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BIOSCEN 
Modelling Biorefinery Scenarios 

Biojalostamoprosessien mallinnus. Juha Leppävuori & Pertti Koukkari (eds.)  
Espoo 2012. VTT Technology 67. 159 p. + app. 17 p. 

Abstract 
Biorefining unit processes were studied in terms of their physicochemical model-
ling properties and parameters, complemented by surrogate metamodelling and 
extensive sensitivity analysis. The unit processes included flash condensation of 
the fast biomass pyrolysis, thermal and enzyme catalysed hydrolysis of lignocellu-
losic biomass and fermentation of the hydrolysis product to bioethanol and biobu-
tanol. In addition, a flowsheet based mass and energy balance was developed for 
the bark biorefinery, the key factors of which were then assessed by using the 
elementary efficiency method for sensitivity analysis. With the results from hydrol-
ysis and fermentation models, a comparison of the greenhouse gas emissions 
from barley straw based ethanol and butanol was performed. The bark-based 
biorefinery producing mainly tannin and ethanol proved to be economically chal-
lenging. The results also show that biobutanol is in general more demanding (in 
terms of greenhouse gas emissions) than the production of bioethanol. 
 

Keywords biorefinery, material properties, modelling, parameter optimisation, pyroly-
sis oil condensation, lignocellulosic biomass, hydrolysis, fermentation, 
greenhouse gas emissions 
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Biojalostamoprosessien mallinnus 
BIOSCEN. Modelling Biorefinery Scenarios. Juha Leppävuori & Pertti Koukkari (toim.).  
Espoo 2012. VTT Technology 67. 159 s. + liitt. 17 s. 

Tiivistelmä 
Joukkoa biojalostamon yksikköprosesseja tutkittiin simulointimallien avulla. Tutki-
muksessa tarkasteltiin tyypillisten biojalostamotuotteiden fysikaalis-kemiallisten 
ainearvojen saatavuutta ja näiden soveltamista termodynaamisissa ja kemialliseen 
reaktoritekniikkaan perustuvissa laskentamalleissa. Parametrien luotettavuutta 
testattiin metamallinnuksen ja herkkyysanalyysien avulla. Tutkitut yksikköprosessit 
olivat pyrolyysiöljyn talteenotto kondensoimalla, terminen ja entsyymikatalysoitu 
lignoselluloosan hydrolyysi sekä edelleen hydrolyysituotteiden fermentointi bio-
etanoliksi ja biobutanoliksi. Olkeen perustuvalle bioetanolin ja biobutanolin tuotan-
nolle tehtiin mallinnukseen perustuva kasvihuonekaasupäästöjen analyysi. Tanniinia 
ja bioetanolia tuottavalle kuoribiojalostamolle laadittiin aine- ja energiataseet ku-
vaava prosessimalli, jonka taloudellisuutta tutkittiin edelleen parametrisen herk-
kyysanalyysin avulla. 
 

Avainsanat biorefinery, material properties, modelling, parameter optimisation, pyrolysis 
oil condensation, lignocellulosic biomass, hydrolysis, fermentation, green-
house gas emissions 
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Preface 
The purpose of the BioScen project was to develope quantitative modelling ap-
proaches for the future biomass based processes producing fuels and chemicals. 
The aim of the BioScen project was in developing methods to estimate the neces-
sary material properties for phase and reaction equilibria, for the calculation of unit 
processes and their integration to biorefining production plant simulations. Addi-
tional focus was laid on model optimisation and product life cycle analysis. As the 
biorefining technologies possess an extensive range from thermal pyrolysis to 
biochemical processing at ambient temperatures, a most generic thermodynami-
cally based approach was se lected to enable usage of the methods to the wide 
variety of possible applications. The methods were then applied to a number of 
case studies including modelling of flash condensation of pyrolysis oil, hydrolysis 
of cellulosic biomass and its product recovery and the subsequent fermentation 
processes for bioethanol and biobutanol, for which also a comparative life cycle 
analysis was performed. Flowsheet process simulation was applied to a concep-
tual wood bark biorefinery. Metamodelling techniques were used for both model 
and parameter optimisation, including their sensitivity analysis. 

Modelling of the Biorefinery Scenarios, BIOSCEN, was a Tekes funded project 
under the BioRefine program. The research partners were Aalto University, The 
University of Jyväskylä and VTT Technical Research centre of Finland. The goal 
of the project was to develop an intellectual foundation for the modelling of biore-
finery processes ranging from physical and chemical properties of key substances 
processes to flowsheet process optimization and life cycle analysis of sele cted 
biorefinery concepts. Thanks to active steering group, the project execution was 
intensively supported and evaluated. 

The text and data contributors were Timo Aittokoski (particularly Chapters 2.2 
and 2.3), Anna Zaytseva (Chapters 2.1, 3–4), Petteri Kangas (Chapter 5), Peter 
Blomberg (Chapters 6–8), Sakari Kaijaluoto and Jouni Savolainen (Chapter 9,) 
Reetta Sorsa (Chapters 2.4 and 10) and Juha-Pekka Pitkänen (Chapter 11), The 
script has been revised and edited by Juha Leppävuori and Pertti Koukkari who 
also have been contributing to Chapters 8 (Leppävuori) and 1, 2 and 11 (Koukkari). 
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List of symbols 
Ap surface area of catalyst (particle) 

cA  molar concentration of substance A 

D, DA diffusion coefficient (of substance A) 

EOS  equation of state 

Hi  Henry’s law coefficient 

k  reaction rate coefficient 

K-value  distribution coefficient of substance between two separate phases 

LA  heat of vaporisation of component A 

LLE  liquid-liquid equilibrium 

MA  molar mass 

P, Pi  pressure and partial pressure of component i 

Pi  parachor of component i 

r,rA  rate of reaction 

rp  radius of a catalyst particle 

T  temperature 

Tr, Pr  reduced temperature and reduced pressure 

V, Vi  volume and molar volume of component i 

Vp  volume of a catalyst (particle) 

VLE  vapour-liquid equilibrium 

VLLE  vapour-liquid-liquid equilibrium 

xi  mole fraction of component i 

BSA bovine serum albumin 

CBD cellulose binding domain 

CBH1 cellobiohydrolase 1, also Cel7A 

CD catalytic domain 

Cel6A non-progressive exoglucanase 

Cel7A progressive exoglucanase 

Cel7B endoglucanase 

EB enzyme (β-glucosidase) complex containing a cellobiose molecule 

EG enzyme (β-glucosidase) complex containing a glucose molecule 

EG1 endoglucanase 1, also Cel7B 
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EGG enzyme (β-glucosidase) complex containing two glucose molecules 

SSF simultaneous saccharification and fermentation 

 g, gA  surface tension, of component A 

l  catalys distance-radius ratio 

h, hA  viscosity, of component A 

rA  bulk density of component A 

ni  stoichiometric coefficient 

DfG  Gibbs energy of formation 

DfG’ Transformed Gibbs energy of formation 

DHvap  enthalpy of vaporisation 

a,b,c  general EOS moel parameters 

tij  binary interaction parameter (COSMO) 

Duij  interaction energy difference (COSMO) 

wi  compound specific Mathias-Copeman parameter (SRK-EOS) 

aindex  reduced Helmholtz energy of index-specified properties (SAFT-EOS) 

eij  binary interaction energy (SAFT-EOS) 

kAiBi  effective association volume (parameter of SAFT-EOS) 

sij  binary interaction parameter (SAFT-EOS) 

E  total emissions from the use of the fuel 

ece  emissions from the extraction or cultivation of raw materials 

le  annualised emissions from carbon stock changes caused by land use 
change 

pe  emissions from processing 

tde  emissions from transport and distribution 

ue  emissions from the fuel in use 

scae  emission saving from soil carbon accumulation via improved agricultural 
management 

ccse  emission saving from carbon capture and geological storage 

ccre  emission saving from carbon capture and replacement 

eee  emission saving from excess electricity from cogeneration 
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1. Introduction 

1.1 Project organisation 

BioScen project was commenced in November 2008 as part of the TEKES funded 
BioRefine technology programme. The programme’s expected total volume will 
reach about €250 million by 2012. A majority of the funding is focussed on enter-
prise projects, while the research project volume during the five-year period has 
totalled €41 million, of which Tekes’ funding was about €25 million. The respective 
figures for the BioScen modelling project were €1.2 million and €0.84 million. The 
industry share in the funding of the BioScen project was 9%. 

BioScen was organised as a joint project of Aalto University (Aalto), University 
of Jyväskylä (JYU) and VTT. The responsible leaders were professor Ville Alo-
paeus (Aalto), professor Kaisa Miettinen (JYU) and research professor Pertti 
Koukkari (VTT), who also acted as the coordinator of the project. Project manager 
was Dr. Juha-Pekka Pitkänen from VTT. 

The three work packages of the project were 

– physical, chemical and transport properties of biorefinery chemicals 
– flowsheet modelling and optimisation 
– life cycle analysis of the biorefining products. 

The supporting industrial companies were Neste Oil Oyj, Metso Power Oy, Pöyry 
Engineering Oy and Vapo Oy. In the BioScen Steering group the companies were 
represented by the following persons: Kari I. Keskinen and Juha Lehtonen (Neste Oil), 
Jani Lehto (Metso Power), Antti Hasanen (Pöyry) and Kauko Isomöttönen (VAPO). 

M.Sc. Juha Leppävuori worked as a visiting scientist in USA at Carnegie-Mellon 
University (supervised by prof. Lawrence Biegler) from February 2010 to March 
2011, focusing on the optimisation of fermentation model parameters. 

1.2 Project scope 

During the last decade, utilisation of sustainable biomass and biotransformation 
processes has gained an ever increasing interest. The number of commercialised 
processes is rapidly increasing in production of chemicals and biofuels. Figure 1.1 
illustrates this trend as global planned capacity of biobased chemicals. In Finland 
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numerous industrial R&D projects have been initiated during the last five years, 
mainly focused on production of biofuels but also on other chemicals and polymers. 
Tekes’s BioRefine program has been running since 2007 and as a part of it, 
ForestCluster Ltd’s Future Biorefinery (FuBio) was launched in 2009. Thus, empirical 
knowledge on processes using biomass is rapidly increasing, while less attention 
has been paid on their quantitative engineering and modelling. 

The biorefinery uses biomass as raw material for production of fuels, hydrogen 
and chemicals. The production concept may be independent or integrated to a 
traditional manufacturing process, in particular to one of forest, food or forage 
industries with conventional products. The concepts for future biorefineries are 
often characterized according to their select of raw materials: ligno-cellulosic for 
the use of forest biomass and whole-crop for agricultural raw materials. A third 
alternative is the green biorefinery, by which basically fresh ‘wet biomass’ (grass, 
clover, algae etc.) are used as starting materials. Alternatively the technology 
platform – low-temperature fermentation or thermal treatment – is used as the 
classifying basis. Regardless of the chosen raw-material, the biorefining concept 
aims to produce either fuels, chemicals, material products or feed with a combina-
tion of different technologies. Two basic t echnology platforms are being used: 
hydrolysis of sugars followed by their bioprocessing to chemicals or thermal treat-
ments in combination with subsequent chemical conversions to products. 

The concept ‘biorefinery’ has inspired itself from the respective ’oil refinery’ 
where mineral oil is used as raw material. It is well-known that petrochemical in-
dustry receiving its feedstock from oil refining produces quite limited number of 
basic chemicals, from which then a multitude of molecules are being further pro-
duced as chemical products. In this processing chain various phase separations 
and chemical conversions are applied. 

 

Figure 1.1. A recent analysis of planned bio-based chemicals production 
(http://www.icis.com/Articles/2012/04/16/9549985/bio-based-chemicals-on-the-fast-
track-to-commercialization.html). 

http://www.icis.com/Articles/2012/04/16/9549985/bio-based-chemicals-on-the-fast-track-to-commercialization.html
http://www.icis.com/Articles/2012/04/16/9549985/bio-based-chemicals-on-the-fast-track-to-commercialization.html
http://www.icis.com/Articles/2012/04/16/9549985/bio-based-chemicals-on-the-fast-track-to-commercialization.html
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Oil refining has created the basis of chemical engineering. Its most important 
supporting science has be en chemical thermodynamics. The design of all unit 
operations and processes will require the physical and chemical properties of 
components and mixtures. Unit operation models require quantitative thermody-
namic models which are based on empirically determined thermodynamic data. 
Each stage of any planned new process is studied in terms of the methodology of 
chemical engineering science. As a result, it has become customary in chemical 
technology that no new processes are designed without constructing a simulation 
model. With advanced models, erroneous trials and costly experimental work can 
be minimized. The materialization of the biorefinery will also necessitate development 
of simulation methods and databases for biobased raw material and related unit 
processes. A parallelisation of the required methods is illustrated in Figure 1.2. 

In general a simulation model precedes all new processes and targeted re-
vamps in existing plants in chemical process technology. These successful engi-
neering practices have also been increasingly applied in other fields. In Finland, 
particular attention has been in applying engineering models for pulp and pa-
permaking as well as for other process industries. 

In biorefining, there exist a number of different technology concepts ranging 
from high temperature gasification methods to aqueous fermentation based tech-
nologies and organic solutions. In many cases, the product is received in the form 
of a dilute aqueous solution with multitude of side products, requiring advanced 
fractionation methods. Thus, the requirements for process modelling also become 
more challenging. 

With advanced modelling techniques using experimental data it is possible to 
evaluate reaction mechanisms and their kinetic rate parameters for complex biore-
fining systems. The pathways to fi nal chemical products can involve a variety of 
routes from thermal processing to aqueous hydrolysis and metabolic reaction 
networks. As an alternative to chemical kinetic approach, thermodynamic equilib-
rium properties can often be efficiently used to screen both high temperature pro-
cesses and biochemical pathways. Modern thermodynamic models will serve both 
improved understanding of various reaction networks including unit processes 
thereof and construction of reliable balance (flowsheet) models to evaluate the 
feasibility of industrial production units. 
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Figure 1.2. Comparison of the engineering models for oil refining and biorefining. 

The BIOSCEN project was commenced within Tekes’s BioRefine program as one 
of the few projects focusing on modelling and simulation of biorefinery processes. 
Thus a rather wide variety of methods were chosen with the aim to cover the ver-
satility of potential applications. This text serves as a final report summarising the 
key contents and results of the project. Chapter 2 provides a brief description of 
the project and Chapters 3 describes the methods used in the project. Chapters 4 
to 9 give a de tailed description of the processes studied and key results. The 
topics covered in Chapters 4 to 9 cover the condensation stage of fast (biomass) 
pyrolysis, modelling of hydrodeoxygenation of pyrolysis oil, the thermal hydrolysis 
of lignocellulosic biomass for levulinic acid production, acid pretreatment of ligno-
cellulosic biomass for its subsequent enzymatic hydrolysis and fermentation for 
bioethanol production and finally, o flowsheet modelling example for a bark refin-
ery. Attention has been also laid on highlighting the current situation in t he field 
and future challenges. The conclusions from the whole project are summarized in 
the Chapter 10. 
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2. Methods 
This chapter outlines the physical property prediction and mathematical optimization, 
metamodelling and sensitivity analysis methods used in the BIOSCEN project. 
Creenhouse gas (GHG) calculation method used in isobutanol production analysis 
is also presented. 

2.1 Physical property prediction 

Fibre-biomass conversion into chemicals requires knowledge of involved compo-
nents behavior. Variety of physico-chemical, reaction and transport properties are 
needed for the description of biomass conversion kinetics, distribution of co m-
pounds in different reactive zones and phase b ehavior of the components in dif -
ferent processes. Diversity and variability of the bio-products makes predictions of 
their properties a challenging task. However, most fibre-biomass processing 
methods represent techniques for biomaterial degradation. Some products of the 
degradation are well known compounds (like cresols, toluene, glucose), some of 
them have not been investigated earlier. A typical example of such de gradation 
method is the pyrolysis of biomass for the production of ‘biocrude’, a mixture of 
liquefied components to be used as fuel or chemicals. Similarly the hydrolysis of 
biomass will lead to molecular fragments of the polymeric biomaterial, which then 
must be fractionated and recovered from the aqueous media. 

Within the Bioscen project list of compounds was made that would supplement 
information needed for description of biomass pyrolysis process and hydrolysis of 
fibre-biomass Table (2.1 (a), (b), (c)). The lists are not complete, but serve to 
provide or verify information that has low quality or is not available for calculation 
of phase behaviour and kinetics in the commonly used process flowsheet simula-
tor programs such as Aspen Plus, Flowbat, ProII etc. For description of pyrolysis 
product condensation one pseudo component was added to re present low mo-
lecular weight lignin in the syst em. The lignin is cut of from the poplar molecule 
structure (Boerjan et al., 2003) to mimic average lignin molecular weight and ele-
mental ratios (C:O:H) (Oasmaa et al., 2003). Gaseous compounds are also taken 
into account because they influence equilibrium between vapor and liquids. 
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Table 2.1. Pyrolysis oil compounds. (a) pyrolysis product compounds; (b) pyrolysis 
reaction compounds (c) metabolites of hydrolysis and fermentation processes. 

(a) Name Formula CAS 
number 

 (b) Formula CAS 
number 

1 water H2O 7732-18-5 1 water   
2 methanol CH4O 67-56-1 2 methanol   
3 formic acid CH2O2 64-18-6 3 formic acid   
4 acetic acid C2H4O2 64-19-7 4 acetic acid   
5 guaiacol C7H8O2 90-05-1 5 guaiacol   
6 hydroxyacet-

aldehyde 
C2H4O2 141-46-8 6 methane CH4 74-82-8 

7 acetol C3H6O2 116-09-6 7 1,2-ethanediol C2H6O2 107-21-1 
8 furfural C5H4O2 98-01-1 8 phenol C6H6O 108-95-2 
9 levoglucosan C6H10O5 498-07-7 9 toluene C7H8 108-88-3 
10 glucose-alfa D C6H12O6 492-62-6 10 ethanol C2H6O  64-17-5 
11 4-methyl-guaiacol C8H10O2 93-51-6 11 ethyl acetate C4H8O2 141-78-6 
12 vanillin C8H8O3 121-33-5 12 cyclohexene C6H10 110-83-8 
13 abietic acid C20H30O2 514-10-3 13 cyclohexane C6H12 110-82-7 
14 low molecular 

weight lignin 
C22H30O7 - 14 benzene C6H6 71-43-2 

15 nitrogen  N2 7727-37-9 15 catechol C6H6O2 120-80-9 
16 carbon monoxide  CO 630-08-0 16 methylcyclo-

hexane 
C7H14 108-87-2 

17 carbon dioxide  CO2 124-38-9 17 benzaldehyde C7H6O 100-52-7 
18 methane CH4 74-82-8 18 o-cresol C7H8O 95-48-7 
19 ethane C2H6 74-84-0 19 p-cresol C7H8O 106-44-5 
20 propane  C3H8 74-98-6 20 m-cresol C7H8O 108-39-4 
21 n-butane  C4H10 106-97-8 21 2,4-dimethyl-

phenol 
C8H10O 105-67-9 

    22 hydrogen H2 1333-74-0 
    23 carbon  

dioxide 
CO2 124-38-9 

(c) 
1 pyruvic acid C3H4O3 127-17-3 5 alpha-

acetolactic acid 
C5H8O4 918-44-5 

2 2-butanol C4H10O 78-92-2 6 alpha,beta-
Dihydroxy-
isovaleric acid 

C5H10O4 1756-18-9 

3 isobutanol C4H10O 78-83-1 7 2-ketoiso-
valeric acid 

C5H8O3 759-05-7 

4 isobutanal C4H8O 78-84-2 8 3-hydroxy-
3-methyl-2-
oxobutanoic 
acid 

C5H8O4 6546-31-2 

9-
77 

Furanose and pyranose forms of glucose, fructose and other 
sugar monomers; different forms of the sugar phosphates 

C5-6O6-

12P0-2 
- 

The simulation of chemical processes requires knowledge of the physico-chemical 
properties of the treated compounds. The property factors in question may charac-
terize the desired compounds from different perspectives, i.e. solvation behaviours 
of the compound, its activity in reactions, rate of mass transfer etc. Thus a selection 
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of the properties very much depends on the particular chemical process, through 
which the component originated. For example, pyrolysis of lignocellulosic biomass 
is one promising method for production of substitute of diesel fuels. Composition 
of the pyrolysis product is very complex (for example compared to respective 
gasification products) and represents a variety of bio-polymer derivatives and 
extractive compounds. The pyrolysis oil contains simultaneously polar, associa-
tions, polymeric compounds, carboxylic acids (i.e. formic and acetic) phenols, 
fused ring structures, lignin oligomers, alcohols and water. Moreover solvation of 
gases has a high importance both for pyrolysis oil stability (liquid phase splitting) 
and its production. Thus solubility, diffusion coefficients and variety of phase equi-
libria properties were selected to supply the needed information for pyrolysis oil 
production. 

