good
results.

The results obtained showed that the reading from an informal description to
construct an applicable formalism presents problems of correctness and

±Std. Dev.

±Std. Err.

Mean

Box & Whisker Plot: TASSO

APPROACH

T
A

S
S

O

0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

checklis scenario

±Std. Dev.

±Std. Err.

Mean

Box & Whisker Plot: TASSO

APPROACH

T
A

S
S

O

0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

checklis scenario

Similitude Rate for CLV

Similitude Rate for SND

475

completeness that are not easily solvable by using techniques based on scenario.
In particular, the experience showed that the formalisation level of the scenario
required more than the time foreseen for its full application. When the process
component to be analysed were too complex, a major effort was required to
understand its indefiniteness and ambiguities. It followed that the difficulties
connected with the application of the scenario increased and the answers were
randomly given and, then, not always correct. Besides, the complexity of the
scenario induced to an unconscious utilization of the approach based on the
checklist: when an experimental subject met difficulties, he used the checklist
pretending to use the scenario.

This observation encouraged analysing the correctness and the
similitude rate after having discharged the question with
either ambiguous or indefinite answers. This caused
better results and an increasing of the correctness values
for the approach using the scenario.

This experience brought to the following two lessons learned:

1. the more difficult the comprehension of the informal description of the
process component, the more effective the scenario;

2. it can happen that a step of the scenario does not find a univocal answer
because of either the ambiguity or the lack of the information published. The
scenario should foresee this situation and require a precise answer only when
the information recorded is clearly described.

These lessons learned suggest some shrewdness that has to be adopted when of a
scenario for transforming informal to formal description is defined. First of all,
the scenario has to be clear, simple and to guide the user in a not ambiguous
way. Moreover, it has to foresee that the answers can acquire the values
Ambiguous or Not existent when the documentation is ambiguous or lack
information. By taking into account the above lessons learned, the authors of the
paper are working at an improvement of the scenario that considers the
indication given above. The new scenario will be experimented with other
experimental subjects. In any case, the experimentation needs to be replicated

476

with a larger number of experimental subjects and, if possible, in industrial
environments. To find industries willing to replicate the experimentation, it is
necessary to assure them of its validity and inform them about the costs.
Therefore, before asking industries for collaboration, the experiment needs to
acquire maturity using students as experimental subjects.

The authors are ready to provide the experimental package and their assistance
to those who would like to replicate the experimentation.

 Bibliography

[1] Basili V. R., Daskalantonakis M. K., Yacobellis R. H., Technology
Transfer at Motorala, IEEE Software, Vol. 11, No. 2, March 1994, pp.70-76

[2] Basili V.R., Rombach H.D., Tailoring the Software Process to Project
Goals and Environment, Proc. of the 9th International Conference on Software
Engineering ICSE ’87, Monterey, CA, March 30 - April 2 1987, ACM press, pp.
345-357

[3] Cutillo, Lanubile F., Visaggio G., Extracting application domain
functions from old code: a real experience, Proc. of 2th Workshop on Program
Comprehension WPC ’93, Capri, Italy, 8-9 July 1993, IEEE Comp. Soc. Press,
pp 186-192

[4] Cimitile A., Visaggio G., A Formalism for Structured Planning of a
Software Project, Int. Journal of Software Engineering and Knowledge
Engineering, Vol. 4, No. 2, June 1994, World Scientific Publishing, pp. 277-300

[5] d’Inverno M., Justo G. R. R., Howells P., A Formal Framework For
Specifying Design Methods, SOFTWARE PROCESS - Improvement and
Practice, John Wiley & Sons, Vol. 2, 1996, pp. 181-195

[6] Fusaro P., Tortorella M., Visaggio G., CREP – characteRising and
Exploiting Process component: results of exeprimentation, Proc. of Working

477

Conference on Reverse Engineering 1998, Honolulu, Hawaii, USA, October 12-
14, 1998, IEEE Comp. Soc. Press

[7] Liu S., Wilde N., Identifying objects in a conventional procedural
language: an example of data design recovery, Proc. of Conference on
Software Maintenance, San Diego, CA, USA, 26-29 November, 1990, IEEE
Comp. Soc. Press, pp. 266-271

[8] Sneed H., Nyáry E., Migration of Procedurally Oriented COBOL
Programs in an Object-Oriented Architecture, Proc. of 2th Working
Conference on Reverse Engineering, Toronto, Canada, July 1995, IEEE Comp.
Soc., pp 217-226[12]

[9] Paulk M., Weber C., Curtis B., Chrissis M. B., Capability Maturity
Model. Guideline for Improving the Software Process, Addison Wesley, 1994

[10] Song X., Osterweil L. J., Comparing Design Methodologies Through
Process Modelling, Proc. of 1st Int. Conference on Software Process, Redondo
Beach, Ca, October 1991, IEEE Comp. Soc. Press, pp. 29-44;

[11] Song X., Osterweil L. J., Experience with an Approach to Compare
Software Design Methodologies, IEEE Transaction on Software Engineering,
Vol. 20, No. 5, May 1994, pp. 364-384.

[12] Song X., Systematic Integration of Design Methods, IEEE Software, Vol.
14, No. 2, March-April 1997, pp. 107-117;

[13] Tortorella M., Visaggio G., CREP - Characterising Reverse Engineering
Process components methodology, Proc. of International Conference on
Software Maintenance, Bari, Italy, October 1 - 3, 1997, IEEE Comp. Soc. Press,
pp. 222-231;

[14] Wohlwend H. and Rosenbaum S., Schlumberger’s software improvement
program; IEEE Transaction on Software Engineering, Vol. 20, No. 11,
November 1994, pp.833-839.

478

479

SESSION 8:

New Proposals in Software Process
Improvement

480

481

Expanding Goal Setting Theory Concepts –
Using Goal Commitment Measurements to

Improve Chances for Success in SPI

Pekka Abrahamsson
University of Oulu, Department of Information Processing

Science, P.O.Box 3000, FIN-90401 Oulu, FINLAND.
E-mail: Pekka.Abrahamsson@oulu.fi

Abstract

SPI managers and staff alike are troubled about clarifying the mechanisms that
can sustain or impede the success of a software process improvement (SPI)
project. This paper describes early results from an ongoing study aimed at
improving the chances of success in SPI. It suggests that the chances can be
improved by creating a better understanding of the process users’ perception of
the upcoming SPI initiative. The paper suggests the use of goal commitment
measurement, adopted from the literature on goal setting, to discover these
perceptions and to provide a means of communication between process users
and SPI managers. A framework is developed for providing an operational
definition of the attitude-based commitment model. The paper argues that the
higher the level of the process users’ goal commitment is, the better are the
chances that the SPI initiative will be successful. Results from five interviews
with SPI professionals about the proposed attitude-based model are reported,
together with an empirical test conducted in 11 software engineering projects.
These show that the components that form the goal commitment concept are
essential to the success of a SPI initiative, and that the level of goal commitment
could serve as an indicator of whether the goal of the SPI project will be
achieved.

Introduction

Software is playing an ever-increasing role in today’s society and in industry. As
an answer to business and market needs, organizations have started to undertake

482

software process improvement (SPI) initiatives aimed at increasing the maturity
of their software processes (Humphrey 1989). While there are several
approaches available for improving the software process, all of them share a
common “requirement” in order to be successful – a commitment to SPI from all
levels of the organization. Indeed, the significance of commitment for improving
software processes has been widely recognized in the software process
community both in the literature (e.g. Grady 1997; Humphrey 1989) and in
articles concerned especially with the risks involved in SPI initiatives (e.g.
Wiegers 1998; Statz, Oxley & O’Toole 1997).

As the discussion over commitment or the lack of it evolves, new fruitful ideas
are needed to provide useful knowledge for both researchers and practitioners in
the software process improvement field. One such idea is to harness the
concepts of goal setting theory to the early phases of a SPI initiative. Goal
setting theory is regarded as being among the most scientifically valid and useful
theories in organizational science (Locke et al. 1988) and has become
established as one of the most consistent and successful models of work
performance (Earley, Connolly & Ekegren 1989). Goal setting theory is used in
this paper as the basis for defining the concept of commitment.

The purpose of this paper is to report early results from an ongoing study aimed
at improving the chances of success in SPI by increasing the awareness of SPI
managers and staff of the process users’ perceptions of the intended
improvement initiative. Awareness can be raised by applying a measurement
instrument that captures such important elements of the intended SPI project as
process users’ acceptance, effort expenditure and persistence regarding the
defined goal. These elements are included in the concept of commitment
introduced in the goal setting literature. A framework for translating the results
is proposed, along with some views on how to construct a meaningful goal.

The attitude-based commitment model (Goal Commitment Questionnaire and
Framework for Attitude-based Commitment) was tested by conducting five
semi-structured interviews with SPI professionals who all had a strong
background in improving software processes. All the professionals interviewed
were interested in testing the model in their projects. In Addition an empirical
test was conducted in 11 software engineering projects to find out whether there
is any correlation between the level of goal commitment demonstrated and the

483

success of the project. Even though the significant correlation remains to be
proved there seems to be a tendency for a higher the level of goal commitment to
lead to better performance in the project.

Background

 The concept of goal setting

Goal setting falls within the domain of cognitive psychology (Locke et al. 1981)
and is a widely used motivational technique (Locke 1975) that has been
consistently supported by experimental research in both laboratory and field
settings (e.g. DeShon & Landis 1997; Campion & Lord 1982).

The idea of assigning employees a specific amount of work to be accomplished
– a specific task, a quota, a performance standard, an objective, or a deadline – is
not new; as the concept of task was one of the cornerstones of scientific
management, founded by Frederic W. Taylor more than 90 years ago (Latham &
Locke 1979). The basic assumption of goal setting research is that goals are
immediate regulators of human action. There is no assumption of a one-to-one
correspondence between goals and action, however, since people may make
errors or may lack the ability to attain their goal (Locke et al. 1981).

On the other hand, the effectiveness of goal setting does presuppose the
existence of commitment. Locke et al. (1988) state that “it is virtually axiomatic
that if there is no commitment to goals, then goal setting does not work”. This
paper focuses on measuring this commitment and using both the results and the
process of measuring itself to promote SPI initiatives and enhance
communication between the various stakeholders.

 Defining goal commitment

Commitment is not easy to define because many different interpretations exist.
Morrow (1983) identified 25 commitment-related constructs in the literature.
After 40 years of research no consensus has been achieved over the general

484

definition. According to Kiesler (1971), there are two main requirements for a
useful definition of a psychological term. The literary definition should be clear
and precise; the words should mean something, but this is not enough for
research purposes. There must also be an operational definition, specifying the
set of operations which define the concept so that the implications of theoretical
discussions can be tested.

A distinction is made in commitment research between an “attitudinal” and a
“behavioral” approach to commitment (Brown 1996, DeCotiis & Summers
1987, Mowday et al. 1979). In an organizational context, “attitudinal
commitment” is classically viewed as “the relative strength of an individual’s
identification with and involvement in a particular organization. Conceptually,
it can be characterized by at least three factors: a) a strong belief in and
acceptance of the organization’s goals and values; b) a willingness to exert
considerable effort on behalf of the organization; and c) a strong desire to
maintain membership in the organization.” (Mowday et al. 1982, 27). Taking
this to the individual level, attitudinal definition of commitment suggests that
attitudes are affecting the way an individual will behave. On the other hand, the
behavioral approach views commitment as a state of being, in which an
individual becomes bound by his actions and through these actions to beliefs that
sustain the activities and his own involvement (Salancik 1977). According to the
behavioral approach, changes in the attitude are assumed to be consequences of
changes in the behavior (Taylor 1994).

Goal commitment has been defined in goal setting research, in accordance with
the attitudinal approach, as the degree to which the individual a) considers the
goal to be important (acceptance), b) is determined to reach it by expanding her
effort over time (effort expenditure), and c) is unwilling to abandon or lower the
goal when confronted with setbacks and negative feedback (persistence)
(DeShon & Landis 1997). According to DeShon and Landis, this definition
reflects the most common themes used to describe goal commitment in the
recent literature.

Having introduced the underlying theory and constructed the literary definition
of commitment, the following chapters will concentrate on operationalizing this
definition first by introducing an instrument (Goal Commitment Questionnaire),
which can be used to capture the level of commitment, and secondly by

485

introducing a framework (Framework for Attitude-based Commitment) that
allows the interpretation of the results.

Measuring attitude-based commitment to SPI
initiatives

A measurement model that is based on the above attitudinal approach to
commitment now introduced. The basis for the attitudinal model is drawn from
the goal setting literature. The underlying idea suggests that attitudes affect
behavior in a clearly defined scope. The focus of commitment in this paper is
SPI action or SPI goal22 (e.g. if the primary goal is to improve software quality
by reducing the number of defects in the development phase, then an appropriate
goal could be ‘establishing a review process’). When the goal is too vaguely
defined or beyond the individual’s scope, it becomes too abstract to consider23.
In software engineering, Gilb (1988) emphasized the importance of clearly
defined goals (as opposed to vaguely defined ones) and stated that “projects
without clear goals will not achieve their goals clearly” (p.28).

It is clear in the goal setting literature that specific, difficult goals have a positive
effect on performance (Dodd & Anderson 1996; Earley et al. 1989). It is
claimed that in theory goal commitment moderates the relationship of goal
difficulty to performance (Hollenbeck et al. 1989b). Originally it was proposed
that goal commitment applies at the individual level (Locke 1968), but later it
was established that similar effects on goal setting theory also apply at the group
level (Klein & Mulvey 1995)24, as the goal of a software process improvement
project is to enhance process capability at both the individual and group level.
Therefore, when goals in software process improvement initiatives are viewed as

22 In the original goal setting research context the goal was defined as what an individual is trying to
accomplish; being the object or aim of an action (Locke et al. 1981).
23 A person might have a positive attitude towards preserving the nature (goal) but still does not
recycle trash (behavior). Better results would be obtained by asking about her attitude towards
recycling trash (Robbins 1993).
24 Klein and Mulvey (1995) found a close relation between group commitment to goals and group
performance, regardless of whether the goal was self-set or assigned.

486

challenging and the persons performing the improvements are committed to
achieving the goals, the project has better chances of being successful.

 Instrument for measuring commitment

There are several self-report scales for measuring commitment available in the
goal setting literature. The most widely used instrument in many research areas
is a nine-item scale developed by Hollenbeck, Williams and Klein (1989b;
hereafter referred to as HWK). Large-scale use of the HWK scale is supported
by the evidence that it is unidimensional (Hollenbeck et al. 1989a), the responses
are stable over time (Hollenbeck et al. 1989b) and the scale is related to other
significant constructs such as performance and motivational force (Hollenbeck et
al. 1989a). The revised25 HWK scale is presented in Table 1.

Table 1. Goal Commitment Questionnaire

25 The questionnaire in Table 1 is revised in two ways: Firstly the wording of the items is changed to
correspond to the focus of the paper and secondly four items are excluded from the scale in the light
of later research (e.g. DeShon & Landis 1997; Tubbs & Dahl 1991)

487

 Framework for interpreting the results

The framework for interpreting the results (Figure 1) consists of two parts: terms
of commitment (components) and the explaining factor (the answer to the
question: what does the result suggest?). The components are derived from the
definition of goal commitment suggested by DeShon and Landis (1997).

The values for the components are calculated from the revised HWK scale as
shown in Figure 2. Even though it is possible to calculate values for the
components itself, the scale in its present form has too few items per component
for it to be analyzed and conclusions drawn. The author therefore suggests that
it should be applied as a whole to show the value of goal commitment.

Figure 1. Framework for Attitude-based Commitment

488

6HOHFWHG�YDOXHV

&��VFRUH���6WDWHPHQW�����6WDWHPHQW�������� ������������� ����

&��VFRUH��6WDWHPHQW��� ��

&��VFRUH��6WDWHPHQW��� ��

&��VFRUH��6WDWHPHQW��� ��

6FRUH�IRU�JRDO�FRPPLWPHQW���6WDWHPHQW�������������������� ������������������������� ����

Figure 2. Example of evaluating scores

Even though it would be tempting to follow the current trend in goal setting
research and claim that the success of the project could be foreseen by means of
the model, this would not be true. The success of a software process
improvement project depends on various factors, such as organization’s culture,
organization’s management, process users, budgeting, scheduling and planning,
the SPI project management, the SPI development environment and the SPI staff
itself (Statz, Oxley & O’Toole 1997). A person does not have the same level of
commitment all the time during a SPI project.. According to Brown (1996), a
person evaluates his/her own commitment from time to time (once or many
times) and the evaluation process itself is affected by current attitudes and
circumstances, organizational factors and the “history” of the commitment – its
development process, the reasons driving this development. Brown goes on to
note that together these forces affect the way in which a commitment is
evaluated and acted upon. The hypothesis underlying the attitude-based
commitment model can thus be formulated as follows:

1) The level of goal commitment demonstrated by the process users is one of the
factors affecting the success of a SPI project, and

489

2) serves as an indicator of whether the goal will be achieved.

 Applying the attitudinal model in a SPI project

When applying the model, organization’s culture should be taken into
consideration, since the scale assesses people and their views and feelings about
the SPI project. Some people might even find it unsuitable to evaluate their
level of commitment if they feel they are working hard to achieve a certain goal.
It is suggested that timing is the key issue here, as it is also in the SPI project
itself. The questionnaire could be used at the very beginning of the SPI project –
after the process users have been introduced to its goals. At this point they know
what the project is supposed to achieve, but do not know exactly how to get
there. The questionnaire26 is handed out by the change agent or project leader
and filled in anonymously. If the results show a low level of goal commitment,
various conclusions can be drawn: that a) the process users do not see the project
as important, b) the goal is not clearly focused on their needs, c) the goal is
trivial, etc. The results should be presented to the group after the assessment is
complete.

The purpose of the attitude-based commitment model is to serve as a means of
communication between the SPI management, the SPI staff and the process
users and as a tool for the managers to facilitate the change process. Another
major purpose of the model is to build up the awareness of the SPI management
of the components that form the foundation of commitment. This knowledge
can be used implicitly by the change agent when discussing the SPI initiative
with various stakeholders.

 Small-scale testing of the attitude-based commitment
model

The attitude-based commitment model was tested in a course held at the
University of Oulu, in order to examine whether a) goal commitment correlates

26 The questionnaire can be modified so that it corresponds to the current goal of the SPI project.

490

with performance, and b) the model would work as a basis for a discussion
forum. All 41 students that participated in the course had completed a software
engineering project as members of a project team. The total number of project
teams was 11, each having one to six students. The purpose of the course was
for each project team to present the ‘lessons learned’ from their projects. The
attitude-based commitment model was used as a tool for generating discussion
and for analyzing the projects. The literature review conducted by Locke et al.
(1988) suggests that there is no difference in the results between measurement of
before and after performance. This supports the use of the attitudinal model in
this case.

Students were given the task of evaluating first how well they managed to
accomplish the goals set at the beginning of the project, on a scale from 1 (goals
not achieved) to 5 (goals achieved well). A university representative evaluated
the projects on the same scale. The students also evaluated the level of difficulty
of the project on a scale from 1 (easy) to 5 (hard), since goal commitment has
been thought in theory to moderate the relationship of goal difficulty to
performance, in that performance is high only when both the goal level and goal
commitment are high (Hollenbeck et al. 1989b). Lastly, the students filled in the
goal commitment questionnaire and calculated the results, following the
instructions given.

In order to determine the statistical correlation between the level of goal
commitment and performance, Spearman’s rho was calculated for the whole
body of data (Table 2) and for the projects that were evaluated as difficult and
challenging ones (Table 3).

491

Table 2. Spearman’s Correlation Coefficient for the whole data set

Table 3. Spearman’s Correlation Coefficient for difficult goals

Neither of the results (Tables 2 and 3) suggest that commitment is especially
closely correlated performance. The sample of 11 projects however is
nevertheless too small for any meaningful conclusions to be drawn. In order to
evaluate whether goal commitment acts as an indicator of success, it may be
useful to study following graphs (Figures 3 and 4).

492

0,00

1,00

2,00

3,00

4,00

5,00

1 2 3 4 5 6 7 8 9 10 11

Project team s

Commitment

Performance

Figure 3. Visual comparison of goal commitment vs. performance

0,00

1,00

2,00

3,00

4,00

5,00

0,00 1,00 2,00 3,00 4,00 5,00

Goal commitment

P
e

rf
o

rm
a

n
c

e

Figure 4. Scatter plot of goal commitment vs. performance

493

When examining the results presented in Figures 3 and 4, goal commitment may
be viewed as an indicator of whether the goal will be achieved, even though the
correlation was not statistically significant. The students felt that the results
‘seemed’ correct.

Usa of the attitude-based commitment model stimulated the discussion to a point
that might not have been reached without it. This was especially the case when
there was a significant difference between the levels of goal commitment and
performance (e.g. project no 5 in Figure 3). The feedback received in these cases
provided useful information such as the need to make sure that adequate
resources are allocated for the project group before the project officially starts,
and that feedback is given to the project group regularly as the project evolves,
etc. Although the professionals interviewed had some concerns about the
sensitivity of its use, the students did not feel the questionnaire to be too
evaluative. This may be related to the fact that the test was conducted after the
project.

 Views from the field SPI professionals’ opinions

In order to test the attitude-based commitment model qualitatively, five semi-
structured interviews were conducted in September – October 1998. All the
people interviewed had considerable experience in leading software process
improvement projects. The purpose of the interview was to find out a) whether
the attitudinal model of commitment is relevant to SPI projects, b) where it
could be possibly used, c) what might be the reaction of the group to be assessed
when the questionnaire is administered, and d) how willing professionals are to
try out the model in practice.

The results of the interviews suggest that all the components (C1, C2, C3 and C4
in Figure 1) are relevant to successful implementation of a SPI project, but that
use of the model requires sensitivity to and knowledge of organization’s culture.
From the viewpoint of professionals, the model could serve as a forum for
discussion between stakeholders, since in professionals’ opinion the lack of
communication is a major obstacle that has to be overcome in SPI initiatives.
They suggested some improvements to the model, such as increasing the number
of items in the questionnaire in order to achieve better reliability for the results

494

and to allow an opportunity to analyze separate components as well. Another
encouraging finding in the interviews was that all the professionals were willing
to test the model in practice.

Conclusions

This paper has described the development and early results of an ongoing study
aimed at improving chances of success in SPI by increasing the awareness of the
SPI managers and staff of the process users’ perceptions regarding the
improvement initiative. This can be accomplished by measuring how committed
the process users are to reaching the goal defined by the SPI managers and staff.
By doing this, the SPI managers can place themselves in a better position for
appreciating how well the process users accept the goal, and are willing to
expend effort and persistance to achieve it. The knowledge acquired can be used
to promote communication between various stakeholders involved in the SPI
initiative.

The measurement instrument (Goal Commitment Questionnaire in Table 1) is
based on the definition of goal commitment provided by DeShon & Landis
(1997) and Hollenbeck et al. (1989b) and modified to suit the needs of software
process improvement. In addition, a framework for interpreting the results
(Framework for Attitude-based Commitment in Figure 1) was developed in
order to have an operational model for attitudinal commitment.

The hypothesis that the goal commitment demonstrated by the process users is
one of factors affecting the success of a SPI project was supported by the results
of the interviews as the professionals agreed that all the components presented in
the framework occupy significant roles in a SPI project. The second hypothesis
suggested that the level of goal commitment would serve as an indicator of
whether the goal will be achieved. There is not enough evidence to support or
reject this hypothesis according to the data acquired in the empirical test
presented in this paper. Limitations to the empirical test were the small number
of cases (11) and the fact that the projects analyzed were not SPI projects but
software engineering projects. Ten projects reported that they had had to adopt
new procedures and technologies, however, which makes them somewhat
similar to SPI projects.

495

The positive feedback received from the professionals demonstrated that there is
a need in the SPI community to include a human element in models that guide
the improvement process. This includes creating a better understanding of such
complex processes as motivating people and committing them to organizational
change. This paper provides a new insight into viewing commitment not only as
a psychological state but also as a combination of influential elements that make
people willing to pursue a goal.

References
Brown, R. B. 1996. Organizational commitment: clarifying the concept and simplifying the existing
construct typology, in Journal of Vocational Behavior, Vol. 49, 230-251.

Campion, M. A.. & Lord, R. G. 1982. A control systems conceptualization of the goal-setting and
changing process. Organizational Behavior and Human Performance, Vol. 30, pp. 265-287.

DeCotiis, T. A., & Summers, T. P. 1987. A Path-Analysis of a Model of the Antecedents and
Consequences of Organizational Commitment. Human Relations, Vol. 40, No. 7, pp. 445-470.

DeShon, R. P. & Landis, R. S. 1997. The Dimensionality of the Hollenbeck, Williams, and Klein
(1989) Measure of Goal Commitment on Complex Tasks. In Organizational Behavior and Human
Decision Processes. Vol. 70, No. 2, pp. 105-116.

Dodd, N. G., & Anderson, K. S. 1996. A test of goal commitment as a moderator of the relationship
between goal level and performance. Journal of Social Behavior and Personality, Vol. 11, No. 2, pp.
329-336.

Earley, P. C., Connolly, T., & Ekegren, G. 1989. Goals, strategy development, and task performance:
Some limits on the efficacy of goal setting. Journal of Applied Psychology, Vol. 74, No.1, pp. 24-33.

Gilb, T. 1988. Principles of Software Engineering Management, Wokingham, Addison-Wesley.

Grady, R. B. 1997. Successful Software Process Improvement. Prentice-Hall, NJ.

Hollenbeck, J. R., Klein, H. J., O’Leary, Am. M., & Wright, P. M. 1989a. Investigation of the
construct validity of a self-report measure of goal commitment. Journal of Applied Psychology, Vol.
74, No. 6, pp. 951-956.

Hollenbeck, J. R., Williams, C. R., & Klein, H. J. 1989b. An empirical examination of the antecedents
of commitment to difficult goals. Journal of Applied Psychology, Vol. 74, No. 1, pp. 18-23.

Humphrey, W. S. 1989. Managing the Software Process. Addison-Wesley

Kiesler C., A. 1971. The Psychology of Commitment: Experiments Linking Behavior to Belief,
Academic Press.

Klein, H. J., & Mulvey, P. W. 1995. Two Investigations of the Relationships among Group Goals,
Goal Commitment, Cohesion and Performance. Organizational Behavior and Human Decision
Processes, Vol. 61, No. 1, pp. 44-53.

Latham, G. P., & Locke, E. A. 1979. Goal-setting – A Motivational Technique That Works. In Barry
M. Staw (ed.), Psychological Dimensions of Organizational Behavior, Prentice Hall, 1995, 2nd ed.

Locke, E. A. 1968. Toward a theory of task motivation and incentives. Organizational Behavior and

496

Human Performance, Vol. 3, pp. 157-189.

Locke, E. A. 1975. Personnel attitudes and motivation, Annual Review of Psychology, Vol. 26, pp.
457-480.

Locke, E. A., Latham, G. P., & Erez, M. 1988. The determinants of goal commitment. Academy of
Management Review, Vol. 13, No. 13, pp. 23-39.

Locke, E. A., Shaw, N. R., Saari, L. M., & Latham, G. P. 1981. Goal setting and task performance:
1969-1980. Psychological Bulletin, Vol. 90, No. 1, pp. 125-152.

Morrow, P. C. 1983. Concept redundancy in organizational research: The case of work commitment.
Academy of Management Review, Vol. 8, No. 3, pp. 486-500.

Mowday, R. T., Porter, L. W., & Steers, R. M. (1982). Employee-organization linkages: The
psychology of commitment, absenteeism, and turnover. New York: Academic Press.

Robbins, S. P. 1993. Organizational Behavior. Prentice-Hall, Englewood Cliffs, New Jersey, 6. ed.

Salancik G. R. 1977. Commitment is too Easy! In Tushman M & Moore W. (eds.), Readings in the
Management of Innovation, pp.207-222. Boston: Pitman 1982

Statz, J., Oxley, D., & O’Toole, P. 1997. Identifying and Managing Risks for Software Process
Improvement, CrossTalk, April, http://www.stsc.hill.af.mil/CrossTalk/1997/apr/Identifying.html

Taylor, W. A. 1994. Senior executives and ISO 9000 – Attitudes, behaviours and commitment.
International Journal of Quality and Reliability Management. Vol. 12, No. 4, pp. 40-57.

Tubbs, M., & Dahl, J. G. 1991. An empirical comparison of self-report and discrepancy measures of
goal-commitment. Journal of Applied Psychology, Vol. 76, No. 5, pp. 708-716.

Wiegers, K. E. 1998. Software Process Improvement: Eight Traps to Avoid. CrossTalk, The Journal
of Defense Software Engineering. September.

497

TAILORING PROCESS IMPROVEMENT TO
SMALL COMPANIES USING A

METHODOLOGY FOCUSED ON THE
INDIVIDUALS

Guido Cardino
Socrate Sistemi S.a.S

Via Sormano 2/4, I-17100,Savona, Italy
Email: gucardin@tin.it

Andrea Valerio
Dipartimento di Informatica, Sistemistica e Telematica

 Università degli Studi di Genova
I-16145 Genova, Italy

Abstract

Software development is currently characterized by rapid advances in
technology, growing complexity required by customers and strong market
competition. Small companies often have not the resources to build the proper
organizational framework needed to face these challenges. They can instead
apply a bottom-up approach using strategies for personal process improvement.
This article presents the ASPIDE project, a process improvement experiment
funded by the European Community (Esprit ESSI Project 24331). The focus of
the experiment is the introduction the Personal Software Process (PSP)
improvement discipline in Socrate Sistemi, a small Italian software company
mainly involved in the development of management system for fashion stores.
This approach seems to be suitable for small enterprises needed to improve their
overall development performances in order to obtain greater competitiveness.
The available results show a positive impact on the corporate organization and
on the competence of the employees, suggesting also solutions for possible
problems.

498

Introduction

This work presents a case study on the adoption of the Personal Software
Process (hereafter PSP) in a small software firm located in Italy named Socrate
Sistemi. This experiment has been funded by the European Community in the
context of the ESSI initiative as the “ASPIDE” Project 24331. Its purpose was to
evaluate the benefits and possible drawbacks deriving from the introduction of a
software process discipline focusing on individuals in a very small company in
which it is really difficult to plan business process reengineering activities which
require a strong organizational support. In this context, due to the characteristic
approach of the PSP based on the decentralization of the improvement
responsibility, this discipline seems to match the needs of small enterprises. The
PSP aims to foster continuous improvement, using a bottom-up approach that
begins from personnel. The results achieved show the positive impact of this
approach both on personnel work and on the organization.

Case Study Description

 Introduction to the Personal Software Process

The Personal Software Process (hereafter PSP) was developed by Watts
Humphrey[1] working at the Software Engineering Institute. It is a defined and
measured software process designed to be used by an individual software
engineer in order to monitor and control his daily work in a structured way.
Whereas it is intended mainly to the development of medium-sized software
modules, it is adaptable to other personal tasks (like production of design
specifications and software documentation).

Drawing its structure from the SEI Capability Maturity Model (CMM)[3] for
Software, also the PSP is based on process improvement principles. The
difference is that the CMM is focused on improving the overall organizational
capability, whereas the focus of the PSP is the individual engineer. In this sense,
the PSP is exactly the individual-focused counterpart of the CMM, which
stresses organizational and company-wide issues. In the PSP framework,
software engineers work using a disciplined, structured approach making them

499

easier to plan, measure, and track their efforts, to manage their product quality,
and to apply quantitative feedback to improve their personal development
processes. The rise in competence of the engineers, which in this viewpoint play
an active role in process improvement, on turn improve the organization’s
capability, especially in the case of small companies.

The PSP (like the CMM) is organized into different layers. The layered structure
of the PSP is shown in figure 1. Each level builds on the prior level by adding a
few process steps to it. This minimizes the impact of process change on the
engineer, who needs only to adapt the new techniques into an existing baseline
of practices.

The baseline personal process (PSP0 and PSP0.1) establishes an initial
foundation of historical size, time, and defect data. Development time, defects,
and program size are measured and recorded on proper forms. The next steps,
PSP1 and PSP1.1, focus on personal project management techniques. They
introduce size and effort estimating, schedule planning, and schedule tracking
methods.

PSP2 and PSP2.1 add quality management methods to the PSP: personal design
and code reviews, a design notation, design templates, design verification
techniques, and measures for managing process and product quality. The goal of
quality management in the PSP is to find and remove all defects before the first
compile. Two new process steps, design review and code review, are included at
PSP2 to help engineers achieve this goal. These are personal reviews conducted
by an engineer on his/her own design or code guided by personal review
checklists derived from the engineer’s historical defect data. In this way, starting
with PSP2, engineers begin using the historical data to plan for quality and
control quality during development. According to some studies conducted by the
Software Engineering Institute[2], with sufficient data and practice, engineers
are capable of eliminating 60% to 70% of the defects they inject before their first
compile.

The Cyclic Personal Process, PSP3, addresses the need to efficiently scale the
PSP up to larger projects without sacrificing quality or productivity. Large
programs are decomposed into parts for development and then integrated. This
strategy ensures that engineers are working at their achieved optimum

500

productivity and product quality levels, with only incremental, not exponential,
increases in overhead for larger projects.

Figure 1: The PSP Levels

 The ASPIDE Project

The ASPIDE ESSI Project 24331 is the application of the first PSP steps (PSP0
and PSP0.1) to the employees of a very small sized italian software, Socrate
Sistemi S.a.S. Socrate Sistemi is a small company (about ten employees), with a
sale organization composed of several external professionals that embraces all
the parts of Italy. It is involved in the production of software for the
administration of sale points and head offices especially in the area of fashion
stores.