Another important field of biomass conversion is biological degradation. Most of 
these processes occur in water. Though properties of aquoeus solutions have 
been extensively investigated the quantitative description of biochemical reactions 
in water remains a challenging task. For example, the standard Gibbs energy of 
formation (Gf

0), which would give the respective equilibrium constants is unknown 
for many biologically active compounds. Therefore estimation of possible reaction 
routes for those molecules can not be performed directly and must be made using 
available Gf

0 estimation methods. However, accuracy of the currently available Gf
0 

estimation techniques varies widely from 2 to 20 kJ/mol and can be lower for such 
kind of compound structures, which more rarely appear in conventional chemical 
engineering. 

Within the BIOSCEN project the estimation of formation properties and solubility 
of bioactive compounds were made to facilitate development of models for fibre-
biomass hydration and fermentation. Detailed description of properties estimations 
for pyrolysis oil reactions and condensation products, and for biomass fermentation 
methabolites are given below (see Section 3.1.3). 

2.1.1 Phase equilibrium related properties 

Description of any unit operation requires basic knowledge about the physical 
state of compounds (vapor, liquid, solid) and about the distribution of the compo-
nent between different phases. The phase equilibria can be calculated in many 
different ways, but always applying the t hermodynamic equilibrium concept, i.e. 
equal fugacity or chemical potential of the compound in all respective phases. A 
majority of the existing fugacity models employs critical properties of compounds 
and their vapour pressure as input parameters for the fugacity calculations. Thus 
critical properties and vapour pressure were estimated for all compounds from 
selected components list. These properties are shown in Table 2.2. The selection of 
a viable estimation method for unavailable properties was based on literature re-
views, taking into account the size and ch emical class of the molecules. Usually the 
most recent method of Nannoolal (Nannoolal et al., 2004; Nannoolal et al., 2008; 
Sanghvi & Yalkowsky, 2006) was used, with exception for small molecules where 
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Marrero – Pardillo method is more accurate (Marrero-Morejon & Pardillo-Fontdevila, 
1999). In few cases, for which Nannoolal prediction deviates considerably from the 
other methods estimations, Joback or Stein method (Joback & Reid, 1987; Stein & 
Brown, 1994) were used because its reliability recommended e.g. by Poling (Poling 
et al., 2001). 

For the development of vapour pressure correlations (Pv) all available experi-
mental information together with different estimation methods were compared and 
used. Coefficients of the vapour pressure correlation are given in Table 2.2. 

Table 2.2. Critical properties of the pyrolysis oil compounds and their vapor pres-
sures (PV). 

 Tboil, 
K 

Tmelt 
K 

Tc 
K 

Pc 
MPa 

Vc 
cm3/mol 

PV at 50°C 
kPa 

Acetic acid 391.1e 289.8 e 592 e 5.8 e 177 e 7.58 e 

Formic acid 373.7e 281.7 e 588 e 5.8pD1 125 pD2 17.28 e 

Levo-glucosan 586pBv 386 e1 743pB1 5 pB2 365.5 pB1 7.21E-07 pB1 

Glucose 691.1 pBv 419.2 e 846 pB1 5.2 pB3 490 pB3 1.01E-10 pB4 

Acetol 418.6e 256.2 e 604.2 pB5 5.7 pB5 221.5 pB5 2.37 pBe 

hydroxyacetalde-
hyde 

423.2 e 358.2 e 629.7 pB5 6.5 pB1 167 pD 0.04 pBe 

guaiacol 478.2 e 304.7 e 700.8 pB3 4.6 pB3 335.4 pB3 0.12 e 

vanillin 558 e 355 e 800.6 pB3 4.6 pB3 402.4 pB3 7.53E-04 e 

4-Methyl-guaiacol 494.2 e 278.7 pB6 710 pB3 4.1 pB3 402.1 pB3 0.07 pB3e 

Abietic acid 649.7 pDv 446.7 e 865.1 pB3 2 pB3 1043.1 pB3 1.10E-06 pDe 

methanol 337.9 e 175.5 e 512.5 e 8.1 e 117 e 55.53 e 

water 373.2 e 273.2 e 647.1 e 22.1 e 55.9 e 12.35 e 

furfural 434.9 e 236.7 e 670.2 e 5.7 e 252 1.34 e 

*- vapor pressure correlation used for calculation the vapor pressure at 50°C, 
e – experimental data, taken from DIPPR database; e1 – experimental data of Oja (Oja & Suuberg, 1999). 
pD – predicted in DIPPR project: e – fitted based on experimental data, v – from vapor pressure correlation, 
1 – Ambrouse group contribution method (GCM), 2 – from family plot, pB – predicted within Bioscen 
project: e – fitted based on experimental data, v – from vapor pressure correlation, 1 – using Joback Stein 
GCM (Stein & Brown, 1994), 2 – using Joback GCM (Joback & Reid, 1987) with correction of Feng et al. 
(2005), 3 – using Nannoolal GCM (Nannoolal et al., 2007), 4 – fitted to be between Nannoonal and Riedel 
GCM predictions taking into account Tb estimations of different methods, 5 – by Marrero-Morejon and 
Pardillo-Fontdevila GCM that is best for small molecule (Marrero-Morejon & Pardillo-Fontdevila, 1999), 6 – 
Marrero and Gani GCM (Marrero & Gani, 2001) 
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Table 2.3. Coefficient for vapor pressure correlations of pyrolysis oil compounds. 

Name Equation A B C D E 
acetic acid 1 39.4545 -6304.5 -4.30   6 

formic acid 1 29.9911 -5131.030 -3.19   2 

levoglucosan 2 9.3215 -13890.021 2.32   2 

glucose-alfaD 3 15.4911 10749.922 -86.43     

acetol 3 9.3046 4608.641 -22.91     

hydroxyacetaldehyde 1 284.5054 -24639.248 -37.79    

guaiacol 1 237.7345 -17453 -33.72   2 

vanillin 1 92.0145 -13646 -11.06   6 

4-methyl-guaiacol 3 8.9182 4845.648 -61.84    

abietic acid 1 74.5935 -14612 -8.75   2 

methanol 1 68.9025 -6904.5 -8.86   2 

water 1 59.8335 -7258.2 -7.30   2 

furfural 1 80.7545 -8372.1 -11.13 0.01 1 

lignin fragment 3 14.2923 10753.149 -141.86   

1 – ln(P/MPa)=A+B/T+C*lnT+d*TE 
2 – ln(P/MPa)=A+B/T+C*lnT+d*TE 
3 – ln(P/MPa)=A-B/(T+C) 

 

Other physical properties, such as heat capacities, formation energies, SRK (Soa-
ve-Redlich-Kwong) and Rackett equation parameters were estimated. Overview of 
the parameters sources is given in Table 2.4. The least investigated compounds 
were levoglucosan and 4- methyl-guaiacol. Some properties were not estimated 
due to unavailability or low accuracy of existing estimation technique for them. 

Phase equilibrium properties are also very important for the description of py-
rolysis processes in both reactor and condenser stages. Collection of available 
data, prediction of missing properties and modelling of the pyroly sis oil vapour-
liquid equilibrium is described in Section 4. 
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Table 2.4. Collection of physical properties for pyrolysis oil compounds. 

 Ac
et

ic
 a

ci
d 

fo
rm

ic
 a

ci
d 

le
vo

gl
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an
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uc

os
e-

al
fa

D
 

ac
et

ol
 

H
yd

ro
xy

ac
et

-
al

de
hy

de
 

gu
ai

ac
ol

 

va
ni

llin
 

4-
m

et
hy

l- 
gu

ai
ac

ol
 

ab
ie

tic
 a

ci
d 

fu
rfu

ra
l 

Critical temperature                       
Critical pressure                       
Critical volume                       
Normal boiling point                       
Melting point                       
Triple point temperature                       
Triple point pressure                       
Acentric factor                        
Radius of gyration                       
Solubility parameter                       
Dipole moment                       
Van der Waals reduced volume                       
Vanderwaals Area                       
Ideal gas heat of formation                       
Ideal Gibbs energy of formation                       
Ideal gas absolute entropy                       
Heat of fusion                        
Heat of vaporisation at normal boiling point                       
Standard net heat of combustion                       
Rackett parameter                       
Surface tension at normal boiling point                       
SRK acentric factor                       
Molar volume at fixed T                       
Density, Liquid                        
Density, Solid                       
Dynamic Viscosity, Liquid                       
Dynamic Viscosity, Vapor                       
Enthalpy of Vaporization                       
Heat Capacity, Ideal Gas                       
Heat Capacity, Liquid                       
Heat Capacity, Solid                        
Surface Tension                       
Thermal Conductivity, Solid                       
Thermal Conductivity, Liquid                       
Thermal Conductivity, Vapor                       
Vapor Pressure, Liquid                       
Vapor Pressure, Solid                       
Second Virial Coeff.                       

 – experimental data,  – derived based on experimental data (Bioscen),  
 – predicted value (taken from literature),  – predicted value (Bioscen) 
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2.1.2 Kinetics related properties 

Formation energies of components are needed for prediction of reaction pathways 
of enzymatic hydrolysis and fermentation using energy diagrams (see Section 5 
and 6). Partly the standard enthalpies and Gibbs energies of formation can be 
found in literature, but for many metabolites there is either no information available 
or the energy is provided for different conditions (other temperature or compound 
state). Supplementary information needed to translate all data into process condi-
tions can yet be obtained by advanced prediction methods. The COSMO-RS 
model is a novel predictive technique that can be used for estimation of the solva-
tion energies of gaseous and solid compounds based on molecular structure 
(Klamt, 2005). Fast screening of hydration energies for 68 metabolites for ethanol 
production were made using commercially available implementation of COSMO-
RS model (COSMOtherm software). Procedure for the calculation is described in 
Section 4. The procedure usually includes establishing of the most stable struc-
tures of every compound under consideration and statistical thermodynamic calcu-
lations of solvation energies for those structures. A comprehensive search of most 
stable structures is a time limiting step in the solvation energy calculations, even 
though it imp roves accuracy of the energy estimation only a little. Due to large 
amount of compounds to be estimated such c onformation search was not per-
formed. However the final structure geometries were ones optimized starting from 
the structures available in common biomolecule databases (e.g. Beilstein data-
base or NIST). 

In addition, estimation of properties for iso-butanol production metabolites was 
performed; the results are shown in Table 2.5. Correlations for vapour pressures 
and enthalpy of vaporization were based on COSMO-RS model predictions. If the 
conformation analysis indicated that seve ral structures are stable in liquid and 
vapour phases for these molecules, the conformers were taken into calculations. 
For solid state standard enthalpy and Gibbs energy prediction methods of Domalski 
(Domalski & Hearing, 1993) was used. 
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Table 2.5. Properties predicted for iso-butanol production pathways: Gibbs energy 
of hydration from vapor phase, standard solid state enthalpy of formation, vapor 
pressure at 30°C, enthalpy of vaporization at 30°C. 

 

N 
con-

formers 

G 
hydration 
(kJ/mol) 

Hf_solid 
(kJ/mol) 

Pressure 
at 30°C 
(kPa) 

 Hvap at 
30°C 

(kJ/mol) 
2ketoisovalericacid 6 -3.1 -649.33 0.00666 51303.13 

3-hydroxy-3-methyl-2-
oxobutanoic acid.mol 3 -10.4 -857.77 0.00059 63927.26 

alpha,beta-Dihydroxy-isovaleric 
acid 10 -24.1 -963.86 0.00053 83165.76 

alpha-acetolactic acid 9 -13.2 -893.5 0.04198 62583.96 

ibutanal (2-methylpropanal) 2 8.5 -107.99 26.43490e 33483.39 e 

ibutanol (2-methyl-1-propanol) 4 1.5 -336.8 1.98990 e 50687.13 e 

pyruvic acid 4 -7.3 -592.76 0.23965 e 51631.91 e 

e – values are taken from DIPPR database (DIPPR project 801). 

2.1.3 Molecular transport properties 

One of the most important transport properties of a compound is its diffusion coef-
ficient. The diffusion coefficients were estimated for components of the pyrolysis 
oil (Table 2.2) in water and methanol. There are a number of different correlations 
for the estimation of unknown diffusion coefficients. However, classic ones such 
as Wilke-Chang (Wilke & Chang, 1955) give poor estimates for the diffusion coef-
ficients of unideal components like oxygenates. Six different correlations for diffu-
sion coefficients were compared: Stokes-Einstein, Wilke-Chang, Tyn-Calus, Si-
taraman, Hayduk-Minhas and Nakanishi. Group cont ribution methods were also 
assessed, but found to have insufficient data available so far to be applicable. Of the 
different correlations, Tyn-Calus (Tyn, 1975) and Sitaraman (1963) m ethods are 
generally considered to be the most suitable for oxygenated components. 

Tyn-Calus method is based on the use of the parachor, P, which describes the 
connection between molecular structure and physical properties. Parachor is an 
additive quantity and can be approximately expressed as a sum of empirical in-
crements Pi corresponding to the single atoms or groups in the molecule. Para-
chors for many components can be found in the literature and it can be estimated 
using various methods. Tyn and Calus suggested a simple correlation for the 
parachor based on surface tension of a pure component: 

ܲ = ߛܸ
భ
ర, (2.1.1) 

in which P is the parachor, V is the molar volume (cm3mol-1) and γ is the surface 
tension (g s-2 = 10-3 N m-2). Using the parachor, binary diffusion coefficients can be 
calculated using the Tyn-Calus equation: 
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஺஻଴ܦ = 8,93 ∗ 10ି଼ ௏ಲ
భ
ల

௏ಳ
భ
య
ቀ௉ಳ
௉ಲ
ቁ
଴,଺ ்

ఎಳ
, (2.1.2) 

in  which  D0
AB is the diffusion coefficient of component A in solvent B, Vi is  the  

molar volume (cm3mol-1) of the component i in temperature T (K), Pi is the para-
chor (cm3g1/4s-1/2mol-1) of the component i and ηB is the viscosity (cP) of the pure 
solvent B. 

With good values for the parachor, the Tyn-Calus method should be good e s-
pecially for estimating the diffusion coefficients of polar components. However 
there are some special considerations that have to be taken into account when 
using the Tyn-Calus correlation. Firstly it can not be use d for solvents with high 
viscosities above 20 cP. Secondly, when water is the solute, it needs to be treated 
as  a  dimer,  i.e. the values of its P and V need to be doubled. Thirdly, when the 
solute is an organic acid and the solvent is not water, methanol or butanol, it 
needs to be tr eated as a dimer. Fourthly, when the solute is non-polar and the 
solvent is an alcohol with a single hydroxyl group, the V and P of the solvent need 
to be multiplied with the association factor n = 8*ηB. 

The Sitaraman correlation (Sitaraman, 1963) is based on using the heats of va-
porization of the binary components. This makes the correlation widely applicable 
since the heat of vaporization is rather easy to obtain. Binary diffusion coefficient 
using the Sitaraman correlation: 

஺஻଴ܦ = 5,4 ∗ 10ି଼ ൭ ெಳ

భ
మ௅ಳ

భ
య ்

ఎಳ௏ಲ,್
బ,ఱ௅ಲ

బ,య൱
଴,ଽଷ

, (2.1.3) 

in which MB is the molar mass (g mol-1) of the solvent B, Li is the heat of vaporiza-
tion (cal g-1) of the component i at its boiling point Tb, T is the temperature (K), ηB 
is the viscosity (cP) of the pure solvent B and VA,b is the molar volume (cm3mol-1) 
of the solute A at its boiling point Tb. 

The Sitaraman correlation gives good estimations for systems with water as the 
solute and is usable over a wide range of conditions. However it does not account 
for the molecular interactions as well as the Tyn-Calus with well estimated values 
for the parachor. 

Tyn-Calus and Sitaraman correlations were used to calculate the diffusion coef-
ficients of the different binary pairs formed from the selected pyrolysis oil model 
compounds: water, methanol, acetic acid, formic acid, levoglucosan, glucose, 
acetol, hydroxyacetaldehyde, guaiacol, vanillin and 4-methyl-guaiacol. The values 
of the variables required by the equations were taken from the DIPPR 801 data-
base. The temperature dependent variables were calculated using the DIPPR 
correlations presented as Equations (2.1.4)–(2.1.6) and the heats of vaporization 
required in the Sitaraman equation were converted from the enthalpy of vaporiza-
tion calculated with Equation (2.1.6) using Equation (2.1.7): 

(Pas)ߟ = ݁஺ା
ಳ
೅ା஼௟௡்ା஽்

ಶ
, (2.1.4) 
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ߛ ቀN
m
ቁ = 1)ܣ − ௥ܶ)஻ା஼ ೝ்ା஽ ೝ்

మାா ೝ்
య, (2.1.5) 

௩௔௣ܪ∆ ቀ
J

kmol
ቁ = 1)ܣ − ௥ܶ)஻ା஼ ೝ்ା஽ ೝ்

మାா ೝ்
య, (2.1.6) 

ܮ ቀcal
g
ቁ =

∆ಹೡೌ೛,್
భబబబ
ಾ

ర,భఴరcal
J

, (2.1.7) 

The values of levoglucosan and 4-methyl-guaiacol, not found in DIPPR 801, were 
taken from Knovel Critical tables (Knovel critical tables, 2008) (molar mass), Yaws’ 
Thermophysical Properties of Chemicals and Hydrocarbons (Yaws, 2010) (boiling 
point temperature) and predictions made by ACD/Labs (molar volume). As an 
example, the diffusion coe fficients of the components in water and methanol cal-
culated at 25 and 50°C are shown in Table 2.6. 

Table 2.6. Binary diffusion coefficients for the model components in water and 
methanol according to Tyn-Calus and Sitaraman correlations.  

Solvent Water Methanol 
 Tyn-Calus Sitaraman Tyn-Calus Sitaraman 
Temperature 25°C 50°C 25°C 50°C 25°C 50°C 25°C 50°C 
Component DAB [*10-5 cm2s-1] 
Water     2.35 3.49 1.14E-11 1.93E-11 

Methanol 1.41 2.48 1.14 2.04     
Acetic acid 1.26 2.24 1.29 2.30 2.39 3.53 2.31 3.28 
Formic acid 1.35 2.36 1.49 2.65 2.55 3.72 2.66 3.78 
Levoglucosan N/A N/A 1.15 2.05 N/A N/A 2.06 2.93 
Glucose 0.83 1.46 0.699 1.24 1.57 2.30 1.25 1.78 
Acetol 1.09 1.93 1.07 1.91 2.06 3.04 1.91 2.72 
Hydroxyacetalde-
hyde 1.14 2.02 1.17 2.08 2.14 3.18 2.09 2.97 

Guaiacol 0.900 1.59 0.947 1.69 1.70 2.50 1.69 2.41 
Vanillin 0.805 1.42 0.882 1.57 1.52 2.24 1.58 2.24 
4-methyl-guaiacol N/A N/A 0.951 1.69 N/A N/A 1.70 2.42 
 

Unfortunately, estimation of the applicability of these two correlations for the esti-
mation of the diffusion coefficients of the pyrolysis oil model compounds is difficult, 
since there is hardly any experimental data for the diffusion coefficients of most of 
these components. However, some differences become apparent when the values 
are compared over the whole temperature range where the equations can be 
applied. This can be seen in Figure 2.1, which shows the calculated values for the 
diffusion coefficients of water and guaiacol in water. The correlations agree fairly 
well except for guaiacol at temperatures above 600°C. 
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Figure 2.1. The diffusion coefficients of A) formic acid and B) guaiacol in water. 

Many of the values of the variables used by t he correlations are based on more 
correlations or calculations. Therefore, it seems a promising approach to model all 
molecular properties such as molecular volumes and the parachor with the same 
modeling tool in order to make all estimation of equal accuracy. 

2.2 Sensitivity analysis and metamodels 

Sensitivity Analysis (SA) will show in which measure the uncertainty in the output of 
a model (numerical or otherwise) can be apportioned to different sources of uncer-
tainty in the model input. Two main approaches of the sensitivity analysis (SA) are 
local and global. Local SA is based on derivatives of the input/output variables and 
gives direct information on how output is affected as the input changes. As a 
drawback, derivatives are only informative at the base point where they are com-
puted. Global SA, instead, strives to provide information covering the whole input 
space. It is based on the consideration that a handful of data points judiciously 
thrown into the design space is far more effective (with regard to informativeness 
and robustness) than estimating derivatives at a single data point (usually in the 
centre of input space). In the rest of this section, the focus will be on global SA. 

General steps of GSA can be given as: 

1. Establish the goal of analysis and form the output function (model) that an-
swers the questions posed. 

2. Decide which input factors are included in the model. 

3. Choose a distribution function for each of the input factors (use literature, 
expert opinion, etc.). 

4. Choose a proper sensitivity analysis method. 

5. Generate the input sample according to chosen analysis method. 

6. Evaluate the model using the generated sample. 

7. Analyse the model outputs and draw the respective conclusions. If neces-
sary, go back to Step 1. 
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To execute sensitivity analysis, there exist several software packages, and some 
of them are freely available. SimLab, is a free development framework for Sensi-
tivity and Uncertainty Analysis. SimLab license encourages free non-commercial 
use and it provides a reference implementation of the various available uncertainty 
and sensitivity analysis techniques. The development and maintenance of SimLab 
is financed by t he Unit of Econometrics and App lied Statistics of the Joint Re-
search Centre (European Commission). More information about SimLab is availa-
ble at http://simlab.jrc.ec.europa.eu/. 

Another example of free software is GUI-HDMR, which is available as a Matlab 
toolbox with a graphical user interface. It provides a straightforward and efficient 
approach to explore the input-output mapping of a complex model with a large 
number of input parameters. In GUI-HDMR variance based sensitivity indices can 
be determined in an automatic way i n order to rank the importance of input pa-
rameters and to explore the influence of parameter interactions. GUI-HDMR in-
formation and download is available at http://www.gui-hdmr.de/index.html. 

2.2.1 Sensitivity analysis 

In BioScen project, both SimLab and GUI-HDMR software were utilized, and they 
gave results of similar fashion. In BioScen project, we had one particu lar differ-
ence to most of the other SA literature. Instead of using mere input factors versus 
output(s), we made further division of input factors in to variables and parameters. 
With this categorization parameters are something whose values should be fixed 
during the development of the model, and variables are something that the end 
user of the model uses to change, for example, the state of the model. This divi-
sion was very natural, as BioScen project dealt with model development, and SA 
was used to support this. 

Division to parameters and variables lead to a question of how should we treat 
them in sensitivity analysis, i.e. are they both considered as input factors in a 
regular way, or something else. Soon an obvious i dea surfaced, and we defined 
our own way of global SA by studying whole region in variable space, and in each 
sample point in that space, each of the parameters was disturbed in turn (one-at-
a-time) by predefined amount, and effect of this disturbance to output(s) was rec-
orded. This scheme is henceforth referred to as the global-local scheme. Finally, 
several statistics for each of the parameters were calculated, such as mean and 
median effect on output. By these numbers it is easy to see which of the parame-
ters has he most pronounced effect on the output, and on the othe r hand, it is 
easy to see which parameters have only negligible effect, and t hey may be left 
with minor consideration or even prune from the model. 

In the Bioscen project several problems were studied, such as production of le-
vulinic acid, yeast cultiva tion and fermentation, hydrolysis of biomass, and bark 
refinery. Especially several versions of the hydrolysis model were analyzed, and 
sensitivity analysis could be used for the development of the model. The SA with 
divisioned input factors re mained our prima ry GSA tool as the l atter half of the 

http://simlab.jrc.ec.europa.eu/
http://www.gui-hdmr.de/index.html
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project. Finally, as a comparison, a sensitivity analysis on one problem, the bark 
biorefinery, was run by treating variables and parameters on an equal footing. 

2.2.2 Metamodelling 

In metamodeling (also known as surrogate modeling and response surfaces), the 
original model is replaced with another model, metamodel, which should depict the 
original model as well as possible. Usually, the reason to this is that the original 
model is computationally expensive, and thus it may pose a prohibitive cost i f 
optimization, sensitivity analysis or some other action requiring a high number of 
model runs is required. After a metamodel is generated based on input-output 
(training) data set, it is very fast to run it. Supposing that the modelling of a biore-
finery would encounter exceptionally complex engineering simulations, the option 
of metamodels was studied as part of the BIOSCEN project. 

Technically metamodels may be constructed in several different ways. Probably 
the four most commonly used techniques are artificial neural networks (ANN) 
(Haykin, 1998), kriging (Cressie, 1990), radial basis functions (RBF) (Buhmann, 2003) 
and support vector machines (SVM) (Cortes & Vapnik, 1995; Vapnik, 1998). They 
differ in principle by their internal working methods and mathematical formulations. 
In terms of training time, RBF and SVM are proba bly the fastest ones, naturally 
depending on the quality of t he implementation. Another consideration is connec-
tion of metamodel to training data, i.e. RBF and kriging metamodels need to have 
training data incorporated in to them, which may be a problem in case of a very 
big training data set. On the other hand, ANN and SVM metamodels do not need a 
training data set, and in a sense we m ay postulate that they are very c ompact 
representations of the original model. We may illustrate this behaviour by assum-
ing that output happens to be completely flat, and we are sampling it with a million 
points. RBF and kriging models need to carry all those million sample points along 
them, whereas ANN and SVM models end up being very compact in this case. 

At the beginning of t he BioScen project some comparison between different 
metamodeling techniques was executed. Based on these results, RBF mode ls 
were selected to be used. As the topical metamodelling problems the biomass 
hydrolysis, the bioethanol production by fermentation and the simulated moving bed 
process for product fractionation were selected. 

Results were mixed to some extent, in some output functions average error was 
very small (<<1%), and in some few percents. Although these numbers as them-
selves are not too disconcerting, it is worth to mention that maximum errors were 
in the range of tens of percents, although number of these is very low. It is up to 
the modeler to decide whether such uncertainty is acceptable or not. 

In Figures 2.2–2.3 two different ways to display the quality of a metamodel are 
presented. 
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Figure 2.2. Quality of two output functions of m etamodeled hydrolysis process. 
From this figure one can see what kind of values a m etamodel has produced in 
contrast to the real model. If the metamodel accuracy was perfect, the line would 
be a thin line without any scatter around it. 

 

Figure 2.3. Histograms of errors of two output functions of metamodeled hydrolysis 
process. There are more occurrences of small errors for function 4, whereas function 
2 has also bigger deviations. This same behaviour is clearly seen in Figure 4. 

2.3 Optimization 

There exist several different disciplines in optimization. Probably the most coarse 
useful classification of methods is in to a local, global and multiobjective optimization. 
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Local optimization algorithms (see e.g. Bazaraa et al., 1993; Nocedal & Wright, 2000) 
can only find the minimum which can be found only using e ither an ascending 
(maximization) or a descending (minimization) path. In this sense, local algorithms 
are trapped in to first objective function valley they find. 

On the contrary, global optimization algorithms (see e.g. Törn & Zilinskas, 1989; 
Weise, 2009) strive to find the deepest of all valleys within a given search space. 
Multiobjective optimization (see e.g. Branke et al., 2008) is yet wholly different, as 
then one must consider several objective functions at the same time, and t heir 
values are usually conflicting in a way t hat it is impos sible to improve one value 
without degrading the value of at l east one other objective. Also the concept of 
optimality is no longer straightforward, while it is defined by set of vectors contain-
ing objective function values, instead of one singl e value and there can be an 
infinite number of optimal solutions. 

Currently, different evolutionary approaches are favoured among engineering 
disciplines. This is probably due to their ease of implementation and utilization, as 
well as availability of source code, and their ability to tackle several different kinds 
of problems. On the downside it must be mentioned that usually they require ra-
ther high number of objective function evaluations, thus rendering themselves 
almost useless in the case of computationally very demanding problems. 

2.3.1 Optimization in BIOSCEN 

In the BioScen project, optimization was combined with metamodelling techniques 
and then applied to the simulated moving bed separation process, originally pre-
sented by Kawajir i & Biegler, 2006. Simulated Moving Bed (SMB) processes are 
periodic adsorption processes for separation of chemical products based on liquid 
chromatography. They are applied to many important separations in sugar, petro-
chemical, and pharmaceutical industries and can be applied also in biorefineries. 
SMB processes are dynamic processes operating on periodic cycles which makes 
them challenging from the optimization point of view. Previously, SMB processes 
for separation of fructose and glucose have been optimized with respect to single 
(Kawajiri & Biegler, 2006) and with multiple objectives (Hakanen et al., 2007) 
using gradient-based local optimization techniques. In this work t he idea was to 
apply metamodelling techniques in optimization of the same SMB process in order 
to enable using global optimization techniques. Global optimization techniques 
have higher computational demand than local ones but they are more likely to 
produce better solutions for problems having multiple local optima. 

The SMB problem has four objective functions: maximize throughput, minimize 
desorbent consumption, maximize purity of the product and maximize recovery of 
the product. The design variables included the liquid velocity in four different 
zones of the process as well as a step time which determines how often the place 
of the inlet (feed and desorbent) and outlet (extract and raffinate) streams are 
switched. Thus, altogether there were four objective functions and five decision varia-
bles. Details for modelling the SMB problem can be found in (Hakanen et al., 2007). 
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The SMB process was metamodelled by using RBFs. The training data consisted 
of a Hammersley (1960) sequence of 2500 points in the five dimensional design 
variable space generated by using the SMB process model. The training of the 
RBFs took about five seconds for each objective function. It was found that through-
put and desorbent consumption could be very well metamodelled (error << 1%) 
while purity and recovery were a l ittle bit more difficult (errors were 2.6% and 6.0%, 
respectively). 
The obtained metamodels were utilized in multiobjective optimization of the SMB 
process using global optimization methods and compared to previous results 
published in (Hakanen et al., 2007). The results indicated that using the meta-
modelled objective functions, we could obtain better values for the objectives 
when compared to previous results with l ocal optimization methods. In addition, 
the time used for generating one optimal solution for the multiobjective SMB prob-
lem was reduced from 1–2 minutes to about 15 seconds when metamodels and 
global optimization method was used instead of local optimization method and the 
SMB process model. On the other hand, when the solutions found by using meta-
models were evaluated with the SMB process model they turned out to be slightly 
worse when compared to the solutions found by local optimization method and the 
SMB process model. The reason for this is due to the metamodelling difficulty for 
purity and recovery objective functions, although the benefit of f inding almost as 
good solutions much faster still remains. 

These findings were presented at t he MCDM2011, the 21st I nternational Confer-
ence on Multiple Criteria Decision Making held in Jyväskylä, Finland, June 13–17, 
2011. In addition, an alternative approach to m etamodelling and metamodelling-
based optimization of an SMB process was made in (Giri et al., 2011) where ge-
netic programming (Collet, 2007) was used in metamodelling and an evolutionary 
approach was used in multiobjective optimization. This was a coll aboration with 
professor Nirupam Chakraborti (Indian Institute of Technology, Kharagpur). It was 
initiated based on our presentation in the MCDM2011 conference and it offered an 
alternative approach to metamodelling of the SMB process. The findings of that 
study were quite similar and an article (Giri et al., 2011) based on those was sub-
mitted to Computers & Chemical Engineering journal. 

2.4 Methodology for greenhouse gas emission calculation 

The European Union Directive on the promotion of the use of energy from renew-
able sources (RED) was published in June 2009 (EC, 2009). It establishes a man-
datory target to increase the use of renewable energy sources in final energy 
consumption to a level of 20%, and in transportation to a level of 10%, by 2020 
within the EU. For Finland, the differentiated target for renewable energy sources 
in final energy consumption is 38.0% in 2020, whilst the corresponding figure in 
the reference year 2005 was 28.5%. In addition, the RED introduced sustainability 
criteria for transportation biofuels and other bioliquids, setting requirements for the 
origin of raw materials and greenhouse gas (GHG) emission reduction compared 
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to reference fuels. The emission reduction should be at least 35% for biofuels and 
other bioliquids produced before the end of 2016. From the beginning of 2017, the 
target increases to 50% and from the beginning of 2018 to 60% for biofuel produc-
tion installations where production begins after 1 January 2017. The sustainability 
criteria need to be m et in order for biofuels and bioliquids to be account ed for 
renewable energy targets and to benefit from subsidies. 

The RED provides default values for GHG emission reductions (%) compared 
to reference fossil fuels and disaggregated default values, separately and as an 
aggregate, for GHG emissions from cultivation, fuel processing and, transport and 
distribution for a r ange of biofuels. Liable actors may us e these default values 
under certain conditions. Otherwise, they need to show that the actual GHG emis-
sions value of their product is low enough to meet the given GHG emission reduc-
tion targets. In addition, the biofuel producer may always use the actual value 
instead of the default value. As a par t of the sustainability criteria, the RED also 
introduces the first ever mandated method to calculate the actual GHG emissions 
of transportation biofuels and other bioliquids as well as the GHG emission reduction 
compared to fossil fuels. 

The greenhouse gas emissions of ethanol and butanol were calculated following 
the method provided in the Renewable Energy Directive (RED) (EC, 2009). 

The method is presented in the Annex V of the RED as follows: 

ܧ = ݁௘௖ + ݁௟ + ݁௣ + ݁௧ௗ + ݁௨ − ݁௦௖௔ − ݁௖௖௦ − ݁௖௖௥ − ݁௘௘,  (2.4.1) 

where 

E  =  total emissions from the use of the fuel 

ece
 =  emissions from the extraction or cultivation of raw materials 

le
 =  annualised emissions from ca rbon stock changes caused by land 

use change 

pe
 

=  emissions from processing 

tde
 =  emissions from transport and distribution 

ue
 =  emissions from the fuel in use 

scae
 =  emission saving from soil carbon accumulation via improved agricul-

tural management 

ccse
 =  emission saving from carbon capture and geological storage 

ccre
 =  emission saving from carbon capture and replacement 

eee
 =  emission saving from excess electricity from cogeneration. 

The emission from the manufacture of machinery and equipment are not taken 
into account. For further treatment, not all the parameters presented in the Equa-
tion 1 were assumed to be relevant. First, in t he Commission decision on guide-
lines for the calculation of land carbon stocks (2010/335/EC) land use change is 
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referred as a change from one to another IPCC's land use category (forest land, 
cropland, grassland, wetlands, settlements, and other land) or seventh category 
that includes perennial crops and forest plantation. When straw is collected from 
the field, cropland remains unaltered, and it was assumed that no carbon stock 
changes due to land use change (el) occur. Second, according to the RED, the 
emissions from the fuel in use (eu) equals zero in the case of bioliquids and biofu-
els (EC, 2009). Third, soil carbon accumulation (esca) via improved agricultural 
management was not assumed to take place when ethanol and butanol is pro-
duced from barley straw. Fourth, it was assumed that no carbon capture and storage 
system (eccs and eccr) is integrated to the processes. The Equation 1 reduces to 
the following form: 

ܧ = ݁௘௖ + ݁௣ + ݁௧ௗ − ݁௘௘  (2.4.2) 

2.4.1 System boundaries 

The system boundaries (Figure 2.4) were set in accordance with the framework 
given in t he RED. Accordingly, wastes, i.e. agricultural residues, including straw 
shall be considered to have zero life-cycle emissions up to the process of collec-
tion of those materials. The RED determines that the unit of analysis for the pur-
poses of allocation is the refinery if the fuels are produced in a refinery (EC, 2009). 
However, according to the particular definition it is unc lear whether the etha-
nol/butanol process and the CHP plant should be assumed to be two se parate 
units or one combined refinery. Therefore, both options were considered. Case 1 
covers two separate units, and case 2 one co mbined refinery. Both the cases 
follow the principles of setting system boundaries as defined in the RED. 
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Figure 2.4. The system boundary according to the RED. 

In case 1 (Figure 2.5) steam needed in the processing was assumed to be pro-
duced by combusting the ligneous-rich co-products of the process. The electricity 
needed in the processing was assumed to be purchased from the grid. In case 2, 
(Figure 2.6 both the steam and electricity were assumed to be produced using the 
ligneous-rich co-products of the process. Case 1 and case 2 leads to different 
methodological choices and therefore the results are expected to be different, too. 