The business motivation of the experiment can be traced back to the company
need to maintain a proper productivity and quality level even in a context
characterized by new technologically rich requirements from the customers (e.g.
integration of the Internet inside their company organization), by the intrinsic
complexity of the new products and by the raise of costs and market
competition. The resulting problems were handled with difficulty by the
company because no measurement mechanism was used during the

PSP 3
Cyclic Development

PSP 2
Code Reviews

Design Reviews

PSP 2.1
Design Templates

PSP 1
Size Estimating

Test Reports

PSP 1.1
Task Planning

Schedule Planning

PSP 0
Current Process

Basic Measurement

PSP 0.1
Coding Standards

Process Improvement Proposal
Size Measurement

The Baseline Personal
Process

Personal Project
Management

Personal Quality
Management

The Cyclic Personal
Process

501

development: without a punctual knowledge of the performances of the
development, it was impossible to put into practice even the simplest
improvement step. Moreover, a critical constraint was the limited size of the
company: considering the current available resources, it is impossible to reserve
effort for an organizational support team.

For all these reasons, the definition of a measurement mechanism (following
PSP0 and PSP0.1) was the first step in the planned business process
reengineering strategy. In particular, the PSP has a de-centralized approach
which does not need (at least after a period of introduction) a particular support.
Rather, every employee is responsible for his own professional growth. From
this perspective, the PSP is an interesting alternative to the process improvement
processes based on a top-down approach, i.e. imposing a formal process model
to the projects and personnel involved. It candidates to be the best choice for
small and medium companies, where a bottom-up strategy beginning from the
personnel could demonstrates to be the best approach. The steps for personal
improvement are then organized in a company-wide way so that they ensure the
corporate growth.

 Case Study Scenario

 Starting Technological Context

From a technological point of view, the experiment was applied to a project
aimed to the complete re-engineering of a complex software product. This is a
system for the administration of fashion, shoes, sportswear and clothing stores
with the possibility of managing different points of sales in a distributed
network. In addition, heterogeneous physical devices (such as portable optical
bar-code readers) are integrated in a unique environment and statistical analysis
on the sales can be performed. The starting old version of the system ran on
SCO-UNIX workstations or DOS PC without a graphical user interface, and it
was about 8KLOC of COBOL. The system has been ported to Microsoft
Windows 95/98 and NT, and a complete re-design of the system was
concurrently executed (e.g. to take into account Y2K and Euro problems).
Senior analysts estimated that most of the modules will require a complete re-

502

development due to great changes in the presentation of data or interaction with
the user. The porting and reengineering project interested most programmers of
Socrate Sistemi, constituting an adequate context for the case study.

 Company Assessment

The starting scenario for the case study has been evaluated through an
assessment of the company’s profile and development capability. The context
considered is that of a small company involved in the production of software for
fashion stores. The maturity level of the organization, according to the SEI
CMM process assessment scheme[3] is level 1, featured by a process aimed at
the achievement of short term goals, with several deficiencies in the medium or
long term and focused on people-driven processes. The main detected
weaknesses was the following:

• No measurement program is defined for gathering data on the time a
developer spends on each software task and for tracking the number of
defects they introduce or remove in each process step. This problem has
been directly addressed by our experiment.

• Configuration and version management lacks almost completely. This
contributes in turn to decrease productivity and makes reuse practices and
testing difficult. This problem will be probably faced in the short term, on
the basis of productivity and quality records obtained by the PSP
application.

• No mechanisms are used as support for the planning, so that it is difficult to
understand if the project planning suffer from over-allocations or other
flaws. Due to the small size of the company, projects often run in parallel
and have to share human, hardware and software resources: project planning
without supporting tools becomes very difficult in this situation. Moreover,
the absence of a defined mechanism for the measurement of the developers’
work makes very difficult to define plans based on time, efforts or size
records. Socrate Sistemi has been evaluating the possibility to extend the
PSP application to the next level (PSP1), supplying a bottom-up solution to
this problem on the foundations laid by the ASPIDE experiment.

503

• Defined and planned testing activity lacks and the results are that many bugs
and defects are detected by the users, decreasing their satisfaction. Moreover
test activities and results are not formally recorded and tracked. The quality
problem will be considered in the long run, after a proper solution of the
previous deficiencies. On the other hand, from our viewpoint, a structured
introduction of PSP3, organized at the company level, can give important
feedback in this direction.

The ASPIDE experiment on turn was built upon the positive factors highlighted
by the company assessment. The company has several competent and creative
people, with a good mix of technical knowledge and the demonstrated capacity
of finding new directions for the evolution of the products. Thanks to the limited
size of the company, developers participate with the management in the
definition of the improvement plan for the software process and in general of the
future strategies. The environment is generally very good.

Senior engineers are already working to define sound development practices in
order to discover bugs or defects as early as possible in the development cycle.
The management is openly encouraging this process, fostering the proper
involvement of all employees. Moreover, to maintain a strict connection with the
customers’ expectations the development process encourages the production of
prototypes of the final application in order to identify and solve problems in the
early stages of the process. As an additional positive point, the company
assessment itself has contributed to augment people motivation and to increase
the awareness for the need for process improvement. As a result, a positive
attitude towards organizational improvement is featuring the company.

Case Study Evaluation

 Technical Results

From a technical viewpoint, the experiment allowed the assessment of the
productivity of the development process, highlighting important technical factors
that affects the development performances. As an example, the analysis pointed
into evidence that for the Windows-based application of the experiment (which

504

is on turn a good representative of the system produced by the company) the
main technical challenge is the definition the user interface. About 70% of the
total effort have been used in the production of this part of the system. The
developers involved in the graphical part had a substantially lower productivity
than the others did: as regarding the delivered lines of source code, they
produced an average of 250 LOC/day instead of about 700 LOC/day.

The analysis allowed by PSP data recording was important to establish that
software reuse can play a substantial role in the company software development.
Currently, developers exploit a unstructured reuse approach based on code reuse
and only few reusable assets are published in a organized way at the company
level. Even with this poor strategy, a great part of the system was developed
exploiting the integration of already produced software modules (about 80% of
the data management engine have been re-used with slight modifications from
the past applications). The experiment raised the awareness that reuse can be a
technical factor to reach outstanding performances. This aspect will probably be
investigated in the future with other focused experiments.

 Organizational Results

The integration of PSP0 and PSP0.1 in the engineers’ activities allowed the re-
structuring of the entire company’s work organization to meet the requirements
of the new kinds of products for the Windows operating environment.

The analysis evidenced that whereas the productivity of the individual
developers is relatively stable for the development of data management
procedures, it is not the same for the graphical user interface: some GUI
modules, for instance, have been developed twice by different employees before
reaching an acceptable level of quality. The main critical factor here is the
creativity requested to developers for a successful design of dialogs, pictures and
animations. To solve this problem, a new work organization has been
implemented in the mid-term of the experiment and evaluated as a success in its
second half. The work has been organized by competence, rather than
subdividing among developers the functional modules as happened before; in
this way the applications demanding particular skills are managed by specialized

505

task forces of 1-2 developers, exploiting the personal competence and creativity
pointed into evidence by the structured data recording fostered by PSP0 and
PSP0.1.

As a small term organizational achievement in the light of quality control, even
the simple process monitoring allowed by PSP0 and PSP0.1 was able to detect a
flaw in the allocation of human resources that caused a product quality problem
that could be seen by customers. In fact, due the stress on the graphical user
interface and to the reuse of the data management part of the baseline system,
most of the effort was allocated for the production and testing of the new code.
Too few resources were allocated to the testing of the reused code. The analysis
of the personal records showed this possible risk, and therefore a new testing
activity was scheduled for the quality assurance of the reused part of the system.
The results of this additional testing activity highlighted that small changes in
the data caused some defects in the modules reused with slight changes, and
these defects could have been detected after the release of the product by
customers. From this point of view, the measurement framework enabled better
quality procedures, fostering the identification of faults in the work organization.
This is particularly important for a small company like Socrate Sistemi, since
due to the low available resources it is impossible to formally define a quality
supervision organization.

 Human Issues

The PSP has a substantial impact on the individuals, fostering their professional
growth and teaching a more rigorous approach in daily work. The ASPIDE final
evaluation shows that the measurement activities requested by PSP0 and PSP0.1
have been integrated satisfactorily in their routine, even if, especially at the
beginning, it was necessary to overcome some resistance. In fact, personnel
generally considers measurement as a time wasting activity, since it does not
produce any visible effect on their work but consumes their time. The planned
initial training has demonstrated to be a valid support in this direction, but a
continuous support during the first months of PSP application in daily work is
fundamental to sustain the individual motivation and then to achieve the sought
benefits in the long run. In the absence of such a support, the quality of the
recorded data has been not satisfactorily at the beginning: if the developers see

506

measurement only as an imposition, they tend to fill the forms using
inappropriate or not complete information.

Despite the initial diffidence of developers towards data collection, it has been
shown that after a start-up period the PSP can have a substantial impact on the
competence of the software engineers. What turned out is that they gained the
awareness that software development can be measured, understood and then
improved. Considering some developers’ initial way of working, in some aspects
more similar to handcrafting rather than industrial production, the main
achievement could be considered the awareness that software development can
become a discipline, with formal procedures and a technique that can have a
positive impact on the work. Moreover, if we take into account the skill required
to manage a discipline like the PSP, some developers acquired a good
understanding of the methods and techniques applied, even if some used tools
(e.g. the statistical ones) are not a normal knowledge for an average
programmer. This fact demonstrate that the achieved competence is not only a
transitory benefit.

 Key Lessons

The presented case study pointed into evidence key lessons that are valuable for
small organizations, working in the field of software engineering without a
defined and structured process, which are considering process improvement
alternatives for facing the growing market pressure. The main lesson is that a
supervision mechanism for the monitoring and control of the development
process can be effectively put into practice even for those small companies on
the basis of individual efforts, in a decentralized approach. In this respect, the
PSP seems to be a feasible solution, especially because it is highly adaptable to
specific corporate or personal needs.

Moreover, this approach can work even in organizations for which software
development has been considered more a creative, almost artistic, work than an
industrial practice. In this context, it has to be considered that a rigorous
discipline for software engineering such as the PSP requires a substantial
paradigm shift, and therefore a proper training and support activity can be the
key for the success.

507

As a final conclusion, it has to be noted that apart from the achievements of the
objectives of the different PSP levels, the discipline gives to the individual and
to the company a knowledge of the development process which allows for the
identification of the effects of all software-related practices, such as software
reuse or the introduction of new tools.

References

[1] Watts S. Humprey, A Discipline for Software Engineering, SEI Series in
Software Engineering, Addison-Wesley Publishing Company, Inc., 1995.

[2] Will Hayes, James W. Over, The Personal Software Process (PSP): An
Empirical Study of the Impact of PSP on Individual Engineers, SEI/CMU
Technical Report CMU/SEI-96-TR-001, December 1997.

[3] Paulk, M., Curtis, B., Chrissis, M., Weber, C., The Capability Maturity
Model for Software (Version 1.1), Software Engineering Institute, Technical
Report, 1993.

508

Moving Towards Modelling Oriented
Software Process Engineering: A Shift from

Descriptive to Prescriptive Process
Modelling

Simo Rossi
Nokia Telecommunications

P.O. Box 55, FIN-40351 Jyväskylä, FINLAND
E-mail: simo.rossi@ntc.nokia.com, Tel: +358 14 5779 811

Abstract

This paper reports a non-technology-oriented approach to software process
modelling, which is a significant and integral part of software process
engineering. The methodical aspects, the diverse ways that modelling can take
place, are emphasised while four software process modelling principles are listed
and experience gained in applying these to prescriptive modelling is shared. We
do not, however, report any specific modelling process or method since the
focus is on empirical experience and related discussion. Associated with the
reporting of modelling experience, this paper also describes an application of
two CMM key process areas namely organisation process focus and organisation
process definition dedicated to software process engineering and modelling.

 Introduction

In pursuing towards a rational design process, process modelling offers an
effective means for achieving understanding and facilitating communication of
the software process by making it more visible and explicit. Thus, understanding
is a prerequisite for an effective process improvement and management as well
as for automating parts of the software process (Curtis et al., 1992; Heineman et
al., 1994). The methodical aspects of software process modelling, however, have
received scantly attention while many of the research efforts have aimed at
developing technology support (e.g. process-centred software engineering

509

environments) to define, evolve, analyse and execute process models (see, e.g.,
Finkelstein et al., 1994). In addition to process technology, process modelling
languages (PMLs) have received a great deal of attention in the field of software
process research (see, e.g., Shepard et al., 1992; Bandinelli et al., 1993; Deiters
and Gruhn, 1994; Christie, 1993; Dutton, 1993; Kaiser et al., 1993; de Bunje et
al., 1996). Besides technology support and PMLs, even few modelling methods
have been introduced to facilitate management of the modelling process by
bringing discipline to it (see Kellner and Hansen, 1989; Höltje et al. 1994;
Klingler and Schwarting, 1994; Kontio, 1995). These methods mainly depict the
modelling process in a life-cycle fashion describing what to do in different
phases of the modelling. Most of the methods duly appreciate the understanding
of the process context as well as flexibility in accommodating the modelling
process to the requirements of the process context. However, the experience
associated in the application of process modelling methods, languages and
technology support, in process improvement has not been described thoroughly
in literature.

In this paper we report a study investigating prescriptive software process
modelling. The research issues discussed are "what effects the shift from
descriptive to prescriptive modelling have on the modelling" and "are the four
software process modelling principles, namely flexibility, PML engineering, use
of multiple data sources and process actor participation applicable to prescriptive
modelling". We have studied these questions by conducting a prescriptive
modelling experiment in an industrial software development environment.

The rest of this paper is structured as follows. The next section introduces the
four modelling principles providing theoretical background for the modelling
experiment. Then, Section 3 provides a description of the software organisation
in which the modelling took place. Section 4 continues by describing how the
process modelling has previously been used to boost process engineering in the
research context. Then, Section 5 reports the experience resulted from testing the
four principles in a prescriptive modelling case. Finally, in Section 0 we draw
conclusions from this study.

510

Principles hidden behind the curtain

Current software process literature lacks methods and guidance for descriptive
process modelling. Especially the participation of process actors in the
modelling process as well as engineering of methods and modelling languages in
accordance to the process context have received very little attention, although
they have been a popular research theme in the neighbouring information
systems development field (see, e.g., Hirschheim and Klein, 1992). Therefore
Rossi and Sillander have reported a study pertaining to fundamental software
process modelling principles (1998a). This study resulted in four process
modelling principles, proposing issues to be taken into account in modelling a
software process in detail for the first time when the objective is to facilitate
understanding and communication of the modelled process

The first principle, the principle of flexibility, emphasises on the contextual
relationships of the modelling and calls for context-orientation throughout the
modelling process. This principle is based on the observation that there exists no
one right software process (see, e.g., Osterweil, 1987) or method for every
development situation (see, e.g., Kumar and Welke, 1992). On the contrary, new
ones need to be constantly developed and the existing ones modified for the
different and changing development situations. This applies to the software
process modelling processes and methods as well.

The second principle, the principle of PML engineering, is a tool for adapting
the principle of flexibility to modelling and it calls for situational PML
engineering based on the requirements of the context. We have heightened it as a
separate principle owing to the central role that the PML plays in modelling.
Thus, in addition to the flexible selection of the PML, this principle suggests that
the selected language or languages should be modified to suit the needs and
abilities of the process context. The idea of PML engineering is simply to apply
the method engineering experience (Kumar and Welke, 1992) to software
process modelling languages. This appears to be almost completely foreign to
the current SPM methods and even to the process modelling research as a whole
(Rossi and Sillander, 1998b; Koskinen and Marttiin, 1998).

The third principle, the principle of using multiple data sources, prompts to
simultaneously exploit more than one data source in modelling. This principle

511

results from the fact that most process modelling is currently based on data
obtained from multiple data sources and the most popular sources of modelling
data are process documentation, questionnaires and interviews.

The fourth and final principle, the principle of process actor participation, aims
at involving the process actors themselves in the modelling process. This
principle is to a high degree grounded on the participative design concept
introduced in the field of information system development field (see, e.g.,
Hirschheim and Klein, 1992). It is difficult to imagine a more effective
communication occasion than the actors and the modellers discussing and
evaluating the details of the process model together.

Process context: PMR Terminals

We conducted our modelling study while working for Nokia
Telecommunications PMR Terminals unit (Professional Mobile Radio) which
develops and produces professional mobile radio terminals for government
officials and public trunking operators (e.g. police radios). The development of
the embedded software for these terminals vary from the end-user related user
interface design supported by CASE tools and graphical design languages up to
hardware related assembler programming. Moreover, the software development
takes place in a multi-project environment in which three or more projects are
running concurrently. The procedures, steering and resources for these projects
are provided by the line organisation.

Because of the tightening competition, customers’ demands, accelerating
product development cycles and extensive growth, i.e. because of the internal
and external pressure, PMR Terminals has recently invested more and more in
software process engineering in order to improve the quality and performance of
software development. First, resources have been allocated and infrastructure
established for the process engineering responsibility, which is founded on
Madhavji’s process cycle (1991). Second sign of the investment on process
engineering is the defined process engineering process depicted in Figure 1,
which has been introduced into systematic and continuous use. This process is
founded on such famous approaches as the Quality Improvement Paradigm
(QIP) (see, e.g., Basili and Rombach, 1988) and the CMM (Capability Maturity

512

Model) (Paulk et al., 1995). Also a more recent approach named Helical model
has contributed to the process (Kellner et al., 1996).

Start

1. Facilitate
understanding

4. Instantiate
model into

practice

2. Plan
improvement

3. Model desired
software
process

5. Enact the
tailored model

6. Collect and
analyse
feedback

Collect and analyse process engineering process feedback

Descriptive
process model

Improvement
plan

CMM
assessment

results

Prescriptive
process model

Tailored process
model

Feedback and
measurements

Feedback report

Legend

Phase

Phase product

Temporal relationship

Data flowIterate

Figure 1. The PMR Terminals Software Process Engineering Process

PMR Terminals process engineering process is supported with the CMM. The
CMM has internally been used for assessing the maturity and capability of the
software development as well as to support the improvement efforts for several
years. From the CMM point of view, the focus of these improvement efforts has
been on levels two and three. The steps of the process engineering process
demonstrate the significance of the software process modelling in process
engineering. Thus, each of the process engineering steps is crucial and would
deserve more attention. However, in this paper we focus especially on step
three, modelling a desired software process.

Process modelling in PMR Terminals

Until recently, software development and process management in PMR
Terminals has been based on high-level models, which merely give some
general guidelines and milestones for the product development. The lack of

513

details in these models has caused the software development and project
management to become very person-dependent. Thus, the success of the
projects is very much up to the experience and capability of process actors and
managers. Recent internal CMM assessments have indicated the very same
shortcomings. Therefore, based on the assumption that a defined, documented,
executed and measured process is a prerequisite for effective improvement (see,
e.g., Kellner et al., 1996), a considerable share of the software development
effort has been invested in process engineering boosted with process modelling
recently (approximately 2% of total software development effort for process
engineering during the last two years). Considering process engineering
supported with modelling, one should first have a firm understanding of the
current software process (Heineman et al., 1994). Therefore, even a thesis study
on facilitating understanding and communication of the software process with
process modelling was carried out during the years 1996-1997 in PMR
Terminals. The study, to which this report is direct continuation, resulted in the
four software process modelling principles described earlier in Section 2. These
four principles were successfully applied in describing software process as it is
currently enacted and almost all the actors of the software process, about twenty
at the time, participated in this modelling exercise. The remainder of this paper
focuses on sharing the experience associated to a prescriptive modelling
experiment, which was based on the preceding descriptive modelling and guided
by the four modelling principles.

Prescribing a desired process

Codifying an existing process through descriptive modelling is seldom enough.
By contrast, descriptive modelling usually reveals many shortcomings and
bottlenecks in software development, which can effectively be tackled with
prescriptive modelling. Furthermore, descriptive models are often rather
informal descriptions of the software development including a mixture of
explicit and implicit information. At least this was the situation in our case.
Therefore descriptive models can’t effectively be utilised to support and guide
the actual work. These were the main reasons for initiating prescriptive
modelling in PMR Terminals: aspiration to improve the quality and performance
of the software process and to replace the ambiguous descriptive model with a
more formal prescriptive one, which could be supported with process support

514

technology. The same aspiration to improve the quality and performance of
software process has influenced the development of the CMM including its
organisational process focus and process definition key process areas (KPAs),
which are under the spotlight in this paper. Unfortunately, because of the CMM’s
universal nature, it does not describe how the KPAs should be applied in
practice. This lack of guidance has also been recognised by Demirors and
Demirors (1998).

 Shift From Descriptive to Prescriptive Modelling

The modelling process applied to the prescriptive modelling was similar
compared to the one applied in the preceding descriptive modelling including
separate phases for data collection, process modelling language engineering,
preliminary modelling and process actor participation. Moreover, also the
graphical PML used in descriptive modelling was utilised in prescriptive as well.
However, the shift from descriptive to prescriptive modelling introduced
changes to our modelling approach and PML correspondingly.

In descriptive modelling, when the objective was to facilitate communication
and understanding, one of the most essential factors in the modelling was the
visuality and understandability of the PML. Therefore, the visual PML, which
was based on a traditional DFD (Data Flow Diagram) technique, mixed all
substantial process perspectives listed in Curtis et al. (1992) in order to produce
rich process diagrams, as was required by the context (see Rossi and Sillander,
1998b). Furthermore, during the descriptive modelling, we abandoned the
ambition for exact formality in the name of understandability by concentrating
on big informal and visual process diagrams hanged on walls (see a block of a
such an informal process diagram left in the Figure 2). This way the process
actors participating in the modelling were encouraged to freely comment upon
the process model under construction.

515

Describe
module

standards

Module
Description

Interface
meetings Infra unit R&D

Describe HW
drivers

Other eng.
groups

Msg
Specifications

Describe
Param SW

Parametrising
Specification

Change
request Change

request

Change
request

Module
desc

HW Driver
Specification

Driver
needed

Module
parameters

Design SW
architecture

Design
functionality

Design
internal

interfaces

Design SW
module

SW architecture

Functional
design

HW specifications

Module descriptions

review

review

review

review

- Functional Spec.
- standards

- Interface Spec.
- standards

Interface description

Figure 2. A Block of the SW Design Phase from the descriptive (left diagram)
and prescriptive (right diagram) process model.

Prescriptive modelling, on the other hand, requires formality and accuracy while
pushing visuality to the background. In our case, the prescriptive modelling took
place in two accommodating rounds. During these rounds the ambiguous
descriptive model with more or less formal information and details was
elaborated to a more formal and explicit prescriptive model. This included
continuing the terminology clarification work initiated during the descriptive
modelling. Through PML engineering we simplified the conceptual structures
and their corresponding representation in the original PML in order to increase
its formality and accuracy. In the same vein, we separated the different process
perspectives, namely functional, behavioural, organisational and informational
(Curtis et al., 1992), which were previously modelled together with one PML.
Thus, from the prescriptive modelling point of view, mixing all main process
perspectives in one graphical PML yielded cluttered models overloaded with
different symbols, which were required in the descriptive modelling. Figure 2
illustrates how the graphical representation evolved during the modelling.
Moreover, similarly to the descriptive modelling, the prescriptive modelling was
carried out without any special tool support. We merely utilised a computerised
drawing tool supplemented with the symbols of our graphical PML.

 The principles in prescriptive modelling

In our experiment, the four fundamental software process modelling principles,
originally introduced for descriptive modelling, were applied successfully in

516

prescriptive modelling. However, the implications, focus and the mutual
relationships of the principles turned out to be somewhat different than in
descriptive modelling.

The principle of flexibility. The principle of flexibility was applied throughout
the modelling process as in descriptive modelling. The principle was utilised to
accommodate the modelling process for prescriptive purposes. This time,
however, it was adapted in a more controlled manner meaning, for example, that
ad-hoc changes to the PML were no longer allowed, not even in the name of
understandability. Instead, the objective behind the application of the principle
was the ambition to flexibly increase the formality of the modelling.

The principle of PML engineering. The main tool in applying the principle of
flexibility to practice was PML engineering. Thus, we moulded the PML to fit
the requirements of prescriptive modelling - mainly formality and accuracy. The
PML engineering focused primarily on two interrelated aspects of the PML,
conceptual structures and process perspectives. First, based on the feedback
from descriptive modelling, we were able to direct the modelling on process
aspects considered essential. Thus, the number of different concepts and PML
symbols were cut down in order to focus the modelling on crucial process
information. Besides improving clarity and accuracy, this also facilitated the
documentation of the process in a process manual. Thus, we found it too
toilsome to attach large process diagrams overloaded with different symbols into
text documents or in any other available electronic media. Moreover, the PML
was further supplemented with text and table notation for specifying the details
associated to the different phases of the software process, which were left
unspecified in the graphical PML. The second aspect, closely related to the first
one, affected by the PML engineering was the perspectives included in the
modelling (process ontology). In order to decrease the ambiguity caused by
multiple perspectives mixed together, the perspectives were separated and the
functional one was strengthened over the others. The reason for separating the
perspectives and strengthening the functional one was due to the feedback from
the first experiments on tailoring the prescriptive model into practice. Thus, the
feedback indicated that the activities and data flows between them are most
important to be modelled. Focusing more on logical connections of process
phases and activities over the temporal relations mainly did the strengthening.
We had previously been trying to combine both in one PML. To summarise the

517

perspectives evolution, the graphical part of the PML was engineered to cover
the functional perspective while the other perspectives deemed important,
informational and organisational, were covered by the new textual part of the
PML. The behavioural perspective, on the other hand, was no longer considered
worthwhile to model since the temporal relations are ultimately planned and
described when tailoring the process model into practice (e.g. in project
planning).

The principle of using multiple data sources. During the prescriptive modelling,
the principle of using multiple data sources under went perhaps the most
significant evolution. When the modelling shifted to prescriptive direction,
exhaustive data collection was no longer needed. This was because now the
modelling was based on the already existing understanding of the current
process and a vision of the desired one achieved through descriptive modelling
and internal CMM assessments. Furthermore, the process data collected during
the descriptive modelling was on the hand in the prescriptive one as well.
However, the principle did not become totally obsolete since software
documentation study and participant observation were still used as data sources
to maintain the grasp of the current state of software process. Participant
observation, in particular, focused on the collection of informal process data
through participation in meetings, reviews and everyday discussion.
Furthermore, survey of the existing literature was utilised as a new data source.
This source was utilised in searching existing solutions related to software
development, i.e. best practices to be utilised in our context.

The principle of process actor participation. Finally, the principle of process
actor participation was applied successfully in the prescriptive modelling as
well. In our experiment, the local process engineer worked as a modelling
facilitator carrying the main responsibility of the modelling including the
documentation of process diagrams and supplementary text and tables. This
responsibility included also the involvement of process actors in modelling. The
key process actors participating in modelling included software team leaders,
senior designers and project managers covering approximately half of the
process actors (about 20 out of 40 at a time), on the other hand, contributed their
expertise to the modelling mainly through several design meetings, remote
comments and final process model review. This degree of participation may be
observed as a neglect when the ideal situation is that process actors define their

518

process themselves. However, being under constant time-pressure, the resource
scarce software engineering industry is unlikely to absorb such an intensive
process modelling effort. This was exactly the situation in our case. It also
became clear that when creating a prescriptive process model it is not that
crucial to have all process actors participating. This is because now the
modelling is based on the common understanding achieved through full
participation in descriptive modelling supplemented with internal CMM
assessments.

 Discussion

Literature is full of process models for different software development situations
and needs. These models include such as traditional life-cycle models (see, e.g.,
Boehm, 1981) and process descriptions included in method specifications (see,
e.g., Yourdon, 1989). Based on these models it could be argued that software
process could be modelled without any knowledge of the process context and its
current maturity. However, we claim that when a process model is constructed
for a given environment, the modelling has to be done in regard to the
requirements and characteristics of that specific context. This way it is ensured
that the model is realistic and can be instantiated into practice. In PMR
Terminals, the discussed prescriptive model has successfully been instantiated
into practice and the feedback received from process actors has been
encouraging. The feedback has indicated increased understanding of the
software process among the process actors, rise in project planning accuracy,
better conformity between projects and improved guidance for actual software
development. Moreover, the process model has offered a solid foundation for
further process improvement, which we strive in small incremental steps tied to
the capabilities of the context as well as to the feedback collected from the
practice. Thus, because of the intricacies of software development, we believe
that it is impossible to create and introduce a model of a desired process tied to
the specific context right on the first try. On the contrary, the model needs to be
revised and further developed based on the feedback collected from its use in
practice. Feedback from testing the model in practice is required in order to
bring the modelling into more detailed levels. It may also be necessary to
introduce an unfinished model into practice because of too few process
engineering resources and the great need for a new model. Thus, it is often

519

necessary to first create a coarse-grained draft of a process model, introduce it
into practice and then further develop it based on the direct feedback.

Conclusions

In this paper, we have reported an experiment of prescriptive modelling in an
industrial software development context. The objective of this experiment was to
explore two research questions "what kind of an effect does the shift from
descriptive to prescriptive modelling have on the modelling" and "are the four
software process modelling principles, originally introduced for descriptive
modelling, applicable to prescriptive modelling". As anticipated, prescriptive
modelling imposed amplified requirements for formality and accuracy when
compared to descriptive modelling. This included the need to make a more clear
distinction between the different perspectives modelled. Thus, we had to
separate the representation of the different process perspectives, which in
descriptive modelling were combined together at the expense of formality and
accuracy. From this we concluded that it is advantageous or even necessary to
separate different process perspectives, e.g., with different PMLs in order to
build a process model, which can be used to support and guide the actual
software development. In our case, we did not introduce any new PMLs for the
prescriptive modelling but engineered the one applied in descriptive modelling
to suit the needs of prescriptive modelling. However, we assume that when the
modelling is iterated as continuous process improvement proposes, the need to
introduce a more formal PML or PMLs for depicting the different process
perspectives and details more carefully increases. Second, the modelling
experiment proved that the four software process modelling principles,
originally introduced for descriptive modelling, suit prescriptive modelling as
well. Although the implications, focus and the mutual relationships of the
principles turned out to be somewhat different compared to those in descriptive
modelling. Thus, based on our modelling experience we argue that the four
principles are applicable to similar modelling cases, which take place in a
comparable process context with similar modelling objectives. However, the
principles alone are not enough but they provide guidelines for building a
process modelling process and method in accordance with the characteristics of
modelling context.

520

References

Avrilionis, D., Belkhatir, N., Cunin, P. A unified framework for software
process enactment and improvement, In Proceedings of the 4th international
conference on the software process, IEEE Computer Society Press, 1996.

Bandinelli, S. C., Fuggetta, A., Ghezzi, C. Software process model evolution in
the SPADE environment, IEEE Transactions on Software Engineering (19:12),
1993.

Basili, V. R., Rombach, H. D. The TAME project: Towards improvement-
oriented software environments, IEEE Transactions on Software Engineering
(14:6), 1988.

Boehm, B.W. Software engineering economics, Prentice-Hall, 1981.

de Bunje, T., Engels, G., Groenewegen, L., Matsinger, A., Rijnbeek, M.
Industrial maintenance modelled in SOCCA: An experience report, In
Proceedings of the 4th international conference on the software process, IEEE
Computer Society Press, 1996.

Christie, A., M. A graphical process defintion language and its application to a
maintenance project, Information and Software Technology (25:6/7), 1993.

Curtis, B. Kellner, M. I., Over, J. Process modelling, Communications of the
ACM (35:9), 1992, pp. 75-90.

Deiters, W., Gruhn, V. The funsoft net approach to software process
management, International Journal of Software Engineering and Knowledge
Engineering (4:2), 1994, pp. 229-256.

Demirors, O., Demirors, E. Software process improvement in a small
organisation: Difficulties and suggestions, In Proceedings of the 6th european
workshop on software process technoloqy, Lecture Notes in Computer Science,
Springer-Verlag, Berlin Heidelberg, Germany, 1998.

521

Dutton, J. E. Commonsense approach to process modeling, IEEE Software
(July), 1993.

Finkelstein, A., Kramer, J., Nuseibeh, B., eds. Software process modelling and
technology, Advanced Software Development Series (ISBN 0-86380-169-2),
Research Studies Press Ltd. (John Wiley), 1994.

Heineman, G. T., Botsford, J. E., Caldiera, G., Kaiser, G. E., Kellner, M. I.,
Madhavji, N. H. Emerging technologies that support a software process life
cycle, IBM Systems Journal (33:3), 1994, pp. 501 - 529.

Hirschheim, R., Klein, H. Paradigmatic influences on information systems
development methodologies: Evolution and conceptual advances, Advances in
Computers (ISBN 0-12-012134-4), 34, 1992, pp. 293-392.

Höltje, D., Madhavji, N. H., Bruckhaus, T., Hong, W. K. Eliciting formal
models of software engineering processes, In Proceedings of the 1994 CAS
conference (CASCON'94), IBM Canada Ltd. and The National Research
Council of Canada, 1994.

Kaiser, G. E., Popovich, S. S., Ben-Shaul, I. Z. A bi-level language for software
process modeling, In Proceedings of the 15th international conference on
software engineering, IEEE Computer Society Press (May), 1993, pp. 132-143.

Kellner, M. I., Briand, L., Over, J. W. A method for designing, defining, and
evolving software processes, In Proceedings of the 4th international conference
on the software process, IEEE Computer Society Press, Brighton, 1996.

Kellner, M. I., Hansen, G. A. Software process modeling: A case study, In
Proceedings of the 22nd annual Hawaii international conference on systems
sciences, IEEE Computer Society Press (2:January), 1989, pp. 175-188.

Klingler, C. D., Schwarting, D. A practical approach to process definition, In
Proceedings of the 7th annual software technology conference, 1994.

522

Kontio, J. Promises: A framework for utilizing process models in process asset
management, Unpublished Licentiate thesis at Helsinki University of
Technology, 1994.