In case 1 the inputs to the ethanol/butanol process are raw material, electricity, 
steam, enzymes, yeast, sulphur acid and sodium hydroxide. Emissions from these 
are allocated between ethanol/butanol, co-product 1, and co-product 2. Emissions 
from production of steam consist of emissions from combustion of co-products 
which are allocated between electricity and steam. The calculations were simpli-
fied by omitting the feedback loop of emissions between ethanol/butanol process 
and the CHP plant. 
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Figure 2.5. System boundary for case 1 whe re ethanol/butanol process and the 
CHP plant are considered as independent units. 

In case 2, the inputs to the refinery are raw material, enzymes, yeast, sulphur acid, 
sodium hydroxide and, heavy fuel oil. Emissions from these are allocated between 
ethanol/butanol and, electricity. The electricity needed in the process was as-
sumed to be taken from the CHP plant. 

 

Figure 2.6. System boundary for case 2 whe re ethanol/butanol process and the 
CHP plant are considered as one combined unit. 
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2.4.2 Functional unit and allocation 

The functional unit defines the quantification of the identified functions of the product. 
The purpose of the functional unit is to provide a reference to which the material and 
energy inputs and emissions of a system are related (EN ISO 14040, 2006). Identi-
cal functional unit is a must when comparing various product systems. According 
to the RED, the greenhouse gas emissions of fuels are e xpressed in terms of 
grams of CO2 equivalent per MJ of fuel (EC, 2009). In this study, the difference on 
the GHG emissions of ethanol and butanol is expressed as per cents. 

According to the RED, the allocation of emissions is based on the energy con-
tent of the products (EC, 2009). Energy content is determined by the lower heating 
value in the case of co-products other than electricity (EC, 2009). If a co-product 
has negative energy content, it is considered to have an energy content of zero in 
calculations (EC, 2009). 

The greenhouse gases taken into account according to the RED are carbon di-
oxide (CO2), methane (CH4), and nitrous oxide (N2O). In order to convert nitrous 
oxide and methane emissions to carbon dioxide equivalents, global warming po-
tentials of 296 and 23 were applied in accordance with the RED. 
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3. Pyrolysis oil condensation 
Concurrently, one of the most advanced biorefing technologies is the liquefaction 
of (forest) biomass by fast pyrolysis. After reaction at elevated temperature the 
pyrolysis products (components of the pyrolysis oil) are collected in a condenser 
stage. Condensation conditions are important for effective collection of the prod-
uct, recycling gaseous reagents and for preventing the loss of organics. The pyrol-
ysis oil is a very complex mixture of polar, associating, polymeric and aromatic 
compounds. Therefore the quantitative description of condensation of the pyrolysis 
oil is a demanding task. 

3.1 Available equilibrium data 

Extensive literature search was made for experimental equilibrium data that can 
be used for development of model for the condenser unit description. In Table 3.1 
the available binary data are listed, in each cell of the table number of data set and 
total number of point (in brackets) are given. Only 15 experimentally measured 
binary systems were found from the 63 possible combinations of the selected 14 
compounds for representation of pyrolysis oil (Table 2.4). No data were found for 
binary systems containing levoglucosan, hydroxyacetaldehyde, 4-methyl-guiacol, 
abietic acid and t he lignin pseudo component. For description of those binaries 
either predictive models are needed or parameters of non-predictive models have 
to be estimated by other means. Additionally the condensation model should be 
able to take into account the carrier gas that serves to fluidize the reactor bed and 
thus will be present in the condenser in a large quantity. 
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Table 3.1. Binary data for selected pyrolysis oil compounds. 

  

A
ce

tic
 a

ci
d 

fo
rm

ic
 a

ci
d 

le
vo

gl
uc

os
an

 

gl
uc

os
e 

ac
et

ol
 

H
yd

ro
xy

ac
et

al
de

hy
de

 

gu
ai

ac
ol

 

va
ni

lli
n 

4-
m

et
hy

l-g
ua

ia
co

l 

ab
ie

tic
 a

ci
d 

m
et

ha
no

l 

w
at

er
 

formic acid P; 
5(74)            

levoglucosan             
glucose             
acetol             
hydroxyacet-
aldehyde             
guaiacol             
vanillin             
4-methyl-
guaiacol             
abietic acid             

methanol P, T; 
4(63) 

T_artif; 
2(58)     

P; 
1(10)      

water P, T; 
16(204)

P, T; 
13(202)  

P, T;S; 
5(101) 

T, P; 
2(24)  

P; 
2(13) 

S; 
3(11)   

P, T; 
15(214)  

furfural P; 
 2(30) 

P*; 
1(15)         

HE; 
1(10) 

P, T, Az, 
5+(63) 

Where P – isobaric vapor liquid equilibrium (VLE) data, T – isothermal VLE data, Az – azeotropic data, S – 
solubility data, HE – excess enthalpy data. T_art – data reconstructed from other binary and ternary data (the 
compounds are reactive), P* - data obtained by extrapolation of the experimental result to pure formic acid. 

3.2 Model selection 

Most important phenomena to be described in the pyrolysis condenser are vapour 
– liquid and liquid – liquid equilibria (VLE, LLE). Basic models rarely are able to 
describe vapour phase and liquid – liquid split simultaneously. One option is to use 
different models combination for separate description of vapour and liquid phases, 
so called gamma – phi approach (g-f) (Sandler, 2006). Additionally the same 
equation of states (EOS) with mixing rules based on excess Gibbs energy can be 
applied (f - f approach) as it is known to give acceptable accuracy of both phase 
description (Djordjević et al., 2007). Classification scheme of models that can be 
applied to pyrolysis compounds phase behaviour are shown in Figure 3.1. 

The gamma – phi approach will be considered first. Predictive models have to 
be used due to absence of 80% of data needed for description of VLE equilibria in 
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the system (see Table 3.1). On the other hand use of available experimental in-
formation is beneficial. We decided to employ UNIQUAC model, where missed 
binary interaction parameters are fitted based on COSMO-RS (Klamt, 1995) or 
COSMO-SAC (Lin & Sandler, 2002). 

For the description of the vapour phase several options are available. In particu-
lar for condensation of the pyrolysis product in reactors where high rate of inert 
gas is used, ideal vapour phase description is a reasonable choice. For other 
cases EOS can be us ed. Peng Robinson (PR), Soave Redkich Kwong (SRK) or 
Mathias Copeman modification of SRK (MC- SRK) EOS are widely used. For the 
pyrolysis oil tested compositions no solution of VLE equilibrium was found when 
equations of state were combined with the UNIQ UAC model, probably due to 
numerical problems (Flowbat software was used for the modelling (Keskinen & 
Aittamaa, 2010)). Description of the va pour phase us ing Henry’s law approach 
requires fitting of the Henry’s law constant based on experimental data for VLE 
behaviour of the compounds. Though the constants can be predicted by COSMO-
RS model we decided to leave out this option due to m any approximations and 
predictions that have to be used in this case both for vapour and for liquid phase. 
Nothnagel and Hayden O’Connell EOS (Hayden & O’Connell, 1975; Nothnagel 
et al., 1973) can be used assuming that heavy components are presented in liquid 
phase only. However, those EOS do not provide sufficient means to describe the 
behaviour of heavy compounds correctly. 

 

Figure 3.1. Scheme of models that can be applied for description of phase equilibria 
of pyrolysis oil components. 
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Recently modified EOS with mixing rules based on liquid phase excess enthalpy 
found to be applicable for description of very complex mixtures containing polar and 
asymmetric compounds (Djordjević et al., 2007). Many of them are predictive (see 
Figure 3.1): PSRK (Holderbaum & Gmehling, 1991), MHV2 (Dahl et al., 1992), 
VTRP (Ahlers & Gmehling, 2001), UMR-PR (Voutsas et al., 2004)). Volume trans-
lated Peng Robinson (VTRP) and uniform mixing rule Peng Robinson (UMR-PR) are 
relatively new models where interaction parameters are estimated based on group 
contribution approach. Currently the parameters matrix is relatively small and there-
fore estimation of the pyrolysis liquid mixture VLE is not possible, mostly because of 
absence of the oxygen containing groups. Deficiency of parameter matrix is also a 
problem for another type of predictive model, i.e. Cubic Plus association (CPA, 
(Kontogeorgis et al., 1996)). The model uses SRK equation of state with additional 
association parameters which are estimated based on group contributions. 

Though pyrolysis compounds are not well investigated, non-predictive models 
for description vapour and liquid phases have some potential of use. In this work 
the binary data were simulated with COSMO-RS/SAC and parameters were fitted 
to UNIQUAC model. Therefore UNIQUAC can be used as an excess Gibbs energy 
(GE) model to a selected equation of state, thus i.e. MC-SRK + MHV2 mixing rule 
based on UNIQUAC model combination was tested. 

Another EOS+GE type of model is Abovski-Watanasiri (AW) EOS (Abovsky & 
Watanasiri, 1998). The model was shown to be better then PSRK or MHV2 models 
(Abovsky & Watanasiri, 1999), but for fitting the mixing parameter such experimental 
information would be required, that is not available for the pyrolysis oil. 

Statistical Associating Fluid Theory (SAFT, (Gross & Sadowski, 2000)) and it’s 
extensions for polymeric and polar compound (perturbed chain PC-SAFT and p-
PC-SAFT) is an additional option, often applied to many binary and many compo-
nent systems, including the pyrolysis oils (Feng et al., 2005). Developed in litera-
ture pure component and binary parameters of the SAFT can be used for similar 
compounds in multi-component mixture calculations. In this case, utilization of 
available parameters probably would not lead to significant differences in the VLE 
calculation results due to the moderate overall accuracy of the estimates. 

Summarizing, the models presented in Figure 3.1 in green colour were tested 
for the pyrolysis oil description (see results below), the models that are shown in 
black can not be applied and the models in blue colour could be adjusted for the 
pyrolysis oil description, but additional work is needed for development of the 
required data or parameters. Testing of the last models will be continued within a 
project sponsored by Fortum Research Fund. 

3.3 Parameters for modeling 

For prediction of pyrolysis oil condensation two types of models were finally se-
lected; f- f models – EOS+GE (PSRK, MHV2) and g – f models. In the gamma – 
phi model excess Gibbs energy UNIQUAC model is applied for a liquid phase 
description and ideal and Hayden O’Connel models for a vapour phase. The se-
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lected phi – phi type of models calculates GE for liquid mixture based on UNIFAC 
or UNIFAC-Dortmund group contribution approaches and thus they are purely 
predictive in the GE part. The only parameter that should be estimated for those 
models is an attraction parameter in EOS part (see Equation 3.3.1 for SRK EOS, a 
is an attraction parameter). Pure component vapour pressure calculated with this 
technique should correspond to experimental pure component pressure. This 
parameter can be estimated based on an acentric factor (w), but in this case accu-
racy of the vapour prediction is low. For compounds selected as the pyrolysis oil 
representatives a pure component vapour pressure has been estimated by different 
method (see Section 4.1) and thus we recalculated attractive parameters for all 
compounds in form of Mathias Copeman Equation (3.3.1). The Matias Copeman 
correction of SRK EOS uses three parameters (c1, c2, c3) for description of the at-
tractive term of EOS. The parameters and the fitting error are given in Table 3.2. 

( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) úû
ù

êë
é -+-+-+=

=

=

=
+

-
-

=

3

3

2

21221

22

221

1111,,,

42747.0

08664.0

,,,,

rrrR

C

C
C

C

C

RC

TcTcTccccT

P
TRTa

P
RT

b

cccTTaTa
b

Ta
b

RTP

a

a
nnn

 (3.3.1) 

Table 3.2. Parameters of the Mathias – Copeman equation fitted based on pure 
component vapor pressure curves and accuracy of the fitting. 

 
  c1 c2 c3 

DP%* 
(average) 

1 Acetic acid 1.4975 -2.8307 5.0355 1.3 
2 Formic acid 1.0245 -0.3630 -0.4144 0.03 
3 Levoglucosan 2.7614 1.9045 -8.1453 1.7 
4 Glucose 4.6027 -10.4291 14.6724 1.7 
5 Acetol 2.2569 -5.8903 8.6230 1.6 
6 Hydroxyacetaldehyde -0.9284 16.1439 -21.0200 1.0 
7 Guaiacol 1.7359 -4.2727 8.5490 1.3 
8 Vanillin 1.3298 0.6010 -0.7860 0.3 
9 4-methyl-guaiacol 1.3140 0.2439 -1.2637 2.0 
10 Abietic acid 1.0980 6.1236 -12.3805 3.1 
11 Methanol 1.4381 -0.8554 0.5352 0.5 
12 Water 1.1014 -0.7430 0.8546 0.2 
13 Furfural 1.0362 0.0709 -0.5238 0.2 
14 Lignin fragment 3.6704 -4.5856 6.3982 5 

DP%=sum(|Pexp-Pmeas|)/Pexp 
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Another type of modeling (g-f approach) requires parameters for liquid and vapour 
phase description. For ideal vapour assumption no parameter estimations are 
needed. For Hayden O’Connell EOS dipole moment, radius of gyration and group 
association parameters were obtained. Dipole moments and radii of gyration were 
either found in literature or estimated based on the molecules geometry with 
Quantum Chemistry software – Material Studio (Accelrys, 2007), DMol module 
was used for dipole moment calculation and Forcite module – for radii of gyration 
calculations. Group association parameters were set in accordance with molecular 
chemical class. All parameters are given in Table 3.3. 

For the description of the liquid phase in the gamma – phi approach the select-
ed model was UNIQUAC due to its ability to describe liquid – liquid equilibrium and 
the relative simplicity of the model. The model requires fitting b inary interaction 
parameter tij for description residual term of excess Gibbs energy (Sandler, 2006). 
The interaction parameter depends on interaction energy difference (Duij) as it  is 
shown in Equation 3.3.2. For most binary systems the interaction energy differ-
ences were described as te mperature dependent (ao and a1 parameters were 
fitted) to increase accuracy of VLE prediction. The coefficients are given in Table 
3.4. Note that the parameters are not symmetric, i.e. aij≠aji. For system where 
experimental data were available, the a0, a1 parameters were fitted based only on 
the experimental data (green values in the Table 3.4, the components order is the 
same as in Table 3.3. For other binary mixtures the data for fitting were obtained 
with COSMO-RS/SAC model (see next section). 
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Table 3.3. Parameters of Hayden O’Connell model for the pyrolysis oil compounds. 

  Dipole 
moment 

Radius of 
gyration Association and solvation parameters 

  A debye 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 Acetic acid 2.595 1.74 4.50 4.50 2.50 2.50 1.80 1.60 2.50 2.50 2. 50 4.50 2.50 2.50 1.60 
2 Formic acid 1.48 1.52 4.50 4.50 2.50 2.50 1.80 1.60 2.50 2.50 2. 50 4.50 2.50 2.50 1.60 

3 Levoglucosan 2.03c 4.839c 2.50 2.50 1.55 1.55 1.00 0.8 0 0 0 2.5 1.55 1.55 0.8 
4 Glucose 4.75c 2.7491c 2.50 2.50 1.55 1.55 1.00 0.80 0 0 0 2.5 1.55 1.55 0.8 

5 Acetol 2.98 4.287 1.80 1.80 1.00 1.00 0.90 1.00 1.00 1.00 1. 00 1.80 1.00 1.00 1.00 
6 Hydroxyacetaldehyde 2.51c 2.3414c 1.60 1.60 0.8 0.80 1.00 0.58 0.80 0.80 0. 80 1.60 0.80 0.80 0.55 

7 Guaiacol 4.02c 2.4583c 2.50 2.50 0 0 1.00 0.80 0.32 0.32 0. 32 2.50 1.55 1.55 0.80 
8 Vanillin 4.7c 2.869c 2.50 2.50 0 0 1.00 0.80 0.32 0.32 0. 32 2.50 1.55 1.55 0.80 

9 4-methyl-guaiacol 2.43c 1.014c 2.50 2.50 0 0 1.00 0.80 0.32 0.32 0. 32 2.50 1.55 1.55 0.80 
10 Abietic acid 6.82c 2.2638 4.50 4.50 2.5 2.5 1.80 1.60 2.50 2.50 2.50 4.50 2.50 2.50 1.60 

11 Methanol 1.536 1.71 2.50 2.50 1.55 1.55 1.00 0.80 1.55 1.55 1. 55 2.50 1.63 1.50 0.80 
12 Water 0.615 1.83 2.50 2.50 1.55 1.55 1.00 0.80 1.55 1.55 1. 55 2.50 1.50 1.70 0.80 

13 Furfural 3.17 2.3 1.60 1.60 0.8 0.8 1.00 0.55 0.80 0.80 0.80 1.60 0.80 0.80 0.58 

c – values are calculated within Biocsen project by Accelrys Material Studio software. All other values are taken from literature (Prausnitz, et al. 1986.) 
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Table 3.4. UNIQUAC parameters values for the pyrolysis oil compounds. 

a0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1   75.32 173.6409 -33.9655 -694.094 -282.04 -60.8272 114.9209 -41.6828 53.37 171.94 32.7 -314.19 259.28 

2 -136.21   257.45 -0.36424 -652.238 -937.131 4.517977 155.508 35.73191 143.38 -278.88 -40.62 -493.36 -441.259 

3 -299.296 -591.805   -71.5211 -290.529 -76.0126 422.021 11.6181 414.395 298.2208 -5.45086 131.1319 2.34116 149.122 

4 41.31879 -140.797 79.0667   -377.188 192.4011 -138.697 6.22656 -146.18 52.08486 -71.0042 -26.2906 72.0278 307.5697 

5 416.103 225.3019 233.446 301.2963   -101.03 -561.913 -336.249 -540.518 238.9345 272.2417 787.782 21.57919 18.92071 

6 380.141 451.372 66.1021 -163.971 154.779   554.756 110.624 447.6475 395.0288 187.6528 744.1968 33.2057 77.79713 

7 242.6349 296.1212 -222.599 324.8596 445.1799 -292.126   -300.898 31.6123 -6.99435 14.01111 717.883 249.4886 -315.494 

8 -171.126 -327.274 56.5398 109.941 228.345 -26.3227 226.56   197.585 162.8483 6.40846 687.864 -52.4882 -124.03 

9 262.6647 286.1091 -222.13 358.2041 539.4355 -279.725 -20.7355 -260.676   -50.831 142.2862 505.4307 417.666 -281.302 

10 151.92 265.04 -0.24793 171.4882 -303.837 -292.55 75.25328 -148.339 107.8016   -333.21 -126.12 -258.75 -251.866 

11 -392.26 -417.71 24.60441 -63.7101 -67.3528 30.51897 71.64165 101.8994 42.96228 200.09   23.11 102.51 5.883666 

12 119.2 -182.01 4.16874 25.91576 -504.542 -450.72 -200.688 -491.433 187.0114 526.24 14.77   383.32 372.94 

13 172.77 119.6 68.2513 -0.63112 -0.24886 40.8303 -308.699 44.95909 -478.8 252.04 345.34 276.42   71.24908 

14 -495.395 250.632 -90.7397 -155.411 -1.80395 21.38196 365.663 159.289 342.094 368.3912 134.7535 -256.385 21.9051   

a1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1   -0.1247 -0.57875 -0.23677 1.66147 0 -0.2629 -0.63837 -0.236 -0.32513 -0.2641 -0.04922 0.71219 -0.78834 

2 0.2583   -0.6992 -0.18209 1.091395 2.22712 -0.22659 -0.51645 -0.23828 -0.3871 0.40031 0.47367 1.03755 0.526982 

3 0.987448 1.64053   0 0.765119 0.340766 -0.6056 0.6279 -0.72275 -0.38444 0.53207 0.533946 0.65791 -0.28078 
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a0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

4 0.495274 0.849127 0   0.858524 -0.13803 0.958013 0.765026 0.918005 0.229555 0.714577 0.989481 0.698095 -0.23428 

5 -1.09605 -0.33649 -0.60977 -0.66587   -0.15245 1.23392 0.95603 1.14744 -0.70396 -0.17776 -1.60586 0.101715 -0.47021 

6 0 -1.24174 -0.252 0.187329 0.143322   -0.59473 0.193892 -0.73653 -0.8972 -0.02491 -1.55699 -0.16403 -0.482 

7 0.243419 0.127652 0.288439 -1.02625 -1.08469 0.178625   0.931789 0.287891 -0.10633 0.668828 -1.85529 -0.45816 0.572796 

8 0.938066 1.082834 -0.61139 -0.75381 -0.78387 -0.3165 -0.72435   -0.70489 -0.46486 0.591275 -1.92168 0.108042 0.070406 

9 0.148406 0.187744 0.424202 -1.04969 -1.19106 0.478345 -0.25378 0.917808   0.01987 0.458755 -1.08319 -0.99102 0.486311 

10 0.47785 0.60587 -0.07921 -0.48279 0.960775 0.981457 0.081001 0.552431 -0.07542   1.63218 1.08063 0.99559 0.137601 

11 0.63694 0.78179 -0.21286 -0.05986 0.002843 -0.22112 -0.4588 -0.49303 -0.35632 -0.60108   -0.05596 -0.53162 -0.26784 

12 -0.21836 -0.12559 -0.36209 -0.47877 1.348345 1.195059 1.40226 1.97178 0.277117 -1.026 -0.01136   -0.76152 -1.25012 

13 -0.44233 -0.20302 -0.61132 47.2711 -0.21659 -0.06568 0.602816 -0.06124 1.21569 -0.69292 -0.1557 -0.53654   -0.41477 

14 1.62678 0.476894 0.190351 0.014583 0.638253 0.548612 -0.57888 -0.05673 -0.52716 -0.26182 0.70847 1.886834 0.531379   
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3.4 COSMO-RS and COSMO-SAC models 

In accordance with COSMO-RS model (Klamt, 2005) calculated screening charge 
distribution on molecular COSMO -surface is used for statistical thermodynamic 
treatment of interaction in the real solvent. Two modifications of the model imple-
mentation exist: one is made by COSMO-RS model author and usually referred as 
COSMO-RS (Klamt et al., 2002), another was made in group of prof. Sandler and 
is called COSMO-SAC (Lin & Sandler, 2002). Both of them were used for compar-
ative purposes. 

The screening charge distribution and molecule geometry optimization are cal-
culated with Density Functional Theory (DFT) applying Becke –Perdew (BP) func-
tional with triple-zeta valence plus polarization basic set (TZVP). Turbomole pro-
gram (version 6.0, (Schafer et al., 2000)) was used for the COSMO-RS and the 
DMol module of Material Studio software (Accelrys, 2007) was used for the 
COSMO-SAC model. Two resulting screening charge distributions are slightly 
different and therefore it is recommended in literature to use the same DFT im-
plementation that was employed for the models parameterization. Subsequent 
COSMO-RS thermodynamic calculations were done with the Cosmotherm pro-
gram (COSMOtherm-C2.1, (“COSMOlogic GmbH & Co”, 2009)) for COSMO-RS 
model and with open-source software for the COSMO-SAC model (COSMO-SAC, 
2010; Mullins et al., 2006). 

Conformational search was needed at Quantum calculation stage for some 
molecules to find the most stable in solutions and i n gas phase molecule struc-
tures. The search was made on lower then DFT computational level (Parameter-
ized Model number 3 (PM3)) with HyperChem quantum mechanical software 
(Hypercube, 2002). Many conformers were found for levoglucosan, glucose and 
abietic acid molecules, i.e. 8, 9 and 7 lowest in energy conformers were taken for 
the molecules thermodynamic calculations. Phenol derivatives: guaiacol, vanillin, 
4-methyl-guaiacol were found to have 2, 3 and 3 impo rtant conformers corre-
spondingly. For small molecules, formic acid, acetol, hydroxyacetaldehyde, 1, 4 
and 3 conformers are taken into account. Water, methanol, furfural and acetic acid 
input files for VLE calculations were taken from database provided together with 
the COSMOthem and from database created for the COSMO-SAC calculations 
(COSMO-SAC, 2010). Thus no quantum mechanical calculations for water, meth-
anol, furfural and acetic acid were needed. Additionally formic acid, acetol, vanillin 
and abietic acid were presented in the VT-2005 Sigma Profile Database and they 
were taken without recalculation into COSMO-SAC model. In Figure 3.2 one can 
see the screening charge distribution for some selected pyrolysis molecules calcu-
lated in the Turbomole program. 
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Figure 3.2. The screening charge distribution for glucose, vanillin, acetol and 
levoglucosan molecules. 

Based on the calculated screening charge distribution, VLE data of the pyrolysis oil 
compounds were calculated for the binary mixture at temperature range from 25°C 
to 350°C. The data were used for UNIQUAC activity coefficients fitting. Replacement 
of COSMO-RS/SAC predictions with UNIQUAC model probably reduces accuracy of 
VLE estimation, but give us way to use available experimental properties together 
with the estimations. Moreover it speeds up calculations that could be important 
issue in description of multi-component multi-conformer flowsheet calculations. 

3.5 Model verification 

3.5.1 VTT experiment, other experimental data 

Verification is an important stage for final selection of models for a process description. 
Experimental data for binary systems was used for deriving parameters of the models 
and thus could not be used for the models verification. There are very little data available 

a – D - glucose Vanillin 

Acetol levoglucosan 
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for ternary and multi-component system containing the pyrolysis oil compounds. The 
best way of verification would be to use existing pyrolysis reactor experimental data. 

The experiments performed in VTT by Christian Lindfors (Lindfors, 2008) were 
decided to be used because it provides detailed information about condition of the 
experiments and analysis of the product. In the VTT experimental equipment the 
condensation stage of t he pyrolysis process consist of several units: sieve tray 
condensation column, electric precipitator, spray condenser and intensive cooler. 
The last one serves to complete overall mass balance of the equipment. Important 
is that half of the reactor products come to electric precipitator, where aerosol 
particles are broken and condensed. Description of aerosol particle formation, 
breakage and organic loss related to aerosol flow was beyond the scope of our work 
and additional simplifications were taken to recalculate the pyrolysis condensation. 

The condensation was modelled for the first unit (sieve tray column) with a flash 
VLE calculation and for products of two units (sieve tray column and electric pre-
cipitator) with two consequent flash calculations at sieve tray columns temperature 
and at room temperature correspondingly. Feed compositions of the condenser 
were not measured, but they were reconstructed from overall sum of products of 
condenser units including product gases that were not condensed but analyzed by 
a flow meter and gas chromatograph. In addition, a simplification of the product 
composition was adopted because in the experiments only fractional analysis of 
the pyrolysis product was performed, i.e. weights of fractions soluble in water, 
diethyl-ether and dichloromethane were measured. Such rough analysis does not 
provide information about precise composition of the pyrolysis oil and therefore 
approximate division of the pyrolysis oil selected compounds (Table 2.1(a)) between 
the fractions and following reconstruction of the product composition was made. 

Predicted concentrations of the pyrolysis oil compounds that in our calculations serve 
as a lamp compound are shown in Figure 3.3 for first condenser unit operated at 47°C. 
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Figure 3.3. Weight percents of the compounds in product steam from the first 
condenser at 47°C. 

Even though recalculated weight percentage of the compounds diverges only slight-
ly from reconstructed experimental composition of the pyrolysis product, accuracy of 
the modelling remains moderate. The weight percent results are smoothed by high 
amount of heavy component (lignin fragment) and overall possible changes of small 
component contents are very low. Deviations of the model predictions from the ex-
periments are more noticeable for low boiling compounds when weight fractions of 
each component condensed at some unit are plotted (Figure 3.4). One can see that in 
accordance with the calculations levoglucosan, glucose, abietic acid and lignin frag-
ments are totally condensed at the first condenser whereas in the experiments it is not 
so due to extended formation of aerosols. These Figures (3.3 & 3.4) present only 
results for the first condenser. When concentrations are ca lculated for two con-
denser units together, where elecectric precipitator is modelled by following flash 
calculation at room temperature, the modelled and the experimental composition 
are almost the same because all the compounds are fully condensed after the two 
stages and no information about the condenser selectivity can be obtained. 

Condensation at 4 different temperatures of sieve tray column was performed 
within Linfors experiments: at 47, 60, 76 and 87°C. With the selected models we 
simulated the 1 st age condensation at reported temperatures followed by flash 
condensation at room temperature. Resulting comparisons of predicted by the 
modelling water content in the pr oduct pyrolysis oil and organic loss versus the 
first condenser temperature in the process are shown in Figures 3.5 & 3.6. Co m-
position of the feed at all experiments slightly varies and it has little effect on water 
content in the product and noticeable effect on the organic loss in the condenser. 
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For comparison purposes we also added to the figure the data from another py-
rolysis experiments made by Westerhof et al. (2007). In the Westerhof experi-
ments concentration of water in the reactor feed was higher and different condition 
of the reactor was used that can change significantly the product co mposition. 
Additionally two spray condenser where used sequentially for product collection 
after reactor. One can see on Figure 3.5 that modelled water content of the prod-
uct do not depend on condenser temperature as it is for Lindfors data and for the 
Westerhof data. Organic loss in the Westerhof experiments increase with the 
condenser temperature, though for both Lindfors experiments and in the f lash 
modelling, organic loss do not depend on the condenser temperature, because the 
second condenser operated at room temperature screens out temperature effect 
of the first condenser. Additionally the difference between the results of Westerhof 
and Lindfors could be expected due to different product collection principle, i.e. in 
the Westerhof experiment the product collection was based on liquid – liquid sepa-
ration principle whereas in the Lindfors experiments it is based on vapour liquid 
equilibrium. However modelling of Lindfors experiments is not satisfactory, most 
likely due to made simplification, reconstruction of product and feed compositions 
and ignorance of aerosol formation. 

One may conclude that the validation of the simple thermodynamic model (VLE, 
LLE approach) can not be made w ith the present pyrolysis oil experimental data 
due to complexity of the equipment and only approximate content known for both 
the condenser feed and the product. 

 
Figure 3.4. Weight percent of component recovery at first condenser stage at 47°C. 
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Figure 3.5. Water content in the product sum of two condensers. 

 
Figure 3.6. Organic loss after 2 condensation stages. 
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3.5.2 Ternary data 

At previous section we described selection of models for the pyrolysis oil condensation 
(i.e. VLE and LLE equilibrium description) and we concluded that the concurrrent 
pyrolysis process experimental data can not be used for the model verifica-
tion/validation. Therefore extensive search of ternary data was made for further test-
ing of the models. Eight ternary aquatic systems were found. Summary of the found 
data is given in Table 3.5. O ne of t he most difficult systems for modelling is a 
system where strong acid, water and aromatic compounds a re combined, for exam-
ple formic acid – water – furfural system. In Figure 3.7 one can see experimental and 
modelled data for this ternary system, binary and ternary data together. Combination of 
UNIQUAC model for liquid phase and Hayden O’Connell EOS for vapour phase was 
found to be the best. Accuracy of the ternary VLE data prediction with other models 
(PSRK, MHV2, UNIQUAC+ ideal vapour) was not satisfactory. It is worth noting that 
UNIQUAC coefficient were fitted using corresponding vapour description, i.e. Hayden 
O’Connell EOS. Generalization of the UNIQUAC + Hayden O’Connell description to all 
pyrolysis system however could be not so accurate. It is known that equations of state 
are not very accurate in description of heavy molecules behaviour, but there is no data 
available for validation of the model performance on heavy compounds from the pyrol-
ysis list. In Figure 3.8 VLE diagram for acetic acid + water +methanol system pre-
dicted with MHV2 model is shown. The model does not use any fitted parameters. 
Utilization of UNIQUAC model with ideal vapour assumption or with Hayden O’Connell 
EOS gives just slightly more accurate prediction for those well known compounds. 

Table 3.5. Ternary system experimental data for the selected pyrolysis oil compounds. 

 
2-nd 

compo-
nent 

3-d 
compo-

nent 

Data 
type 

N  
sets 

N 
points 

Tmin, 
K 

Tmax, 
K 

Pmin, 
Mpa 

Pmax 
MPa References 

1 acetic acid CO2 VLE 3 66 313.15 353.15 5 16 Bamberger et al., 2004 

2 
acetic acid furfural LLE 3 15 298.15 308.15 0.101 0.101 Heric & Rutledge, 1960a 

& 1960b 

acetic acid furfural LLE 1 6 N/A N/A 0.101 0.101 Pegoraro & Guglielmi, 
1955 

3 acetic acid methanol VLE 1 28 351.15 377.15 0.101 0.101 Sawistowski & Pilavakis, 
1982 

4 

acetic acid formic 
acid VLE 2 56 375.15 382.15 0.101 0.101 Aristovich et al., 1960; 

Conti et al., 1960 

acetic acid formic 
acid VLE 1 16 309.15 315.55 0.006666 0.006666 Kushner et al., 1966 

acetic acid formic 
acid VLE 1 16 341.15 345.15 0.026664 0.026664 Kushner et al., 1966 

acetic acid formic 
acid VLE 1 49 283.15 381.15 0.101058 0.101058 Murayama, 1961 

acetic acid formic 
acid VLE 1 67 374.15 384.15 0.101 0.101 Wisniak & Tamir, 1977 

5 CO2 furfural VLLE 1 3 303 343 5 5 Sako et al., 1995 
CO2 Methanol VLLE 1 20 311 313 7 12 Yoon, et al., 1993 

6 formic acid furfural LLE 2 10 298.15 308.15 0.101 0.101 Langford & Heric, 1972 
formic acid furfural VLE 1 126 370.65 416.15 0.101 0.101 Tsirlin, 1969 

7 furfural methanol VLE 2 78 - - 0.101 0.101 Andreev & Tsirlin, 1954 
8 Glucose methanol SLE 2 20 313.15 333.15 0.101 0.101 Peres & Macedo, 1997 
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Figure 3.7. VLE diagram for formic acid – water – furfural system at 101.325 kPa; 
dots are experimental points (Tsirlin, 1969), lines are predictions, where UNIQUAC 
model is used for liquid phase description and Hayden O’Connell EOS is used for 
vapor phase. 

 

Figure 3.8. VLE diagram for acetic acid – water – methanol system at 101.325 
kPa; dots are experimental points (Sawistowski & Pilavakis, 1982), lines are pre-
dictions, where MHV2 model is used for both phases description. 
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Further, the derived UNIQUAC model to predict liquid – liquid equilibrium was tested. 
Commonly parameters used for VLE can not be a applied for LLE description (for 
example separate models UNIFAC – VLE and UNIFAC – L LE) and no LLE data 
were used for fitting the UNIQUAC model parameters in our case (Table 3.4). 
Thus it was found that with developed set of the parameters no reliable liquid – liquid 
split can be predicted. For example LLE equilibrium in ternary system of furfural, 
water and formic acid (see Figure 3.9), where only at low overall water concentration 
the model predicts LL split, but composition of the phases deviate considerably from 
the experimentally determined. In contrast UNIFAC – LLE model predict relatively 
accurate phase compositions at low overall water concentration. However the 
UNIFAC – LLE model can not be used for the condenser liquid splitting prediction 
because it does not have group parameters for gaseous compounds. 

 
Figure 3.9. LLE equilibria of furfural, water and formic acid mixture. Red triangles 
are experimental data (Langford & Heric, 1972), blue squares are phase composi-
tions predicted by UNIQUAC model with parameters given in Table 3.4, black solid 
lines are UNIFAC LLE model predictions. 

3.6 Conclusions 

Several models were tested to describe pyrolysis oil condensation. Predictive 
models were used due to the shortage of measured properties for pyrolysis com-
pounds. The models were COSMO-RS and Predictive Soave Redlich Kwang (PSRK) 
equation of state, Modified Huron Vidal EOS (MHV2). UNIQUAC model was used 
combining COSMO-RS predicted data with several experimentally available binary 
system data. An equation of state (SRK, Hayden O’Connell) and the ideal vapour 
assumption were used for vapour phase description. 
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The modelling of the pyrolysis oil condensation shows that there is concurrently 
not enough experimental data available for development of a quantit ative simula-
tion of the condensation process or for ve rification of the parameters. Develop-
ment of a flexible thermodynamic model which would be able to describe simulta-
neously polar, associating and polymeric compounds as we ll as gaseous com-
pounds will further require more extensive multi-component equilibrium measure-
ments, which may not be obtainable from industrial test runs that incorporate also 
other process phenomena (i.e. aerosol formation, mass transfer, reactions etc.). 
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4. Pyrolysis oil hydrodeoxygenation process 

4.1 Hydrodeoxygenation process 

The easiest way of applying pyrolysis oil as a transportation fuel is to combine it 
with diesel fuel. The properties that affects negatively on the usage of pyrolysis oil 
as transportation fuel is low heating value, solid content, high viscosity, incomplete 
volatility, corrosiveness and t hermal instability (Czernik & Bridgwater, 2004). Be-
cause of the li mited applications of pyrolysis oil an upgrading to a higher quality 
fuel is necessary in many cases. This is accomplished by removal of oxygen to the 
amount that the oil has sufficient properties for its combustion and/or re-forming 
the components in it (Bridgwater & Cottam, 1992). There are many ways of upgrad-
ing pyrolysis oil. The focus of this work was on the hydrodeoxygenation (HDO) of 
pyrolysis oil. HDO is a process where oxygen containing compounds react with 
hydrogen forming water and carbon dioxide in presence of a catalyst. The process 
occurs at elevated temperature and pressure. The elevated pressure is needed to 
keep the water in liquid form. The high pressure assists the reaction by making it 
faster through the bigger amount of dissolved hydrogen in the pyrolysis oil. 

Thus thermodynamic models that can describe gas solubility at high pressure 
are needed for the process description together with mass transfer and kinetic 
modelling. The case study also serves to illustrate the methodology to be used while 
developing process models for chemically reactive unit operations in biorefining. 