Koskinen, M., Marttiin, P. Developing a customisable process environment:
Lessons learnt and future prospects. In Proceedings of the 6th european
workshop on software process technoloqy, Lecture Notes in Computer Science,
Springer-Verlag, Berlin Heidelberg, Germany, 1998.

Kumar, K., Welke, R. J. Methodology engineering: A proposal for situation-
specific methodology construction. In Challenges and strategies for research in
systems development, ed. W. W. Cotterman and J. A. Senn. John Wiley and
Sons Ltd, 1992.

Madhavji, N. H. The process cycle, Software Engineering Journal (September),
1991.

Osterweil, L. Software processes are software too. In Proceedings of the 9th
international conference on software engineering, IEEE Computer Society Press
(2:13), 1987.

Paulk, M. C. Weber, C. V. Curtis, B. Chrissis, M. B. The capability maturity
model: guidelines for improving the software process, Addison-Wesley
Publishing Company, 1995.

Rossi, S., Sillander, T. A software process modelling quest for fundamental
principles, In Proceedings of the european conference on information systems
(ECIS), (2), 1998a.

Rossi, S., Sillander, T. A practical approach to software process modelling
language engineering. In Proceedings of the 6th european workshop on software
process technoloqy, Lecture Notes in Computer Science,Springer-Verlag, 1998b.

Shepard, T., Wortley, C., Sibbald, S. A visual software process language,
Communications of the ACM (35:4), 1992, pp. 37-44.

Yourdon, E. Modern structured analysis, Yourdon Press, 1989.

523

SESSION 9 :

Methods and Tools in SPI

524

525

A Software Process Simulator for
Software Product and Process

Improvement

Paolo Donzelli and Giuseppe Iazeolla
Laboratory for Computer Science
and CERTIA Research Center*

University of Rome "TorVergata"
Roma, Italy

{donzelli,iazeolla}@info.uniroma2.it

Abstract

Software process improvement can benefit from the application of software
process quality models with dynamic estimation capabilities. In order to
guarantee the dynamic estimation capability, and to deal with the complexity of
the modelling problem, this paper proposes the combination of three
conventional modelling methods (analytical, continuous and discrete-event) into
a unique hybrid multi-level new model, called Dynamic Capability Model
(DCM).

DCM is applied to a waterfall-based software process to study the effects of
three different quality assurance management policies on given process quality
attributes, as effort, delivery time, productivity, rework percentage, and product
quality. DCM simulation results can stimulate debate, and provide both
qualitative and quantitative suggestions on the ways to change the software
process to improve its quality, or the ways to achieve specific organisation’s
needs.

* Work partially supported by the CERTIA Research Center, and by the UNIROMA2-UMD-

WVU Co-operation agreement on Concurrent Engineering and Simulation Modelling in Software

Process Optimisation.

526

1. Introduction

Software process quality is a multi-attribute index, spanning from process
effectiveness, to process productivity, rework percentage, etc., including product
quality itself (defect density, reusability, etc). Process improvement requires
managing its complexity by means of appropriate models with "dynamic
estimation" capabilities. In other words, the capability to analyse and understand
the as-is process, to design the to-be process, to forecast process trajectories for a
better project control, to simulate outcomes under different what-if conditions,
without affecting the actual environment.

Quality models conventionally used by the software community are of analytical
average-type and do not generally hold such capability. Examples of such
models are the Function point model [1], the COCOMO model [2], the Rayleigh
model [3], and the Reliability Growth model [4]. Besides lacking dynamic
estimation, and only providing "average" estimates on the process quality, these
models cover a strict subset of the quality attributes, separate the effects of such
attributes (e.g. the development effort from the defect density), and do not
permit to analyse the process behaviour in a perturbed environment (e.g. changes
in product requirements, staff reductions, etc).

Giving a process model the dynamic capability generally requires the
introduction of so complex relationships between internal and external variables,
that mathematical model solution techniques have to give way to simulation
solution approaches. However, existing process-simulation techniques also
suffer by drawbacks, in that they only enhance some process aspects to
detriment of the others. This is since such techniques are either of discrete-type
(discrete-event queuing based) [5], or of continuous-type (system dynamics
based) [6] [7], and only rarely give a combination thereof.

It is the paper view that to give a model the dynamic capability property one has
to combine all three above-mentioned modelling methods (the average-
analytical modelling method, the discrete-type and the continuous-type one) into
a hybrid modelling method. In this view, the paper introduces a predictive
hybrid model, called the Dynamic Capability Model (DCM). The hybrid method
is applied in DCM according to a two-level abstraction framework. At the higher
abstraction level, the discrete-event method is used, while the analytical and the

527

continuous-type methods are used at the lower abstraction level. A simulation
technique is used to solve the hybrid model. The QNAP2 simulation package [8]
is used, which includes many features that support hybrid modelling.

It is generally argued that simulation solutions are unlikely able to give exact
forecast of the real process behaviour. However, it is this paper view that they
nevertheless give projections on how the process would behave under given
assumptions on external and internal factors. They stimulate debate and provide
a way to learn about how to improve process quality. To sustain this view, some
application examples are presented, which predict and analyse the effects of
process-management factors (reviews and testing effectiveness) on process
quality attributes as effort, delivery time, productivity, rework percentage and
product quality.

This work is one of the results of the joint co-operation between the University
of Roma “Tor Vergata”, the Enterprise-University Consortium CERTIA, the
Software Engineering Laboratory of the University of Maryland and the CERC
Research Center of the University of West Virginia, on the "Concurrent
Engineering and Simulation Modelling in Software Process Optimisation"
enterprise-university project.

The paper is organised as follows. Section 2 gives a brief overview of DCM, and
Section 3 describes an example use of DCM to study process quality.

2. DCM for the waterfall paradigm

A software process based on the waterfall paradigm is taken into consideration
in this paper, and modelled in DCM. According to such paradigm, the software
process (illustrated in Figure 1) consists of a series of sequential phases, and the
software product is the conclusive artifact of a series of intermediate artifacts,
named requirements, specification, high-level design, low-level design, code,
system-tested code and acceptance-tested code. Such artifacts are also referred to
as primary artifacts.

Although phases are sequential, their respective activities can run concurrently,
because of the simultaneous execution of work activities (that generate primary

528

artifacts) and rework activities (necessary to fix defects or to introduce
requirement modifications). Artifacts generated by the rework activities are
referred to as secondary artifacts. They are named defect reports or correction
reports if generated by activities aiming at fixing defects. They are instead
named changes or increments if generated by activities that introduce
modifications due to requirements instability. The waterfall process thus consists
partly of sequential and partly of concurrent activities.

requirements
requirements changes
requirements increments

Specification (SP)
Activity

High Level Design (HLD)
Activity

Low Level Design (LLD)
Activity

Implementation (IMP)
Activity

System Test (ST)
Activity

Acceptance Test
(AT) Activity

specification
SP changes
SP increments
SP corrections reports

high level design
HLD changes
HLD increments
HLD corrections reports

low level design
LLD changes
LLD increments
LLD corrections reports

code
code changes
code increments
code corrections reports

system-tested code
system-tested code changes
system-tested code increments
system-tested code corrections reports

high level design defects reports

low level design defects reports

code defects reports

specification defects reports

d
e
f
e
c
t
s

r
e
p
o
r
t
s

acceptance-tested code
acceptance-tested code changes
acceptance-tested code increments
(the final SW_product)

 SP HLD LLD IMP ST AT time

Process
Phases

Figure 1- The modelled software process

529

Activities are distinguished into development activities, and testing activities. In
Figure 1, the development activities are the Specification (SP), the High Level
Design (HLD), the Low Level Design (LLD), and the Implementation (IMP)
activity. The testing activities are the System Test (ST), and the Acceptance Test
(AT). The (primary or secondary type) artifacts various activities yield are
reported on the arrowhead sides in Figure 1.

The Figure 1 process is translated in DCM according to a two-level abstraction
framework: the higher and the lower abstraction level, described in Section 2.1
and 2.2, respectively.

The process quality attributes taken into account by DCM are effort (E), delivery
time (T), productivity (P), rework percentage (RWK), product defect density
(DFD) and many sub-attributes thereof (process staffing profile, staffing profile
over single activities, duration of each phase, final product size, etc.). However,
for the sake of conciseness, in this paper we concentrate on the study of only a
few of them.

 2.1 The DCM higher abstraction level

At the higher abstraction level, the discrete-event modelling method is used: the
process is modelled by a discrete-event queueing network. The queueing model
is a direct replica of the software process. Service stations are used to represent
activities and sub-activities, whilst circulating customers are used to represent
artifacts that move from one activity to another and that are enqueued on the
entrance of a given activity and wait for services.

Figure 2 illustrates the queueing network used to model the HLD activity. The
main service stations are the "work station", the "external rework station", the
"internal rework station" and the "review station".

The “work station” simulates the development of the high-level design artifact
on the basis of the demand submitted in input by the specification artifact.

Basing on the demand in input for SP changes, or SP increments, the “external
rework station” simulates the modification of the already released high-level

530

design artifact, and yields the corresponding output artifacts (HLD changes and
HLD increments). Similarly, basing on the demand in input for SP corrections
reports or HLD defects reports, the “internal rework station” simulates the
correction of the released high-level design artifact, and yields the corresponding
HLD corrections reports.

Finally, the “review station” simulates the review performed on the high-level
design, the HLD changes, and the HLD increments artifacts. No review is
performed on HLD correction reports, assumed with no defects. In other words,
it is assumed that the correction activities (simulated by the “internal rework
station”) inject no defects.

work station review station

store stationinternal rework station

external rework station

HLD
HLD changes
HLD increments
(corrected, to be released)

HLD
HLD changes
HLD increments
(to be corrected)

HLD
HLD changes
HLD increments
HLD correction reports

start station work station review station release station

internal rework station

HLD defects reports
(due to locally injected defects)

external rework station

specification
SP changes
SP increments
SP corrections reports

SP defects reports

to SP-activity

Figure 2 - Higher abstraction level of the HLD activity

The “start”, “release” and “store” stations in Figure 2 are assumed to be zero
service-time stations, since they perform just co-ordination activities. In
particular: the “start station” directs the input artifact to the appropriate service
station, depending on its type, whereas the “release station” and the “store
station” take care of the releasing of the artifacts.

The high-level design, the HLD changes and the HLD increments are released by
the “release station” only if no defects have been found by the “review station”.
If, however, some defects have been found, the “release station” creates the
corresponding defects reports (e.g. HLD and SP defects reports) and sends them
back to the activities responsible for the defects. The faulty artifacts are then sent
to the “store station”, where they are held until all the corrections reports
corresponding to the released defects reports are received.

531

 2.2 The DCM lower abstraction level

The lower abstraction level gives the implementation details of the service
stations (or sub-activities) introduced at the higher abstraction level. The
analytical and the continuous modelling methods are used at this level. In
particular, each sub-activity is modelled either by an analytical average-type
function, or by a continuous type time-varying function (or by a combination
thereof). Such functions are used to express the amount of resources (e.g.
personnel), or time, or effort (person-week) that service stations use to simulate
the corresponding sub-activities.

Figure 3 shows the implementation details of the “work station”, one of the main
service stations depicted in Figure 2, and of its corresponding input and output
artifacts. The station simulates the development of the high-level design artifact,
starting from the specification artifact.

The specification and high-level design artifacts are described by a set of four
attributes: name, size, development effort and defectiveness. Attributes name
and size are of immediate evidence. The attribute defectiveness is described by
an array whose j-th element is the amount of defects injected into the artifact by
the j-th development activity (j = SP, HLD, LLD, IMP). The attribute total
development effort (W1 for the specification and W1+W for the high-level
design) is the total effort that has been spent to develop the artifact itself since
the beginning of the process. Thus, it encompasses also the effort spent to
develop all the artifacts from which it has been derived.

The values of the attributes of the high-level design artifact, together with the
amount of time, T, (“work station” service time), and of personnel over time,
E(t), required to develop such an artifact, are derived as illustrated in Figure 3.
All of these quantities may have random deviations, and are therefore simulated
according to gaussian-like probability distributions. More in detail, the average
size of the high-level design artifact is first derived from the size of the
specification artifact by use of the COCOMO-like size estimator block. The
corresponding random size is then obtained by use of the gaussian-like pseudo-
random generator. This value is then given to the COCOMO-like time estimator
block, to obtain the random service time (T), and to the COCOMO-like effort
estimator block to obtain the random development effort (W). That is, as shown

532

by the shaded area in Figure 3, the effort simulated by the “work station” to
develop the high-level design starting from the specification.

Name = high-level design
Size = HLD_size
Total Develop. Effort = W1+W
Defectiveness(i) = D1(i) + ID
(i = HLD)
Defectiveness(j) = D1(j)
(j = other activities)

work station

Name = specification
Size = SP_size
Total Develop. Effort = W1
Defectiveness = D1

specification artifact

Injected Defects
Estimator

COCOMO -Like
Time

 Estimator

COCOMO-Like
Effort

Estimator

Pseudo-random
Generator

random
release time

(T)

random
Injected Defects

(ID)

average
high-level design

size

random
development

effort (W)

random high-level design size
(HLD_size)

COCOMO -Like
Size

 Estimator

high-level design artifact

staff E(t), T

specification size
(SP_size)

this area is the
random development

effort (W)

time

E
(t

)

 T t ime
t

Rayleigh

Figure 3 - Lower abstraction level of the “work station” in the HLD activity

The random development effort (W) is then added to the value of the total
development effort attribute of the specification artifact (W1) to obtain the value
of the corresponding attribute of high-level design (W1+W).

On the basis of T and W, the amount of required personnel, E(t), is finally
obtained using the Rayleigh function [3]. According to Putnam’s assumption [3],
the high-level design artifact is released when E(t) reaches its peak. Moreover,
unlimited staff availability is assumed. In other words, it is assumed that the staff
pool in Figure 3 can always supply the personnel necessary to fit the E(t) curve

533

demand for personnel. DCM, however, can easily accept more realistic
assumptions on finite staff pools.

The amount of defects injected into the high-level design artifact (injected
defects, ID) is obtained from the injected defect estimator block, as a by-
multiplication of the random size of the high-level design and the expected
defect density (defects per unit of size). Defect density is a parameter used in
DCM to summarise the effects of various factors (personnel skill, team structure,
supporting tools, programming language, product type, etc) on the defectiveness
of a given development activity. DCM, however, can easily accept more
elaborate defect injection models, as for example models in [9].

The derived ID is then summed to D1 (specification defectiveness) to obtain the
high-level design defectiveness.

More details on the analytical derivations of the functions used to model this
station (and all the other stations in Figure 2) can be found in [10], [11] and [12].

3. Example use of DCM to study process quality

The DCM simulator can be used to predict and analyse the effects of various
process factors on the process quality (e.g. effort, delivery time, and
productivity). Even if, in many cases, such effects are known facts at qualitative
level, they are made quantitative by use of the DCM simulator. In this Section,
the quantitative study of the so-called “find as much as early as possible” defect
detection strategy is made. In qualitative terms, it is already known that such
strategy improves the process schedule, effort and the final product quality. The
use of DCM will provide a quantitative evaluation of such advantages.

In such a perspective, DCM will be used to study the effects of three different
defect detection policies (P1, P2 and P3) in a software development scenario
with stable requirements. Stable requirements meaning that the size of the initial
requirements (assumed to be of 1500 Function Points) does not change during
product development.

534

The three policies are characterised by different allocations of the defect
detection resources along the life cycle, however yielding the same final product
quality (simply measured in DFD). In DCM this can be expressed by assuming
different defect detection effectiveness (DDE) for the process defect detection
activities (SP-review, HLD-review, LLD-review, IMP-review, ST and AT). In
fact, DDE is a DCM input variable that can be used to specify the detection
effectiveness of a review or testing sub-activity in terms of percentage of
removed defects.

The values of DDE adopted for P1, P2 and P3 are reported in Table 1. In
summary, it is assumed that in P1 (or Early Detection policy) the DDEs are
higher in the initial activities of the lifecycle, in P2 (or Middle Detection policy)
the DDEs are higher in the middle activities of the lifecycle, in P3 (or Late
Detection policy), the DDEs are higher in the final activities of the lifecycle.

Table 1-Defect detection effectiveness for Early, Middle and Late policies

 Poli
cy

SP review
DDE

HLD-review
DDE

LLD-review
DDE

IMP-review
DDE

ST
DDE

AT
DDE

Early
Detection

95% 95% 95% 75% 50% 50%

Middle
Detection

10% 40% 80% 80% 55% 50%

Late
Detection

5% 5% 5% 20% 60% 95%

Comparison is made by use of the DCM simulator, analysing how the values of
the attributes E, T, P, and RWK (DFD is constant) change from P1 to P2 to P3.

Figures 4 and 5 illustrate the simulation results for the personnel over time (E(t))
in the Early and Late Detection policies. They show that when the Early
Detection policy is applied a reduction of effort (E), represented in Figures 4 and
5 by the shaded area, and of delivery time (T) is obtained. In particular, the
effort moves from 581 to 519 person-week, whereas the delivery time moves
from 102 to 82 weeks.

Furthermore, it can be observed that in the Early Detection policy case, more
time and effort are spent during the development phases (SP, HLD, LLD, and
IMP phases) rather than during the testing ones (ST and AT phases). On the

535

contrary, when the Late Detection policy is applied, more time and effort is
spent during the testing phases rather than during the development ones.

0

3

6

9

12

15

0 8 16 24 32 40 48 56 64 72 80 88 96 10
4

w eek

st
af

f

development testing

Figure 4 – Personnel over time for the Early Detection policy

0

3

6

9

12

15

0 8 16 24 32 40 48 56 64 72 80 88 96 10
4

w eek

st
af

f

development testing

Figure 5 – Personnel over time for the Late Detection policy

To validate such simulation results, further simulation experiments have been
carried out to explain the process behaviour. By use of DCM Figure 6 has been
first obtained. This picture shows the defect detection patterns for the defects
injected by the HLD activity (for the Early and the Late Detection policies). The
histogram bars along one column (i.e. Late or Early policy) give the number of
defects that have been injected by the HLD activity and have been detected by
the subsequent defect detection activities (HLD-review, LLD-review, System
Test and Acceptance Test). For example, the IMP-review bar in the “Late”
column indicates that about 50 defects, injected by the HLD activity, have been
found during the IMP review in the Late Detection policy case. Thus, the heights
of the histogram bars along one column sum up to the total amount of defects

536

which have been injected during the HLD activity and which have been detected
by the subsequent defect removal activities (e.g. 340 in the Figure 6 case).

In summary, Figure 6 shows that in the Early Detection policy most of the
defects are discovered and reworked locally, i.e. during the same activity that
injected them, whereas, in the Late Detection policy, most of the corrections are
not performed locally, but during the testing phases and this contributes to move
time and effort towards the testing phases (as in Figures 4 and 5).

S
P

-r
e

vi
e

w

H
L

D
-r

e
vi

e
w

L
L

D
-r

e
vi

e
w

IM
P

-r
e

vi
e

w

S
ys

te
m

 T
e

s
t

A
cc

e
p

t.
T

e
s

t

Early
Late

0

50

100

150

200

250

300 defects injected by HLD

found during

the subsequent

defect detection

activit ies

Figure 6 - Defect detection patterns for Early and Late Detection policy

In addition, although the total number of removed defects is the same (340 in
Figure 6), in the Late Detection policy case they are discovered later, leading to
a higher consumption of resources during the defect correction cycles. In terms
of process quality, this contributes to the higher effort, delivery time, rework
percentage (from17% to 25%) on one side, and to the lower productivity (of the
13%), on the other, for the Late Detection policy case in comparison with the
Early one. A further validation of the observed differences among the three
policies can be found by considering the total amount of effort spent in removing
defects. In particular, to this purpose, further simulation experiments have been
carried out, which show that, moving from the Early to the Late Detection

537

policy, the total effort spent by review and testing activities increases by about
the 18%.

To further illustrate the utility of DCM, Figure 7 has been obtained, which gives
a synthetic view of the normalised values of the process quality attributes for all
the 3 policies (P1, P2, and P3). It can be seen that moving from the Early to the
Late Detection policy, the effort (E), delivery time (T) and rework percentage
(RWK) increase, whereas the productivity (P) decreases. As assumed, the final
product quality (DFD) at the lifecycle end is the same for the three policies.

E T 1/P RW K DFD

P1 - Early

P2 - Middle

P3 - Late

Figure 7 - Comparison of quality attributes for Early, Middle and Late policies

4. Conclusions

Understanding and managing the quality of the software process is the goal of
many organisations. On the other hand, the modelling process is quite complex.
In order to deal with such a complexity, a combination of three methods
(analytical, continuous and discrete-event) into a unique hybrid multi-level
modelling methodology with dynamic capabilities is proposed.

The methodology is applied to a waterfall-based software process to produce a
Dynamic Capability Model, called DCM. DCM is then used to predict the effect
of process-management factors (e.g. reviews and testing effectiveness) on some
process quality attributes, as effort, delivery time, productivity, and product

538

quality. Applications of the model show that simulation results can provide both
qualitative and quantitative suggestions about how to change the software
process to improve its quality or to fulfil the organisation’s goals.

Plan for future work includes the extension of the model to less conventional
process paradigms, such as the spiral paradigm and the concurrent engineering
paradigm.

 References

[1] Albrecht A.J. “Measuring application development productivity”,
Proceedings of IBM Application development Joint SHARE/GUIDE
Symposium, Monterey, CA, 1979.

[2] Bohem B.W. Software Engineering Economics. Prentice-Hall, N.J.,
1981.

[3] Putnam, L.H. and W. Meyer. Measures for Excellence: Reliable
Software on Time within Budget. Prentice-Hall, N.J., 1992.

[4] Fenton, N.E., and Pfleeger S.H. Software Metrics: A Rigorous and
Practical Approach. International Thomson Computer Press, UK, 1997.

[5] Hansen, G.A. "Simulating Software Development Processes",
Computer, pp 73-77, IEEE, January 1996.

[6] Abdel-Hamid, T.K.. “System Dynamics Models”, Encyclopaedia of
Software Engineering, pp 1306-1312, Wiley&Sons Inc., NY, 1994.

[7] Calavaro, G.F., Basili V.R., Iazeolla G. "Simulation Modeling of
Software Development Process", Proceedings of the 7th European
Simulation Symposium, Erlangen-Nuremberg, GE, October 1995.

[8] SIMULOG. QNAP 2 User Guide ver. 9.3. Simulog, 1986.
[9] Stutzke M., Agrawal M., Smidts C. "A stochastic model of human error

during software development", Proceedings of the combined 9th
European Software Control and Metrics Conference and the 5th
conference for the European Network of Clubs for Reliability and Safety
of Software, pp 302-310, Roma, Italy, May 27-29, 1998.

[10] Donzelli, P. and Iazeolla G. “Performance Modeling of Software
Development Processes”, Proceedings of 8th European Simulation
Symposium Simulation, pp 339-346, Genova, Italy, October 1996.

[11] Donzelli, P. Performance Modelling of the Software development
Process, Ph.D. Thesis, University of Rome “Tor Vergata”, Roma, Italy,
1997.

[12] Donzelli, P. and Iazeolla G. “A multi-level hybrid approach to model
software development processes”, Proceedings of 9th European
Simulation Symposium Simulation, Passau, Germany, October 1997.

539

Repurposing Requirements:
Improving Collaborative Sense-Making

over the Lifecycle

Albert M. Selvin
Bell Atlantic Corporation
400 Westchester Avenue

White Plains, NY 10604 U.S.A.
Email: albert.m.selvin@bellatlantic.com

Simon J. Buckingham Shum
Knowledge Media Institute

The Open University
Milton Keynes, MK7 6AA U.K.
WWW: http://kmi.open.ac.uk/sbs

Email: sbs@acm.org

Abstract

This paper suggests collaborative sense-making as a way to view the process
toward creating mutually intelligible representations of requirements that can
serve as bridges between different stakeholder communities over the software
development lifecycle. In order to do this, we describe the types of obstacles that
can impede representational literacy across communities of practice coming
together in a design effort. We then offer representational morphing as a
strategy for addressing these obstacles, and show how it has been implemented
in an approach and hypermedia groupware environment in industry use named
Project Compendium. We conclude by reflecting on the key features of the
approach and collaborative tool support which point toward future development
in support of representational morphing.

540

Introduction: mutually intelligible representations

A central concern in software process improvement is to understand, and
represent, the perspectives of the different stakeholders in the requirements
management process over a product development lifecycle. Requirements
management encompasses all treatments of product requirements, from early
elicitation of product goals, through detailed requirements analysis, through
prioritisation of development efforts over the course of maintenance and
enhancement releases. In each of these phases, diagrammatic and textual
representations of requirements must be developed, discussed, reviewed and
approved by various stakeholders. To ensure that developed products meet
customer requirements, representational schemes for requirements must be
accessible and useful to designers, programmers, and different user
communities. Designing mutually intelligible representations which can meet
the needs of such diverse groups is a key challenge. Robinson and Bannon
(1991) have analysed why and how the meaning of representations will
invariably ‘drift’ as they were passed between different design communities,
whilst many others have sought to develop representations which bridge
between end-users’ and designers’ perspectives (e.g. Blomberg and Henderson,
1990; Chin and Rosson, 1998; Muller, 1991).

This paper suggests collaborative sense-making as a way to view the process
toward creating mutually intelligible representations. In order to do this, we
describe the types of obstacles that can impede communication across
communities of practice coming together in a design effort. We then offer
representational morphing as a strategy for addressing these obstacles, and show
how it has been implemented in an approach named Project Compendium. We
conclude by reflecting on the key features of the approach and collaborative tool
support which point toward future development in support of representational
morphing.

541

Obstacles to mutually intelligible requirements
representations

Requirements management is an inherently divergent process, where different
communities have different interests. As they move toward an “anticipated state
in the future,” each community complicates the overall design discourse by
adding their own discourse of communicative styles, concerns, assumptions, and
relationships (Isenmann and Reuter (1997)). Each group’s processes of
participation and reification -- representation of requirements and other
information in text and diagrams -- must be combined with the others involved.

Members of different communities are always bound by the contingencies of
their present situation, in ways they are only partially sensible of. These bindings
affect their senses of what is possible, what is good, what is harmful, and what is
unworkable. Similarly, each community has its own desires of transcending
those contingencies by creating some future state, or some portion of them.
Different communities are aware of different contingencies and the (possibly
negative) consequences of addressing them, as well as they are aware of
potential transcendences and the benefits they imagine will accrue from their
realisation.

The challenge we address in this paper is to try and facilitate integration between
representations designed by different communities in the face of the inherent
obstacles to such integration. We discuss two obstacles next: community-
specific literacies and decentered communication.

 Obstacle: Community-specific literacies

The different communities in system design have their own professional literacy
practices which naturally create communication barriers to other communities.
Developers, particularly of large scale systems, use a variety of representations
to formally specify behavioural properties (e.g. using mathematical/logical
notations; fault tree diagnoses), track information flow and dependencies (e.g.
Entity-Relationship and Data Flow Diagrams, State Transition Networks), and
so forth. Developers of small to medium systems are unlikely to use as many

542

formal representations of system behaviour as those, for instance, in a large,
safety critical system, but their perspective is nonetheless that of implementors,
working with abstracted, information-centric models of the work practices to be
supported. In contrast, a domain expert/end-user needs representations with
obvious correspondences to documents, processes, tools, people, times and
places in their work in order to understand the implications of the future system.

 Obstacle: Decentered communication

Development of, and discussion about, representations usually occurs under a set
of conditions that affect both individual and group communication processes. At
least in industry settings, collaborative design sessions often occur in group
settings, such as formal or informal meetings, under time and deadline pressure,
with semi-understood external constraints (regulatory issues, management
imperatives, and the like), internal tensions, and power struggles impinging on
the ostensible subject at hand. In many cases, the rush to make decisions and
develop solutions and designs—products—means that little attention is paid to
developing a shared understanding of the problem space and constructing
consensual definitions (Weick, 1993; Weick, 1995). Many participants have
limited understanding (and even sheer incomprehension) of portions of the
problem space, such as the subject matter, technical issues, political pressures, or
factors in the external environment. There is typically more than the printed
agenda riding on the outcome, and even the process, of such meetings.

Added to these pressures is the emotional dimension. People in organisations
have feelings and emotions about each other (as individuals and as members of
“other” groups) as well as about the issues they’re discussing. In addition, some
people are good at articulating ideas and comments about representations in such
meetings; others are not, and thus unable to contribute effectively at the time
representations are created, modified, or discussed. All these factors contribute
to a decentering of people’s communicative competencies, which create
obstacles to the development of mutually intelligible representations that will
enable development and realisation of the desired future state.

543

These obstacles can be understood as the (often unspoken) questions that people
ask, or that they are troubled by, during the course of representation
development. These include:

• “Why are we doing this?”

• “What am I here for?”

• “Why do they insist on (calling W what I know as X/saying that we need
Y/ignoring our requests for Z)

• “How is this helping me achieve my (group’s) goals?

• “Why do we have to do this in this manner?”

• “How is what we’re doing contributing the project’s overall progress?”

• “Why aren’t my concerns getting put up on the board?”

• “What do these terms mean?”

Understanding the obstacles in terms of
collaborative sense-making

Developing and applying requirements representations, whether they are
mutually intelligible or not, always happens in a context of shifting and multiple
sense-making (SM) efforts (Dervin, 1983). Everyone involved is engaged in
their own SM effort. There are not only gaps in the languages, frames of
reference, and belief systems that people in the different communities of practice
have, but gaps between their respective SM efforts—their problematics in the
representational situation are different. In many cases, different communities
have mutually unintelligible SM efforts, leading to mutually unintelligible
representational efforts.

Weick (Weick, 1993) calls for “sensemaking support systems” that can aid the
process of constructing “moderately consensual definitions that cohere long

544

enough for people to be able to infer some idea of what they have, what they
want, why they can’t get it, and why it may not be worth getting in the first
place.” Dervin’s (1983) model of sense-making posits that a persons, or groups,
are always attempting to reach a goal, or set of goals. The goals themselves shift
in time and place. Some are tacit, some are explicit; some are conscious, some
are unquestioningly assumed or inherited. Actors in a situation will continue
trying to reach the goal until they are impeded by some obstacle. This obstacle
stops their progress and stymies their efforts to continue. In order to resume their
progress, they need to design a movement around, through, over, or away from
the obstacle. The actions they take at the moment of confronting the obstacle are
sense-making actions, which can be understood as attempting to answer a set of
questions: What’s stopping me? What can I do about it? Where can I look for
assistance in choosing/taking an action?

In systems development contexts with multiple groups involved (multiple
stakeholders, as well as multiple individuals within the various groups) the
problem is compounded, because all the groups and individuals involved are
engaged in their own (overlapping/conflicting) sense-making efforts. Each group
is always attempting to reach its goal. The goals themselves are sometimes
shared, sometimes divergent. Group 1 believes that Group 2 is happily trying to
achieve Goal 1. In reality Group 2 is trying to achieve Goal 2. As time goes on,
obstacles interfere with each group’s progress. The obstacles appear for the
different groups at different times, in different forms, at different levels of
comprehension and articulation. Each group attempts to find ways through,
around, over, or away from their own obstacles. They communicate with each
other and with members of other groups; this either helps them along or hurts
their efforts. Having done this, the groups, assuming they have been able to
gather good information, communicate effectively, and make decisions, continue
on their way, making progress towards their goal(s). However, the goals are still
not well understood by the different groups, and it is unlikely they have
developed any degree of shared understanding.

545

Representational morphing as a collaborative
sense-making approach

The act of representing requirements always occurs in a contested, shifting,
terrain of multiple sense-making efforts. Consequently, tools are needed to help
each community see and appreciate each other’s goals, obstacles, and strategies;
to learn from each other, as opposed to a simplistic model that all that is required
is to retrieve, represent and integrate domain knowledge. Tools can help each
community to understand elements of other communities’ literacy strategies, and
incorporate them into their own.

We propose representational morphing as an approach to the design of such
tools. Representational morphing is the ability to transform a representation, or
elements of a representation, at any moment, with little or no delay, in order to
respond to the sense-making requirements of one or more of the communities
involved in a design effort. By doing so, the different group can read and/or
write the representation according to their own literacies. Representational
morphing further supports the ability to incorporate these new writings and
transform them into other forms or contexts to aid in the sense-making efforts of
the other involved communities.

The following section introduces an approach -- Project Compendium --
developed with the concerns of representational literacy and collaborative sense-
making in mind, and describes how the approach’s developers have supported
representational morphing to date. It should be emphasised that the description
that follows are early steps toward full support and are offered as an illustration
of the possibilities, rather than as a complete solution.

Description of the Project Compendium
environment

Project Compendium (Selvin, 1998; Selvin, 1999) is a system that knits together
off-the-shelf tools and documents to create a customised environment for
collaborative project work. The system provides the capability to convert the
elements of various types of common documents (for example, email, word

546

processing, and spreadsheet documents) into nodes and links in a hypertext
concept-mapping tool. Once in the tool, users can create associations between
those elements while preserving the original set of associations in the source
document, and export the associated elements in new documents. Project
Compendium also prescribes a set of techniques that can be used within the off-
the-shelf tools themselves to add keyword coding and labelling schemas that
allow the cross-referencing of ideas and elements from the different sources
within the hypertext tool. The approach also provides a set of representational
forms that allow groups to do collaborative modelling using hypertext
representations.

The system supports a wide range of project activities, including issue-tracking,
modelling, planning, analysis, design, and other project management tasks. The
system supports facilitated group planning and modelling sessions, conducted
either face-to-face or over a network. To use the system, groups define the types
or categories of information they are interested in and then create a number of
“templates” embodying these categories that can be used by the various tools
involved. Documents loaded into or created within the system are represented as
collections of nodes and links corresponding to the relationships between
individual ideas (for example, each paragraph in an email is a separate node,
linked to a node representing the subject of the email). Once available to the
hypertext database in this manner, the individual nodes can be linked to any
other nodes in the database. For example, individual points in a meeting minutes
document can become “action item” nodes that then reappear in lists of assigned
action items to project members, elements of design models, items in a test plan,
and so forth.

The approach has been used in more than twenty software development,
business process redesign, and other projects at Bell Atlantic, as well as with
community organisations, software companies, and research groups to support a
variety of collaborative analysis efforts. Project involvements have ranged from
small software development teams of two to five people to large process
redesign efforts involving dozens of participants in both large group meetings
and small sub-group work sessions. Project durations have ranged from several
weeks to more than two years (one current software development project team
has employed Project Compendium continuously since its onset in 1996).

547

Database size range from hundreds to more than ten thousand nodes, many of
which reappear in many contexts in the database.27

One of the central aspects of Project Compendium is the ability for users to
define the types or categories of information they are interested in and then
create a number of “templates” embodying these categories. Templates follow a
question-and-answer format. Questions are drawn from the categories, or
attributes of categories, of interest, while the expected answers conform to the
rules established for that category or attribute, The format has general
similarities to that described by Potts et al (1994)28, although use of Project
Compendium extends beyond the domain of requirements. Figure 1 shows the
general form of Project Compendium templates.

Figure 1. General form of Project Compendium templates

27 Detailed quantitative analysis of Compendium’s use remains to be conducted.
However, to give an indication of scale, from December, 1996 – January, 1999,
the "FMT" project team's database has 11,833 nodes in 582 views. 13 users are
registered within the system, but this does not reflect the number of participants
in meetings facilitated and recorded by the tool, who would number
approximately 40-50.

28 Potts, C., Takahashi, K., Anton, A. “Inquiry-Based Requirements Analysis,” in
IEEE Software, March 1994.

Knowledge
Element

Question about the
Element

Answers
(Attributes of the Element)

Answers
(Attributes of the Element)

Answers
(Attributes of the Element)

Question about the
Element

Answers
(Attributes of the Element)

548

Some Project Compendium questions and templates are derived from structured
modelling approaches, while others grow out of immediate and/or informal
concerns of the participating groups. For example, in one project which used
Project Compendium, questions about objects and their attributes were inspired
by formal object-oriented analysis (Coad and Yourdon, 1991; Jacobson, 1992).
Questions about organisations and roles were originally based on elements of the
CommonKADS Organisation Model (de Hoog, Kruizinga and van der Spek,
1993). Questions about problems and opportunities in the domain, however,
were generated spontaneously by members of the participating groups
themselves, in response to domain-specific issues.

Representational morphing in Project
Compendium

Project Compendium’s users have employed a variety of representational
morphing strategies to facilitate collaborative sense-making amongst
participating communities and their members. Two will be discussed here: rapid
recombination of knowledge elements for ad hoc, opportunistic collaborative
representational activities, and early use of a new technique: transformation of
template-based concept maps into developer-oriented representations such as
data flow diagrams (DFDs) and review documents.

 Rapid recombination of knowledge elements for ad
hoc representational activities

The first example shows a Project Compendium representational morphing
technique that has been employed by many of the approach’s users in diverse
projects. The example below was taken from a software and business process
redesign project. The knowledge elements depicted were originally developed in
late 1996-early 1997 as part of the project’s early requirements analysis. The
map below shows a high-level overview, or collection of maps, containing the
requirements specifications for the various modules of the system (Figure 2).

549

Figure 2. Overview of requirements specifications (represented as map nodes)

Each of the map nodes could be opened to reveal nodes representing the detailed
requirements for that module (each node could itself be opened to display further
information about the particular requirement). A document generated from the

550

above map contained more than one hundred pages of textual requirements
description.

Eighteen months after the original requirements had been developed, the project
leader gathered the map nodes representing the discrete groups of requirements
on a new map. This was used in an interactive session with the project’s Core
Team of users and customers to prioritise development for the various modules
of the system.

The map below shows one result of the work done in that session. With the map
displayed in front of the group with an LCD projector, the project leader first
facilitated a general discussion of issues pertaining to the various requirements
up for consideration for inclusion in an upcoming software release. Following
this discussion, the group manipulated the horizontal order of the icons
representing the various modules to indicate the priority order for development.
When necessary, the team opened individual map icons to display both the
original requirements and any additions and modifications that had been made
between the original creation of the requirements node and the mid-1998
meeting (Figure 3).

551

Figure 3. Map showing ranking of priorities

This allowed the members of the Core Team, many of whom had not been
involved with the original analysis, to get immediate access to background and
reference information. The group then held discussions about the requirements
as they related to their present concerns, as well as performed the prioritisation
task.

 Morphing of template-based concept maps into
DFDs and review documents

The following example shows development in progress. Although hypertext
representations such as those shown in the previous section were judged as

552

readable and effective by Project Compendium users29, other user groups
requested representations closer to those they were accustomed to. This was
particularly true for software engineers and others experienced with structured
representations such as DFDs. Project Compendium’s developers are currently
experimenting with software transformation of structured hypertext concept-map
type representations into conventional DFDs.

In the following example, a process redesign team composed of representatives
from various engineering departments created a map of one activity of a new
design for the Central Office Capacity Creation process, a complex business
process composed of more than seventy distinct activities (Figure 4). Elements
depicted on the map fall into two categories: questions corresponding to a
template developed by the facilitating project members, and answers gathered in
collaborative sessions with participants drawn from many departments.

29 For an evaluation, see Selvin, A., Sierhuis, M. Experiences with Conversational Modeling: Building
Models Through Collaboration, NYNEX Science & Technology Technical Memorandum TM96-0045,
White Plains, NY. Fall 1996.

Figure 4. A process diagram from the Capacity Creation project

553

The nodes representing answers were themselves drawn from “browser lists” of
answers that other sub-teams gave to similar template-based models in other
sessions. This concept-map type representation, while useful to the analysis
teams working in group sessions, was not the best representation for two other
communities involved in the effort. These included teams of managers
approving the redesign, who were more comfortable reviewing “books” in a
familiar format, as well as software development teams accustomed to working
with DFDs.

Project Compendium already supports generation of customisable document
formats generation of both formats without additional user work or time delay.
Figure 5 shows a portion of the document generated from the map in Figure 4.
Versions of this document were generated for each review cycle in the project
and reviewed by the project’s several dozen participants.

554

Figure 5: Automatically generated document in user-supplied format

Figure 6 shows a prototype example of automatic generation of a data flow
diagram from the same concept map. Questions and other material unnecessary
for this type of representation are abstracted away. The software recognises
specially designated components of the template and creates diagram elements
according to its predefined schema for data flow diagrams).

555

Figure 6. Automatically generated Data Flow Diagram

Discussion and Future Work

In each of the project examples described above, participants faced obstacles of
community-specific literacies and decentered communication. Communities
involved included software developers, managers and end users from business
units affected by the systems under design or development, process redesign
specialists, and attendees from other departments with an interest in the
proceedings. In all cases, the requirements efforts took place in an environment
of external change, organisational restructuring, and shifting responsibilities.
Participants had to develop or work with requirements within constricted
timeframes, with often conflicting directions from their respective departments,
and with insufficient time to develop deep understanding of each other’s frames
of reference. In such environments, project facilitators had to provide
requirements capture and display mechanisms that allowed participants to
validate the representations on the fly, as well as to make results of individual
sessions available to – and readable by – other participants. The need to provide
a high degree of collaborative sense-making under difficult circumstances
mandated that facilitators develop, augment, and publish representations serving
community-appropriate representational literacies in rapid time.

The examples above show several ways in which Project Compendium’s
approach to software-assisted representational morphing can provide
representations appropriate to particular participants’ preferences, without

Build
Assignable
Inventory

Assignable
Inventory

Deviations/
Changes

(Engr Sched)
Approvals

Integrated/
Revised

Requirements

Field
Specific

Assignments
/Assignment

List

Installation
Details/

Specs/NDO

Assignable
Inventory

Notice (E1)

556

requiring additional manual effort. In each of the examples, knowledge elements
created in one time and use context were “repurposed” in both form (morphing
from one representational form to another) and content (the ways in which
individual knowledge elements were related to one another in the original
context were changed to reflect the concerns and people in the second context.
In each case, the original form and content were also preserved, and available for
reference and/or augmentation at any moment.

Such transformations are critical in environments requiring rapid articulation and
synthesis of requirements information across participating communities. There is
a critical need to repurpose knowledge elements quickly and effectively across
teams without requiring rework or “re-inventing the wheel.” Currently, for
example, Bell Atlantic is using the approaches described above as part of its
Year 2000 contingency planning effort, involving five separate Integrated
Process Teams charting contingency strategies for the company’s core business
processes. Each team’s work must necessarily build on all the others, but the
project’s tight deadlines leave no time for review and training sessions. Using an
effective requirements repurposing approach allows the teams to both develop
and cross-validate their information efficiently and effectively.

While rigorous analysis of the role Project Compendium’s representational
morphing and other techniques has played in the success of these and other
requirements efforts has yet to be performed, participant responses, informal
surveys, and internal customer demand for the approach indicates that Project
Compendium’s users ascribe a high degree of value to it. We believe that this is
because Project Compendium provides a relatively “neutral medium” for the
articulation of ideas. By this we mean that there is a ‘good faith’ effort to
represent all that is said by members of the different communities; even if its
relevance to the immediate issue is not obvious, it should be captured and made
part of the shared display, and group memory that is constructed as a by-product.
Conklin (Conklin, 1998) characterises the spectrum between transcribing what
is said and interpreting it, which usually involves distilling. Distilling/shortening
is acceptable as long as representational integrity (as judged by the idea’s owner)
is preserved. A representational sense-making tool should have the ability to
represent issues and ideas even when they do not immediately fit the predefined
format. This legitimises the posing—and representation—of sense-making

557

questions (Dervin, 1983) such as “why are we doing this?” or “are we at the
right level?”

Future work will include a deep contextual analysis of how representational
morphing has aided collaborative sense-making in situated project team use of
Project Compendium. This will include a study of how particular manipulations,
transformations, and reuse of particular knowledge elements representing
requirements served the sense-making needs of particular participants in a
software development project at various moments in the project's lifecycle.

References

Bannon, L. J., & Kuutti, K. (1996). Shifting Perspectives on Organizational Memory:
From Storage to Active Remembering. Proc. HICSS’96: 29th Hawaii International
Conference on System Sciences, (Hawaii (Jan., 1996)). IEEE.

Barton, D. (1994). Literacy: An Introduction to the Ecology of Written Word. Oxford:
Blackwell.

Bellotti, V., Blandford, A., Duke, D., MacLean, A., May, J., & Nigay, L. (1997).
Controlling Accessibility in Computer Mediated Communications: A Systematic
Analysis of the Design Space. Human-Computer Interaction, 12, (1)

Bellotti, V., Buckingham Shum, S., MacLean, A., & Hammond, N. (1995).
Multidisciplinary Modelling In HCI Design...In Theory and In Practice. Proc.
CHI’95: Human Factors in Computing Systems, (Denver, Colorado (May 7-11,
1995)), 146-153. ACM Press: New York.

Blomberg, J. L., & Henderson, A. (1990). Reflections on Participatory Design: Lessons
from the Trillium Experience. (Ed.), Proceedings of ACM CHI'90 Conference on
Human Factors in Computing Systems (pp. 353-359)

Bowers, J. (1991). The Politics of Formalism. In M. Lea (Ed.), Contexts of Computer-
Mediated Communication (pp. 232-261): Harvester Wheatsheaf.

Bowker, G. C. (1997). Lest We Remember: Organizational Forgetting and the
Production of Knowledge. Accounting, Management and Information
Technologies, 7, (3), 113-138.

Buckingham Shum, S. (1997). Negotiating the Construction and Reconstruction of
Organisational Memories. Journal of Universal Computer Science (Special Issue
on Information Technology for Knowledge Management), 3, (8), 899-928.
<http://www.iicm.edu/jucs_3_8/> Reprinted in: Information Technology for
Knowledge Management. (Eds.) Borghoff, U.M. and Pareschi, R.,Springer-
Verlag: Berlin, Heidelberg, New York, 1998, pp. 55-78.

558

Chin, G. J., & Rosson, M. B. (1998). Progressive Design: Staged Evolution of Scenarios
in the Design of a Collaborative Science Learning Environment. Proc. CHI 98:
Human Factors in Computing Systems, (Los Angeles, CA), 611-618. ACM Press:
NY.

Coad, P., & Yourdon, E. (1991). Object-Oriented Analysis. : Englewood Cliffs:
Prentice-Hall.

Conklin, J. (1996). Designing Organizational Memory: Preserving Intellectual Assets in
a Knowledge Economy. Group Decision Support Systems, Inc., 1000 Thomas
Jefferson Street, NW, Suite 100, Washington, DC 20007, U.S.A.

Conklin, J. (1998). VIMS: Visual Information Mapping. Training CourseGroup
Decision Support Systems, Inc.<http://www.gdss.com/icl/VIMS.html>

Conklin, J., & Burgess Yakemovic, K. C. (1991). A Process-Oriented Approach to
Design Rationale. Human-Computer Interaction, 6, (3&4), 357-391.

de Hoog, R., et. al. Applying the Common KADS Organization Model. KADS-II
Consortium (ESPRIT Project P5248)

Dervin, B. (1983). An Overview of Sense-Making Research: Concepts, Methods and
Results. Annual Meeting of the International Communication Association, (Dallas,
TX (May)).

<http://communication.sbs.ohio-state.edu/sense-making/art/artdervin83.html>

Isenmann, S., & Reuter, W. (1997). IBIS: A Convincing Concept ... But a Lousy
Instrument? Proc. of DIS’97: Conference on Designing Interactive Systems:
Processes, Practices, Methods and Techniques, 163-172. ACM: New York.

Jacobson, I., et. al. (1992). Object-Oriented Software Engineering: A Use Case Driven
Approach. Wokingham: ACM Press.

Kruizinga, E., & van der Spek, R. (1993). Model-Based Development of Knowledge-
Intensive Systems Workshop, (Centrum voor Kennistechnologie, The Netherlands).

Kuutti, K. (1998). Supporting Perspective Making and Perspective Taking: A
Framework for Storing Contextual Information for Reinterpretation. Proc. 7th
International Workshop on Hypertext Functionality (Organizational Memory
Systems & HTF), (Helsinki, Dec. 12-13). University of Oulu, Dept. Computer
Science Technical Report Series.

Leigh Star, S., & Greisemer, J. (1989). Institutional Ecology, "Translations," and
Coherence: Amateurs and Professional in Berkeley’s Museum of Vertebrate
Zoology, 1907-1939. Social Studies of Science, 19, , 387-420.

Miller, D. S., John, Smith, G., & Muller, M. J. (1992). TelePICTIVE: Computer-
Supported Collaborative GUI Design for Designers with Diverse Expertise.
Proceedings of the ACM Symposium on User Interface Software and Technology
1992, 151-160. ACM Press: NY.

Muller, M. J. (1991). PICTIVE - An Exploration in Participatory Design. Proceedings of
ACM CHI’91 Conference on Human Factors in Computing Systems, (New
Orleans, USA), 225-231. ACM Press: NY.

559

Robinson, M., & Bannon, L. (1991). Questioning Representations. In L. Bannon, M.
Robinson and K. Schmidt (Ed.), Proc. of ECSCW’91: 2nd European Conference
on Computer-Supported Collaborative Work (pp. 219-233). Amsterdam Sept 25-
27: Kluwer.

Selvin, A. (1998). Supporting Granular Reuse of Knowledge Elements in an
Organizational Memory System. Proc. 7th International Workshop on Hypertext
Functionality (Organizational Memory Systems & HTF), (Helsinki, Dec. 12-13).
University of Oulu, Dept. Computer Science Technical Report Series.

Selvin, A. (1999). Supporting Collaborative Analysis and Design with Hypertext
Functionality. Journal of Digital Information, 1, (4)
<http://jodi.ecs.soton.ac.uk/Articles/ v01/i04/Selvin/>

Suchman, L. (1993). Do Categories have Politics? The Language/Action Perspective
Reconsidered. 3rd European Conference on Computer-Supported Cooperative
Work, (Milan, Italy (13-17 Sept.)), 1-14. Kluwer Academic Publishers.

Weick, K. (1993). Sensemaking and Group Support Systems. In L. Jessup and J.
Valacich (Ed.), Group Support Systems: New Perspectives. New York: Macmillan.

Weick, K. E. (1995). Sensemaking in Organizations. Thousand Oaks, CA: Sage

Publications.

560

THE DYNAMIC MODELS FOR SOFTWARE
DEVELOPMENT PROJECTS AND THE
MACHINE LEARNING TECHNIQUES

Isabel Ramos Román
José C. Riquelme Santos

Dpto. de Lenguajes y Sistemas Informáticos
Universidad de Sevilla (Spain)

email {isabel.ramos|riquelme}@lsi.us.es

ABSTRACT

During recent years the management of software development projects (SDPs)
has reached significant advances. One of these progresses is the realization of
dynamic models that permit us to model the complex behaviour of the software
development processes. The main advantage of these models is the possibility to
experiment before the execution of the project. In this way we can see the effect
that the application, or non application, of different management policies will
have on the project. In this paper we present a part of the results obtained by
combining, on one hand, the use of a tool that learns producing rules, and
additionally a dynamic model of SDP. This permits us to obtain management
rules applicable to a SDP for estimating good results with the variables that the
project manager desires.

INTRODUCTION

Traditionally, the known problem of software crisis has been treated from the
view point of the technology of development used. Therefore, significant
advances have been achieved in the use of new methodologies of development,
CASE tools, reusing source code, etc. With the appearance, during recent years,
of the dynamic models for SDPs, progresses have been reached in the field of
project management tools and in the advising of the forever complex process of
decision making.

561

The simulation of a dynamic model for a SDP permits us, before beginning the
development, to find out what impact a change of technology would have on the
project [Chichakly 93], the application, or non application, of different
management policies and the maturity level of the very development
organization. In this paper we shall present some of the results from the tasks
that we are performing in order to obtain management rules30 for the SDPs . The
knowledge of these management rules can be obtained before the beginning the
project’s execution and it will permit us to obtain good results for the variables
(delivery time, cost, quality, productivity, etc.) that the project manager desires.
Furthermore, the management rules will permit us to analyse which of the
management policies are more significant for securing the defined initial
objectives in the SDPs, as well as to recognize if these policies can be applicable
or not.

In order to obtain the management rules, we have combined the advantages that
a system that learns based on rules presents and the information that a dynamic
model for SDPs provides. In the following sections, we first present a brief
introduction into the concept of machine learning and the tool used for this
purpose; later, we present the information that is given to the dynamic system
for SDPs. Finally, we apply these methods to a specific SDP.

MACHINE LEARNING

The computational techniques and tools designed to support the extraction of
useful knowledge from databases are traditionally named machine learning.
More recently the names of data mining or Knowledge Discovery in Databases
are used (KDD). In general, the previous techniques try to extract, in an
automatic way, information useful for decision support or exploration and
understanding the phenomena that is the data source.

A standard KDD process is constituted by several steps [Fayyad 96] such as data
preparation, data selection, data cleaning, data mining and proper interpretation
of the results. Therefore, data mining can be considered a particular step that
consists in the application of specific algorithms for extracting patterns from
data. A wide variety and number of data mining algorithms are described in the
literature from the fields of statistics, pattern recognition, machine learning and
databases. Most data mining algorithms can be viewed as compositions of three

30 We call management rule to a set of management policies (decisions) that to take the manager
for carrying out the project final objectives.

562

basic techniques and principles: the model (classification, regression, clustering,
linear function, etc.), the preference criterion, usually some form of goodness-of-
fit function of the model to the data and search algorithm (genetic, greedy,
gradient descent, etc.).

Thereby, the choice of a method of data mining depends on the model
representation that we need. Given that our objective is to find rules to describe
the behaviour of a SDP, our election has been to work with decision trees. A
decision tree is a classifier with the structure of a tree, where each node is a leaf
indicating a class, or an internal decision node that specifies some test to be
carried out on a single attribute value, and one branch and subtree for each
possible outcome of the test. The main advantages of decision trees are their
utility for finding structure in high-dimensional spaces and the conversion to
rules easily meaningful for humans is immediate. However, classification trees
with univariate threshold decision boundaries which may not be suitable for
problems where the true decision boundaries are non-linear multivariate
functions.

The decision tree algorithm more spread is C4.5 [Quinlan 93]. Basically, C4.5
consists in a recursive algorithm with divide and conquer technique that
optimises the tree construction on basis to gain information criterion. The
program output is a graphic representation of the found tree, a confusion matrix
from classification results and an estimated error rate. C4.5 is very easy to set up
and run, it only needs a declaration for the types and range of attributes in a
separate file of data and it is executed with UNIX commands with very few
parameters. The main disadvantage is that the regions obtained in continuous
spaces are hyperrectangles due to the test of the internal nodes are the forms: pi

≥ L or pi ≤ U. However, given our purpose in this work the results supplied by
the C4.5 are perfectly valid.

DYNAMIC MODEL FOR SOFTWARE
DEVELOPMENT PROJECT

To obtain the database that is the entry of the C4.5, we have used a dynamic
model for SDP proposed in [Ramos 98a] and implemented in the environment
simulation Vensim®. The variables that permit to know the basic behaviour of a
dynamic system are defined through differential equations. Furthermore, the
model possesses a set of parameters that define different behaviours. The values
of the parameters can be chosen randomly in an interval defined by the user,
being the model simulated below. Such a record for the database is generated
with the values of the parameters and the values obtained for the system

563

variables that are desired. Starting from this generated database, the C4.5 learns
examining the supplied data and proposing a set of rules for the decision
making.

As previously commented, the dynamic model for SDPs includes a set of
parameters that permit us to study different behaviours. These are provided by
the management policies that can be applied in the SDPs, both related to the
environment of the project (initial estimations, complexity of the software, etc)
and the related to the development organization (personnel management, effort
assignment, etc.) of and its maturity level (like the average delays through the
realization of the activities of detection and correction of errors).

OBTAINING OF MANAGEMENT RULES FOR
SDPs.

The utilization of a tool for the automatic obtaining of management rules permits
the management of SDPs to face different situations, when they have to define
the management policies more adequate to optimize the final values of
determined variables, separated (delivery time, cost, quality, productivity, etc) or
united (delivery time, cost and quality simultaneously).

Once the management rules have been obtained, it is the manager of the project
who decides which rule or rules are the easiest to apply, in function of the
specific project and of the software organization of the one which is working.
He/she will also be the one which, before beginning the development, and once
the parameters that appear in the obtained management rules have been
analyzed, has to decide which parameters can be operated to maintain it within
the values that appear in the rules and which not, to optimize the results of the
variables or groups of variables in his interest. In any case, he/she will also
realize that if he/she doesn’t keep within the obtained values, the said
optimization will not be guaranteed.

In view of the results obtained in the following sections and of the complexity
that the management and control of a SDP conveys, we propose at least two
basic criteria in the election of management rules that are going to be applied:
first, to choose rules that use parameters that are easy to control and modify and,
in second place, if it is possible, to choose rules with a small number of

564

parameters. In the following sections we will use the data of a real SDP
proposed in [Abdel-Hamid 91] which we will call "PROJECT". In section 4.2,
we will obtain management rules that make "GOOD" the final values of the
delivery time and of the cost of the project (measured in effort units), separated
(if the priority objective of the project director is to optimize some specific
variable at "any price") or simultaneously. To show the usefulness that the
obtaining of management rules presents, in section 4.3, management rules have
been obtained that permit us to accomplish a post-mortem analysis of the
PROJECT, that is to say, how we would have been able to improve the final
results of this project.

 Entry data

From among the parameters that permit us to define the development
environment, so much for the project as for the organization, and the maturity
degree of the development organization, we have collected, by considering them
representative of each one of the blocks cited to the final of epigraph 3, those
which appear in Table 1. Indicated in this table are, for each parameter, the name
that it has in the Basic Dynamical Model [Ramos 98a], the interval values that it
can take, a brief description of the meaning that it has and the units of
measurement. It is considered, for the specific SDP that we are going to analyze,
that the rest of the parameters [Abdel-Hamid 91] are not going to vary.

NAME INTERVAL DESCRIPTION (UNITS)

DEDIC (20 - 100) Average dedication of the technical personnel
(dmnl).

RESQA (5 - 15) Average delay in the development of Quality
activities (days).

READE (20 - 120) Average delay in the appropriateness of the new
technical personnel in the project (days)

RECON (1 - 40) Average delay in accomplishing the contracting of
technical personnel (days).

PORTE (30 - 100) Percentage of technicians at the beginning of the
project in relation to the estimated average value
(dmnl).

TECCO (1 - 4) Technicians to contract for each experienced full
time technician (technicians) .

565

POMAX (0 - 300) Maximum percentage permitted in delivery time
(dmnl).

RENOT (5 - 15) Average delay in notifying the real state of the
project (days).

ESFPR (0,1 - 0,25) Nominal effort necessary in the Tests stage by error
(technicians-day).

RETRA (1 - 15) Average delay in the transferring of technical
personnel that exceed to other projects (days).

POFOR (10 - 40) Average percentage of the experienced technicians
dedication to training (dmnl).

INTAM (0 - 50) Initial underestimation of the project’s size in source
code lines (ldc).

Table 1: Representative parameters of the project’s environment and of the
organization’s environment.

The variables that have been studied in this section are the cost and the delivery
time of the project. The intervals defined for the variables delivery time and cost
of the project are the following:

Delivery time (days): The values in the interval (320 - 384), corresponds to the
delivery time values understood to be between the initial estimated time and a
postponement margin of 20% on the initial estimate. These values have been
labelled as "GOOD". Delivery time values superior to that of 20 % on the initial
estimate have been labelled as "BAD".

Cost or effort (technicians - day): The values in the interval (1.111-1.444),
corresponds to final effort values understood to be between the initial estimated
effort and an amplification margin of the same of 30% on the initial estimate.
These values have been labelled as "GOOD". The values of the final effort
superior to that of 30 % on the initial estimate have been labelled as "BAD".

 Management rules obtained before the beginning of the
PROJECT’s execution (prior analysis)

In this section, we consider that the PROJECT has not yet begun its execution
and, by so much, we want to know if management rules exist that permit us to
estimate "GOOD" results for the delivery time and the cost of the project.

566

Below, we will analyze, in first place, the management rules that make GOOD
the delivery time and the PROJECT’s cost, this case have been named CASE 1:
POMAX can oscillate between 0 % and 20% in relation to the initial estimated
time, which is considered as a fixed term policy to moderate term and
furthermore we find ourselves in a development environment where the
personnel management policy is rapid, that is to say: READE varies between 20
and 30 days, RECON varies between 1 and 10 days and RETRA varies between
1 and 5 days (this criterion may vary depending on the organization).

Management rules obtained in the CASE 1 to obtain "GOOD" results for the
cost and the delivery time of PROJECT delivery, before beginning the execution
of the same, are shown in table 231:

In total, 8 management rules have been obtained. A great number of cases have
been found (250 of 300 accomplished simulations) in those which values
considered as "GOOD" for the delivery time are obtained. The foregoing means
that a rapid personnel management policy favours the finalization of the project
within some reasonable delay periods [Ramos 98b]. A general reading of the
obtained rules (Table 2) indicates to us:

 31 Of the decision tree given by C4.5, in this work, we show only the management rules that permit

us to estimate GOOD results.

567

Table 2: Management rules that permit to estimate "GOOD" results for the
delivery time of PROJECT.

That the most important parameters to control the delivery time within the
demanded limits, are directly related to the effort assignment (average dedication
of the technical personnel in the project) and the personnel management (new
technical personnel for each experienced full time technician and estimated
percentage of technical personnel at the beginning of the project).

The rules provide us with the values range in which the said parameters should
be moved: for different values of the personnel’s average dedication in the
project, we will be able to obtain the objectives on the delivery time controlling,
within the intervals of values indicated in the rules, the number of new technical
personnel for each experienced full time technician and estimated percentage of
technical personnel at the beginning of the project.

The reading of management rules (1) and (2) of Table 2 indicates to us that if:

DEDIC <=0,27; TECCO >3,88 (1)

 2,3 < TECCO < =3,88; PORTE > 0,44 (2)

 0,27 < DEDIC <= 0,33; TECCO < =1,46; PORTE > 0,36 (3)

 DEDIC > 0,47; TECCO < =1,46; PORTE > 0,47 (4)

 DEDIC > 0,74; TECCO < =1,46; 0,36 < PORTE <= 0,47 (5)

 0,27 < DEDIC <= 0,33; TECCO >1,9; POFOR > 0,14 (6)

 DEDIC > 0,44; TECCO >1,46; PORTE > 0,34 (7)

 0,33 < DEDIC < = 0,44; TECCO >2,24; PORTE > 0,34 (8)

568

The dedication of the technical personnel in the project
(DEDIC) is lesser or equal to 27 %, we will be able to obtain
values considered as "GOOD" for the delivery time of the
project if the number of new technical personnel for each
experienced full time technician (TECCO) is greater than 3,88 or
if it is understood to be between values greater than 2,3 and
lesser or equal to 3,88 and the percentage of estimated
technical personnel at the beginning of the project (PORTE) is
greater than that of 43 %".
On the other hand, rule (5) of Table 2, proposes that if:

"The average dedication of the technical personnel (DEDIC) is greater than 74
% the objectives of delivery time will be achieved if the number of new technical
personnel for each experienced full time technician (TECCO) takes lesser than,
or equal values of 1,46 and the estimated percentage of technical personnel at
the beginning of the project (PORTE) takes greater values of 36 % and lesser
than, or equal to that of 47 %".

In Figures 1 and 2, we can check the results that we would obtain for the
delivery time and the PROJECT’s cost, if we apply management rules (1) or (5).

As was expected if we apply management rule (1), in which the dedication of the
technical personnel is very low (lesser than, or equal to that of 27 %), and

500 Days
3.000 Technic.-days

375 Days
2.000 Technic.-days

250 Days
1.000 Technic.-days

0 50 100 150 200 250 300 350
Days

Delivery time Days
Cost Technic.-days

Fig. 1: Evolution of the delivery time and the
PROJECT’s cost upon applying the rule (1).

569

management rule (5), in which the dedication is high (greater than 74%), we will
obtain that the delivery time of the project with respect to the initial forecast
which would be 20 % and increased by almost 11 % respectively. While the
final values of the cost would surpass the initial forecast by 53 % and 58 %
respectively. That is to say, as was expected, if we apply these management
rules we would obtained values considered as "GOOD" for the delivery time of
the project but not for the cost. The decision of applying one or the other
management rule will be taken by the project manager.

It is interesting to observe in Figure 1, the jump that is produced in the
initial estimate of the delivery time, practically at beginning of the project. With
the initial estimates imposed to the project, especially what is referred to the
dedication of the technical personnel (which takes values considered as very
low), was foreseeable the difficulty in maintaining the delivery time within the
demanded limits, therefore seems timely to modify the initial forecasts of the
delivery time as soon as possible to avoid future modifications [Ramos 98c].

For CASE 1, we have only obtained one management rule that permits us to
estimate values considered as "GOOD" for the PROJECT’s cost. This will be
possible if (Table 3):

500 Days
3.000 Technic.-days

375 Days
2.000 Technic.-days

250 Days
1.000 Technic.-days

0 50 100 150 200 250 300 350
Days

Delivery time Days
Cost Technic.-days

Fig 2: Evolution of the delivery time and the
PROJECT’s cost upon applying the rule (5).

570

"The dedication of the technical personnel (DEDIC) takes values lesser or equal
to 43 %, the estimated percentage of technical personnel at the beginning of the
project (PORTE) is lesser or equal to 34 % and the activities of Qualit (RESQA)
are accomplished in a time greater than 7 days".

Table 3: Management rule that permits us to estimate "GOOD" results for the
PROJECT’s cost.

As previously mentioned, the application of the rule obtained in Table 3 does not
guarantee the fulfilment of the initial objective of the project’s delivery time. We
can prove how upon applying the obtained management rule, the effort or cost to
accomplish the PROJECT will increase by 21%, approximately, with respect to
the initial estimate. But not the delivery time, which will surpass the initial
estimate by 43 %.

As for the previous results, our interest would be centred in finding the
management rules that permit us to obtain, simultaneously, values considered as
"GOOD", for the delivery time as well as for the PROJECT’s cost in CASE 1.

For the aforementioned, we must say that cases have not been found in which
both variables give values simultaneously labelled as "GOOD". The previous
result, still being distressing for a project’s director, provides valuable
information: with the initial conditions imposed to the PROJECT, it will not be
possible to simultaneously obtain "GOOD" results for the time and the cost of
the project.

 Management rules obtained once the PROJECT has
ended (post-mortem analysis)

On the other hand, the real values of the delivery time and the PROJECT’s cost
were 387 days and 2.092 technicians-days respectively [Abdel-Hamid 91].
These values were considered by us, in the previous section, as "BAD" since

 PORTE<=34; DEDIC < = 0,43; RESQA > 7 (1)

571

they surpassed the initial time and cost estimates by 20% and 30 % respectively.
Therefore, before these final results, and if it had been possible to obtain
management rules, we would have to ask ourselves: Do management rules exist
that might have improved the obtained final results?.

In response to the previous question, we are going to vary the intervals defined
for each one of the analyzed variables:

Delivery time (days): Values in the interval (320-387) have been labelled as
"GOOD" by being inferior to the obtained real results. Values greater than 387
was considered as “BAD”.

Effort or cost (technician - days): The values in the interval (1.111 - 2.092) have
been labelled as "GOOD" by being inferior to the obtained real results. Values
greater than 2.092 was considered as “BAD” by surpassing the obtained real
results.

Below, with the previously defined intervals for PROJECT, we will analyze
CASE 2: the delivery time policy is maintained within the initially defined
limits, but the policy of personnel management encompasses the three possible
cases (slow, average, rapid), that is to say: READE varies between 20 and 120
days, RECON varies between 1 and 40 days and RETRA varies between 1 and
15 days.