4.2 VLE and hydrogen solubility modeling 

An equation of state (EoS) that can model the behavior of the process component 
interactions is essential for a good final result. Accordingly, three EoS, which are 
SRK, PSRK and PC-SAFT have been selected to model the thermodynamics of 
the hydrodeoxygenation process of pyrolysis oil. The EoS at hand was chosen for 
their dissimilarity, as SRK is a basic analytical cubic EoS, PSRK is an analytical 
cubic EoS with an activity coefficient model calculated through the Gibbs excess 
energy and PC-SAFT is a molecular based EoS. 
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4.2.1 Soave-Redlich-Kwong EoS 

Soave modification of Redlich-Kwong (SRK) EoS (Soave, 1972) is a widely used 
model that has numerous further modifications. In this work two modifications 
were used,  of  which  the first  will  be  referred to  as  SRK.  The SRK model  differs  
from the original Soave modification by having an improved liquid molar volume 
correction for the EoS by Peneloux et al. (1982) and the water properties (enthalpy, 
entropy, Gibbs energy and molar volume) through the newer “NBS Steam Tables” 
(Haar et al., 1984). Standard mixing rules are used. The model is presented 
through Equations (4.2.1–4.2.10). 

 (4.2.1) 

 (4.2.2) 

where 

  

 (4.2.3) 

 (4.2.4) 

 (4.2.5) 

 (4.2.6) 

 (4.2.7) 

 (4.2.8) 

 (4.2.9) 

 (4.2.10) 

where  is the Rackett liquid molar volume parameter. 
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Required parameters for the SRK are ,  and , which are presented in 
Table 5.2.1. For non-ideal mixtures also the binary int eraction parameters (BIPs) 
should also be present. List of used binary interaction parameters is given in Ap-
pendix A. Accuracy of the parameters fitting and experimental data used for the 
fitting are also given in the Appendix A. 

4.2.2 Predictive-SRK 

PSRK model is the second extension of the SRK model. The mixing rule for pa-
rameter a is of Holderbaum and Gmehling (1991), which is a modification of the 
Michelsen-Huron-Vidal first order (MHV1) (Michelsen, 1990) mixing rule, shown in 
Equation (4.2.11). A modified UNIFAC activity coefficient model (Gmehling et al., 
1997; Horstmann et al., 2000; Horstmann et al., 2005) is used to represent the 

molar excess Gibbs free energy . For parameter b the linear mixing rule is 
used. The alpha function is the one of Mathias-Copeman, which is an extension of 
the alpha function in the original SRK is presented in Equation (4.2.12). 

 (4.2.11) 

 (4.2.12) 

where  is the Rackett liquid molar volume parameter. 

Required parameters for the SRK are ,  and , which are presented in 
Table 4.1. For non-ideal mixtures also the binary interaction parameters (BIPs) 

should also be present. List of used binary interaction parameters is given in 
Appendix A. Accuracy of the parameters fitting and experimental data used for the 
fitting are also given in the Appendix A. 

4.2.3 Perturbed-chain statistical associating fluid theory 

PC-SAFT equation of state developed by Sadowski and co-workers (Gross & 
Sadowski, 2001; Gross & Sadowski, 2002a; Gross & Sadowski, 2002b; Gross 
et al., 2003). The main idea of the model is through reduced Helmholz energies to 
divide the intra-molecular forces into attractive and repulsive contributions, which 
is shown in Equation (4.2.13). 

 (4.2.13) 

The repulsive interactions are described by a reference term and attractive inter-
actions are described by a perturbation term. 
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The two first terms on the right hand side of Equation (13) describe the hard-

chain fluid ( ), which accounts for the reference system in 
the model, that consist of chain molecules as a series of freely-jointed spheres. 
The reference fluid contribution has no attractive interactions and is based on the 
first order perturbation theory of Wertheim (Wertheim, 1983a; Wertheim, 1983b; 
Wertheim, 1985a; Wertheim, 1985b) that Chapman et al. (1990) applied to ac-
count for mixtures. For the reference system two pure component parameters are 
needed, which are segment number (m) and segment diameter (σ). 

The dispersion term (adisp) uses the perturbation theory of Barker and Hender-
son (Barker & Henderson, 1967a; Barker & Henderson, 1967b), which has been 
modified to account for chain molecules. The parameters needed for the non-
associating and non-polar components are the segment number (m), segment 
diameter (σ) and the depth of the pair potential (ε/k), which are presented in Table 
4.1. For mixtures the Berthelot-Lorentz mixing rules are applied in conjunction with 
binary interaction parameters (kij), which are shown in Equations (4.2.14) and 
(4.2.15). 

 (4.2.14) 

 (4.2.15) 

The association (aassoc) term is responsible for the short-range interactions. For 
these interactions two addi tional pure component (i) parameters are needed, 

which are the association energy e AiBi/k and effective association volume ( ) 
between association sites Ai and Bi. The mixing rules are for the association inter-
actions those of Wolbach and Sandler (1998), shown in Equations (4.2.16) and 
(4.2.17). 

 (4.2.16) 

 (4.2.17) 

The equations of t he dipolar (apolar) term are developed by Jog and Chapman 
(1999). 

Extension of the PC-SAFT model for copolymers, i.e. different types of homo-
polymers bound in the chain, is done through introducing into the dispersion term 
three interaction parameters of which two are homopolymer – solvent interactions 
and are not dependent of the copolymer solution. The latter two parameters were 
predetermined in AspenPlus software. The third parameter is dependent of the 
two monomer segments and is introduced equivalently as the binary interaction 
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parameter in Equation (4.2.15). The parameters were optimized for each binary 
system in Aspen Plus (AspenTech, 2010). The parameters are given in Appendix A. 

Table 4.1. Parameters of the selected HDO process compounds used in SRK, 
PC-SAFT models. 

 Tc /  
K 

Pc / 
Mpa omega 

Mathias – Copeman 
parameters PC-SAFT parameters 

c1 c2 c3 m σ ε/k 
Hydrogen 33.2 1.3 -0.22 0.1285 0.2477 -1.483 0.573 4.219 28.158 
Methane 190.6 4.6 0.008 0.4926 0 0 0.965 3.747 152.943 
Carbon dioxide 304.2 7.38 0.239 0.8255 0.1676 -1.704 2.647 2.563 149.138 
Water 647.3 22.05 0.344 1.078 -0.5832 0.5462 3.044 2.031 309.881 
Methanol 512.6 8.1 0.559 1.43 -0.6656 -0.1258 5.169 2.173 196.733 
Ethanol 514 6.14 0.635 1.491 -0.402 0 6.022 2.288 185.553 
1,2-Ethanediol 720 8.2 0.5254 1.258 0 0 5.069 2.481 274.556 

Acetic acid 594.4 5.77 0.4218 1.296 -1.052 0.9223 3.961 2.782 254.451 
Formic acid 588 5.81 0.3222 1.085 -0.8888 0.8129 2.559 3.038 314.077 
Methyl acetate 506.8 5.0 0.3664 0.8556 -0.153 0.6005 3.15 3.222 234.643 
Ethyl acetate 523.2 3.83 0.363 1.041 -0.1769 0.4951 3.324 3.413 237.224 
Cyclohexane 553.8 4.08 0.213 0.8408 -0.3985 0.9415 2.51 3.86 279.367 
Cyclohexene 560.4 4.91 0.2741 0.9815 -0.844 1.11 2.477 3.808 285.042 
Methylcyclo-
hexane 572.1 3.48 0.2477 0.93 -0.822 1.822 2.661 4.023 281.621 

Benzene 562.1 4.89 0.212 0.8356 -0.375 0.9715 2.502 3.638 284.634 
Toluene 591.7 4.11 0.257 0.9469 -0.5896 1.213 2.859 3.719 283.042 
Benzaldehyde 695 4.66 0.32 1.288 -2.956 6.387 3.28 3.562 313.316 
Catechol 770 6.50 0.5145 1.243 0 0 6.965 2.553 254.912 
Guaiacol 697 4.73 0.2103 0.8608 -0.5773 1.4013 4.601 3.221 278.05 
Phenol 694.2 6.13 0.44 1.524 -3.47 7.5 4.149 3.045 284.523 
o-Cresol 697.6 5.0 0.443 1.288 -1.463 3.251 4.255 3.196 282.268 
m-Cresol 705.8 4.56 0.464 1.165 -0.286 1.332 4.446 3.194 282.517 
p-Cresol 704.6 5.15 0.515 1.54 -3.04 7.206 4.476 3.143 282.253 

4.2.4 Model evaluation 

For validation of the considered models extensive search of available experi-
mental binary and ternary data was made. Total number of collected binary mix-
tures was 142 of 253 possible binary combinations of selected compounds (Table 
2.1). The goal was to obtain data for the mixtures at conditions similar to those of 
the pyrolysis oil HDO process. Only VLE binary data, either bubble point data 
(xTp) or complete Tpxy data, are useful for HDO process modeling. That limitation 
is in many cases the reason for the lack of the data in question. 
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It was decided to classify the binary mixture data into groups depending on the 
component functional groups. Seven groups have been identified for the purpose 
of this work, namely light gases (hydrogen, methane and carbon dioxide), acids 
(acetic and formic acid), phenols (phenol, catechol, guaiacol and cresols), water, 
alcohols (methanol, ethanol and 1,2-ethanediol), esters (methyl and ethyl acetate) 
and hydrocarbons (cyclohexane, cyclohexene, benzaldehyde, benzene and toluene). 
When binaries are divided into groups (Table 4.2) the data is partly overlapping, 
i.e. hexane – hydrogen i s included in two groups. In Table 4.2 the percentage 
differences of the residual root mean square errors (RMSE) between the different 
models is presented. PC-SAFT and SRK EOS are clearly better models, with 
some deviations in accuracy for the different compound groups. Thus for the best 
description of VLE several EOS (i.e PC-SAFT & SRK) have to be used depending 
on the compound classes. 

Table 4.2. The percentage differences of the residual root mean square error 
between PC-SAFT, PSRK and SRK models. 

Group % of binary systems for which the 1-st model accuracy is higher 

 
RMSEPC-

SAFT<RMSEPSRK RMSEPC-SAFT<RMSESRK RMSESRK<RMSEPSRK 

Light gases 84% 44% 82% 

Acids 67% 61% 78% 

Phenols 69% 40% 63% 
Water 81% 69% 56% 

Alcohols 60% 47% 64% 
Esters 63% 38% 75% 

Hydrocarbons 74% 61% 61% 

4.2.5 Concentration of hydrogen 

Though all mentioned above models can satisfactory predict VLE for gaseous 
compounds, higher precision of the gas solubility prediction is needed for the main 
reactant of HDO process, i.e for hydrogen. Hexadecane is considered as a solvent 
for calculation of the hydrogen concentration. Additionally it is assumed that the 
hydrogen concentration in the bulk hexadecane solution is constant and homoge-
neous, firstly due to the large hydrogen pressure and secondly due to the powerful 
mixing of the solution. 

The hydrogen pressure for the experiments were in all cases 50 000 Pa. Ne-
glecting nonideality of the vapour phase, hydrogen concentration in l iquid phase 
can be calculated in accord ance with Equation (4.2.18). Where Henry’s coeffi-
cients (H2,1) of hydrogen in hexadecane at HDO process temperature range are 
taken from work of Cukor and Prausnitz (1972). 

 (4.2.18) 
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4.3 Kinetics of the hydrodeoxygenation process 

The kinetics is the next step in the investigation of the pyrolysis oil hydrodeoxy-
genation (HDO). The aim of the ongoing work is complete kinetic study of the 
HDO process providing all sufficient data for the kinetic modelling, i.e description 
of the reactive compound diffusion to the catalyst surface and the surface reac-
tions as well as validation of the modelling against available experimental data. 

4.3.1 Reaction pathway 

The reaction of guaiacol is as sumed to follow the reactions routes presented in 
Figure 4.1. The proposed reactive compounds and the reaction pathways are 
based on analysis of HDO experiments made by Heikki Harju (Harju, 2010). 
Source model compound for the HDO process is guaiacol. Its reactions can pro-
ceed by two different pathways, namely a primary route and a secondary route. 

 

Figure 4.1. The assumed reaction pathways of guaiacol in the present experiments. 

The reactions included in the primary re action route are accounted in Equations 
(4.3.1–4.3.4). The reactants and reaction products are illustrated as letters A to E 
in order of the main reaction route, i.e. A stands for guaiacol, B stands for methox-
ycyclohexanone etc. 

 (4.3.1) 

 (4.3.2) 

 (4.3.3) 

Guaiacol
A

O

OCH3

Methoxycyclohaxanonen
B

1-methyl-1,2-cyclohexanediol
C

Cyclohexane
E

Cyclohexanol
D

Main reaction route

Secondary reaction route
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 (4.3.4) 

The calculations for the kinetic model were assumed to include the internal diffu-
sion and reaction. Because of the good stirring and mixing of the reaction fluid the 
external diffusion was neglected. 

Two types of reactions rates were tested for the calculations, namely a simple 
power law reaction rates that depends on the reactant, its reaction order and the 
reaction rate coefficient. The other reaction rate expression is a more complicated 
Langmuir-Hinshelwood reaction rate based on mechanism of Horiuti and Polanyi 
(1934). 

4.4 Mass transfer and reaction rate 

The kinetic model rate equation can be seen in Equation (4.4.1). 

 (4.4.1) 

The kinetic model theorem is retrieved from the work of Lylykangas (Lylykangas, 
2004). The dynamic model equation consists of two parts: diffusion rate is a first 
term of the right side of eq. 1 and the reaction rate is a second term of the eq. 1. In 
the equation lambda (λ) is a relative to centre position in the catalyst particle, cal-
culated as ratio of the distance from the catalyst particle centre to the catalyst 
particle radius. The parameter B is the shape factor of the catalyst particle, which 
is described in Equation (4.4.2), were Ap and Vp are the catalyst surface area and 
catalyst volume, respectively. Due to the little knowledge of the catalyst, the pa-
rameter B was assigned the value of 3, which is a common value for crushed and 
sieved fractions of catalysts (Lylykangas, 2004). 

 (4.4.2) 

4.4.1 Power law reaction rate equation 

The first tested model was a power law reaction that depends on the reactant, its 
reaction order and the reaction rate coefficient. The basic form of the expression is 
displayed in Equation (4.4.3). In accordance with Equation (4.4.4), i.e. linearized 
Equation of 1, the rate coefficient can be obtained from the point of interception of 
the logarithm of experimental reaction rate with the y-axis and the reaction order is 
a slope of line of the reaction rate logarithm. 
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 (4.4.3) 

 (4.4.4) 

For computational reasons the values of the reaction order and the reaction rate 
coefficient was not always obtained by using all of the data points. This was due to 
the nonlinearity of the data points. The reaction rate coefficient and the reaction 
order were calculated by minimization of the Pearson product square that is pre-
sented in Equation 4.4.5. Value of the square of the Pearson product for one ex-
perimental set was usually over 0.9 and in few cases smaller. 

 (4.4.5) 

4.4.2 Langmuir-Hinshelwood type reaction rate equation 

The second reaction model that was introduced in this work employs the Lang-
muir-Hinshelwood reaction rate and more specifically assumes the mechanism of 
Horiuti-Polanyi (Horiuti & Polanyi, 1934). This model is evidently much more com-
plex than the one presented earlier. 

In Appendix B the solution for the rate expression for reaction 4.3.1 is derived. 
Rate expressions for the reactions 4.3.2–4.3.4 are derived in t he same manner, 
but final expression are much alike due to difference in the type of reactions. 

In accordance with mechanism of Horiuti-Polanyi hydrogen is adsorbed without 
dissociation to the catalyst surface from where it reacts further with the reactant. The 
first addition of hydrogen to the reactant is assumed to be the rate limiting step. 

Determination of correct values for the different rate coefficients (ki) and equilibrium 
constants (Ki) is difficult optimization task due to complexity of the kinetic rate 
expressions (Appendix B). Those values can be obtained either by linear regression or 
by linearization as it was done in the section of power law reaction rate. 

Finally at the end of Appendix B truncated forms of the rate expressions are pre-
sented for reactions 4.3.1.–4.3.4, where concentrations of intermediate products 
were removed from the expressions as they are not available in the experiments. 

4.5 HDO process experimental data 

The kinetic models calculations are based on data obtained from the Master’s 
thesis work of Heikki Harju (Horiuti & Polanyi, 1934). In his experiments pyrolysis 
oil model compound guaiacol was hydrodeoxygenated (HDO) in batch reactor at 
175°C, 200°C, and 220°C. Dilute solution of hexadecane was used as a so lvent. 
The experiments were conducted for all three temperatures two times over a time 
period of 100 min and 120 min respectively. The catalyst used in the experiments 
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was rhodium over a zirconia oxide carrier. The experimental data used for the 
optimization the kinetic parameters are presented in Appendix C. For more infor-
mation about the experiments the reader is referred to the previously mentioned 
work of Heikki Harju. 

4.6 Results and discussion 

In the kinetic modelling the HDO of guaiacol data was fitted against the power law 
reaction rate model (Equations (4.4.3–4.4.4)) and against Langmuir-Hinshelwood 
type reaction rate model (Appendix B). The Langmuir-Hinshelwood type model shows 
good correspondence of reactive compound concentrations change with time (see 
Figure 4.2). The concentration profiles at different catalyst depths (i.e. curves with 
the different lambda values) change in accordance with bulk composition. But abso-
lute value of the concentrations is shifted to a lower concentration level as a result of 
combined effect of the diffusion and the reactions. 

There are two types of the concentration curves, namely the curves that start at 
zero bulk concentrations (for reactions 4.3.1–4.3.4) and curves with finite initial 
bulk concentration (i.e. reactions 4.3.1). The latter type is t he more informative 
because it determines the diffusion rate compared to the reaction rate. In particu-
lar at the beginning of the experiment the reagents and the products concentra-
tions inside the catalyst are zeros and the components diffusion rates can easily 
be determined for the reaction 4.3.1. For all reactions the concentration inside the 
catalyst peaks immediately and fast after the beginning of the experiments. Then 
the concentrations start to decrease. When the reactions are neglected the con-
centration curves for the different positions inside the cataly st particle are shifted 
just a little to a higher concentration level. This demonstrates that the overall rate 
is determined by the reaction rate and is not considerably influenced by the inter-
nal diffusion. In Figure 4.2 the difference between the diffusion and reaction rates 
for reaction 4.3.1 calculated with power low model is shown. The experimental 
data used for the calculations are given in Appendix C, Table 1. Other examples of 
the rate differences at different temperatures are provided in Appendix D. 
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Figure 4.2. The difference between diffusion rate and power law reaction rate for 
the experiment described in Table 1 in Appendix B. 

The reaction rate inside the catalyst depends on the reagent concentrations. The 
concentrations in turn depend on the diffusion rate. This is the reason why the 
reaction rate is slow at the beginning of experiment. After the concentrations 
reached their maximum for given lambda value, the reaction rates reach their own 
maximum and then slow down with moderate rates. From the figures in Appendix 
D one can see that the biggest deviations of the reagent concentrations can be 
observed at maximum or minimum of the bulk concentrations independent of the 
catalyst depth (the lambda value). 