With this assumption, we want to know if by combining different alternatives of
personnel management policies, we could have applied management rules that
might have improved, simultaneously, the delivery time and the PROJECT's
cost. In fact, we want to know: What values the parameters must have taken to
improve the obtained real results?, and a second question that the actual
development organization must answer is, Would these obtained values have
been easy to modify?.

The management rules obtained for CASE 2 are shown in Table 4. As can to
see, 5 management rules have been obtained. Management rules (1) and (2), for
example, indicate to us that the final results achieved for the delivery time and
the PROJECT's cost could have been improved either if (rule 1):

572

Table 4: Management rules that permit us to estimate "GOOD" results,
simultaneously, for the delivery time and the PROJECT’s cost.

"The integration of the new personnel in the project (READE) might have been
lesser than, or equal to 27 days and the notification of the progress of the
project (RENOT) might have been lesser than, or equal to 12 days and the initial
underestimation of the size of the product in source code lines (INTAM) might
have been greater than 40 % and the dedication of the technical personnel in the
project (DEDIC) might have been greater than 60 %".

 or if (rule 2):

"The integration of the new personnel in the project (READE) might have been
lesser than, or equal to 27 days and the notification of the project’s progress
(RENOT) might have been (greater than 12 days and the transfer of the
technical personnel to other projects (RETRA) might have been greater than 10
days".

Therefore, based on the previous management rules, we can answer the first of
the questions that we previously mentioned. The answer would be: yes,
PROJECT’s final results could have been improved and the values of the
parameters appear in the management rules of Table 4. The second question can
only be answered by the actual development organization.

 READE <=27;
 RENOT < = 12; INTAM > 0,40, DEDIC > 0,6

(1)
 RENOT > 12; RETRA > 10

(2)
 READE > 27;

 RETRA < = 14;
 INTAM < = 0,47; POFOR <= 0,13;

ESFPR > 0,22 (3)
 INTAM > 0,47; POFOR <= 0,18

(4)
 RETRA > 14; DEDIC > 0,82

(5)

573

CONCLUSIONS AND FUTURE WORKS

The obtaining of management rules for SDPs can be applied before beginning
the execution of a project to define the management policies more adequate for
the project which is going to be accomplished. It can also be used in projects
already ended to accomplish a post-mortem analysis. The usefulness of these
rules consists in the possibility of:

• To obtain values considered as good (acceptable or bad) for anyone
of the variables that result interesting to analyze, either in an
independent way or simultaneously with other variables.

• To analyze which are the parameters implicated in the definition of
management policies and level of maturity of the organization and
which are easy to modify.

• To study which of the previously mentioned parameters are those
which more influence the good results obtained.

• To analyze for a same SDP a great number of possible situations.

In fact, we can say that it is possible to obtain automatically management rules
for a SDP and to recognize what are the management policies that guarantee the
attainment of its objectives.

In light of the potential that the obtaining of management rules presents from a
dynamic model, our future projects are guided in the application of fuzzy logic
techniques and in the creation of a tool that permits the manager of a SDP to
automatically generate rules for the variables and values that he desires.

BIBLIOGRAFÍA

[Abdel-Hamid 91] Abdel-Hamid, T.; Madnick, S.: “Software Project Dynamics:
an integrated approach”, Prentice-Hall, 1991.
[Chichacky 93] Chichacly, K. J.: “The bifocal vantage point: managing
software projects from a Systems Thinking Perspective”. American
Programmer, pp.: 18 - 25. May 1993.

574

[Fayyad 96] Fayyad, U.; Piatetsky-Shapiro, G.; Smyth P.: “The KDD Process
for Extracting Useful Knowledge from Volumes of Data”. Communications of
the ACM. Vol. 39, Nº 11, pp.: 27-34. November 1996.
[Quinlan 93] Quinlan, J.: “C4.5: Programs for Machine Learning”, Morgan
Kaufmann Pub. Inc., 1993.
[Ramos 98a] Ramos, I.; Ruiz, M.: “A Reduced Dynamic Model to Make
Estimations in the Initial Stages of a Software Development Project”. INSPIRE
III. Process Improvement through Training and Education. Edited by C.
Hawkings, M. Ross, G. Staples, J. B. Thompson. Pp.: 172 - 185, September
1998.
[Ramos 98b] Ramos, I.; Ruiz, M.: “Aplicación de diferentes políticas de
contratación de personal en un proyecto de Desarrollo de Software”, IV
Congreso Internacional de Ingeniería de Proyectos, pp. 195-202, Cordoba,
Noviembre 1998.
[Ramos 98c] Ramos, I.; Ruiz, M.: “Análisis del impacto de la política de
dedicación del personal técnico sobre un Proyecto de Desarrollo de Software”,
IV Jornadas de Informática, pp. 429-438, Las Palmas de Gran Canaria, Julio
1998.

575

Improving the Requirements Definition: The
RESPECT Project

F. Calzolari and E. Cozzio

ITC-Irst, I-38050 Povo (Trento), Italy
tel. +39 0461 314583, fax +39 0461 314591

e-mail: calzolar@irst.itc.it

Federazione Trentina delle Cooperative
Via Segantini, 10 - I-38100 Trento, Italy

tel. +39 0461 898320, fax +39 0461 895431
e-mail: enrico.cozzio@ftcoop.it

Abstract

The software industry has to cope with the rapid technological evolution
and the global market competition, in order to satisfy the growing user
demands for quality, services and bandwidth.
Experience in developing systems has shown that an inadequate
understanding of system requirements is the single most important cause
of user dissatisfaction and system failure. Therefore, once expectations
are better understood, product quality is expected to improve accordingly.
As it happens for the most part of small companies, the FTC (FTC stands
for the Trentino Federation of Cooperatives) software development
process is actually largely informal and deadline driven. As a
consequence, the process is deficient in collecting user expectations,
addressing it in only an ad hoc way. The RESPECT project addresses this
problem, providing a way to move from an informal and unsupported
software development process to a more formal one, adopting new
methodologies and applying suitable tools.
The objective of the RESPECT Project is to improve the requirements'
specification and analysis phase by formalizing the process of
requirement capturing and by adopting a CASE tool to support this phase.
This paper summarizes the project experience, highlighting some of the
steps to make a small organization evolve from an informal development
process to a better defined and more formal one.

576

1 Introduction

In the software industry changes force companies to cope with the rapid
technological evolution and the global market competition, in order to
satisfy the growing user demands for quality, services and bandwidth.
Moreover, software systems become increasingly complex and entail ever
growing costs from reworked requirements [8].
In fact, experience in developing systems has shown that an inadequate
understanding of system requirements is the single most important cause
of user dissatisfaction and system failure [12]. Therefore, once
expectations are well understood, product quality is expected to improve
accordingly [5].
As it happens for the most part of small companies, the FTC (FTC is the
acronym from the italian words for the Trentino Federation of
Cooperatives) software development process is actually largely informal
and deadline driven. As a consequence, the process is not supported by a
rigorous model, showing as a point of weakness the collecting of user
expectations, addressing it in only an ad hoc way.
When FTC foresaw a market expansion from the internal company
market to the external one, the software development department felt they
had to improve the overall software development process, starting from
the first step: the requirement specification and analysis phases.
The above business objective implies the technical objectives of the
Process Improvement Experiment RESPECT, which is aimed at
automating the requirement specification phase, increasing requirement
stability and reducing the number of user-analyst cycles.
The RESPECT project is an ESSI Process Improvement Experiment
funded by the European Commission under the Esprit contract 27713.
RESPECT involves both the software development group in FTC (the
prime contractor) and the ITC-Irst Software Engineering Group that acts
as consultant for all methodological aspects of introducing new
methodologies and tools.
Moving from the current practice, that is largely unformalized and almost
completely unsupported, RESPECT is introducing new methodologies
and automatic CASE tools to support the requirement specification and
analysis phase, in order to decrease the overall development effort and
increase the achieved software quality.

577

The experiment is being performed by defining a new requirement
specification process that includes the use of automatic tools (Rational
RequisitePro and IBM Visual Age) to be applied to the selected baseline
project and by measuring the benefits obtained in terms of higher
customer satisfaction, reduced effort per requirement, reduced time to
market, reduced rework and higher software quality. An existing
development team will employ such new techniques to the baseline
project, comparing them against their own past experiences with a
traditional methodology (i.e., comparing the situation to the existing
development process).
This paper summarizes the project experience, highlighting how a small
organization can evolve from an informal development process to a better
defined and more formal one. It is organized in four Sections. Section 2
describes the partners involved in this project and then the project itself,
outlining the approach and the expected benefits. Section 3 is devoted to
the main project’s activities performed so far. Tools screening and
selection based on tools’ features (Section 3.1), the definition of
requirements guidelines (Section 3.2) and training activities (Section 3.3)
will be presented. In addiction, Section 3.1.1 will present the DESMET
project: whenever some new tool or methodology is to be evaluated,
several factors add up to the purely technical ones: the influence of human
factors and sociological issues, that can bias the evaluation exercise. In
order to guide tools screening and selection we adopted the DESMET
methodology: Section 3.1.1 schematically shows some results obtained by
applying the DESMET approach.
Finally, in Section 4 conclusions will be drawn.

2 The two project partners

2.1 The Federazione Trentina delle Cooperative

The Federazione Trentina delle Cooperative s.c.r.l. (FTC) is a non-profit
association, organized as a consortium among cooperatives operating in
the area of Trento, a small town in the heart of the Italian Alps. This
consortium legally represents its associated members as well.
By now FTC members are: 83 credit cooperative banks, 136 agricultural
cooperatives (e.g. wine producers cooperatives, fruit and vegetable
producers consortia, zootechnic cooperatives), 295 cooperatives working
both in innovative and emerging fields (e.g. environmental and protection

578

services, social cooperatives) and in traditional industrial production and
services (e.g. Insurance Companies, Software Houses).
The statutory goals of FTC spread from legal assistance to accounting and
management support. FTC tasks range from auditing to management and
marketing services, to promoting cooperation, to public relations and
advertising, to educational and training programs, and to software
production.
The complex and multi-purpose activity of FTC requires appropriate
informatic support, provided by the software development group of the
FTC, whose tasks span from developing software, to maintaining existing
programs, also providing on site interventions and support for
networking.
The aim of the experiment is to demonstrate the improvement of FTC
software development process by showing that the adoption of automatic
tools in the requirement specification and analysis phase enables FTC
software involved people to decrease overall development effort and
increase software quality.

2.2 The ITC-Irst

ITC-Irst, the RESPECT subcontratctor, is a public research institute
whose activities include software engineering and maintenance. ITC-Irst
holds a solid background in software engineering issues, especially in
Object-Oriented modeling [2][3], effort estimation [7][6], static and
dynamic code analysis [13][14] as well as in software metrics [4]. Several
tens of articles presented at international conferences or published by
scientific journals the impact of such activities on the scientific
community.
Within the RESPECT project, ITC-Irst cooperates with the FTC for
scientific and methodological aspects, supporting activities regarding tool
selection, customization and training, implementation as well as
requirement process and guidelines definition.

2.3 The Project’s Work Packages

The experiment is performed by defining a new requirement specification
process that includes the use of automatic tools such as Rational Rose,
ARTS, etc., to be applied to the selected baseline project and by
measuring the benefits obtained in terms of higher customer satisfaction,

579

reduced effort per requirement, reduced time to market, reduced rework
and higher software quality.
An existing development team will employ such new techniques to the
baseline project, comparing them against their own past experiences made
with a traditional methodology (i.e., comparing the situation to the
existing development process). During the experiment, the clients will be
confronted with the results produced using the new method. As well, the
outputs passed to the next phase of development will be evaluated for
their added merits as input to the downstream development efforts.
Finally, clients, users of the output deliverables and the development team
members themselves will be surveyed by means of a questionnaire to
determine the relative levels of satisfaction achieved with the new
requirement specification process. The duration of the project is 18
months.
As the reader may know, PIE projects’ tasks are usually splitted into Work
Packages (WPs): the RESPECT workplan is divided into 8
workpackages: WP0 Project Management, WP1 Cooperation with other
ESSI projects, WP2 Tools Acquisition and Integration, WP3
Predefinitions and experimental design, WP4 Training, WP5
Experimentation, WP6 Analysis and Consolidation of Results, WP7
Dissemination. A complete description of each single WP can be found in
the RESPECT project proposal{footnote Also available on line on the
project Web server at the Internet address:
 http://www.ftcoop.it/RESPECT/HOME.htm}.

3 The Work Packages’ activities

Although this paper is not intended to substitute project’s deliverables, we
want to highlight some of the experiences we made. Therefore in what
follows we will shortly describe the main achievements reached within
the already completed WPs.
In particular, we will present in Section 3.1 the tools selection activities of
WP 2, also explaining the DESMET methodology and how it has been
applied to this task. Section 3.2 and 3.3 will shortly summarize some of
the difficulties tackled in introducing methodological guidelines for
requirements definitions and in training activities.

580

3.1 Work Package 2: Tools Acquisition and Integration

There are several problems to be faced when a software development
group in a company starts undertaking the evaluation of some new tool or
methodology that could be later adopted. One of the most critical, and
difficult to cope with, is that in addiction to technical difficulties, there are
two other major concerns that need to be considered: the influence of
human factors and sociological issues such as staff motivation and
evaluator expectation, that can bias the evaluation exercise [11].
Although one may think that it is the common practice to keep the
evaluation free from the influence of human factors, usually this is not the
case. For example, if staff undertaking an evaluation believe a new tool is
superior to their currently adopted tool, they are likely to get good results.
However it may happen that the favorable results might not carry over to
other software staff who do not have the same confidence with the tool.
The DESMET project attempted to address this problem, providing
guidelines to be followed in order to keep the evaluation as free as
possible from the bias of human factors [9].

3.1.1 The DESMET methodology

One of the task to be performed within the RESPECT project was to
screen the large variety of available tools, in order to select among all
potential candidates the tool(s) to be adopted to support the requirements
definition phase and the analysis and design phase. Of course, we had to
face the problem to perform an objective choice, keeping the decision as
free as possible from the bias of human factors.
The methodology we adopted to guide tools screening and selection is
that suggested by the DESMET project [10], our reference for all the
aspects concerning both qualitative and quantitative evaluation.
The DESMET project was a collaborative project partially funded by the
U.K. Department of Trade and Industry, which aimed at developing and
validating a method for evaluating software engineering methods and
tools.
The DESMET method wants to identify which among the alternatives is
best in specific circumstances: it supports evaluations aimed at
establishing method/tool appropriateness i.e. how well a method/tool fits
the needs and culture of an organization. Thus, the approach is context
dependent (except with formal experiments): it is possible that an
evaluation in one company would result in one method/tool being

581

identified as superior, but a similar evaluation in another company come
to a different conclusion. We could say that the method support decision
still leaving space to subjective choices.
Quantitative evaluation aiming at determining expected benefits from a
tool and data collected to assess if such benefits are actually obtained will
be performed in the experimentation work package. A qualitative tool
evaluation carried out accordingly to what suggested by DESMET is
based on a comparison among several alternative options, with the
purpose of identifying which among the possible alternatives is best in the
FTC specific context. The qualitative evaluation that we performed is also
termed feature analysis. It is based on identifying a set of requirements
considered important in company activity. These requirements are then
mapped onto features that a tool should support. Each tool undergoes an
investigation to assess the extent to which alternative tools support the
identified features. The first step is defining a set of major and minor
characteristics, that we will call tool features in what follows, that should
hopefully be supported by a requirements engineering tool. As suggested
by DESMET, these features will help select a set of tools that could be a
potentially candidate for adoption by FTC. The identified features will
represent the basis on which the feature analysis will be carried out on the
set of previously identified tools, each of them providing facilities for the
requirements phase of the software development process. Characteristics
and features of each tool will be considered in order to select the best
suited tool to support the FTC requirements phase, that will finally
purchased and adopted by FTC.

3.1.2 Results of feature analysis

The tool evaluation following what suggested by the DESMET
methodology was conducted through three sequential steps [10]. However
it must be noticed that each step has to be iteratively repeated in order to
refine collected information while the evaluation activity goes on.
Feature selection. A set of major and minor characteristics, i.e. tool
features should hopefully be supported by the tools. As DESMET
suggests, these features will help select the set of tools that could be
potentially candidate for adoption.
The first step is about the definition of a feature list. Items in this list
should match technical and performance desirable characteristics, as well
as economical and compatibility issues. Each identified feature has then

582

been scored as suggested by DESMET: Mandatory (M), Higly desirable
(HD), Desirable(D), and Nice to have (N).
The selected features are listed below (the associated scores are in
brackets){footnote 2. Features are presented and not explained. In general
they are self-explaining, and easy to understand. However the interested
reader can find more details in the RESPECT Deliverable D 2.1 "Tools
evaluation report", available on line at the RESPECT site:
http://www.ftcoop.it/RESPECT/HOME.htm.}:

1. Software Requirement Specification (SRS in what follows) document
related requirements

(a) (D) multiple SRS template
(b) (HD) functional and non-functional requirement template forms
(c) (M) traceability matrices and/or traceability links
(d) (D) keywords and keywords search facilities
(e) (HD) requirement ID coding convention and search (or other similar
mechanism)

i. per ID
ii. per area
iii. per category

(f) (D) status bar and search facilities by status
(g) (M) SRS documents repository and multiple version supports
(h) (N) traceability towards other process artifacts (e.g., project design,
system testing)
(i) (M) UML support with special regards of Use Cases (see also 2.1)
(j) (M) requirements change impact analysis
(k) (D) HTML compatibility

2. UML related requirements:

(a) (M) Use Cases support
(b) (M) Java and Smalltalk support

i. (M) class generation support
ii. (HD) reverse engineering support

(c) (D) UML diagram subdivision into mandatory (e.g., class diagram)
and optional (e.g., status diagram)
(d) (HD) template software project document support
(e) (M) interoperability with the existing FTC environment
(f) (D) reuse support

583

3. UML and SRS common requirements:

(a) (HD) in line help
(b) (HD) in line documentation and manuals
(c) (HD) help, tool documentation and manuals in Italian language
(d) (HD) support for the Italian language
(e) (M) training course in Italy
(f) (D) on-site technical support
(g) (HD) technical support in Italy
(h) (M) compatibility with international standard ISO, IEEE, CMM
(i) (HD) work-group and cooperative works support

i. roles
ii. security
iii. protection

4. Economic issues:

(a) (M) purchase cost (training excluded) within approved budget

5. Supplier:

(a) (D) Well known company
(b) (HD) Represented in Italy

6. System requirements:

(a) (M) Compatible with Windows 95
(b) (HD) Compatible with Windows NT server

Although many different features set could be chosen, the iterative
approach supported by DESMET helped us to refine the list until it finally
made us confident that items presented above covers all the main
characteristic for a tool to support conceivable FTC requirements,
analysis and design phases.
Tools screening. The identified features will represent the basis on which
the feature analysis will be carried out on the set of previously identified
tools.
Technical reports, tools advertising, as well as searching the Internet
{footnote 3 We have to mention an Internet site that provided a survey

584

about requirements tools, supporting useful indications and links:
http://www.incose.org/workgrps/tools/tooltax.html.} and reading
computer magazines provided initial information about the tools.
Tool selection. Tools vendors have been contacted: they provided
additional information about products and an evaluation copy to install.
After some bubbling, we improved on the field our knowledge about the
tools, becoming able to exploit their features. At this point, we scored
each feature for all the available tools, refining our judgment on a
systematic basis.
Once that characteristic and features of each tool had been carefully
considered in order to select the best suited tool, we were much more
confident about the choice. Finally, Rational RequisitePro and IBM
Visual Age were adopted and purchased by FTC. Here we recall some
consideration about the selected tools.
Rational RequisitePro. This tool is based on a widely known editor -
Microsoft Word, and is tailored to produce requirements documents
exploiting a suite of available templates or by newly user defined one.
Microsoft Word act as the editor / front end to a mechanism which
interfaces by means of the Object Link Embedding (OLE) word
documents with an Microsoft Access standard database. It keeps aligned
the produced requirement documents and the associated database,
performs key based document search and maintain traceability.
Requirement documentation is compliant with international standards
such as IEEE 830-1993. RequisitePro adopted technologies allow an easy
integration with FTC already deployed software requirement documents
and more generally with the FTC tool suite. The tool's interface is friendly
and, after a short bubbling to get familiar with the command menus, the
usage is quite intuitive.
IBM Visual Age. VisualAge is an IBM family of tools for the integrated
design and development available for many languages such as COBOL,
Java, C++ and Smalltalk. The tool point of strength is its strong support to
the SmallTalk language integrated with a plug-in UML centered design
module. UML diagrams are not completely supported, but the available
diagram (class diagram, Use Cases and sequence diagram) will suffice for
FTC purposes; all the supported views are well integrated and it is easy to
navigate from one view to another down to the code.
It is important to highlight that this tool offers useful features for
group-work: rules and roles are exactly the same used by the SmallTalk
environment, thus allowing users and system administrator or project
leader to play the same role in the design phase too. This is made possible

585

by the fact that Visual Age and SmallTalk share the same repository.
Another interesting point is the tool’s capability to generate HTML
documents organizing information about the model under development.
FTC development framework is undergoing the porting its Park Place
Visual Smalltalk Enterprise software under IBM Visual Age Smalltalk,
by a FTC software provider. This activity started in the early 1998 will be
completed by the end of the year; since 1999 FTC will be forced to adopt
the new framework. Hence Visual Age and its plug-in seem extremely
appealing from FTC point of views.

3.2 Work Package 3: Predefinitions and experimental design

The introduction of requirements' definition and analysis support tools
enriched the development environment, teaching by itself a more
structured approach to programming activities.
However the definition of guidelines for the requirements phase provide a
way to better structure the development process, making the FTC
software development team evolve towards a more rigorous and formal
process. Results obtained within the RESPECT project can be seen as a
first step, that will be probably followed by a step to step definition of
other software development activities.
The proposed guidelines have been inspired by those proposed by IEEE
Computer Society [1]. However a systematic work was needed in order to
adapt (and sometimes simplify) general indications from international
standards to the FTC development environment, taking advantage from
the available tools and experience.
For example, the previous practice was collecting user expectations by
means of a Microsoft Word text document. For this reason the proposed
guidelines suggest to start collecting requirements writing an informal
"Interview Document". Once user's expectations are better understood,
this document must be refined into a "Requirements Document".
Advantages of the suggested practice are twofold: the previous experience
finds natural reference into the new practice, and the suggested steps are
directly supported by the selected tool (Rational RequisitePro).

3.3 Work Package 4: Training

Training activities about software engineering fundamentals provided a
way to make people of the software development team enrich their
background and making them growing as professionals. However, unlike

586

academic courses, lessons had to be targeted for skilled practitioners, who
never want to hear about abstract concepts. For this reason, lessons were
on the field: always addressing practical issues, and trying to answer real
word questions.
Unfortunately, since software engineering is still a young discipline, in
many practical cases there are no widely accepted solutions to be teached.
People from ITC-Irst charged of training activities had to carefully
provide a view of problems, balancing pros and cons of different
approaches.
On the other hand, this more balanced way to present problems and
approaches to their available solutions needed to be supported by practical
examples. One of the major concern was not to generate the feeling that
theached arguments are simply academic stuff.

4 Conclusions and future actions

The ESSI Process Improvement Experiment RESPECT has given the
chance to start enhancing the software development process, making a
small organization evolve from a unstructured and ad hoc process to a
more formal one.
In many practical cases, software engineers and developers tend to restrict
their interests to what they daily use: the RESPECT project gave an
interesting opportunity to make involved people growing as professionals,
improving their knowledge about software engineering fundamentals as a
basis for project's main steps.
The first six months of work taught several interesting lessons:

Applying the DESMET method we organized the feature analysis and
tool selection in a rigorous way, keeping the choice as free as possible
from sociological issues and human factors.

Training activities about software engineering fundamentals provided a
way to make people of the software development team growing as
professionals. Unlike academic courses, lessons were on the field: they
had to start from practical issues, thus answering real word questions.

The definition of guidelines for the requirements phase provide a way to
structure the development process, making the FTC software
development team evolve towards a more rigorous and formal process.
Results obtained within the RESPECT project can be seen as a first step,

587

that will be probably followed by a step to step definition of other
software development activities.

The introduction of requirements’ definition and analysis support tools
enriched the development environment, teaching by itself a more
structured approach to programming activities.

Although the project is still ongoing and we do not have quantitative
results about requirements phase effort nor requirements stability, we feel
confident that many useful qualitative lessons have been already learned.

References

[1] IEEE Guide to Software Requirements Specification. IEEE CS Press,
New York, 1984.

[2] G. Antoniol, F. Calzolari, L. Cristoforetti, R. Fiutem, and G. Caldiera.
Adapting function points to object oriented information systems. In
CAiSE*98. The 10th Conference on Advanced Information Systems
Engineering, Pisa, Italy, June 1998.

[3] G. Antoniol, R. Fiutem, and L. Cristoforetti. Design pattern recovery
in object-oriented software. Sixth Workshop on Program Comprehension,
June 1998.

[4] G. Antoniol, R. Fiutem, and L. Cristoforetti. Using metrics to identify
design patterns in object-oriented software. to appear in Proc. of the Fifth
International Symposium on Software Metrics - METRICS98, 1998.

[5] N. Bevan. Quality in use: Meeting user needs for quality. In
Proceedings of the 4th International Conference on Achieving Quality
inSoftware, pages 89-96, Venice, Italy, March/April 1998.

[6] F. Calzolari, P. Tonella, and G. Antoniol. Dynamic model for
maintenance and testing effort. In International Conference on Software
Maintenance, pages 104-112, Bethesda, Maryland, USA, November
1998. IEEE Computer Society Press.

[7] F. Calzolari, P. Tonella, and G. Antoniol. Modeling Maintenance
Effort by means of Dynamic Systems. In Proceedings of the 2nd

588

EUROMICRO Working Conference on Software Maintenance and
Reengineering, pages 150--156, Florence, Italy, March 1998.

[8] e. J. McDermid. Software Engineer’s Reference Book.
Butterworth-Heinemann, Linacre House, Jordan Hill, Oxford OX2 8DP,
1994.

[9] B. Kitchenham. A methodology for evaluating software engineering
methods and tools. In Experimental Software Engineering Issues: Critical
Assessment and Future Directions. Internation Workshop Proceedings,
pages 121--4, Dagstuhl Castle, Germany, 14--18 Sept. 1992. Germany
Springer-Verlag Berlin, Bermany 1993.

[10] B. Kitchenham. Desmet: A method for evaluating software
engineering methods and tools. Technical report, Department of
Computer Science, University of Keele, U.K., August 1996.

[11] B. A. Kitchenham. Evaluating software engineering methods and
tool. 3. selecting an appropriate evaluation method - practical issues.
SIGSOFT Software Engineering Notes, 21(4):9-12, July 1996.

[12] I. Sommerville and P. Sawyer. Requirements Engineering. John
Wiley and Sons, 1997.

[13] P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo. Flow insensitive
C++ pointers and polymorphism analysis and its application to slicing.
Proc. of the Int. Conf. On Software Engineering, pages 433-443, 1997.

[14] P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo. Points-to analysis
for program understanding. Proc. of the International Workshop on
Program Comprehension, 1997.

589

SESSION 10:

Industrial Experience Reports

590

591

Establishing SPI Effect Measurements

Jakob H. Iversen (iversen@cs.auc.dk)
Department of Computer Science, Aalborg University

Aalborg, Denmark

Abstract

A problem in many software process improvement projects is how to determine
the effect that the improvement initiative has resulted in. This paper reports from
an organisation that has attempted to implement a measurement programme with
the expressed purpose of measuring the results of the improvement project in
quantitative terms. The company has attempted to establish an effect
measurement programme that measures key indicators of all completed projects,
and summarises results in a quarterly report. Based on the description of the
measurement programme, some practical advices are presented for other
companies who wish to establish similar programmes.

Introduction

Software Process Improvement (SPI) has become one of the major change
strategies for software developing companies in the 90s. Maturity models such
as CMM, BOOTSTRAP, SPICE etc. have been the traditional focus of the SPI
efforts in many companies. Common to the many general approaches is a focus
on establishing sound project management practices before attempting to
implement more advanced and organisation-wide techniques (Grady, 1997;

Humphrey, 1989).

A weakness in most SPI efforts, however, is the lack of focus on measuring the
effects of the improvement in business and other terms independently of the
maturity models. With no data on how the different improvements work, it is
impossible to say if it has been worthwhile to implement the improvements or
not. Although the literature on this subject is not extensive, some studies have
been published, as referenced in (Emam and Briand, 1997);

592

Empirical studies that have been conducted do not answer all of the questions about
SPI; those that have been answered not to the level of detail that some may wish.
However, the available data do provide us with credible guidance in our SPI efforts,
which is undoubtedly preferable to no guidance.

By measuring concrete phenomena and thereby obtain global numbers for the
entire company, it is possible to get a detailed and accurate picture of the state of
the software development work. It is then possible to decide whether initiated
improvement activities have had any effect on factors that are important in
relation to the company’s business goals. The next section of the paper presents
the case organisation, its SPI project, the approach used to obtain information
about the organisation, and a historical perspective on the effect measurement
programme. Section 3 contains a number of lessons learned, and the paper is
concluded in section 0.

Case: Financial Software Solutions

Financial Software Solutions32 (FSS) is a subsidiary of Financial Group.
Financial Group provides all aspects of financial services (banking, mortgaging,
insurance, etc.). The primary business function of FSS is the development of IT
systems for Financial Group, but FSS also sells IT systems to other financial
institutions across Europe. FSS has expertise in the development of banking,
insurance, mortgage and financing applications. FSS has approximately 850
employees located at four geographically dispersed development centres.

FSS was recently made into an independent subsidiary delivering IT services to
Financial Group. In principle then, Financial Group would be free to choose
other providers, if they were dissatisfied with FSS. Faced with this reality, it has
become a major thrust for FSS to stay competitive. SPI is seen as one of the
strategies for keeping the business with the rest of the corporation. One of the
most significant changes that occurred when FSS was established as an
independent company was that all development work should be conducted in
projects governed by contracts. This has even been extended to internal projects,
which are now also under contracts with their internal customers.

32 The name of the company and all actors has been changed to keep them anonymous.

593

The SPI project was given a very high profile in the organisation by appointing
an experienced Vice President as project manager, and let other Vice Presidents
be the project team members. When a project is normally managed by a Vice
Presidents it is considered very high profile and important to the business of
FSS. Further adding to the image of an extremely high-profile, organisation-
wide project, the SPI project refers directly to a steering committee consisting of
all the senior managers (Chief Executive Officer and four Senior Vice
Presidents). The SPI project organisation is shown in Figure 1.

Steering
Committee

Project
Mgmt.
Diff. &

Adoption
Quality
Assur.
Self

Assess.

Eff. Meas.

Improvement
Projects

Improvement
Group

Process Support
Group

External Researchers

SPI Project Team

Figure1 Organisation of the SPI project in Financial Software Solutions.

The improvement group acts as a catalyst for the actual improvement effort.
Improvement projects, each of which deals with one improvement area, make
the detailed decisions on how and what to improve. The improvement projects
are staffed with people that are knowledgeable in the area that they are going to
improve and well respected in the organisation. The researchers have also
involved themselves in these improvement projects, and are thus able to provide
the FSS members of the groups with additional insights and inspiration in return
for the added insight and understanding of SPI that being involved in such
groups give to the researchers. Currently, the following improvement projects
are ongoing: Project management (education and Project Manager Self
Assessment), Diffusion and adoption of methods and techniques, Quality
assurance in projects, and Effect Measurement.

594

 Research Approach

This research is part of a large research project involving four software-
developing companies, two universities, and a consultancy company. The
researchers and consultants participate actively in the SPI projects of each of the
four companies over a three-year period. The SPI project in FSS was initiated
along with the research project in January 1997. The research project will end in
December 1999, but it is expected that the SPI project will continue beyond that.

At FSS, the researchers and consultants (commonly referred to as ’researchers’)
are active participants in the improvement group, and the research methodology
applied was thus action research (Foster, 1972). The main interaction between the
researchers and the organisation took place at the monthly SPI meetings, but also
by more informal meetings, working sessions, workshops etc. in which only a
single improvement initiative (in this case effect measurement) was discussed.
As the researchers became part of the SPI organisation they were able to obtain
real insight into what the issues facing the SPI project were.

Two of the major problems in conducting action research is 1) the limited ability
to generalize findings (Mathiassen, 1997), and 2) the frequent neglect by many
action researchers to collect adequate data to be able to demonstrate
convincingly what was learned during the study. The former problem is dealt
with in this paper by determining a number of practical lessons that were learned
both by the researchers and the internal SPI members. These lessons are
conveyed as practical advice to other companies involved in establishing similar
problems. In this research we have attempted to overcome the latter problem by
systematically collecting as much data as possible about the organisations. This
included all the ‘natural traces’ of the SPI program such as project plans,
meeting minutes, memos etc. In addition to this, we have tape-recorded the
monthly SPI meetings as well as some of the working sessions and workshops.
The relevant segments for effect measurement were transcribed.

 SPI Effect Measurement

The focus on measurements is specifically intended to enable the SPI project and
senior management to make informed decisions about the improvement

595

activities as well as to assess the effect and progress of these activities. Apart
from giving guidance to the improvement group and the improvement projects,
the measurements are also seen as a way of getting some attention from the rest
of the organization on the SPI project.

Table 1. Key stakeholders of the effect measurement programme in Financial
Software Solutions

Chief
Executive
Officer
(CEO)

Sponsor of the SPI project. Stated that FSS should improve efficiency by 10%
through SPI.

Vice
Presidents

Responsible for 20-25 people and 3-5 projects, they are what the CMM terms a
"first-line software manager"., and are thus crucial in implementing suggested
improvements.

Project
Managers

Required to report data on their project in the central time and project
registration system (TIRE/POKA), and for providing the effect measurement
project team with a few central pieces of information about the project.

John Project manager for the SPI project.

Ashley
Full time employed on the SPI project. Project manager for the effect
measurement project.

Finley
Vice President and member of the SPI improvement group. Was heavily
involved in defining the first measurement programme.

Linda
Vice President and member of the SPI improvement group. Has not been
directly involved in the effect measurement programme.

Table 2. Timeline of key events.

Year 1997 1998 1999
Month J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D

Event 1 2 3
4
5

6
7
8

This section presents the process of establishing the measurement programme in
Financial Software Solutions. The presentation is structured around eight events
that have influenced the establishment process. The description of each event in
some cases includes what happened immediately prior to the event and what
followed immediately after it. Some of the key stakeholders are listed and
described in Table 1, and Table 2 shows a timeline of the individual events.

596

Event #1: Press Conference. January 7, 1997

One of the first things that happened in the overall SPI project was a press
conference. At this conference, the CEO of FSS stated that

"we expect to gain a 10% improvement in efficiency through this project … that is
equal to 30 mill. DKK."

This statement became the focal point of the SPI project in FSS. In the SPI
project contract, one of two critical success factors of the SPI project were

"that FSS within the project's 3-year time span has achieved an improved efficiency
of the system development process of at least 10%.”

From the beginning of the project it has thus been very important to be able to
show this 10% improvement. However, neither the CEO nor the contract were
explicit on what should be measured and how the data should be analysed to
show the improvement. This was left to those members of the SPI team that
were made responsible for implementing the effect measurement programme.

Event #2: Decision to Implement Effect Measurements. March 1997

After some input from the researchers, the improvement group decided to
establish an effect measurement programme, to measure the 6 factors listed in
Table 3.

Table 3: Indicators of the measurement programme in FSS.

Factor Definition
Project Productivity Resources used to develop the system relative to size of project in Function Points
Quality Number of error reports both absolute and relative to size of project in Function

Points
Adherence to

schedule
Variation from agreed time of delivery both absolute and relative to size of

project in Function Points
Adherence to budget Variation from estimated use of resources
Customer satisfaction Satisfaction with the development process and the implemented solution (multiple

choice questionnaire)
Employee satisfaction Satisfaction with the development process (multiple choice questionnaire)

A decision memo from May 13, laid down some of the principles that the effect
measurements would adhere to:

• Measurements should be relevant in relation to process improvement and
quality, but also have general management interest.

597

• Measurements should as far as possible be made automatic. Information
should be interpreted rather than disturb the development organisation.

• Cost of performing the measurements should be minimal.

• Use of questionnaires should be limited as much as possible, as the
organisation suffers from ’questionnaire-disgust’. If questionnaires are used,
they should be placed at a milestone, and be adapted to the natural system
development process.

Data should be collected on projects that were finished (to keep disturbances to a
minimum) and results should be published every quarter. The volume of the
projects should be calculated using an automatic counting algorithm for
Function Points (IFPUG, 1994). Function Points (FP) are usually calculated by
experts with a significant amount of practice in counting FP. Not many
organisations have attempted counting FP automatically, and it was therefore
risky to engage in this work. Therefore, the project concentrated some effort
(app. 1-2 man months) on implementing the automatic calculation system.

Event #3: First Measurement Report. September 1997

The first visible result of the measurement programme was the first
measurement report, completed in September 1997 with results from 13 of 56
projects that were completed in 3Q97. The report had data on 3 of the 6 factors
(adherence to budget, time-to-market, and project productivity). The data
contained some surprising information especially regarding adherence to budget
causing senior management not to make the report public. Parts of the results
were instead disseminated to the development organisation through a ’roadshow’
conducted by the improvement group to raise awareness towards the SPI project.
The report was also criticised for being too academic. A workshop was held in
October 1997 to improve the layout of the report to alleviate this problem. The
problems in gaining acceptance for this first report did not bother the
improvement group significantly, as it was, after all, the first report, and was
seen as something of an experiment with less than optimal data foundation.

Event #4: Second Measurement Report. March 1998

Data for the second report, covering projects that completed in 4Q97, were
collected in October through December 1997, and the report was completed in
March 1998. The results were discussed in an SPI Project Team meeting on

598

February 20, 1998. Data discipline had been greatly improved as shown in Table
4, although there ought to be 100% complete data sets.

Table 4. Data discipline in the effect measurement programme.

Complete data sets
Period # projects # %
3Q97 56 21 37
4Q97 29 19 65

This improvement in data discipline and thus in data quality was received with
much enthusiasm at the meeting. However, the discussion soon centred on the
issue of whether the report should be made public or not. At the meeting, there
was some disagreement on how to distribute the report and how detailed the
information should be:

John: "It could become publicly available. If we publish the main figures, and then
anybody could request a copy. What will happen in the report is that projects will be
mentioned with their names. In the first report, they were anonymous. They aren’t
sissies in the senior management group."

Linda: "I don’t think it should just be a matter of requesting a copy. [The report]
should be spread."

Ashley: "I'm … a little nervous about including names and so on."

John and Linda had not been directly involved in the effect measurement
programme. Their interest is to improve the SPI project’s visibility in the
organisation. Ashley, however, had personally promised many members of the
development organisation that they would not be personally blamed for any bad
results, so she is naturally not interested in getting personal information spread
too widely. The researchers tried to help by suggesting alternative solutions:

Lars (researcher): "what is actually unpleasant today is worst-case: there are
measurements of people, and they know they are there, but they don’t know what the
measurements are. […] We can only win by getting these measurements out. There is
also a solution that what is published is per department, so that those in department
2 can't see department 3. [...] But they need to get some concrete information back."

Jan (researcher): "I think it could give an unfortunate effect to make the numbers too
widely available, because [...] someone may try to make their numbers look better
than they are. However, if they get an average plus their own project and then are
encouraged to [discuss internally] why the numbers look the way they do. [...] I think
that will give a good effect."

599

As it can be seen, there was no common understanding of what it would mean to
make the numbers public. However, there was general consensus that senior
management had accepted the idea that the measurements should be made
public:

Linda: "I think we have [the CEO’s] commitment that now he will [make it public],
and we should of course make sure he sticks to that, once the report is completed."

The report was finished in March 1998, and had a much clearer layout than the
first report. The report did not include productivity data because the automatic
calculation of Function Points was considered faulty. Instead, data on customer
and employee satisfaction was included.

Event #5: Decision Not to Disseminate Second Report. March 31, 1998

The report was presented at the steering committee meeting on March 31, 1998.
The data was considered insufficiently reliable to warrant a wide distribution of
the report. The results of the satisfaction surveys showed very unfavourable
results for key business areas for FSS, and the steering committee thus decided
to withhold the second report also. The presentation of the report to the steering
committee was discussed at the SPI project team meeting on April 22, 1998:

Meeting minutes: "The report is not and will not be made public internally in FSS. A
strong contributing factor to this is that the credibility of the data validity is
insufficient."

John: "When I presented the report, I did so from a positive angle throughout.
Emphasised what was good, and the positive things that had happened since the last
[report]. Data discipline has improved. … Some of the data discipline is due to the
information meetings. People have become aware that this is actually used for
something. Of course, it can still get better."

One of the major problems in the report was the low rating of how FSS
supported the business function of Financial Group. However, it was quickly
identified that the customer satisfaction questionnaire was of poor quality and
primarily directed towards customers, whereas in most cases users who had not
been involved in negotiating terms and contracts, had answered it:

Finley: "We send these questionnaires [...] to people who were involved in the
acceptance test of the system. And what we then ask are managerial, contractual,
overall process-related questions on how the project was conducted. Then some
random user has to answer if commitments were met. He hasn't seen the contract or

600

anything. It’s bound to go wrong, and that's why management can’t recognise reality
in these numbers."

The issue of management commitment towards effect measurements was
discussed as well:

Finley: "I don't know how much management commitment we have here. This is the
second report. We ask for more resources, but nothing much is happening. We must
end up with something that gives management a credible picture of reality.
Otherwise they will say: this measurement stuff - forget it, I'll be better off trusting
my intuition about how the reality actually looks."

Linda: "I get personally disappointed that [the CEO] does not release the report. I
can understand that he is afraid of [the bank's central IT co-ordinator], but if we are
ever going to get people interested in SPI, then they need to see what the project is
doing."

This event is probably the most important in the history of the effect
measurement programme. It caused a dramatic increase in the attention given to
the programme, and caused establishment of a project to improveme the effect
measurement programme. This illustrates how difficult establishing such a
programme is. A lot of resources had been used on defining each metric, and
deciding how to measure them. But some aspects had still been overlooked: the
questions in the satisfaction questionnaires had not been carefully formulated,
and the customer questionnaire was given to users instead of customers. On top
of that, insufficient attention had been given to incentives for the development
projects in reporting the necessary data, resulting in poor data discipline.

Event #6: Improvement Project Established. August 1998

After the disappointment that the report was not made public, the discussion in
the SPI project team meeting on April 22 focused on actions that could be taken
to improve the effect measurement programme enough to enable publication of
the next report. The group decided to try and establish a project to improve
effect measurements. The project was proposed in June 1998, and the contract
was signed in August 1998.

The project was established as an improvement project with the success criteria
that a measurement report is completed in April 1999. This report should contain
data on all 6 indicators and from all projects completed in 1Q99. Compared to
the second report, this report should have improved the measurement process for

601

all the indicators, and the layout of the report should also be enhanced. Among
other things, the data quality of each indicator should be displayed, for instance
as a percentage of complete data sets (as in Table). The main goal was that the
quality of the measurement report should be improved so much that it would be
impossible for management to deny making it public

Event #7: Third Measurement Report. Planned for April 1999

While the improvement project has been running, a bonus system has been
introduced, in which one of several factors is the correct reporting of data for the
effect measurement programme. The preliminary results of the improvement
project indicate that the data discipline is still considered insufficient, as it has
not been possible to persuade projects close to finishing that they should report
data in the new format. However, it could be discussed whether this would
actually make the data less valid, because one of the factors that is frequently
missing, is an estimate of the expected date of system delivery. Reporting this
figure when the project is almost complete would make for complete data, but
with very little relevance. For projects that have started more recently, things
look a lot more positive. This is in part also due the bonus program requiring
projects to report accurate and correct data.

It was decided that FP would not be included due to the problems of making an
accurate count. The possibility of using other size measures has been examined,
and rejected as none of the measures proposed (lines of code, compiled size,
function points, and number of statements) all had severe weaknesses that made
it better not to include a size measure at all. Excluding a size measure seriously
impedes reaching the original objective of measuring efficiency and
productivity, as there then is no measure of the output of the project.

The satisfaction surveys have been integrated well into the quality assurance
process. The projects give the questionnaires to their customers and employees
and the results are discussed in quality meetings towards the end of the project.

Event #8: Report Disseminated Widely. Hoped for April 1999

The fate of the measurement programme will be decided after the first report has
been completed. If the report is not made public within Financial Software

602

Solutions, then it is likely that the effect programme will collapse. Not having an
effect measurement programme will cause serious problems for the rest of the
SPI project, as many of the initiatives are driven by the effect measurements.

Lessons Learned

Despite having worked concentrated on establishing effect measurements for
almost 2 years, it seems that nothing much has really happened. The two reports
that have been prepared have not been distributed as widely as was desired and
presently, the programme is put on hold until a major improvement of the
concept has been carried out. It is not all negative, however. The organisation
has gained significant experience in this area and some data has been collected
that has contributed to significant discussions about the validity of previously
held beliefs and intuitions about how the organisation operates. The experience
that FSS had in establishing the effect measurement program has also given rise
to a number of lessons, which may be valuable for other companies attempting
to establish similar programmes.

Start Simple

The wish to measure six indicators, each of which was of a complex nature with
no previous measurement process in place, can only be characterised as
extremely ambitious. It is easy to become disappointed when the collected data
doesn’t have the expected quality, and measuring some indicators must be
abandoned. Another approach is to start out by simply measuring one or two
indicators, perhaps just collecting data that is already there and just analysing it.
Later, when the measurement team and the development organisation have
gained experience in measuring and being measured, other measures could be
added to improve the programme. Such a staged introduction of a measurement
programme may take longer than the ambitious approach. But the results may
also be less disappointing.

A Real Project

At first, the measurement programme was considered as an integrated part of the
SPI project. In this phase, there was no plan for the work, and the objectives

603

were described in vague terms in the SPI project contract. It was only because of
the dedication of a few employees that a measurement programme was
established at all. Later in the process, when a real project was established, it
became far easier for the actors to argue that they should have adequate
resources and the focus on the initiative was generally increased.

Establish Incentives

The FSS case clearly illustrates the value of establishing incentives to improve
data quality. From the outset, all projects were required to record several
numbers in the on-line project and hour registration system, but almost no
projects recorded complete and correct information. Mainly because they saw no
immediate use for the data they provided. A marked improvement of data quality
was achieved by using a combination of informing the project managers of what
data they should report and how to do it, as well as informing about the
importance of the data they provided and show some results based on the data.
However, when reporting accurate data became part of the bonus system, a very
clear incentive scheme was established, and data quality now appears to be very
good (for the projects starting after the bonus system was established).

Publish Widely

The biggest disappointment for the measurement team at FSS has been
management’s decisions to withhold the reports from distribution. In order to
improve the measurement programme it is vital that the development
organisation be given some feedback on measurements. Not making the reports
public, can thus be seen as a barrier for improvement of the programme.
However, it is also important that performance measures of individuals be kept
to the individual. Otherwise everybody would do all they can to make their
numbers look better, losing the entire purpose of the measurement programme.

Allow for Discussion

Establishing an effect measurement programme forms an important shift in
culture towards a culture where decisions are based on factual numbers rather
than vague intuitions. If the data quality is to reach a sufficiently high level of
quality, the organization must be willing to make less than optimal data available

604

for discussion about the validity of the data, and the assumptions underlying the
measurements. But perhaps more importantly, it should be recognized that even
if the validity of data is not as high as could be wished, the information
contained in the data, might still carry some relevance. However, it is also
important that the numbers not be taken as absolute truths. They are not, so it is
vital that the data quality can also be discussed to improve the foundation of the
measurement programme.

At FSS, this discussion has currently been limited to the SPI project team and
mangement. Here, the discussion has been lively and inspiring to those
participating. But as long as the discussion is contained to a small number of
people, it is difficult to use the measurements as a feedback mechanism to the
development organization to improve on the daily practices in the project.

Effect measurements are likely to give some very unpleasant results about the
organisation. Being able to cope with such results and use them to improve the
organisation rather than just figuring out who is to blame for the bad results is
also part of this cultural change. Establishing such a culture is no small task, and,
as the case description above illustrates, is bound to take a lot of time and effort
on behalf of those who attempt to affect it.

Conclusion

Metrics in software development are usually primarily used to direct the course
of a single development project (Basili and Weiss, 1984; Carleton, et al., 1992;

Fenton and Pfleeger, 1997) and secondarily used for management overview of all
projects. However, collecting data after a project is completed is far easier than
while it is still running. At Financial Software Solutions this has been exploited
to develop a measurement programme that uses post-mortem measurements to
characterise the overall state of the state of the company’s software development
work. The information obtained from these measurements can thus be used to
describe the effect of any improvement initiatives conducted in the organisation.
The lessons learned from this experiment illustrate that it is far from a simple
undertaking to establish such a program.

605

Whatever reasons management had for deciding not to make measurement
results public within Financial Software Solutions, it certainly illustrates that
they did take the results seriously and were concerned that releasing data that did
not convey an accurate picture would be detrimental to the organisation.

Acknowledgement

Financial Software Solutions is thanked for granting access to their SPI project
and providing excellent conditions for this research. The Danish National Centre
for IT Research has financially supported the research. These colleagues have
provided valuable input: Ivan Aaen, Jesper Arent, Gro Bjerknes, Karlheinz
Kautz, Lars Mathiassen, Jacob Nørbjerg, and Rens Scheepers.

References

[9] Basili, V.R. and Weiss, D.M. "A Methodology for Collecting Valid Software
Engineering Data," IEEE Transaction on Software Engineering (10:6),
1984, pp. 728-738.

[10] Carleton, A.D., Park, R.E., Goethert, W.B., Florac, W.A., Bailey, E.K. and
Pfleeger, S.L. "Software Measurement for DoD Systems:
Recommendations for Initial Core Measures," Technical Report SEI-92-
TR-19, Software Engineering Institute, September 1992 1992.

[11] Emam, K.E. and Briand, L. "Costs and Benefits of Software Process
Improvement," International Software Engineering Research Network
technical report ISERN-97-12, Fraunhofer - Institute for Experimental
Software Engineering, 1997.

[12] Fenton, N.E. and Pfleeger, S.L. Software Metrics - A Rigorous and
Practical Approach, PWS Publishing Company, 1997.

[13] Foster, M. "An Introduction to the Theory and Practice of Action Research
in Work Organizations," Human Relations (25:6), 1972, pp. 529-556.

[14] Grady, R.B. Successful Software Process Improvement, Prentice Hall
PTR, Upper Saddle River, New Jersey, 1997.

[15] Humphrey, W.S. Managing the Software Process, Addison-Wesley,
Pittsburgh, Pennsylvania, 1989.

[16] IFPUG "Function Point Counting Practices Manual Release 4.0," Manual
The International Function Point Users Group (IFPUG), January 1994
1994.

[17] Mathiassen, L. "Reflective Systems Development," unpublished Dr.
Techn., Aalborg University, 1997.

[18]

606

 A PIE one year after: APPLY

 Alain Roan (roan@verilog.fr), Patrick Hebrard (hebrard@verilog.fr)
CS VERILOG

Toulouse, France

Abstract

Keywords: PIE, ESSI, Configuration Management, Test, CMM, Requirement
Management, Planning and Tracking Management, GQM, Software
Engineering, Tools.

A Process Improvement Experiment was performed a year ago into a product-
oriented organisation. This paper intends to show the longer effect of a PIE in
this organisation. The main improvement goals were to achieve more reliable
software with the same validation effort together with a better mastery of the
time to market. Improvements were visible during the experiment and the
dissemination was quite successful.

Summary

CS VERILOG is a manufacturer of software engineering tools. VERILOG was
looking for an improvement of its internal practices to deliver better products to
its customers and for an increase of its experience to help external organisations
to plan and implement its technologies.

The APPLY (Amplified Process Performance LaYout) project was the
experiment of the combined application of recommendations coming from a
global Process Improvement Program initiated after a CMM self assessment.
This assessment shown that ‘good heterogeneous’ practices were in place among
technical groups (CMM level 1). One major weakness was found in the decision
process about release content, availability date and reliability trade off. The
diagnosis was very clear: define and apply a homogeneous process.

607

The main objective of APPLY was to implement the recommendations on a real
size project in order to validate them and to obtain a quantitative project profile
(cost break down and benefits) to facilitate internal and external replication.

APPLY results are:

• A better project control:

• Initial budget respected,
• delivery time managed within a 5% window

• A higher reliability of the final product:

• Remaining bugs are divided by 2 for the same test effort

Economical consequences have to be evaluated on market side rather than on the
internal productivity benefits. For instance, VERILOG has had 40% product
sales growth and an increase of maintenance contract renewal.

Chapters 2, 3 describe the APPLY project. Chapters 4, 5, 6 give an analysis and
a conclusion one year after its completion. This work has been financed by the
European Commission as part of the ESSI program (APPLY 21.511).

APPLY project

 1.1 Objectives

 Three main constraints exist on every project in the organisation:

• Budget.
• Time to market.

• Quality of the release.

In the past, it was more frequent to miss one of these constraints than to satisfy
all of them at the same time. The most crucial business objectives at this stage
are: Reliability of the released product and Time to Market management.

Reliability

Time to Market

608

VERILOG is leading two types of projects:

• Projects founded by a customer. In many cases the customer tries to
impose its own methods for development, management or quality
assurance. This is of course not satisfactory from the point of view of a
common process: it creates project specific procedures and methods. A
consistent and well-documented process can be extremely useful to
convince customers that practices in place are adequate and sufficient.

• Self founded projects where VERILOG itself and the market is the
’customer’. There is a natural tendency to be less rigorous on process and
procedures application in this case. A group led by the Product Marketing
Manager drives each product development. The main characteristics of
such projects are: Requirements are always changing until the end, the
expected reliability level is high, time to market is key

Key areas of improvement were:

• Management of Requirement/ Time to Market trade off:
1) Better mastery of estimating and planning of tasks and project

according to Requirements.
2) Configuration management linked to planning and Requirements in

order to be able to assess quickly requirement evolutions.
• Efficient tests and non-regression tests (time, effort and coverage)

reusable for different target platforms after porting. A better traceability
between Requirements and tests was also expected (validation).

609

 1.2 Scope of APPLY

The improvement covered by APPLY were:

1

Configuration Planning

Requirements

Tests

1

2
2

3

3

3

4

4

4

4

Efforts have been spent in sequence 1, 2, 3 and 4. The figure shows the
dependencies between the four areas. Impacts of a requirement change for
instance have to be evaluated on the three other areas.

1) Formal management procedure for Requirements in place. Whatever the
way of expressing precise requirements (OMT and free text), requirement
items are consistently managed. The tool ARS is used to managed
evolution requests.

2) New planning rules and tools in place allowing to put formal planning
impact analysis into the decision loop of Requirement evolution. MS
Project is used and the internal tracking tool is linked to it.

3) New configuration management procedures and tools in place. Different
elements of the project are automatically managed in a consistent way
(work items, software code in different languages, requirements, tests...).

4) Formal test and validation procedures and tools are used to automate test
capture, play back, and coverage measure. Formal links are established
between Requirements and tests. The tools Logiscope, Purify and ValidX
are used.

Area Tools used
Planning and Tracking MS Project, internal tracking tool
 Requirement
Management

MS Excel, Remedy/ARS,
VERILOG/ObjectPartner

 Configuration
Management

Freeware/CVS + Parameterisation

 Test & Validation Softix/ValidX, Pure Atria/Purify, Numega/
BoundChecker, VERILOG/Logiscope

610

 1.3 Project Control Panel

The first phase of the APPLY project consisted in the definition of a Project
Control Panel. The goal of this Project Control Panel was to monitor the baseline
project performance as well as the experiment itself in respect to the three
selected business goals: make time to market predictable, warranty a level of
reliability, monitor improvements of the PIE itself. Metrics have been defined
using Goal/Question/Metrics approach.

The Project Control Panel was more difficult and longer to define than originally
anticipated. The biggest difficulty is to have to wait actual data in order to be
able to validate the original design. The Project Control Panel has evolved
during the experiment in the direction of simpler metrics (see chapter 3 for a
global view on the GQM tree).

One can argue that the business objectives are not very ambitious. We strongly
believe that even if the real targets were higher, it would be unrealistic and
misleading to proceed in a different manner. Before deciding to ’improve’ or
’reach a given level’, basic questions must be answered first:

• Do you know your present average quantitative software development
performance?

• Is your performance reproducible from a project to another?

• Are you able to evaluate consequences of project decisions on
performance?

 1.4 Implementation of the new processes

APPLY was lead by Quality Department. A work package leader was nominated
for each key area (Requirements, Planning, Test and Configuration). These
people were not directly involved in the baseline project. Each of them is
recognised by the baseline project team, as the most knowledgeable in their
field.

The progress of the technical work packages was checked with generic
milestones:

611

- Procedure Draft released
- Training & Experimentation started
- Controls of Application Started
- Measurable Metrics
- Final Assessment done

The approaches followed by work package leaders were either top down (define
everything and then apply) or bottom up (try and formalise).

Results and Analysis

 1.5 Global Achievements

The following table is an abstraction of the Project Control Panel at the end of
the experimentation. Under each sub goal several questions were established and
associated metrics were defined according to the GQM method. For instance sub
goal G12 had three questions: Do we manage every files in the new system?, Do
we have an automatic rebuild of the binary code?, Do we have an automatic
rebuild of the final medium?. Some of the final metrics definition and results are
described in the rest of the section.

The general objectives and final status indicated in the table are abstracted from
the low-level objectives and achievements that have been fixed at terminal
metrics level.

612

Business Goal Initial High level
Objective

FINAL

G1 – Make Time to Market Predictable
G11 – Manage Software
Baselines

100% of files are managed
in the new system

OK 95%

G12 – Manage the
Baselines Consistency

100% Traceability of
Requirements into planning
and test.

OK 100%

G13 – Maintain a Time to
Market Best Estimate

predict release time within a
10% window

OK (vs. Latest
estimate)
NOK (vs. Initial)

G2 – Warranty a level of Reliability to the release
G21 – Validate the release 80% of tests are automated

100% of tests have been run

OK > 80% on average
NOK on two modules
OK 100%

G22 – Monitor the
Reliability Achieved

less than 10 known bugs in
the release

OK (5) on average
NOK on one module

G0 – Monitor Improvements of the PIE itself
G01 – Monitor the progresses
of APPLY

milestones in time (10%
window)

OK

G02 – Ensure that the baseline
project applies new processes

100% of compliance to
new processes

OK
81% but increasing

G03 – Measure the cost of
APPLY

in the initial budget
(10% window)

OK

G04 – Measure the benefit of
APPLY

see other goals OK

 1.6 Process Conformance

It is necessary to check that the new practices are in place. Otherwise no
conclusion is possible. The measure of process conformance was made by a
questionnaire (deduced from the written procedures). The percentage is the
number of correct answers divided by the number of questions.

% of compliance Feb 97 May 97 Nov 97

Planning 40 60 100

Requirement 20 40 60

Configuration 40 80 80

Test 78 78 83

Global 51 61 81

613

 1.7 Requirements

Among the various data that has been captured about requirement management,
three of them have been more particularly analysed:

Metrics May
97

Nov
97

%approved req. items (initial + added)
which are traceable into planning

84% 85%

Traceable implemented items/approved
requirements items (initial + added)

89% 90%

Approved changes/proposed changes
30% 25%

The granule of requirement items was very heterogeneous in terms of amount of
work to implement and verify (from one hour to months). This type of metrics
was new in the organisation and we lacked previous measurements in order to
make quantitative comparisons. But we can state that the values of the first two
are probably much larger than before. This is the consequence of a better
adherence to the process for the first two. The third one shows that 75% of
proposed changes during development have been rejected. The reasons have not
been analysed in details, but it is probably the consequence of a better visibility
upon the impact of decisions.

 1.8 Planning & Tracking

Metrics on the Planning & Tracking area were based on two sources of
information. The first one is coming from the accounting department and gives
budget and time envelopes allocated to the project. The second source is the
planning and tracking databases that indicate the actual planned effort and
forecast for termination.

614

Date -10%
+5%

budg.
rev.

#plan
rev.

Effort Time

96Q2 OK 0 1 96,1% 99,6%
96Q3 OK 0 1 97,6% 99,6%
96Q4 OK 1 1 97,8% 105,6%
97Q1 OK 0 2 101,0% 105,6%
97Q2 OK 1 2 105,6% 116,1%
97Q3 OK 0 3 97,7% 121,5%

The planning procedure states that when the planned cost of the project goes
outside a window (-10%, +5%), the allocated budget must be officially revised
(or the planning revised). The first column shows that this aspect of the
procedure has been respected in the period. The two next columns are self-
explanatory. The last two columns are the comparison between the initial effort
and time and the planning forecast (whatever the approved changes in the
budget). It is not a surprise to see that the effort and time are growing around the
end of the project. Thanks to this visibility, the project allocated effort has been
revised to recover the initial envelope.

The management of time is now integrated in the procedure: a planned delay of
more than 30 days implies the revision of the project envelop. Despite this, the
planned/initial ratio is still high (21%). This is not a bad performance in itself. It
should be analysed in parallel with the requirement changes that have been made
and accepted. In any case, the reliability of initial planning must be still
improved.

 1.9 Configuration

The achievements in the field of Configuration Management were captured with
three progressive metrics:

Metrics May
96

June
96

May
97

Nov
97

% of files managed in the new system
0% 18% 80% 95%

% of executable files that can be
automatically rebuild

100% ? 100% 100%

% of files on the product medium that
can be automatically rebuild

? 2% 27% 61%

615

The initial objective (100% of files managed in the new system) was almost
reached (95%) but the goal became a full automatic procedure to rebuild the
products.

At the end of the day, most of the practitioners have experienced a significant
benefit in their daily configuration management practices . Only one group of
people, which was the most advanced in the field, has lost some capabilities.
Despite the global benefit of homogeneous practices they still regret the previous
process. It must be used in the near future as an incentive to go one step further.

 1.10 Test & Validation

The validation and test processes provides a lot of data (functional and structural
coverage, bugs detected during validation). We have focused ourselves on two
major aspects.

Proportion of tested requirements by test categories:
- automated test proportion has doubled (mainly with ValidX capture
and replay).
- reproducible tests (fully documented context, inputs and expected
outputs) represent now nearly 70% of the test base. The rest is still
demanding a good knowledge of the product and its specification.
- 95% of the tests have been passed during the last campaign.

Evolution of remaining bugs (level 1 and 2) in time: Globally speaking, the number
of remaining bugs in the release has been divided by two. But looking more
closely to the individual modules reveals that the initial objective (less than 10
known bugs) is not reached on 2 out of 7 modules. Analysis of possible causes
has revealed that the choices among the defects to be fixed have taken into
account not only the defect severity (as the metric does) but also its frequency
and impact on users. In other words, the criteria for deciding to fix a bug in a
release are more complex than the bug severity. An improvement of the
classification scheme was decided.

616

One year after

 1.11 Dissemination

The status of dissemination is shown in the table. The foreseen future at the time
of the project end has been kept unchanged for the sake of comparison:

Area Status (Nov 97) Foreseen Future (Dec 97) Status
(Dec 98)

Req. Only the baseline project is
using.

Generalisation is planned for all
products.

OK

Plan
.

Every project uses it in the main
site.

Generalisation to the whole organisation OK

Conf
.

Half the projects plan to use. Every new project in 1998 will use the
new tool.
All Verilog is products used APPLY
method as the following:

• Archiving technique only for
every old product.

• Full use of the Configuration
Plan for the others.

OK

Test 2 other projects use or plan to use More studies and partial generalisation OK

Globally speaking we achieved 100% of the expected dissemination one year
after. To be more precise two procedures have been generalised as they were at
the end of APPLY (with minor modifications): Planning & Tracking practices,
procedures and tools are homogeneous in the organisation for every projects as
well as configuration management for every new developments.

Two procedures have been largely simplified but are now in place in the whole
company: Requirement Management and Test

A new organisation for the Technical Department (around 40 people) has been
put in place at the end of 1998. This is a matrix organisation with products in
rows and types of software in columns. There are two dozens projects running
simultaneously (development, maintenance and research). A group for Best
Practices, in charge of product procedures and validation, covers every product.
This should accelerate the initial momentum brought by APPLY in direction of
even better practices.

617

 1.12 Business

The product sales revenue growth (which is a major business goal) has been
+40% in 96/97 and +30% in 97/98. On four consecutive releases of the same
product the overall improvement in terms of project control capability and
reliability have been dramatically improved. It is, of course, rather difficult to
link these results to the improvement experiment only.

Anyway, for a business perspective, it is indubitable that benefits are very high:

• Direct financial benefit. Better forecast and control of the initial
budget.

• Better control of the release content. A better competitive position is
expected.

• Customers have a better opinion of the company and its products.
• The development team has a better capability to anticipate

consequences of requirement changes.

 1.13 Culture

The technical staff in place in the organisation is very skilled and experienced in
the field of software development. Most of them are exposed and participate to
advanced research in the field and have tried by themselves several up to date
technologies. It is a chance and a handicap at the same time. On one hand, the
introduction of new techniques is not a problem. On the other hand, creative
people are not very keen to the idea of applying a common set of processes and
tools.

When introducing uniform methods into an organisation with heterogeneous
practices, classical resistance is encountered: individuals are naturally inclined to
compare the advantages of the previous practices (the ones that they created)
with the weaknesses of the proposed new ones. Generally the new ones are not
so well suited to the particular context and are perceived as more rigid.

On the other hand, some reactions propose to go beyond the proposed practices.
This is of course a very powerful force that has to be used for future
improvements.

618

The challenge today is still to make understood and well accepted that
homogeneous practices are a necessary milestone to further improvements.

It should be noted that quantitative measurements had a great impact on the
improvement process itself. About the Configuration Management for instance,
it is clear that the promotion of metrics results has originated its own
improvement. This is true also for metrics for which no precise objectives were
fixed (automatic rebuild of the medium for instance). In some cases, the metrics
can lead and create the improvement.

Key Lessons

 1.14 Experiment

1. APPLY was the consistent application of new processes and tools altogether
within a baseline project. No innovative technology (from the point of view of
the actual level in the organisation) had been introduced during this
experiment.

2. Despite the quality and deepness of the preliminary definition of the new
processes, the real scale experimentation is the only judge. The adoption is
very slow and one should be prepared to iterate and to adapt.

3. In order to get a successful appropriation, it is highly recommended to involve
the people who are clearly seen by everybody as the most knowledgeable in
their field.

4. A major strength of the experiment and its dissemination was the balance
between tools and procedures. New tools are simultaneously, an incentive to
new practices, an immediate gain of productivity and a way to control process
application.

5. Obviously, one of the most important factors of success is the commitment of
the management. Controls and quantitative feedback of the application are
the means to trigger the necessary corrective actions.

 1.15 Business

1. Most of the project decisions from a business point of view are a function of
three parameters: cost, time and quality. The first two are naturally
quantitative and usually quite reliable. When no quantitative measure is
available for the third one, the two other impose their law to the decision-

619

makers. Existence and credibility of predictive quality metrics are key to good
decisions.

2. Requirements Management impacts are much more analysed before
decision. Decisions on the technical content are taken with an accurate
knowledge of the global impacts (cost, time and quality). As a matter of fact,
time and cost budgets are much more likely to be respected for a given level
of reliability.

Conclusions

The APPLY project was a very positive experience.

• Better mastery of the project.