Reactions 4.3.1–4.3.4 start from zero reagent concentrations inside the catalyst 
and accelerate at the be ginning of the experiments. It was found tha t after the 
reaction rates reach maxima only the reactions 4.3.2 notably decrease. Corre-
spondingly that reaction does not progress significantly after first hour. 1-methyl-
1,2-cyclohexanediol is the main product after first hour and i ts concentration re-
mains more or l ess constant. This indicates that the chosen r eaction conditions 
are not favourable for the reaction to proceed fully toward cyclohexane. 

The dependence of the reagent concentrations at most inner catalyst layers 
(lambda = 0.2) on bulk concentration is weak. This is due to the assumption that in 
the centre of the catalyst the concentration is always zero and also due to low cata-
lyst discretization, i.e. division of the catalyst particle to few thick layers (big Δλ). 

From the shown figure s one can se e that the primary pathway is dominant. 
Concentration of methyl-1,2-cyclohexanediol is much bigger compared to any of 
its product concentrations and the methyl-1,2-cyclohexanediol is the only com-
pound that does not participate in the reaction of secondary pathway. 
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5. Thermal hydrolysis for levulinic acid 
production 

Hot water and steam are typically used for processing wood and biomass to gain 
intermediate biorefining liquors from the lignocellulosic raw material. Hydrolysis 
with hot water in mild condition extracts hemicelluloses from the wood. Steam 
explosion and harsh conditions will break hemicellulose and cellulose chains to 
the fermentable sugars. Then, the thermal hydrolysis is somewhere between 
those treatments. The aim of thermal hydrolysis is to hydrolyse cellulose, but cre-
ate larger molecules than sugars. With properly controlled kinetics, it is possible to 
decompose the cellulosic polysaccharide molecule to 4-oxopentanoic acid and 
formic acid monomers. The 4-oxopentanoic acid, also called levulinic acid is then 
a possible product of thermal hydrolysis with optimal conditions. As side products, 
furfural and formic acid are formed and the residue of the lignocellulosic biomass 
will remain as solid bio-char. 

Levulinic acid is seen as a platform chemical with several possible uses. The 
most obvious end-use will be as fuel additives. Options with more added-value are 
fragrances, plasticizers and resins. See Figure 5.1. 

 

Figure 5.1. Main products of the process (Fitzpatrick, 1990; Fitzpatrick, 1997). 
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A commercial process called Biofine has been developed by Hayes et al. (2006). 
Proposed benefits for the process are: (i) Simple thermo-chemical process with 
two-stage acid-catalyzed reaction, (ii) No microbes or enzymes needed, (iii) Ver-
satile raw materials, e.g. wood residues, fuel crops, agricultural crops, food 
wastes, waste and reclaimed paper, and algea & seawater crops, (iv) High yields, 
from C6-sugars 50% to levulinic acid and 20% to formic acid, from C5-sugars 50% 
to furfural, (v) Residue is burnable bio-char, and (vi) an energy efficient process 
has been claimed. 

An overview of the process is shown in Figure 5.2. The f irst reaction at higher 
temperature, ~ 220°C is very fast, ~ 10 seconds. The second reaction takes long-
er, ~ 20 min, at little lower temperature, 190°C. Several separation steps are re-
quires before levulinic acid, furfural, formic acid, bio-char and several other minor 
components are fractionated. 

 

Figure 5.2. Proposed production process (Fitzpatrick; 1990; Fitzpatrick, 1997; 
Hayes et al., 2006; Girisuta, 2007). 

The main interest in the BIOSCEN project was to s tudy the thermal-hydrolysis 
reaction and f ractionation of end products with modelling tools. The feasibility of 
VLE (flash/distillation/evaporation) as a separation technique was studied. As the 
proposed production process is thermo-chemical with rather high temperatures 
and pressures, a thermodynamic equilibrium approach was chosen and later ex-
tended with as a constrained equilibrium model. ChemSheet was used as the 
modelling software. In addition, ICAS 12 was used for predicting thermodynamic 
properties of some substances. 
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5.1 Simplified model with pure substances 

First model is based on the properties of pure substances and ideal phases, which 
are shown in Table 5.1. Water, levulinic acid, formic acid, furfural and nitrogen are 
in the gaseous phase. Water, levulinic acid and f ormic acid are in the aqueous 
phase. Liquid phase is assumed for furfural. Glucose and xylose are solid phases 
which are here representing the biomass. 

Results are shown in the Figure 5.3. Based on this model, the evaporation tem-
peratures of furfural, formic acid and levulinic acid are different and it could be 
possible to use VLE to separate formic acid and furfural from levulinic acid. This is 
also proposed by the original authors of Biorefine process (Fitzpatrick, 1990). 

Table 5.1. Species and phases use d for the simplified model. Ideal mixtures as-
sumed. Part of the thermodynamic data is from literature, part of it is estimated by 
ICAS 12. 
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Figure 5.3. A schematic thermochemical model of the acid-furfural system using 
ideal mixtures. 

5.2 Kinetic models of thermal hydrolysis 

As earlier mentioned, the thermal hydrolysis process is controlled by the tempera-
tures, sulphuric acid addition and reaction times in two reactors. Several reaction 
kinetics models are presented in the literature (Girisuta 2007; Chang et al., 2006; 
Chang et al., 2009). An example of the yield of levulinic acid as function of tem-
perature and H2SO4-wood ratio is shown in Figure 5.4. 
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Figure 5.4. Reaction kinetics of thermal hydrolysis. literature (Girisuta, 2007; 
Chang et al., 2006; Chang et al., 2009). 

5.3 Refined model with non-ideal mixtures 

Once a simplified model showed promising results, the thermochemical model 
was refined to include unideal mi xtures and interactions with different species. 
First a Unifac binary-model for formic acid and levulinic acid was evaluated. The 
system is presented in Table 5.2. 

Table 5.2. Binary system of levulinic acid and water. 

Phase Species C H O 
Gas Levulinic acid 5 8 3 
Gas Water 0 2 1 
Liquid Levulinis acid 5 8 3 
Liquid Water 0 2 1 

 
The results of this binary system were validated against literature data. Results 
agreed well in low 10 torr pressure, see Figure 5.5. Predicted values at 1 and 15 
bar are in Figure 5.6. 
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Figure 5.5. Bubble and dew point of levulinic acid – water system at 10 torr. Ref-
erence data on left and predicted values on right. 

 
Figure 5.6. Bubble and dew point of levulinic acid – water system at 1 and 15 bar. 
Predicted values. 

Next model described the formic acid – water binary system. Unifac and virial 
models were applied here as well. The system is presented in Table 5.3. 

Table 5.3. Binary system of formic acid and water. 

Phase Species C H O Formic* 
Gas Formic acid 1 2 2 1 
Gas (HCOOH)2 2 4 4 2 
Gas Water 0 2 1 0 
Liquid Formic acid 1 2 2 1 
Liquid Water 0 2 1 0 

 

The results of this binary system were validated against literature data. Results 
agreed rather well in 1 bar pressure, see Figure 5.7. Predicted values at 15 bar 
are respectively shown in Figure 5.8. 
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Figure 5.7. Bubble and dew point of formic acid – water system at 1 bar. Refer-
ence data on the left and predicted values on the right. 

 
Figure 5.8. Bubble and dew point of formic acid – water system at 15 bar. Pre-
dicted values. 

Two binary systems were incorporated into a ternary system of levulinic acid – formic 
acid – water. System is shown in the Table 5.4. Predicted bubble and dew points of this 
ternary system are shown in Figure 5.9. No reference data for this system was found. 

Table 5.4. Ternary system of levulinic acid, formic acid and water. 

Phase Species C H O Formic* 
Gas Formic acid 1 2 2 1 
Gas (HCOOH)2 2 4 4 2 
Gas Levulinic acid 5 8 3 0 
Gas Water 0 2 1 0 

Liquid Formic acid 1 2 2 1 
Liquid Levulinic acid 5 8 3 0 
Liquid Water 0 2 1 0 
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Figure 5.9. Ternary plots of levulinic acid – formic acid – water system at 1 bar. 
Bubble on the left and dew point on the right. Values are predicted. 

Finally, the kinetically restricted decomposition of glucose was included in the 
model. Chemical system is shown in Tabl e 5.5. Constraint Glucose_R as well as 
additional system component Rg was i ncluded in Table 5.5. By controlling the 
constraint it is possible to define how much glucose is decomposed. A prediction 
is presented in Figure 5.10 with reference data from the literature. 

Table 5.5. Decomposition of glucose included. 

Phase Species C H O Formic* 
Gas Formic acid 1 2 2 0 
Gas (HCOOH)2 2 4 4 0 
Gas Levulinic acid 5 8 3 0 
Gas Water 0 2 1 0 
Liquid Formic acid 1 2 2 0 
Liquid Levulinic acid 5 8 3 0 
Liquid Water 0 2 1 0 
Solid Glucose_R 6 12 6 0 
Solid Glucose 6 12 6 1 
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Figure 5.10. Kinetically constrained decomposition of glucose. Reference (Chang et al., 
2006) on the left and predicted values on the right. 

5.4 Conclusions 

In this study the vapour-liquid equilibrium of levulinic acid-formic acid-(furfural)-water 
system was studied. First pure substances and ideal mixtures were applied. Model 
was refined, and non-ideal mixtures utilized Virial and Unifac parameters. Later on 
kinetic constraint was added in order to model the decomposition of glucose. 

The thermal hydrolysis and levulinic acid itself is increasingly popular research 
subject. However there seem to be very little experimental data available even for 
the binary systems. Predictive modelling technique such as Unifac group contribu-
tion method and different methods utilized by ICAS 12 software can fill some gaps 
in knowledge. The final answer of the feasibility of this proposed process is difficult 
to deduce without further experimentation. It is yet evident that extractive methods 
instead of mere fractionation distillation should be adapted. 
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6. Dilute acid pretreatment 
Cellulose hydrolysis to monosaccharides is a major preceding step for the produc-
tion of biofuels (ethanol, buthanol) and related chemicals via the fermentation 
route from lignocellulosic raw material. Then, before the actual hydrolysis most 
often catalysed by enzymes, a pretreatment stage is required. A mild treatment 
with e.g. dilute acid is generally preferred to provide suitable raw material for the 
biochemical hydrolysis. 

An overview of the mechanisms of dilute acid pretreatment of lignocelluloscis is 
given by Palmquist and Hahn-Hägerdal (2000), or Baugh and McCarty (1988). 
Jacobsen and Wyman (2000), provide a r eview of models existing in literature 
about dilute acid pretreatment, divided by models for hemicellulose and glucose 
hydrolysis. 

Models for hemicellulose hydrolysis are generally governed by first order reac-
tions and Arrhenius equations for the adjustment of kinetic parameters to tempera-
ture and acid concentration. The main differences between models found in litera-
ture lie in the level of detail. The simplest model considers reactions from hemicel-
lulose directly to xylose and further to degradation processes. The second level of 
detail would be to distinguish between fast and slow hydrolysing hemicellulose 
(Esteghlalian et al., 1996). Third and most detailed option is to include oligomers 
as a reaction step between hemicellulose and xylose (Garrote et al., 2001; Jacobsen 
& Wyman, 2000). Degradation products from xylose are usually unelaborated. 

For glucose the consensus in literature is again on a first order reaction from 
cellulose to glucose. Amorphous cellulose, which is instantly hydrolyzed to glu-
cose in dilute acid pretreatment, is usually included as an initial glucose concen-
tration (Bhandari et al., 1984; Saeman, 1945). The refinement here is again the 
step through olisaccharides (Jacobsen & Wyman, 2000). Glucose degradation 
products are more specifically investigated to be hydroxymethylfurfural (5-HMF), 
which is further degraded to levulinic acid and a ne cligible amount of formic ac id 
(McKibbins et al., 1962; Palmqvist & Hahn-Hägerdal, 2000). 

For this work the kinetic model equations and parameters for hemicellulose hy-
drolysis for the matlab file were taken from Esteghlalian et al. (1996), since it gave 
a thorough analysis of poplar wood as well as corn stover in addition to all kinetic 
parameter values necessary, including a review on previously found kinetic pa-
rameters in literature for comparison. Cellulose hydrolysis however is not covered 
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in this paper and was therefore taken from Bhandari et al., 1984, who also consid-
ers corn stover as substrate. A model for the degradation of glucose is provided by 
McKibbins et al. (1962). 

The overall model structure compiled from these papers and implemented in 
matlab is as shown in Figure 6.1. All reactions are modelled by first order kinetics. 
The kinetic parameters are adjusted to temperature and acid concentration 
through Arrhenius equations and are raw material specific. 

 

Figure 6.1. Overall model structure for the dilute acid pretreatment. 

The model is valid for a temperature range from 140 to 180°C and an acid concen-
tration between 0.4 to 1.5% (Bhandari et al., 1984; Esteghlalian et al., 1996; 
McKibbins et al., 1962). Depending on the raw material, the xylose is hydrolysed 
after 20–40 minutes reaction time. After this time, cellulose will continue to slowly 
hydrolyse and degradation products will be formed. 

Specifications for temperature, nominal acid concentration, solid ratio of the 
loaded mass and the neutralization ability of the substrate have to be provided to 
the model. The kinetic parameters in the implemented model are for hydrolysis of 
corn stover, because no complete set of parameters for wood material was available. 
Output of the model are the concentrations of xylan, xylose, xylose degradation 
products and further cellulose, glucose, 5-hmf and levulinic acid over time. Figure 
6.2 shows an output plot of an example simulation over the first 20 minutes of the 
reaction. 
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Figure 6.2. Example of simulation results for dilute acid pretreatment of corn stover. 
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7. Enzymatic hydrolysis of lignocellulosic 
biomass 

Enzymatic hydrolysis is an essential step in the saccharification of lignocellulosic 
biomass. Its applications range from the partial hydrolysis of cellulose to the total 
hydrolysis of cellulose and hemicelluloses. The former yields a fibrous product that 
contains sugar monomers, while the latter yields a carbon source for the produc-
tion of a carbon based chemical in a biorefinery. 

A process such as enzymatic hydrolysis is very much dependent on water as a 
reactant, but the presence of excess water makes the recovery of product energy 
intensive. High-consistency hydrolysis has been proposed to alleviate these problems 
and ultimately make the process economical in large scale (Hodge et al., 2009). 
Thus a salient parameter to be considered in the hydro lysis process will be the 
ratio of solids and water. 

The mathematical model of the enzymatic hydrolysis of dilute-acid pretreated 
lignocellulosic biomass first presented by Kadam et al. (2004) and later modified 
by Zheng et al. (2009) is one of the most readily available dynamic models in this 
area. The former model contained parameters for the inhibition by xylose, while 
the latter contained parameters for the apparent inhibition caused by lignin. 

In this work, the two models were merged. The merged model accounted for 
enzyme loading, process time, and inhibit ion by glucose, cellobiose, and xylose. 
However, the merged model still seemed inadequate with respect to temperature, 
pH, and solid l oading. Furthermore, the mechanisms of the enzyme classes are 
known to far greater detail (Beckham et al., 2011; Igarashi et al., 2011) than any of 
the current mathematical descriptions portray. 

With adequate enzyme dosage, most substrates can achieve nearly total hydroly-
sis at a solid loading of 10 g/L (Zhang et al., 2007). As the solid loading is increased, 
the relative yield is reduced (Kristensen et al., 2009). The net effect may be due to a 
number of reasons, but if it is understood, the process may be improved. 

The modeling objective was to create a mathematical description capable of re-
producing the trends and approximate magnitudes of significant phenomena under 
select process conditions and expected feed variability. The model performance is 
commensurate with all models referenced by Zhang and Lynd (2004) in terms of 
mechanistic detail and process parameters. 
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7.1 Exclusions 

A number of phenomena were excluded from the modeling effort. At low solid 
loading, the yield increases with increasing mixing rate (Wang et al., 2011). Since 
the mixing is extremely different at high solid loading, the effect of mixing rate was 
excluded from the model. The model assumes adequate mixing. Thus, the free 
solvent phase was assumed yielding a uniform and homogeneous mixture, i.e. 
concentrations are defined and valid to describe the state of the system. Diffusion 
and convection were excluded. 

Enzyme adsorption onto lignin is assumed to be reversible although it has been 
proven that irreversible adsorption does occur. The actual fate and influence of 
denatured enzyme is unknown. Therefore, the enzyme in the model is chosen to 
simply disappear when it denatures. Denaturation is assumed to be irreversible. 

Surfactant adsorption to lignin is believed to prevent unproductive binding of 
enzymes to lignin, thereby producing higher yields and enabling better recycling of 
enzymes (Kristensen et al., 2007). The use of polymers (Kristensen et al., 2007; 
Börjesson et al., 2007) or surfactants to selectively cover lignin patches Zhu et al., 
2009) was not included in the model. 

7.2 Rheology 

Water retention value is a standardized measure of the capability of a fibrous 
material to retain water within their structure (www.nordstand.com). When the 
water retention value is determined using negative pressure-assisted filtration, the 
result depends on the pressure used. The same phenomenon is partially respon-
sible for the thixotropic and pseudoplastic effects observed in f iber suspensions. 
The mechanical pressure squeezes out water from the fiber, thereby lowering the 
viscosity of the suspension. The process takes finite time since the water mole-
cules need to diffuse through the pores. 

Furthermore, as the enzymes break down the fiber wall, water stored within the 
fiber becomes free. This is probably the main contribution to the apparent thixo-
tropic effect observed during hydrolysis. 

The effect of stirring rate (Wang et al., 2011) has not been included. One possi-
ble mode of impact is a slight reduction in the effective water retention value due 
to increased dynamic pressure within the fiber. Shear forces may also affect dena-
turation (Reese & Ryu, 1980). 

The model described herein relies heavily on thermodynamics of aqueous solu-
tions, which requires that the concentration of a dissolved substance must be well 
defined. The concentration of a dissolved substance is/becomes defined when the 
dissolved particles of the same substance are stat istically interchangeable. The 
particles are interchangeable if their solution shells are identical. In practice, this 
means that the water content of the suspension may not be too small. 

http://www.nordstand.com
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7.3 Water 

Water has multiple roles in enzymatic hydrolysis (Kristensen et al., 2009). It is a 
reactant and it is needed for product desorption, both of which play a larger role at 
higher consistency. While a full thermodynamic model for the aqueous solution 
was implemented, a computationally faster approximation proved adequate as 
long as the pH remained relatively constant. The activity of water can be approxi-
mated from the amount of water, the amounts of solutes within the water, and the 
average hydration numbers of the solutes. Figure 7.1 shows an example of how 
the activity of water decreases with the extent of hydrolysis. 

 

Figure 7.1. The activity of water decreases during hydrolysis. 

Hemicelluloses and lignin naturally contain carboxylic acids, which have a nega-
tive charge when deprotonated. During pretreatment, some of these acids will 
detach from the fiber matrix. Depending on the conditions, alkaline or acidic, both 
lignin and hemicelluloses decompose and may form new acid mo ieties. Further-
more, adding an oxidizing agent containing oxygen will greatly accelerate the 
formation of carboxylic acids, especially during high-temperature pretreatment. 