• initial budget respected
• delivery time managed within a 5% window

• Better reliability of the product.

• number of remaining bugs divided by two for the same test effort
• Positive cultural changes.

 APPLY provides indirect benefits which are also very valuable. Compared to a
project defined and run on an internal budget, the following benefits were
experienced:

• A contract with the European Commission, as a customer, is very
powerful to motivate the organisation.

• Thanks to the quantitative tracking process, the project itself is better
defined and followed than a standard internal improvement project.

• The request for quantitative data is a very good incentive to improvements

Acknowledgements and thanks: Sincere thanks to the people who committed to
the success of this experiment and who worked hard to get these achievements.
The APPLY team directly involved in the experiment was composed of Jean
Louis Camus, Bernard Coulange, Marielle Latapie, Marc Thirion and the
authors. Thanks to all the people in the organisation who use the APPLY results
in their daily work.

620

Creating a solid configuration- and test-
management infrastructure to improve the

team development of critical software
systems

Author:Verstraeten Eddy
e-mail : eddyv@tessa.be

TeSSA Software NV
Clara Snellingsstraat 29

2100 Deurne
Belgium

URL : www.tessa.be

Abstract

This paper describes a process improvement experiment on the team
development of critical information systems.

We have integrated PVCS from Intersolv for configuration management and
SQA Teamtest for test-managment in our development environment. Our main
development environments are Powerbuilder from Sybase and Visual C++ from
Microsoft.

The formulated procedures have lead to an important improvement in quality
and productivity.

This project could only be carried out with the financial support of the
Commission of the European Communities, in the specific programme for
research and technological development in the field of information technologies.

621

Executive Summary

Project

TeSSA Software NV is a developer of critical software systems for different
markets (Shop-floor control, Warehouse-management, ERP-modules). The
baseline project is a typical TeSSA Software NV product, situated in the market
of paypoints.

The experiment, situated in the domain of configuration- and test-management,
has contributed to the aim of being a software production house that delivers
quality systems in time.

Project goals

By implementing the software control management the project manager can
optimise the development process, in concrete terms:

- Cost reduction (10 - 15 %)
- Elimination of errors in an early phase of the process (1 in stead of 10)
- Quality improvement of delivered programmes.
- Reliability increase of installed programmes.
- Acceleration of the definite product delivery. (about 10%)
- Reaching these goals indirectly results in a better work-atmosphere for
programmers, analysts, project managers and management.

Work done

- A quality manager was indicated permanently.
- An internal base-reference report is written, to situate problems and costs.
- The global IT company strategy was officially defined.
- Looking for other existing models we found SPIRE (ESSI Project 21419) promoting
CMM and BootCheck, 2 very interesting projects, giving a wider frame for the global
plan.
- Choice of appropriate tools :

622

 - Version control system and configuration management : PVCS
 - Testtool : SQA Teamtest

 -Training in both products.

Results

At the end of the experiment, every employee agrees that quality and reliability
of the software development process is improved significantly. First figures give
a global improvement of 5%. This is less then expected (7 à 10%), but we
believe that the positive influence in productivity and reliability will become
more and more visible in the next years. The confidence in this experiment
certainly helps to get a better working atmosphere.

The responses of the customers prove the confidence in the strategy of our
company, working hard on the improvement of our internal processes and they
see the first results of the new working methods.

Future actions

Now the procedures are consolidated and standardised to support the
development cycle internally on the same LAN, the next step will be to extend
the procedures to also support external employees.

With the help of our internal organisation with Lotus Notes Applications, the
proceedings and the procedures are nowadays continuously internally
disseminated.

Background Information

Company coordinates :
 TeSSA Software NV
 Clara Snellingsstraat 29
 2100 Deurne
 Belgium
 URL : www.tessa.be
 Contact person : Eddy Verstraeten
 E-mail: eddyv@tessa.be

623

Strategy and products of TeSSA Software NV:

The information-management within companies is becoming more and more
important to maintain a competitive position within their market sector. The
policy of TeSSA is aiming to implement this information-management in a fast,
yet affordable way, and still according to the customer’s wishes.
The core business is situated in industrial companies, where shopfloor control
and warehouse management are crucial. TeSSA Software NV, as a supplier of
software based IT systems in this vertical, but open, high competitive market,
has worked out the global strategic plan in which the improvement of the
software quality (and therefore the software production process) is one of the
main issues.This PIE fits in this global plan and will help the company going to
assessments and ISO9000 certification.

The project used in this PIE:
The baseline project is a typical TeSSA project, strategic for the future.
It consists of a paypoint, that controls the renting of lockers. Up to 40 lockers are
controlled by one control system. Up to 100 paypoints can be connected and
installed in one railway-station (already installed pilot-systems : München,
Hannover, Braunschweig).The control system, that fulfills all the functionality
needs, is designed in an heterogeneous environment, that will be described in par
2.3.3.

Objectives

By doing this PIE our software engineers will apply a software control
management. This is the key to team productivity on the LAN. (People are also
developing at home.)

Without this control management, they experienced the following annoying
incidents:

Fixes get lost, code is overwritten, multiple versions exist, duplicate or
conflicting copies exist, failures in production. 20% of total time is spent to this
kind of problems.

624

Implementing organisational procedures in the domain of configuration and
test-management will help the project leader to control the development
process.

Not only the thinking up and writing down of these procedures, but also the
creation of driving forces behind the “quality-consciousness” of all people in the
organisation, are important. Therefore internal sessions will be organised for all
employees.

The implementing of these procedures will be carried out with the help of
existing tools (ex. PVCS, PB 5.0 (which has version control options), SQA
Teamtest, …).

This experiment will not only eliminate errors (1 in stead of 10), but also
increase the productivity with at least 10%.

Our people, installing the product on the production site will be more confident
and automatically a better work-atmosphere will be the result.

Starting scenario

Till mid-term there has been no assessment for software practices and we know we have
a rather immature level of software development throughout the whole production
process.

State of software development in general

This section should outline the initial circumstances at the beginning of the
experiment.

1. Analysis

Customer interviews and reports, A functional description, Data flow diagrams
(Yourdon - tool : now System Architect), Building Database (Entity
Relationship Diagrams - tool : now System Architect)

625

Weakness: NOT ENOUGH INTEGRATION, NO TEST SCENARIO’S.

Prototyping
Powerbuilder: different painters TeSSA Software NV object library for
Powerbuilder Third party libraries for other useful functionality.
Weakness: NO VERSION CONTROL.

Design
Technical description Building common libraries

Weakness: No VERSION CONTROL. NO TEST SCENARIO’S.

Programming
Microsoft C, C++, Powerbuilder with object oriented libraries. TeSSA Software
NV common library Other useful third-party-libraries (e.g. Communications
Greenleaf, ...)

Weakness: NO VERSION CONTROL, NO CONFIGURATION
MANAGEMENT, NO AUTOMATED TEST-PROCEDURES.

Testing
Manual procedures Without any tool.

Weakness: NO AUTOMATED PROCEDURES.

Documentation
Manuals written with MSWord and a helptool to get on-line windows help.

Weakness: NO REAL VERSION CONTROL.

Business environment of the experiment

Looking at the business in which the experiment takes place now:
The baseline project is a typical TeSSA Software NV project, strategic for
the future. It consists of a paypoint that controls the renting of lockers. Up to
40 lockers are controlled by one control system. Up to 100 paypoints can be
connected and installed in one railway-station. (Already installed pilot-
systems: München, Hannover, and Braunschweig)
The control system, that fulfils all the functionality needs, is designed in a
heterogeneous environment.

626

Technical environment of the experiment

The running system contains the following items:

The operating System is NT on a 486 motherboard. The underlying database is
Sybase SQL-Anywhere, with the replication technology.
The network topology is Ethernet. The PLC from ED&A (Belgian company),
that controls the locker doors, is connected through RS232.
The magnetic card reader is also connected through RS232.
The pay-systems (coin-box, …) are connected directly through IO

The baseline production process of this product:

Analysis with DFD-diagrams, database design with ERDiagrams, prototyping
with PB.
The code for the PC-programs is written in C, C++ and Powerbuilder (GUI).
The code for the PLC is also written in C.
The code on the magnetic card reader is written in Assembler. Version control is
carried out by copying sources to specific directories. No written procedures for
synchronising the team work. No real test-plan, so the test-cycle depends on the
programmer, who will test his own changes.

In the experiment the paypoint system is improved. We added some new
functionalities:

Extension to other pay-systems (electronic monnai)
And we improved the existing functionalities:
Improved Object Oriënted implementation of a number of modules (previously
written in C)
Improved integration of the PLC-network
Integration with latest versions of NT 4
Using multi-threading.

627

Organisational environment

TeSSA Software NV is only a small company doing a lot of tailor made
projects.
People are the most important resource in this type of company. So the
most difficult organisational part was “the spending time policy”. We are
aware of the fact that this experiment only costs time in the near future, but
will deliver quality and even will save time in the long run.
Creating a new unit and indicating a full-time quality manager, being the
driving force behind the whole project could only solve it.

Another important organisational issue in this kind of projects is
communication and documentation. In our global company administration
we’re using applications in Lotus Notes for many years. This document
driven system is helping us a lot in communicating and not losing
documentation. In this project all generated procedures, charts or any
documentation will be saved in this Notes database.

Many years ago we started with version control in our DOS environment.
With this history of version management, we had no problems introducing
the PVCS tool in our new environments.

With the test-methods, there is more resistance. People are holding their
traditional way of working. With the seminar, given by the test-evangelists of
PS-testware, most of the people are seeing the real need for introducing the
testing methods.
They were told testing does NOT mean demonstrating there are NO errors
in the software, but to find as many errors as possible in a short time.

The people working with real object oriented environments are easier to
convince then the classic procedural programmers. Automatically everyone
starts to think in objects, because the testing of small isolated objects is a lot
easier then testing a complex collection of functionalities.

Since most of the TeSSA Software NV-people are technical engineers,
having a lot of experience in the software development, they can manage
these new procedures. It’s another way of thinking, with a lot of standardised
procedures in all phases of the development. They can produce software
with higher quality.

The baseline project was mainly developed by 3 technical engineers. Two
are not involved in the PIE, the 3rd engineer is now the projectleader of the
second version of the project. He is not actively involved in the PIE itself. Of
course being the project leader he’s the best judge of the improvements of
the end-result.

628

Work Performed

Organisation

TeSSA Software NV is a small company of 15 people.
Two people are in charge of the strategic management of the company.
The quality manager did get a full time job, in the first year his time was spent
entirely on this PIE.
Of course even after this PIE, the workgroup “Global Plan” remains a very
important workgroup. This workgroup, mainly operated by the two mentioned
persons in the diagram, steers our operational environment. Depending on the
treated subjects other people of the company are involved in the discussions.
Together with E. Verstraeten this workgroup must keep the global overview of
our strategic direction.
Two workgroups were (and still are) active in the perspective of this PIE.
Workgroup Config:
 Integrating PVCS (version and configuration management) in our different
environments. The different environments are MS Visual C, C++, Visual Basic
and Powerbuilder. The ultimate goal is to have similar procedures for each of
these environments. Each environment has one active specialist in the
workgroup.
Workgroup Testing:
 Exactly the same goal as the first workgroup, for SQA Teamtest, our testing
tool.
Under these workgroups is the developing personnel, utilising the procedures of
this PIE. Their experience and remarks are treated in the different workgroups.
The job of quality manager was made permanent, and the workgroups continue
to improve procedures.

Technical environment

Equipment is evolving quickly in the IT world. Tools require more and more
powerful equipment. To make this PIE successful, everyone working on this
project, with the new tools, has an equipment with minimal a Pentium 200
processor and 64 MB RAM.

629

Two new tools were introduced:
PVCS: Version control and configuration management.
SQA Teamtest: Test system.
Communication and reporting is established using an application written under
Lotus Notes. All procedures are written down in this application and everyone in
the company can access this database with full-text search engines to easily find
the required procedures.

Training
PVCS:
The first training was given at the site of Intersolv. Two of our people joined the
course and got a detailed technical explication.
SQA_Teamtest:
A specialist of PS-testware gave the general course in testing philosophy and
testing ethods at the site of TeSSA Software NV for all the developers.
Our quality manager himself had a course about the technical details of SQA
Teamtest.
In February PS-testware consulted during 4 days on test procedures.

Results and Analysis

The most important motivation for this PIE was stated in our project programme
as follows:

“The new development technology and methodology must improve the
maintainability and the reliability of the produced software modules.”

Upon completion of this PIE everyone (management, workgroup members and
programmers) agrees that we did a very good job, but the work is not finished
yet.

We will make a comparison between the results of the base-line project and the
later versions of the software. This baseline-project consists of a number of
modules. These modules evolve with the requirements of the customer. Further
evolutions were compared with the baseline (costs, errors and reliability)

630

Technical

A very important outcome of this PIE was the global strategic plan. In this plan
we started from the current status of software development. Main objective of
the global strategic plan was the definition of a new framework of a life cycle
model for the software development process of our company. In this global
framework we had to integrate the configuration and the test management.

Configuration management

The new version control procedures are developed and implemented in the new
framework of our production process. This was very important because less than
30% of a developer’s time is spent in programming new software. Most of the
time is occupied with existing code. Certainly in team development, time and
money could easily be wasted on redundant efforts, accidentally overwritten
code, etc.

Introducing PVCS and the procedures takes on the time consuming and non-
creative tasks of project management and version tracking, leaving developers
free to concentrate on code. Ultimately, it also leads to better quality software,
so developers spend fewer resources on code maintenance duties.

Test management

The test management is “completed” for the MS Visual C++ environment, but is
still going on for the Powerbuilder environment.

The methodology used for “Structured Software Testing” is the V-model. The
implementation of this model consists of setting up a Test-assignment, writing
the testplan with the development of a test requirements hierarchy, making the
test designs and testscripts and at the end execute the tests.

This whole process is managed by our new tool SQA teamtest.

Using the V-model it is really remarkable how many errors are detected in the
early phase of software modification. Analysing a project and simultaneously
implementing the test scenarios for this project let us detect some logical errors
in a very early phase of the project.

631

Results
Project A: In the baseline project we had a specific software module that
implemented a device for cash payment. In the history of our time-tables this
project was extracted and evaluated in working hours and reported errors before
and after installation of this module.

Project B: In the same project, we developed a new software-module:
implementing other payment methods with creditcards. Working hours and
error-reporting was registered consciously.

The functionality, the degree of difficulty, the impact on the main system and the
global implementation of both modules may be compared.

The engineers developing project B were not the same engineers developing
project A. This is an important aspect for the analysis (we can state that people
starting project B had the same level of experience as the people ealier working
on project A).

The modules have no impact on each other.

An end-user of the system uses one of the payment methods. Both methods can’t
be used at the same time within the same transaction.

The results of our analysis are given in the next table :

Baseline-project
A

% After PIE-project
B

%

Implementing Cash-
payment device

Introducing other payment
methods (credit-cards)

Estimated Project Man-hours 300 400
Real Man-hours 334 111,33 411 102,75

Hours spent for analyzing 54 16,17 87 21,17
Hours spent for programming 182 54,49 201 48,91
Total Hours spent for testing 67 20,06 100 24,33
Installation time 31 9,28 23 5,60
Number of errors in early phase 14 4,19 21 5,11
Number of errors after installation 18 5,39 3 0,73
Total errors 32 9,58 24 5,84

End-user impression 6 8
Cooperators 5 7

632

The estimated workhours for both projects were respectively 300 and 400 hours.
Project B was only 2.75% out of budget, while A was more then 11% out of
budget.

But much more important are the 2 last results. The quotation of customers
evolved from 6 to 8. We had a questionnaire for the customers, concerning
global satisfaction. The average of the quotation with project A was 6, with B 8.
Especially the question concerning the satisfaction about the installation on site
evolved dramatically from 5 with project B to a 9 with project B.

The reliability of the software is also expressed by the quotation of the
employees, evolved from a 5 in project A to a 7 in project B.

In the table we also find a shift from programming to analysis and testing. This
can be logically explained by the V-model in testing. More time is spent in the
analyse-phase on developing test scenarios. These scenarios also lead to the
discovery of errors in an earlier phase. Besides the total numbers of errors was
reduced from almost 10% (errors divided by total working hours) to less than
6%. The errors reported in both columns correspond only to the specific project.
The 6% errors in the experiment (project B) correspond only to the new analysis,
programming and implementation.

The reduction of errors after installation from more then 5% to less than 1% is
remarkable and this explains the reduction of installation hours at the customer
site and also stands for a great customer satisfaction.

From a cost perspective, we can say that first of all the estimation of the project
was more correct, due to a better understanding and standardisation of our
software life cycle. The effect of this improvement is difficult to quantify.

With the configuration and test management in project B, a second
improvement was realised, so the global cost improvement is at least 5%.

633

Business

The cost for travelling (to implement our software on site) decreased clearly
because the implementations can be done quicker and easier.

Another unexpected result of the version management is the better information
towards the end user. The project manager knows exactly what we have planned
to improve in next version(s) of the software project and everyone knows the
exact definition and the influence of this version in the different modules. The
document with all this information is also sent to the customer. He knows what
to expect from the new version and when to receive it. This means that the
product quality has increased dramatically and time-to-market is much quicker.
These are two top issues in a very competitive market.

The traceability, resulting from this version control is very useful for our
management, to measure the effectiveness of our programmers and analysts. For
management this feature becomes a real important tool. Also the project
schedules are more reliable.

With the test procedures implemented from the 1st phase of the project, many
errors are detected very early and the result will be a better customer
satisfaction, as shown in 4.1 We did an oral inquiry at our most important
customer sites, equipped with software modules that were programmed with the
new procedures. The questions were asked both the project leader and the
customer’s end user.

We also expect a reduction of the support calls, because the testing procedures
eliminated a lot more errors. This also ensures happier customers.

Organisation

The creation of a new unit with a quality manager with the mission to coordinate
all improvement projects is a real enhancement to our organisation. This gives
the company the driving force for a general quality improvement.
The use of this framework clarifies the roles in the development process

634

A better customer satisfaction automatically results in a better atmosphere. Our
people have less stress and feel the good influence of structured working
procedures.

Culture

Programmers must be convinced that testing means you want to reveal the errors
that are in the software, it is the process of executing a program with the intent
of finding errors. Testing does not mean demonstrating there are no errors.

The baseline project is a software application that has to be installed very often.
Everyone agrees that with this kind of applications version control and testing
methods are a need and will gain money in the long run.

But our company does many projects as tailor-made projects. I hope that with
this experience everyone will be convinced to take over the same methods in the
environment for tailor-made projects. We hope the procedures and the system
will be so simple and efficient that also in the tailor-made projects the testing
philosophy will win.

The driving forces, the management and the quality manager, try to introduce
the expectation of improvement on all levels. The creation of the improvement
culture for all the levels and all the different projects gives new ideas on all
levels. All these ideas can be discussed and eventually integrated in the working
procedures.
To improve the acceptance level of the procedures, they are being adapted to be
practical (otherwise they add too much bureaucracy.)

Skills

Version control is a pure internal technical issue. It doesn’t require special other
skills then our people have today. It’s just getting to know the procedures. Once
the people working on the projects know the procedures, they can easily
integrate these procedures in their current way of working.

635

The testing workgroup clearly showed that the process of determining the
requirements of the customer, the technical analytical process and the resulting
technical documentation are very important. These issues demand other skills
and knowledge then the pure knowledge of information technology. Some of our
people have the opportunity to climb up to a higher project task level.

Another result is the teamworking-spirit – The coaching sessions and the
participation in the workgroups gives motivated people.

Conclusions

We achieved the technical objectives. A global improvement of 5% on the
studied projects is a success.

The experiences were very positive and boosted the team spirit as well as the
global strength of the company.

From the business point of view we see that the effect on the client perception is
the one expected. He is more confident in our products than before this PIE.
Also the employee perception is the one expected, namely a greater confidence
in the installed products.

The final balance of the results per invested cost are really favourable thanks to
the good acceptance inside our company and at the customer site.

Future actions.

At the end of this PIE the configuration management is implemented well for
teams, working on the same server. Since we want to go to modern methods of
teleworking and working with people on distance, we must extend the
configuration procedures to that kind of coöperation. In the near future the
procedures must work over the Internet. This will be a new experience.

The test management is completed for our Visual C, C++ environment but is still
ongoing in our Powerbuilder environment. Automating these test-procedures
was really underestimated and will be going on for a few months. The result of

636

test procedures in the analysis phase (following the V-model) however are
remarkable. We will continue the implementation of these test methods and
certainly improve the automation process of testing the programs itself (based on
the scenarios as defined in the analysis.

Due to the encouraging results achieved so far we are already looking for other
improvement projects in the wider framework of the CMM model. First we have
to continue the implementation of the testing process. After stabilising these new
processes we intend to perform a formal assessment and update the improvement
process plan conform to CMM.

One of the goals of the company remains to have an ISO certification.

References

SPIRE : SPIRE consortium (ESSI Project 21419) promoting CMM. The SPIRE
partners :
 Objectif Technologie – Arcueil Cedex, France
 CTA – Hatfield, United Kingdom
 FIRST Informatics – Patras, Greece
 Intrasoft – Athens, Greece

BootCheck : “Assessing your software process” by the
 European Software Institute – Parque Tecnologico, Zamudio, Spain
 Bootstrap Institute

637

An industrial experience in improving the
software process through domain analysis

Andrea Valerio
The Software Production Engineering Laboratory, DIST,

University of Genova, Genova, Italy - E-mail: Andrea.Valerio@dist.unige.it

Massimo Fenaroli
Thera S.p.A., Brescia, Italy - E-mail: mfenarol@thera.it

Luigi Benedicenti
Faculty of Engineering, University of Regina, Regina,

Sascatchowa, Canada - E-mail: Luigi.Benedicenti@uregina.ca

Giancarlo Succi
Department of Electrical and Computer Engineering, University of Calgary,

Calgary, Alberta, Canada - E-mail: Giancarlo.Succi@enel.ucalgary.ca

Abstract

Nowadays software applications are present everywhere and producing them is a
hard task: software firms are facing an increasing demand for new applications
with higher quality and lower prices, but it is often difficult to exploit this
business chance. This paper presents a case study regarding the adoption of
domain analysis inside a software firm with the purpose to improve the software
process and to introduce software reuse practices. Domain analysis is the process
of identifying, collecting, and organising all the artefacts used in software
development in a particular domain with the goal to make them reusable. This
methodology proposes to enhance the software process of a firm, augmenting
productivity, reducing time to market and improving the quality of the delivered
products. The case study took place in a real industrial project, integrating the
software development process of the organisation with the new practices coming
from the introduction of domain analysis. We discuss the results we collected
through the measuring program that we set up to monitor the experiment

638

execution. The evaluation we made and the quantitative figures we obtained
shows that domain analysis, and reuse practices that it fosters, can take real
benefits to the organisation. In the last section of this paper, we investigate the
implications that the experiment had in the organisation and we describe future
actions.

Introduction

The actual situation of the information technology market is characterised by an
ever-growing demand of new software applications with higher quality and
lower prices. Software firms are not always ready to exploit this favourable
situation: they often do not have the capability to deliver the software
applications requested by customers with the quality level, the price and the
time-to-market expected by users. This situation, that some identify with words
such as ‘software crisis’, creates a stimulating environment where new
technologies and techniques are continuously invented and proposed. The need
for robust and controlled development practices that allow software firms to
satisfy customer requests and to survive in the IT market, has grown for years.
Today most firms are considering the adoption of software process models and
software engineering practices in order to formalise their production processes.
Although difficult and slow, this trend is strongly committed to by software
practitioners and managers on the way of some experiences done by first
movers.

Domain analysis processes existing software application in a given domain to
extract and package reusable assets. Systematic software reuse, a technique that
promise relevant benefits, requires an understanding of the work done in past
projects: in particular a major problem concerns the creation of assets that can be
reused in a context different from that where they have been developed. In this
view, domain analysis is a fundamental activity integrated in a software process
based on reuse. This, in turn, reflects into business process improvement, and
strong commitment to it is a direct consequence of the business need of the
organisation.

This paper describes an experiment concerning the introduction of domain
analysis inside an Italian software company, Thera S.p.A.. The goal of the

639

experiment is to improve the software process, achieving an increased
productivity and a higher quality of the products. At the same time, the
introduction of domain analysis should foster and support the institutionalisation
of a consistent set of reuse practices. This work aims to outline the implications
that the introduction of a specific software engineering technique, i.e. domain
analysis, can have, in a similar way as a technology innovation action, on the
software development process, basing on the experience we made in a industrial
project. We present a detailed analysis of the quantitative data collected during
the experiment and we discuss the impact that this experiment had on the
organisation and on the people. The results we achieved and the lessons we
learnt demonstrate the benefits that domain analysis may have in the software
development process, in particular in relation with the increase of reuse
efficiency.

Domain Analysis: the State of the Art

Domain analysis is an activity occurring prior to system analysis. It aims to
identify features common to a domain of applications, selecting and abstracting
the objects and operations that characterise those features. The first definition of
domain analysis was introduced by Neighbors as “the activity of identifying the
objects and operations of a class of similar systems in a particular problem
domain” [Neighbors81]. In general, domain analysis should support extraction,
organisation, analysis and abstraction, understanding, representation, and
modelling of reusable information and assets from the software process
[Prieto90], with the purpose of making them available (reusable) for the
development of other products in the same or in different domains.

The underlying idea is that different products inside the same application domain
share similarities. Such similarities generally imply that the products in the same
domain could use similar components. In the words of [Arango93], a domain
can be viewed as a collection of similar applications. Such applications do not
need all to exist yet. The objects of study are applications. The result of domain
analysis is a taxonomy of applications based on differences and commonalties.
House builders take a similar approach when they build a new house: they
identify the main structures of the building among few predefined ones. Then

640

they choose among different variants and they build the house using the
structures and the component identified.

In these last years, many authors have proposed different domain analysis
methodologies. Each domain analysis method proposed in literature has its own
peculiarities due to the specific problem to be solved and to the approach
adopted to solve the problem, that can be for example problem-driven or
application-driven, reuse-oriented or knowledge-representation oriented. Arango
proposes a comprehensive survey on domain analysis [Arango93], and Wartik
and Prieto-Diaz describe an interesting comparison of several reuse-oriented
domain analysis approaches considering the context in which they were
conceived [Wartik91]. Basing on the activities that are shared by the different
domain analysis methods, it is possible to identify a general model for the
domain analysis process. Along the lines of [Arango93], the general model can
be structured into four main phases, each phase constituted by different
activities:

• Domain Characterisation and project planning: the first step of every
domain analysis method is a preparation activity. It aims to collect
the minimum information concerning the problem that allows to
decide if it is worth to deal with it and try to solve it, or if it is not
feasible to go on with the process.

• Data Analysis: the necessary information for the analysis is collected and
organised, then the analysis exploits domain commonalties and variations.

• Domain Modelling: the purpose of the modelling phase is to complete the
previous analysis step, building suitable models of the domain. It deals with
modelling common aspects in the domain, refining domain models
encapsulating variations possibilities, defining frameworks and general
architecture for the domain, describing the rationale beneath domain models
and tracing technical issue and relative decisions made in the analysis and
modelling process.

This phase can be considered the core activity aiming to produce reusable
assets, such as components, frameworks and architectures. The difference
between domain modelling and system modelling lies in the target chosen: in

641

system modelling, it is the specific software system that has to be built; in
domain analysis, it is a class of similar systems in a specific application
domain.

• Evaluation: its purpose is to verify the results of each step of the domain
analysis process, identifying possible errors done in building the model, and
to validate the results against requirements and user expectations.

Figure 1: The general model for the domain analysis process.

Integrating Domain Analysis in the Software
Development Process

Domain analysis can be defined as: “a process by which information used in
developing software systems is identified, captured and organised with the
purpose of making it reusable when creating new systems” [Prieto90]. During
software development, different information is produced, and the software
product delivered is only a part of this heap of data. One of the main goals of
domain analysis is to analyse all this information aiming to exploit and reuse
most of them in present and future software development projects. Domain
analysis fosters process improvement through software reuse: it supports the
identification and definition of information and components that can be reused in
applications and in contexts different from the ones for which they were
originally conceived.

Walking side by side with software reuse, the emphasis in domain analysis has
moved from code analysis to the analysis of every kind of information produced
in the software process, with the goal to identify and define high level reusable

Common Domain
Analysis Process

Domain
Modeling

EvaluationData
Analysis

Domain
Characterization

and project
planning

642

artefacts, such as frameworks and architectures. In this perspective, the domain
analysis process became a fundamental part of a global software engineering
process whose purpose is to produce new applications reusing components,
frameworks and information from past projects and aggregating them following
the model proposed by a general domain architecture. This leads to an
improvement of the business process as a direct consequence of the
improvement introduced in the development process. Software reuse and domain
analysis foster standardisation and mass production by simplifying the
assembling and configuration activity. Domain analysis helps in analysing and
tracking past products and projects, contributing in the definition and
maintenance of repeatable process practices. Domain analysis supports the
identification of variants and possibilities for later customisation and
specialisation, encapsulating these aspects inside domain models (such as
frameworks and architecture) which can be customised into new software
products that meet user needs. One more benefit of domain analysis is connected
to the possibility of classifying and structuring knowledge and expertise
acquired in past projects.

The SELDOM process improvement experiment

SELDOM is a process improvement experiment whose main objective is to
improve the software production process of an Italian software organisation,
Thera S.p.A., with the introduction of domain analysis and design frameworks.
The introduction of a formal domain analysis method and sound reusable
component design principles (design frameworks) aims to reduce the effort of
producing new products within the same domain, by analysing and predicting
commonality and variability within past, current and future applications. The
SELDOM project focus on the improvement of the business process. It is a
direct response to the following needs: improvement of the quality of the
development process (which in turn leads to the improvement of the quality of
products), improvement of the structure and management of the production
process, increase of productivity and reduction of the time to market for new
applications.

643

The context of the experiment

Thera’s development process is based on the extension of the waterfall model to
support refinement and incremental production, formalised around the object-
oriented technology. The process of capturing expectations and requirements is
managed "ad-hoc"; in the analysis and design phase the Booch methodology is
employed, supported by the Rational ROSE tool. The design is based on the
IBM San Francisco framework and the implementation is done with the Java
object-oriented language. The development environment is JBuilder (Borland).

The domain analysis methodology introduced during the project is a
customisation of the PROTEUS [Proteus94] and FODA [Foda90] approaches.
These general methodologies have sound, detailed, and easy available
documentation. The domain analysis method proposed by PROTEUS is the best
match for our context: an incremental software process based on object-oriented
techniques. It represents commonalties and variants with the concepts (common
to most of the object-oriented techniques) of constraints and associations,
generalisation and specialisation, abstraction and aggregation, multiplicity and
metadata/metamodel. FODA is interesting because it focuses on user-visible
aspects of software systems, the ‘features’, and highlights some useful concepts
and deliverables. We adopted in the SELDOM project a customised version of
PROTEUS, adding to it the peculiar domain-characterisation focus of FODA
(specifically, the gathering of domain requirements and user expectations) and
the documentation strategy it expresses. Both PROTEUS and FODA aim to
produce domain architectures: we expanded this activity introducing the related
concepts of frameworks and general domain architecture, delivered as reusable
assets in the domain.

Description of the experiment

The experiment we performed consisted in the introduction of domain analysis
in the software development process concerning the specific baseline project
described in the previous section. The baseline project adopted for the
experimentation of domain analysis was the development of a software system
named "Logistics Management". It concerned the development of a proprietary
product, whose main goal was to help a manufacturing organisation to plan and

644

control stocks, sales and purchases. The language chosen for the implementation
was Java. Besides, the San Francisco framework sold by IBM was the
underlying software architecture over which the product has been built.

During the first phase of the experiment, ‘Training, study and methodology
adaptation’, the personnel directly involved in this PIE was trained on the basic
aspects of domain analysis and framework design, aiming to provide them the
necessary knowledge to perform the experiment. Then, an in-depth study was
conducted to understand how to adapt domain analysis methods (PROTEUS and
FODA) to the software development environment of Thera.

The second phase was the ‘Application of domain analysis to the baseline
project’. We used the domain analysis method adopted for the experiment to
analyse the logistics management domain. The goals were to identify the
common features of the applications present in the domain, to formalise the user
requirements, defining the object-oriented models of the entities in the domain
and to identify common design frameworks. The results of these activities were
then applied in the baseline project.

The three main tasks that compose the application of domain analysis were
‘Domain characterisation’, ‘Domain model definition’ and ‘Design frameworks
development’.

The first activity, ‘Domain characterisation’, dealed with the identification and
the classification of the information concerning the context of the domain under
consideration.

In the second activity, ‘Domain model definition’, the requirements and the
information collected in the previous step were analysed and object-oriented
models were built, following the prescriptions of the Booch methodology. The
Object Model was designed to represent the object structure of the domain. It
was refined applying the concepts of generalisation and aggregation, identifying
commonalties and hierarchies among classes, resulting in a comprehensive
model that represents the common aspects of the system. Aggregation is one of
the basic mechanisms in the production of software applications through asset
composition.

645

A Dynamic Model supported the Object Model, providing a dynamic description
of the behaviour of the system in terms of interaction between objects, and
representing the evolution of the system in response to external events. The
description of the variant aspects of the system completed the modelling activity.

The third activity, ‘Design frameworks development’, took as input the object-
oriented models produced in the previous step and refined them with the purpose
of creating reusable components that feed the software projects. Classes were
grouped into separate categories, basing on their relationships and
interconnections. Classes having strong cohesion among them and presenting a
scarce coupling with classes from other groups constitute a good candidate for
framework. Considering the variable aspects identified during the previous step,
domain models were modified in order to incorporate the required variation
points, following the indications of suitable design patterns such as: «Factory»,
«Template Method», «Composite», «Decorator», «Bridge», «Observer»
[Gamma95].

Concurrently to the experimentation of domain analysis in the baseline project,
we performed the ‘Data collection’ activity, which was part of the ‘Data
collection, analysis, comparisons and dissemination’’ phase and consisted in the
collection of experimental data during both the experiment and the baseline
project. This monitoring program aimed to collect statistics on development
effort, size of code and reuse of modules as numerical indicators of the
performance of the process. The purpose is to assess whether measurable goals
planned at the beginning of the experiment have been achieved. The final
comparison of the situation before and after the introduction of domain analysis
is yet not complete.

Analysis of the results of the experiment

During the whole experiment, we carried out a measurement program collecting
two kinds of information: the effort spent during each phase of the development
process (in person-days) and product metrics (number of modules developed
from scratch, number of module reused, etc.). We relied on a tool that we
developed in-house for the collection of effort data related to daily activities
performed by the personnel. Each person, at the end of the day, introduced his

646

personal data in the tool and linked the data to the logical subsystems (presented
with different levels of aggregation) of the baseline project under development.
In our view, a module is a logical aggregation of one or more basic business
classes with the service classes strictly related to them added by San Francisco,
such as as the ‘factory’ class, the ‘controller’ class, the ‘stub’ and ‘skel’ classes
[Gamma95]. This is motivated by the use of the San Francisco framework,
which provides a semi-automatic generation of code associated with support
objects for each logical class realised. We roughly estimated that about 30% of
the code lines were produced automatically by San Francisco (we do not have a
parser suitable for such detailed a measure).

The data we collected can be summarised by the following indicators:

580 logical modules were developed during the project (A), corresponding to
5.563 physical classes for 555.690 lines of code (LOCs), free of 445.587
line of comments.

205 modules were developed for-reuse (B), consisting in about 238950 LOCs.
These were produced as reusable components to be assembled in the
production of other modules; these modules built the reusable library for
the Logistic management system.

13 modules were produced as ‘abstract’ superclasses (C), and 13 modules
(accounted in the next figure) as ‘first-implementation’ from the
superclasses (produced by composition).

130 modules were developed by composing different reusable library
components (D), reusing the knowledge and following the implementation
guidelines exploited with the development of the 13 ‘first-
implementation’ modules.

232 modules were developed ’ad hoc’ and they have not been reused (E).

369 times reusable modules were reused in the project for the composition of
the 130 modules cited above. We calculated this value by a manually
estimating in the design documents an average of 1.8 reuses for each
reusable module present in the library.

647

Considering these numbers, we calculated the following measures:

• Number of reusable modules developed / total number of modules
developed [B / A]: currently in Thera this ratio approaches 0.15, because
until now there has been no incentive to develop reusable modules. Before
the experiment, we planned to shift this ratio near to 1 after the complete
instalment of the domain analysis process and the institutionalisation of
reuse practices, while we expected to reach a rate of 0.35 at the end of this
first experiment.

• LOCs in reusable modules developed / LOCs in all modules
developed in the project: the achieved rate is 0.43. It is better than the rate
regarding the number of modules, because the code within the reusable
modules, embodying generalised behaviour, is more consistent than the code
needed to adapt them to the specific context.

• Number of modules developed with reuse / number of modules
developed from scratch [D / (B+C+E)]: currently this ratio is between 0.1
and 0.3. We expected to achieve a ratio between 0.3 and 0.5 at the end of the
experiment: the result we reached, a ratio of 0.29, is slightly less than we
expected. A possible explanation is that reuse has a long term benefit, i.e. the
reusable components have to be reused several times before a real cost
decrease is achieved.

Figure 2: Pie charts for the reuse measures collected during the experiment

Reusable modules developed

Total num ber of m odules developed: 580

Modules developed w ith
reuse and from scratch

Reusable m odules
Produced: 35%

From scratch: 78%

W ith reuse: 22%

LOCs developed
for reuse: 43%

Reusable module LOCs / whole project LOCs

Total num ber of LOCs developed during the project: 555.690

648

Qualitative analysis of the experiment and its impact on the organisation

From a software engineering point of view, the main qualitative results achieved
until now can be synthesised in the following points:

• the greater level of formalisation of user requirements that has been necessary
in the first steps of the domain analysis activity in order to characterise the
domain and define its boundaries has allowed personnel to gain a deeper
knowledge of the application domain, with positive effects in the modelling
and framework design activities;

• the introduction of a comprehensive framework, such as IBM San Francisco,
that provides a basic set of object-oriented infrastructures and appreciative
components that can be extended, has allowed to concentrate the resources on
the problem domain (rather than on technological services) and to base the
software production process more on the reuse of components rather than on
the development from scratch of new ones;

• the definition of the domain models has contributed to shift the main effort
from implementation towards planning, leading to a better modularization of
the system, a robust architecture, a sharper documentation, resulting in a
higher quality of the analysis and design assets;

• such higher quality, together with the organisation of a development process
more focused on reusing components and specialising frameworks, has
determined an higher quality of both the software process and the developed
products.

Considering the organisational aspects, the experiment had a significant impact
on the methodological point of view, but, on the other hand, it had a smaller
influence on the organisational structure. This could be due to good practices
already deeply rooted inside Thera for correct and efficient organisation of the
development process.

The main impact the experiment seemed to have was a strong spur towards a
greater integration of the project team members and a tighter collaboration
between domain experts, analysts, designers and software engineers. Now their

649

specific activities are much more joined by a common background: the domain
models and the design frameworks directly derived from them.

The technical knowledge obtained by the training program and the practical
experience personnel is gaining from the execution of the experiment is leading
to an increase of the skills of the staff involved concerning the domain analysis
methods and framework design techniques.

This has a positive impact both on Thera and on the personnel itself. People are
strongly motivated because of the benefits that the methodology brings to the
development process in general and to their work in particular. Besides, they are
conscious of the relevance of their role in the evolution of Thera’s development
process and they are satisfied for their increased skill and expertise in up-to-date
technologies. This turns into a competitive advantage for a software firm like
Thera, which is based on the work performed by its personnel.

Conclusions and future work

In this paper we outlined how the introduction of domain analysis in the
software process can influence and improve the whole organisation and the
software development process in particular. Integrating domain analysis in the
software process requires a first assessment and description of the development
process in order to identify the current procedures and practices. The model
produced for describing the organisational structure represents the starting point
for the integration of domain analysis inside the development environment. We
present a process improvement experiment regarding the adoption of domain
analysis inside an Italian software firm with the goal to improve the software
process and to introduce software reuse practices. The SELDOM project is an
experiment guided and motivated by the business need of the firms: through the
adoption of a specific technology, domain analysis, we want to evaluate how
software engineering can improve the capability and maturity of the
organisation.

The results we achieved, even if not definitive due to the still ongoing analysis,
seem to confirm that the introduction of domain analysis in the software
development process can really improve it and foster reuse practices at the same

650

time. The quantitative data we analysed are not complete, but they give precious
hints on the benefits we reached. This data has to be considered with special care
because it refers to a single subsystem where domain analysis, frameworks
adoption and reuse practices were optimally applied. However, the average reuse
rate achieved in the experiment is still a very positive indicator of the benefits
that domain analysis, combined with reuse, can introduce in the organisation.

The average results we obtained confirm the expectation we had before the start
of the experiment. Moreover, it has to be considered that domain analysis and
reuse have a return on the investments that is achieved only in the medium and
long term. This is mostly because producing components for reuse and building
a domain reusable library is a costly activity in the short term, and the benefits
can be appreciated only when the reusable components are effectively reused
from 2 to 5 times [Favaro96]. In this perspective, the evaluation of the results we
achieved with SELDOM can not be considered finished, but we will integrate
and carry on it with the analysis of the data coming from the current and future
projects.

 In the future, we want to extend these experiments concerning the introduction
of software engineering in the development process of Thera. In particular, we
intend to build on the core competencies we gained in this experiment with the
goal to shift our development process towards a compositional model based on
reuse and domain engineering.

Acknowledgments

The SELDOM project is co-financed by the European Commission under the
framework of the Esprit ESSI PIE (reference: 23838).

Bibliography

[Arango89] Guillermo Arango, Domain Analysis - From Art to Engineering
Discipline, in Proceedings of the Fifth International Workshop on Software
Specification and Design, Pittsburg, PA, 1989, pp. 152-159.

651

[Arango93] Guillermo Arango, Domain Analysis Methods, in Software
Reusability, ed. W. Schaeffer, R. Prieto-Diaz and M. Matsumoto, pp. 17-49,
Ellis Horwood, New York, 1993.
[Basili94] V.R. Basili, L.C. Briand, W.M. Thomas, Domain Analysis for the
Reuse of Software Development Experiences, in Proceedings of the 19th Annual
Software Engineering Workshop, December 1994.
[Favaro96] J. Favaro, A Comparison of Approaches to Reuse Investment
Analysis, Fourth International Conference on Software Reuse, April 23-26,
Orlando, Florida, 1996.
[Foda90] J. Hess, S. Cohen, K. Kang, S. Peterson, W. Novak, Feature-
Oriented Domain Analysis (FODA) Feasibility Study, Technical Report CU/SEI-
90-TR-21, Software Engineering Institute, November 1990.
[Gamma95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley Publishing Company, 1995.
[Neighbor81] Neighbors, J., Software Construction Using Components, Ph.
D. Thesis, Department of Information and Computer Science, University of
California, Irvine, 1981.
[Prieto87] Ruben Prieto-Diaz, Domain Analysis for Reusability, in
Proceedings of COMPSAC 87: The Eleventh Annual International Computer
Software and Applications Conference, IEEE Computer Society, Washington
DC, October 1987.
[Prieto90] Ruben Prieto-Diaz, Domain Analysis: an Introduction, Software
Engineering Notes, ACM, Vol. 15, no. 2, April 1990, pp. 47-54.
[Proteus94] Heweltt Packard, Matra Marconi Space, CAP Gemini Innovation,
Domain Analysis Method, Deliveable D3.2B, PROTEUS ESPRIT project 6086,
1994.
[Wartik91] S. Wartik and R. Prieto-Diaz, Criteria for Comparing Reuse-
Oriented Domain Analysis Approaches, In International Journal of Software
Engineering

652

Using CASE to enhance service performance
in Local Government: the CAPELLA project

EXPERIENCE REPORT

Karlheinz Kautz1, Peter Kawalek2, Matthew Keenan3, Tom McMaster4, Clive
Walker3, David Wastell2, Michael Willetts3, Chris Williams3: 1Norwegian

Computing Centre, Oslo, Norway; 2University of Manchester,UK; 3Salford City
Council and 4University of Salford, UK.

This paper reports the motivation, history and the interim findings of an ESSI
Process Improvement Experiment (PIE) involving the deployment of a CASE
tool in the IT Services Department (ITSD) of Salford City Council.

BUSINESS CONTEXT

Salford City Council, like each of the other 513 Local Authorities in England
and Wales, is under constant and increasing pressure to improve the services it
provides to its publics. Striving to maximise ‘value for money’ entails the
constant re-engineering of service delivery methods and business processes. Nor
is this any less the case today with the ‘new’ UK Labour Government than it was
with almost two decades of its Conservative predecessors; the direct threat of
Compulsory Competitive Tendering (CCT) may have receded, but the present
Government’s ‘White Paper for Local Authorities’ has in essence replaced it.
This sets out a Best Value regime, requiring Local Authorities to put in place
comprehensive and rigorous service plans that ensure conformance to the spirit
as well as the letter of the regime. Once again Information Technology (IT) is
seen as the key to the attainment of such transformations, and consequently there
are increasing expectations of IT Services staff – that they develop and deliver
solutions to ever higher levels of quality and economy. The CAPELLA

653

experiment then is fundamental not only to better equip the service in delivering
improved products, but also to assist in strengthening its capacity for coping
with the changes that arise from new demands and expectations.

The IT Services Department (ITSD) has a mixed reputation within the local
authority in the performance of its functions. In general terms, through analysis
of customer satisfaction surveys, Software Quality is perceived as acceptable
although Timeliness and Budgeting Targets were regularly exceeded.
Interestingly, those software products where very strict deadlines are imposed
through legislative timetables (for example the Council Tax System introduced
in 1993) are invariably met. This lack of consistency was both troubling and
heartening; where the Service must succeed – it can, and does.

The Development and Customer Services Business group, a sub-unit of the
ITSD, is the major organisational unit involved in the CAPELLA experiment.
The group’s role is to provide a full range of development services, including
specification, analysis, design, development, implementation and support
services to internal departmental customers within the authority. In the early
1990’s the unit had adopted the Oracle tool set as the chosen development
product following evaluation of a number of options from various suppliers. It
therefore seemed like a logical step to select the Oracle corporation’s CASE tool
(Design/Developer 2000) for deployment to ensure effective integration into the
existing setting with minimum disruption to the present environment. To support
the implementation and evaluation of the CASE tool, funding from ESSI was
applied for in order to conduct a Process Improvement Experiment. This funding
was obtained and the CAPELLA project was formally inaugurated in March
1997.

CAPELLA aims, objectives and organisation

The project’s twin aims are to evaluate the business rationale for CASE tools use
within the software development functions of local government, and to establish
a culture of ‘continuous improvement’ in the software development process.
Specific objectives set out in the approved ESPRIT Project Programme were:

654

• To achieve direct software process improvements in terms of
development lead-times, software quality, and developer productivity.

• To reduce the cost of ownership of IT systems through higher
engineering quality and reduced rigidity of applications, and the
ability to better deal with future modifications.

• To use the features of CASE tools and methods to enable a ‘total
team approach’ to software development, characterised by higher
levels of customer involvement.

• To devise and validate an implementation strategy for CASE tools
and methods, involving an in depth study of the human and
organisational factors associated with the notion of ‘technology
transfer’, in order to enable such change processes to be effectively
managed and supported.

• To establish a culture of continuous improvement based on process-
orientated, enterprise-wide views of software development.

The project was originally divided into three main phases.

The first phase consisted of creating the necessary capability for the project.
This included the purchase and installation of the CASE tool, plus initial staff
training in the use of the product. This phase also consisted of the establishment
of the team structure to undertake the project with the creation of a ‘Centre of
Excellence’; that is, those who would be responsible for technical advice and
support on the use of the tool, to others in the development unit. Then, a baseline
project was identified which was intended to develop the initial experience and
capability in the use and application of the tool.

The second phase involved the creation of the necessary investigation and
analysis frameworks on which to base subsequent evaluations. This included the
production of a development methodology to underpin the use of the tool, and
the development of structured frameworks for capturing hard and soft metrics on
a range of development projects.

655

The third and final phase involves the actual experiment itself, including both
internal evaluation and customer evaluation of the issues and impacts of the
experiment.

It is important to mention that the project has been a collaborative venture
between ITSD, the Universities of Salford and Manchester, and the Norwegian
Computing Centre. The role of the consultants / researchers from these
organisations has been to provide advice on CASE implementation and software
metrics, supervise data collection and analysis, provide specific advice on
experimental design, help write reports, and to provide general advice on
organisational structures and the management of change.

INTERIM TECHNICAL FINDINGS

In this section and the next, the interim findings of the project (i.e. at the end of
stage two) will be reported. Five technical themes of work have been carried
within the project:

• development of a structured methodology

• development of an evaluation framework

• analysis of costs and benefits of CASE

• development of training materials

• development of a CASE implementation strategy

Methodology

In order to establish a firm base for the experiment, a series of in-depth
interviews were carried out in the first two months of the project. These
interviews were with users and developers. Comparing successful projects with
less successful ones, the main result that emerged was the importance of
establishing a strong customer-orientation for IT projects with high levels of user
involvement. Those projects which were more successful were those that were
user-led with ITSD staff playing a supportive rather than directive role. It was
also noted that for user-led development to be effective, users need to be aware

656

of the need to commit substantial resources of their own. This was not always
recognised. Interviews with developers in the ITSD also corroborated the need
for intensive user involvement which it was felt could be realised through a
prototyping approach. These general methodological observations confirmed
the customer-orientated philosophy underpinning the original proposal.

The next step in this technical theme was the mapping out of the current
development route practised in the ITSD and the development of an initial
Salford Structured Development Methodology (SSDM) drawing together key
elements of current and past practices. A high level description of a full life-
cycle model has been developed. Further work has examined tool support for the
methodology. Oracle’s CDM (Customised Development Method) was
purchased and evaluated. CDM provides a set of document templates to support
a range of life-cycle models.

The next stage in the work was to produce a definitive methodology (SSDM).
The aim was to take the initial Salford methodology and to enrich it in various
ways:

• Through benchmarking against best practice elsewhere (two organisations
were studied: BNFL and Spar Grocery Chain)

• By considering work on a national level oriented towards standard
approaches to Rapid Application Development, i.e. the DSDM methodology
which has been developed through a consortium of user organisations and
technical specialists.

• By taking into account prior work on standards within the ITSD

 The definitive SSDM will be defined in the final CAPELLA report. One
important result that should be highlighted here is the recommendation to
implement Peer Review as a key practice for achieving improved software
quality. This will be implemented and evaluated along-side CASE in the third
phase of the experiment.

657

Evaluation

 Metrics were seen as falling into two main areas: Developer oriented and
Customer oriented. A set of metrics has been developed in both areas. Regarding
developer metrics, the use of Function Points received a detailed examination. It
was concluded that function points were both useful and valid way of measuring
output, but that it was crucial to apply the analysis at the level of the business
function. This was a key result. Choice of software metrics was guided by a
Capability Maturity Model Assessment.

 Cost and benefits
 The metrics framework will be deployed in phase 3 enabling the benefits of
CASE to be formally evaluated. Preparatory research on costs is also underway;
this will take into account both direct costs (e.g. training, support etc.) and
indirect costs (e.g. overheads). At a qualitative level, attitudes of the staff
towards CASE have been researched through a series of interviews with
developers. In general, attitudes to CASE were positive with CASE being seen
as providing a number of technical benefits, including the following:

• It facilitates user involvement through prototyping

• It represents the state-of-the-art in software engineering, thus enhancing job
satisfaction

• It will greatly improve documentation

• Code generation will improve productivity and reduce defects

• It will promote more re-use

 CASE Implementation Strategy

 Following the draft strategy, a more detailed analysis has been carried out in
relation to the implementation of CASE in order to identify problems with the
current approach, the lessons that need to be learned and to consider how
benefits might be maximised. Cultural issues have figured largely in this
analysis. Resistance to CASE has been attributed to a range of factors, e.g.:

• The degree of new learning that is required

658

• The reactive nature of current workload

• Low morale and perceived elitism

• Future work mix/Development Strategy (increasing use of Package
Solutions)

 This analysis has resulted in a set of recommendations and a revised outline
implementation strategy, which will focus particularly on the management of
change, and on optimising the opportunities provided by CASE for
organisational learning.

 INTERIM BUSINESS RESULTS

 The results of the Project have contributed to the achievement of I.T.
Services’ Business Objectives in the following areas:

 The methodological theme has yielded a draft methodology that addresses the
business need to adopt a more customer-focused approach. In particular, the use
of prototyping is seen as critical in realising higher levels of user involvement
and hence customer orientation and business validity. The introduction of peer
review is also seen as providing a decisive first step in instituting a quality
management system and establishing a culture of continuous improvement and
organisational learning.

 The metrics framework is equally important in improving performance. It will
provide a basis for setting process improvement targets and monitoring the
effectiveness of interventions. Institutionalising the metrics in the main
evaluation represents a major move forward in establishing a metrics-based
management culture. The current set of metrics have been defined with
improved software quality and project management as the key goals. Clear
benefits are expected to flow in both these two areas.

From a business perspective CASE is seen as providing an important means of
achieving improved performance in four key areas; software quality, IT staff
productivity, documentation, and project management. These business benefits
are seen as justifying use of CASE for the immediate future although the final

659

decision regarding future deployment will depend on the outcome of the main
evaluation.

From a business perspective, the experiment has yielded many important initial
results regarding the management of change. Whilst CASE has been
successfully used in I.T. Services, there have nonetheless been problems (delays
and resistance) and there is no doubt, that the management of the
implementation procedure could have been improved. The new implementation
strategy is thus of considerable importance from a business perspective, not just
for CASE but for the management of any new initiative within the department.
Given the turbulence of the ITSD’s business environment, the enhancement of
its capacity for change is critical.

So far as the project Management role for Software Development Projects
within the Service is concerned, several key initiatives have now been
implemented including:

• The implementation of rigorous project planning management and review
processes supported by standard documentation.

• Increased consultation and participation of other IT disciplines at key project
milestones, regarding dependencies beyond immediate software development
domain (including data communication, training services etc).

• A Risk Management framework to capture key information and to forecast
threats to project deliverables and targets.

Whilst it is difficult to substantiate in a measurable tangible sense, there are at
least promising signs of real cultural shifts arising from the project to date which
can be categorised as:

• A recognition by a sizeable proportion of the ITSD staff of the need to
innovate and exploit technology to aid the development process

• Acceptance of the need for a team approach to development including
development staff, customers, suppliers and other stakeholders, from both
internal and external agencies.

660

• Acceptance of the need to be more accountable for quality and performance
at individual and team levels through more structured project reviews, peer
reviews and use of metrics and measurement techniques.

• A greater acceptance of the role and importance of the customer in the
development process.

KEY LESSONS LEARNED

Service Culture

The prevailing Culture within the I.T. Service and how the planned change
process involving the CASE approach might be greeted should have been more
carefully understood, in order to prepare the way for the experiment. In other
words, the determination of the capacity for change is a critical factor in
establishing changes in strategic direction, from many important points of view;
leadership, management, resources, communication, existing morale, structures
and so on.

Strategy Programme

ITSD tends to be an organisation with a strong operational orientation, where
strategic planning and management is often perceived as bureaucratic or
unnecessary. This might have been recognised more clearly, so that the overall
raison d’être for change was better communicated, thereby achieving greater
acceptance and ownership. Additionally, how the CAPELLA Project fitted with
other strategic initiatives within the ITSD was never fully articulated so that an
overall coherent strategy programme emerged and it was, therefore, able to be
seen within context of the wider goals for the service.

Involvement and Communication

Insufficient attention to communication had led to confusion about the project
scope and purpose, roles and responsibilities within the project and its various
components, together with its relative priority; leading to insufficient active
involvement and ownership, particularly by practitioners.

661

Project Management

The loss of key staff, including the original project leader dealt a severe blow to
the management and continuity of the project. Momentum was lost at a critical
formative stage, and this was further exacerbated by the continuing resource
demands arising from Year 2000 compliance work. Project management was
fundamental and the team benefited from the assignment of a project manager in
addition to the overall lead officer, to provide the day-to-day intensive planning
and management to various aspects of the project required and a firmer grip on
achieving agreed deliverables.

Project Scope

It was during the re-establishment of the project immediately following the key
staff losses where the project was revisited in terms of detailed scope. The
general philosophy being do few things well, keep them simple, have a keen
attention to detail and above all, chunk the work to ensure manageability.

Management and Leadership Perspectives

In many ways, the project is less of a technical one than a managerial one.
Furthermore, it is less a project than a whole different strategic agenda for
change. It is these management perspectives that were sometimes overlooked in
favour of a more limited project view within the technical domain of software
engineering. Additionally, a clearer appreciation of the capacities and skills of
individual project team members would have been valuable at the outset,
perhaps by introducing skills assessment exercises at the start of the programme.

MAIN CONCLUSIONS

The main message so far is that there is a far more fundamental issue at stake
here than the costs and benefits of CASE, or indeed how we create opportunities
for continuous improvements in the software business function, although clearly
those will form a substantial part of the final conclusions. The key to these
things lies in the manner in which organisations cope with the change
programme affecting them, now and in the future. In other words, for initiatives
such as the introduction of CASE to be successfully integrated into the
organisation’s business functions and for on-going improvement programmes to
be developed and implemented, it is critical that we:

662

• Understand prevailing cultures within the ITSD in order to facilitate and
manage change processes.

• Place the CAPELLA project within context of the overall change programme
and communicate the relationship with other strategic initiatives so that an
overall coherent strategic programme emerges, achieving understanding and
acceptance.

• Ensure that suitable structures and processes are in place to cope with change
as the project moves from inception through development and into
implementation.

All of these factors are concerned with our capacity to cope with change arising
from the project. Such factors are critical to success and need to be in place to
underpin the ideas and initiatives flowing from the project. In particular, the
involvement of the consultants / researchers has been of major importance to the
ITSD. They have made contributions technically, strategically, managerially and
on a pragmatic day to day level. They brought experience, expertise and best
practice from theoretical as well as practical domains at a time when the ITSD
were suffering from a very high level of staff turnover, and competing demands
for resources arising from the Year 2000 compliance programme and other
matters.

APPENDIX: Author Index

Abrahamsson, Pekka, University of Oulu, pp. 481 - 496

Antoniol, G., ITC-Irst, pp. 103 - 117

Benedicenti, Luigi, University of Regina, pp. 345 - 362, 637 - 651

Bernus, Peter, Griffith University, pp. 424 - 436

Birk, Andreas, Fraunhofer Institute for Experimental Software Engineering, pp. 29 - 48

Brodman, J., LOGOS International, Inc., pp. 237 - 259

Buckingham Shum, Simon J., Knowledge Media Institute, pp. 539 - 559

Calzolari, F., ITC-Irst, pp. 575 - 588

Cardino, Guido, Socrate Sistemi S.a.S., pp. 497 - 507

Conradi, Reidar, NTNU, pp. 263 - 284

Cozzio, Enrico, Federazione Trentina delle Cooperative, pp. 575 - 588

De Panfilis, Stefano, Engineering Ingegneria Informatica S.p.A., pp. 345 - 362

Derks, Pieter, Dräger MT, pp. 86 - 99

Donzelli, Paolo, University of Rome, pp. 525 - 538

Dorling, Alec, Centre for Software Engineering, IVF, pp. 237 - 259

Fairley, Richard E., Oregon Graduate Institute, pp. 285 - 299

Fenaroli, Massimo, Thera S.p.A., pp. 637 - 651

Garcia, Ana Belen, Software Process Improvement Guidance Product Line, pp. 437 - 452

Gasston, Jennifer, Griffith University, pp. 203 - 221

Giraudo, Griselda, Sodalia SpA, pp. 103 - 117

Habra, Naji, University of Namur, pp. 381 - 396

Hebrard, Patrick, VERILOG, pp. 606 - 619

Hirvensalo, Jorma, Oy LM Ericsson Ab, pp. 86 - 99

Houdek, Frank, Daimler Chrysler AG, University of Ulm, pp. 323 - 344

Iazeolla, Giuseppe, University of Rome, pp. 525 - 538

Iida, Hajimu, Nara Institute of Science and Technology, pp. 412 - 423

Inoue, Katsuro, Osaka Univversity, pp. 412 - 423

Ito, Masao, Nil Software Corp., pp. 397 - 411

Iversen, Jakob H., Aalborg University, pp. 591 - 605

Johnson, D., LOGOS International, Inc., pp. 237 - 259

Järvinen, Janne, VTT Electronics, pp. 29 - 48, 49 - 67

Kautz, Karlheinz, Norwegian Computing Centre, pp. 652 - 662

Kawalek, Peter, University of Manchester, pp. 652 - 662

Keenan, Matthew, Salford City Council, pp. 652 - 662

Kesseler, E., National Aerospace Laboratory NLR, pp. 300 - 320

Kiiskilä, Janne, Nokia Telecommunications Oy, pp. 153 - 169

Kishida, Kouichi, Software Research Associates, Inc., pp. 397 - 411

Kotonya, Gerald, Lancaster University, pp. 222 - 236

Kusters, Rob, Eindhoven University of Technology, pp. 363 - 377

Kuvaja, Pasi, University of Oulu, pp. 68 - 85

La Gommare, G., Sodalia SpA, pp. 103 - 117

Lamblin, Anne-Catherine, University of Namur, pp. 381 - 396

Lichter, Horst, Aachen University of Technology, pp. 135 - 149

Maansaari, Jari, University of Oulu, pp. 68 - 85

Marjara, Amarjit Singh, Gap Gemini AS, pp. 263 - 284

Matsushita, Makoto, Osaka University, pp. 412 - 423

McMaster, Tom, University of Salford, pp. 652 - 662

Niyitugabira, Eustache, University of Namur, pp. 381 - 396

Ostolaza, Elixabete, Software Process Improvement Guidance Product Line, pp. 437 - 452

Ramos Román, Isabel, Universidad de Sevilla, pp. 560 - 574

Renault, Alain, University of Namur, pp. 381 - 396

Roan, Alain, VERILOG, pp. 606 - 619

Rossi, Simo, Nokia Telecommunications, pp. 508 - 522

Rout, Terence P., Griffith University, pp. 424 - 436

Runeson, Per, Lund University, pp. 182 - 200

Santos, José Cristobal Riquelme, Universidad de Sevilla, pp. 560 - 574

Sawyer, Peter, Lancaster University, pp. 222 - 236

Schneider, Kurt, Daimler Chrysler AG, pp. 323 - 344

Selvin, Albert M., Bell Atlantic Corporation, pp. 539 - 559

Seppänen, Veikko, VTT Electronics, pp. 68 - 85

Skåtevik, Borge, STC, pp. 263 - 284

Sommerville, Ian, Lancaster University, pp. 222 - 236

Succi, Giancarlo, University of Calgary, pp. 345 - 362, 637 - 651

Taramaa, Jorma, VTT Electronics, pp. 68 - 85

Thelin, Thomas, Lund University, pp. 182 - 200

Tonella, P., ITC-Irst, pp. 103 - 117

Tortorella, Maria, University of Sannio, pp. 453 - 477

Trienekens, Jos, Eindhoven University of Technology, pp. 363 - 377

Valerio, Andrea, Università degli studi di Genova, pp. 497 - 507, 637 - 651

Van Solingen, Rini, Tokheim, Eindhoven University of Technology, pp. 29 - 48, 49 - 67,
86 - 99, 363 - 377

Van Uijtregt, Arnim, Tokheim, Eindhoven University of Technology, pp. 363 - 377

Van Veenendaal, Erik P.W.M., CISA, pp. 118 - 134

Vergano, Marcello, IAS s.r.l., pp. 170 - 181

Vernazza, Tullio, DIST-Università di Genova, pp. 345 - 362

Verstraeten, Eddy, TeSSA Software NV, pp. 620 - 636

Visaggio, Giuseppe, University of Bari, pp. 453 - 477

Walker, Clive, Salford City Council, pp. 652 - 662

Wang, Yingxu, Centre for Software Engineering, IVF, pp. 237 - 259

Wastell, David, University of Manchester, pp. 652 - 662

Wieser, Eva, Daimler Chrysler AG, pp. 323 - 344

Willetts, Michael, Salford City Council, pp. 652 - 662

Willi ams, Chris, Salford City Council, pp. 652 - 662

Zeller, Manfred, ABB Utili ty Automation GmbH, pp. 135 - 149

	Preface
	Conference Organization
	Programme Committee
	Contents
	Keynote Address: The Team Software Process
	Keynote Address: "In situ" Computer Aided Empirical Software Engineering
	Panel: Process Improvement versus. Product Improvement
	SESSION 1: PROFES: Methodology for Product Focused Process Improvement
	A Validation Approach for Product-Focused Process Improvement
	Establishing continuous assessment using measurements
	Specific requirements for assessing embedded product development
	Product focused SPI in the embedded systems industry

	SESSION 2: Tools and Techniques in Software Process improvement
	Effective Feature Analysis for Tool Selection
	Questionnaire based usability testing
	Developing a Change Request Management Tool for a Distributed Environment

	SESSION 3: Software Quality
	Piloting as a Part of the Process Improvement of Reviews - A Case Study at Nokia Telecommunications Fixed Switching
	Early testing of Embedded Software
	Capture-Recapture Estimations for Perspective-Based Reading - A Simulated Experiment

	SESSION 4: Novel Approaches in Software Process Assessments
	The Role of the Client-Supplier Relationship in Achieving Software Quality
	Improving Market-Driven RE Processes
	Conformance Analysis of the Tailored CMM with ISO/IEC 15504

	SESSION 5: Software Measurement
	Empirical Studies of Inspection and Test Data
	A Process-Oriented Approach to Improving Software Product Quality
	Quality first: Measuring a safety-critical embedded software development process

	SESSION 6: Experience Packaging and Transfer
	Systematic Experience Transfer Three Case Studies From a Cognitive Point of View
	An Experience Report on Decoding, Monitoring, and Controlling the Software Process
	Tailoring product focused SPI - Application and customisation of PROFES in Tokheim -

	SESSION 7: Process Modelling and Assessment
	Software Process Improvement in Small Organizations Using Gradual Evaluation Schema
	Process Re-engineering Patterns
	Modeling Framework and Supporting System for Process Assessment Documents
	An architecture for defining the processes of the software and systems life cycles
	EFQM/SPICE Integrated Model: the Business Excellence Road for Software Intensive organisations
	A Reading-based Scenario for ChaRacterising and Exploiting Process components

	SESSION 8: New Proposals in Software Process Improvement
	Expanding Goal Setting Theory Concepts – Using Goal Commitment Measurements to Improve Chances for Success in SPI
	Tailoring Process Improvement to Small Companies using a Methodology Focused on the Individuals
	Moving Towards Modelling Oriented Software Process Engineering: A Shift from Descriptive to Prescriptive Process Modelling

	SESSION 9 : Methods and Tools in SPI
	A Software Process Simulator for Software Product and Process Improvement
	Repurposing Requirements: Improving Collaborative Sense-Making over the Lifrcycle
	The Dynamic Models for Software Development Projects and the Machine Learning Techniques
	Improving the Requirements Definition: The RESPECT Project

	SESSION 10: Industrial Experience Reports
	Establishing SPI Effect Measurements
	A PIE one year after: APPLY
	Creating a solid configuration- and test-management infrastructure to improve the team development of critical software systems
	An industrial experience in improving the software process through domain analysis
	Using CASE to enhance service performance in Local Government: the CAPELLA project
	APPENDIX: Author Index