Since the slurry coming into the hydrolysis process is not yet liquefied, there will 
be some fiber character left. This fiber, even if it is only a loose polyelectrolyte 
spanned between cellulose bundles, contains a fixed charge. This charged fibrous 
structure will probably form a region of space where the solvent is different from 
the bulk solvent. This region is effectively modeled as an additional aqueous 
phase even if some of the region also can be classified as a surface. The fixed 
charge in this aqueous phase excludes ions with the same sign and attracts ions 
with the opposite sign, thus resulting in a different pH and ion di stribution within 
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the fiber phase compared to the bulk solution phase. A negatively charged fiber 
phase has a highe r pH than the external solution and it accumulates multivalent 
cations as described by Donnan partitioning (Koukkari et al., 2002). 

7.3.1 Water as a reagent 

The mechanism of a hydrolytic reaction requires the participation and consumption 
of one water molecule. If the solvation shells of the participating molecules are in-
cluded in the reaction stoichiometry, then the apparent water consumption may be 
larger. In this work, product desorption was modeled separately. Therefore, the 
hydrolytic reaction rates were modeled as a first order reaction with respect to water. 

7.3.2 Water as a solvent 

Engineering models typically scale abundances with the total mass of the system, 
e.g. in units g/(kg mixture). Since this ignores the effect of solvents, the models are 
rarely usable at other consistencies than that of the measurements. By making the 
abundances proportional to the solvent, i.e. using concentrations proportional to the 
amount of solvent (g/kg water), the liquid model becomes independent of the solid 
fraction and therefore scalable with solid loading. If the solid fraction remained con-
stant throughout the hydrolysis process, this scaling would be scalar multiplication. 

As referred above, cellulosic pulp tends to retain water and swell in the pres-
ence of water. If one assumes that the wate r within the fibe r does not contain 
active enzyme, the loss of solvent can be modeled using an effective water reten-
tion value (WRV). As hydrolysis proceeds, the fibers along with their water reten-
tion capacity disintegrate. In the process of simultaneous saccharification and 
fermentation, the microbial cells also r etain water even if the computational de-
scription of the amount of biomass is in cell dry weight (CDW). Any and all solutes 
affect the effective amount of water for solvation. Figure 7.2 shows the effect of 
WRV on the relative hydrolysis yield at higher consistencies. 
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Figure 7.2. WRV influences the loss of relative yield at higher solid loading. 

7.3.3 Approximating the activity of water 

Let WRVpulp quantify the relative amount of water inaccessible to enzyme due to 
the fibrous biomass. Let WRVcells quantify the relative amount of water inaccessi-
ble to enzyme due to the microbial biomass. The free solvent amount fW is then 
described by Equation (7.3.1), where tW is the total amount of water in the mixture, 
mpulp is the amount of dry fiber and mCDW is the amount of dry cell material. 

W W pulp pulp cells CDW* *f t WRV m WRV m= - -   (7.3.1) 

The water retention value of the fiber depends strongly on the pretreatment meth-
od used. The water retention value of the micro-organism depends on the species 
and the general growth conditions, but has little impact on the overall result. The 
value for WRVcells (7.3.2) was calculated based on the average dry mass content 
for yeast reported by Jørgensen et al. (2007). 

cells
1 0.31 2.23

0.31
WRV -

= »   (7.3.2) 

All solutes bind water molecules in their shell of solvation. The organic molecules 
here are far larger than most inorganic ions. Therefore, the traditional method of 
estimating the activity of solvents through mole fraction is not adequate. The 
bound amount of water was estimated based on ave rage numbers of hydration. 
The activity of water aW is then calculated by Equation (7.3.3), where nk is the 
mole amount of solute k and Hk is the average hydration number for that solute. 

ܽW = ଵ
௙W

( W݂ −∑ ௞݊௞௞ܪ ) (7.3.3) 
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The average numbers of water molecules structured by a molecule of glucose, 
cellobiose, or xylose used to approximate the activity of water, were derived from 
Hollenberg and Hall (1983). 

7.3.4 Approximating the activities of solutes 

As explained in Chapter 7.3.2, the abundances are best described proportional to 
the solvent. While activity coefficients may vary quite a lot during the process, their 
effect may yet be assumed small in comparison to the uncertainty associated with 
kinetic parameters. Therefore, the activities of solutes were approximated by molal 
concentrations (7.3.4), typically in units mol/kg water. 

ܿ௦௢௟௨௧௘ = ௡ೞ೚೗ೠ೟೐
௠ೞ೚೗ೡ೐೙೟

 (7.3.4) 

7.3.5 Solid loading 

Solid loading is t he amount of solid lignocellulosic biomass introduced into the 
reactor. It may be as low as 1% in typical enzyme property studies, while it usually 
exceeds 30 mass-% in high-consistency hydrolysis process runs. By scaling the 
model according to the water content in the mixture rather than the total mixture 
mass, the model applicability range is improved. 

All empirical process data included in the model were apparently measured at 8 
w-% or 10 w-% consistency (Kadam et al., 2004; Zheng et al., 2009). Therefore, it 
was only a fortunate coincidence that some earlier versions of our model (Figure 7.2, 
low WRV) seemed capable of reproducing the relative yields for such a broad range 
(2 w-% to 40 w-%) of solid loadings as those measured by Jørgensen et al. (2007). 

7.4 Overview of enzymatically catalyzed reactions 

The enzymatic hydrolysis of cellulose is kinetically described by three four func-
tionalities and by three four enzymes. The models by Kadam et al. (2004) and 
Zheng et al. (2009) considered three functionalities. The additional detail was 
required to model simultaneous saccharification and fermentation (SSF), where 
implicit treatment of endoglucanases were no longer an option. Parameter sensi-
tivity analyses made for the fir st crude version of SSF clearly indicated that en-
zyme adsorption was far more important than in the earlier models for only enzy-
matic hydrolysis. This report contains the inferences of the more developed parts 
of these models. 

Our models are made for the enzyme mixture Celluclast 1.5 and the additional 
enzyme Novozyme 188. Celluclast is a commercial preparation of cellulases pro-
duced by Trichoderma reesei. It contains at least two cellobiohydrolases and two 
endoglucanases. Novozyme 188 is a commercial preparation of β-glucosidase 
produced by Aspergillus niger. 
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T. reesei cellobiohydrolase I (Cel7A) is 65 kDa and cellobiohydrolase II (Cel6A) 
is 58 kDa [18]. A. niger β-glucosidase is 130 kDa (Sipos et al., 2010). T. reesei 
endoglucanase I (Cel7B) is 55 kDa and endoglucanase II is 48 kDa (Suurnäkki 
et al., 2000). The three major enzymes Cel7A, Cel6A, and Cel7B all have a cellu-
lose binding domain (CBD), with which they attach to the surface of cellulose. 

The progressive exoglucanase Cel7A split off units from the reducing end of 
glucan chains and often move along the chain to its next act of hydrolysis. The 
non-progressive exoglucanase Cel6A split off units from the non-reducing end of 
glucan chains. The endoglucanases Cel7B hydrolyze bonds in the backbone of 
glucan chains. All three enzymes catalyze the hydrolysis of β(1→4) linkages be-
tween D-glucose repeating units. 

The molecular masses of reactants and products below indirectly describe the 
apparent reactions. The molar masses of water, glucose, and xylose were calcu-
lated based on their atomic formulas. The molar mass of cellobiose was calculated 
as the difference of two glucose molecules and a water molecule. The representa-
tive molar mass of a glucan repeating unit was calculated as the difference of a 
glucose molecule and a water molecule. The molar mass of a representative lignin 
repeating unit was defined as 180 g/mol. The representative molar mass of a 
xylan repeating unit was calculated as the difference of a xylose molecule and a 
water molecule. 

7.5 Enzyme denaturation 

It is well known that the so called optimal temperature of an enzyme is not really 
optimal under all conditions. The rate of reaction increases with temperature but 
so do thermal denaturation. Since the easily quantifiable portion of denaturation is 
irreversible, any fixed-length assay will yield a maximum in enzymatic activity. This 
apparent optimal temperature is a trade-off between increased activity of active 
enzymes and the faster accumulation of denatured enzyme. 

The temperature optimum, i.e. the compromise between increased enzyme ac-
tivity and increased denaturation, depends on the process time (Figure 7.3). The 
original model based on the Kadam et al. (2004) and Zheng et al. (2009) structure 
needed only the addition of enzyme denaturation and refitting the common appar-
ent activation energy before it reproduced this trend. The fact that the modif ied 
model predicts a tim e-dependent temperature optimum is a s ignificant improve-
ment toward true temperature dependency. 
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Figure 7.3. The optimal temperature of enzymatic activity depends on the length 
of the assay. The error bars represent the grid size of the calculations used. 
Assays are typically shorter than 2 hours , but this particular system required 
longer times due to other process parameters such as solid loading, pH, and total 
enzyme amounts. 

Past modeling efforts have not achieved consensus on the mechanism of dena-
turation (Bansal et al., 2009; Zhang et al., 2010). Some assume a first order reac-
tion, while others support a second order reaction (Zhang et al., 2010). The issue 
is further complicated by the presence of multiple denaturation types. Thermal 
unfolding would be proportiona l to the amount of enzyme, thereby appearing as 
first order denaturation. The enzymes tend to have cysteines forming intermolecu-
lar sulfur bridges. Therefore, they are susceptible to intermolecular cross-linking, 
which appears as second order denaturation. Under suitable temperature and 
redox conditions, both may be reversible or effectively irreversible. Since neither 
temperature nor redox-potential is likely to change during the course of hydrolysis, 
any reversible denaturation would be impossible to separate from uncertainties in 
the amount and activity of the enzymes. Therefore, we chose to model only the 
effectively irreversible denaturation of enzymes using first order kinetics. 

The most common data published in literature is t he residual activity of en-
zymes that have spent a specific amount of time at a specific pH and temperature 
before readjusting to optimal pH and temperature for conducting the assay. Given 
the incubation time and the relative reduction in activity, the rate of denaturation 
can be calculated. 

The pH and temperature dependent kinetic parameters were correlated to data 
published by Karboune et al. (2008) and Kwon et al. (1999). An example is shown 
in Figure 7.4. Due to the lack of precision and the relatively short exposure times 
of the measurements, the denaturation rates are relatively unreliable for long time 
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simulations. Particularly, the pH dependencies suffer from discontinuities in the 
data due to the different enhancing action of ions in different buffers. 

 

Figure 7.4. Temperature dependency of the denaturation rate for Cel7A. The data 
below 25°C was uncalculable due to noise. 

The parameters for the progressive exoglucanase Cel7A was obtained by fitting to 
data derived from Figures 2C and 4C in Karboune et al. (2008) (P. funiculosum 
cellobiohydrolase activity, residual activity after incubation for 2 hours). The values 
for the non-progressive exogucanase Cel6A were assumed equal to the other 
exoglucanase. The parameters for the endoglucanase Cel7B were obtained by 
fitting to data derived from Figures 4C and 4D in Kwon et al. (1999) (T. viride en-
doglucanase I, residual activity after incubation for 30 min). The parameters for β-
glucosidase were obtained by fitting to data derived from Figures 2B and 4B in 
Karboune et al. (2008) (P. funiculosum β-glucosidase, residual activity after incu-
bation for 2 hours). 

7.5.1 Temperature dependency 

Due to the two-domain structure of these enzymes, the temperature dependency 
of denaturation was described by the Arrhenius-inspired correlation (7.5.1). There 
may be other explanations for the enhanced denaturation rate at high t empera-
tures. 

Temperatureߩ = ்݁explow(்ି்reflow) + ்݁exphigh൫்ି r்efhigh൯ (7.5.1) 

where T is the temperature, Treflow the reference temperature of domain 1, Trefhigh 
the reference temperature for domain 2, Texplow is a scale factor for domain 1, 
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Texphigh is a scale factor for domain 2, and ρTemperature is the rate factor describing 
the temperature dependency. 

7.5.2 pH dependency 

Denaturation brought on by pH is essentially an acid- or base-catalyzed reaction. 
It is therefore expected to be exponential in pH and pOH (7.5.2). Low or high pH 
directly disrupts ion bridges and the neutralization of amino acid side chains mess 
with the electron density in and around the backbone. Since the electron density is 
important for protein folding, it is likely a dominant factor for protein stability as 
well. It can be well expected that the temperature and pH have a synergistic effect 
of aggravating each other. Since proteins contain both acids and bases, it can be 
assumed that there is a rough symmetry around some optimal pH. This is, howev-
er, not strictly true since the location and number of acids compared to bases is 
different. 

pHߩ = ௘೛ಹexphigh(೛ಹష೚೛೟೛ಹ)ା௘೛ಹexplow(೚೛೟೛ಹష೛ಹ)

ଶ
  (7.5.2) 

where pH is the pH, optpH is an optimal pH, pHexplow is a scale factor for branch 1, 
pHexphigh is a scale factor for branch 2, and ρpH is the rate factor describing the pH 
dependency. 

Determining reaction rates is rarely done without buffers and few buffers can be 
used for large pH ranges. The metal ions and the small anions will affect the dena-
turation rate much the same way they affect the catalysis rate if they fit into a void 
somewhere in, at, or near the active center. For every different buffer used, at 
least one offset parameter needs to be added during parameter regression. There-
fore, a specific buffer should be used for at least two different pH values. Further-
more, buffer transitions should preferably be done such that there is at least one 
pH in common with the adjacent buffer series. This will fix the value of the abso-
lute shift, which is the minimal added parameter. If there is a two-point overlap, the 
other parameter notifying the difference in scales can be quantified. In this work, 
we used only single parameter shifts wherever the shifts were obvious. The re-
gressed parameters are therefore “valid” for the buffer ions in the buffer at optimal 
pH (for any pH va lue) and not for any other buffer ions in other buffers used (re-
gardless of the original buffer ions used at any particular pH measurement). 

7.6 Enzyme adsorption 

The three enzymes Cel7A, Cel6A, and Cel7B have cellulose-binding domains 
(CBD) that help them attach to the cellulose surface (Suurnäkki et al., 2000; Sipos 
et al., 2010). Enzyme adsorption onto cellulose can generally be divided into re-
versible and irreversible adsorption (Ma et al., 2008). Irreversible adsorption can 
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be captured by differential equations, but is hard to differentiate from enzyme 
denaturation. This section discusses fully reversible adsorption. 

Adsorption of hydrolytic enzymes with or without binding domains onto cellulose 
can be modeled by the quantity of surface sites and the adsorption energy. If the 
adsorption energy is independent of surface coverage, then this depicts a Lang-
muir isotherm. The reversible adsorption can be assumed to be in equilibrium if 
the relaxation time constant is much smaller than the characteristic time constant 
for the subsequent hydrolysis reaction. 

It is common to make a separate Langmuir adsorption isotherm for each enzyme-
substrate pair. However, unless the enzymes adsorb to completely independent 
surface segments, they compete at least partially for available surface sites. 

7.6.1 Lignin 

Both endoglucanases and exoglucanases tend to conde nse onto any biomass 
surface. Bovine serum albumin (BSA) is able to reduce the amount of enzyme 
bound to substrate samples taken from different time points of hydrolysis (Heiss-
Blanquet et al., 2011). Cel7A lost 33% in the beginning, 28% thru most of the 
hydrolysis, and has only weakly bound enzyme in the e nd when there is 11% 
cellulose left. Apparently, it takes some time for Cel7A to dig in, but then it will not 
let go until the adsorption sites run out. They run out far before the amount of 
cellulose runs out indicating that the surface area of CBD+CD (cellulose binding 
domain and catalytic domain) is larger than the CBD alone. Cel7B behaves the 
same way as Cel7A; being constant at 25% reductions due to BSA until finally 
going up to 100% at the end with 11% cellulose. Cel6A seems to lose its lower 
energy adsorption spots much faster than Cel7A (Heiss-Blanquet et al., 2011), 
which is c onsistent with the notion of Cel6A sharpening the fibers at the non-
reducing end (Igarashi et al., 2011). 

While the hypothesis that bovine serum albumin, polyelectrolytes, and surfac-
tants prevent nonproductive enzyme adsorption onto lignin may be true (Kristen-
sen et al., 2007; Börjesson et al., 2007; Zhu et al., 2009), it also has other often 
overlooked consequences. BSA and polyelectrolytes adsorb to the surface of 
cellulose and lower the surface concentration of cellulases. The consequences are 
two-fold. The lower surface concentration results in less congestion i.e. less traffic 
jams. For a progressive cellulase in motion, surfactants are probably easier to 
nudge aside than other hydrolytic enzymes. Thus, more of the surface is covered, 
but it is easier to traverse. 

Palonen et al. (2004) measured zero enzyme adsorption onto lignin. Heiss-
Blanquet et al. (2011) discovered that lignin from different sources have different 
affinity for enzymes. While Klason lignin embedded in the carbohydrate solid may 
be relatively inert (Palonen et al., 2004), non-fibrous lignin seems to adsorb e n-
zymes (Heiss-Blanquet et al., 2011) and affect the overall rate of hydrolysis 
(Zheng et al., 2009). Zheng et al. (2009) fitted the Langmuir adsorption parame-
ters to experimental process data at the same time as the kinetic parameters. 
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7.6.2 Effective surface area 

Cel7A and Cel6A adsorption onto lignocellulosic residues (Palonen et al., 2004) 
clearly indicate that these enzymes adsorb onto cellulose and not lignin. The pub-
lication contains estimates of the lignin fraction of each substance and the distribu-
tion coefficients for each enzyme on each substrate. When the cellulose amount is 
overestimated as the non-analyzed fraction of the solids, the distribution coeffi-
cients line up perfectly on a specific curve. This curve has a fractal dimension so 
close to 0.5 that it is likely to have some physical reason for it. For an infinite cylin-
der, the surface area fraction is proportional to the radius while the vol umetric 
fraction is proportional to the square of the radius. Thus, there is a physically rea-
sonable explanation for that particular fractal dimension. If the diss ociation con-
stant is assumed constant, then the free surface area for adsorption of enzymes is 
proportional to the square root of the volumetric cellulose fraction (Figure 7.5). 

 

Figure 7.5. The distribution coefficient of Cel6A versus the fraction of lignin in the 
solid adsorbent. The exponent = 2/3 correspond to a sp herical particle, while the 
exponent = 1/2 correspond to an infinitely long cylinder. The graph contains four 
data points in each of t he four groups. The lines in between the points have no 
meaning except for aiding the visualization of the points in each group. 

The protein content of the CEL-lignin having a data point at 92% lignin with lower 
distribution coefficient explains most of the deviance from the ideal curve (Figure 7.6). 
However, it does not explain all of it, so one could hypothesize that some hemicel-
lulose or ash remains in that particular sample type. The discrepancy is but twice 
the size of uncertainty in the analysis, so the hemicellulose hypothesis is plausible. 
The particle size and shape may also be a contributing f actor for Cel7A, which is 
indicated by the curve with exponent = 2/3. 
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Figure 7.6. The distribution coefficient of Cel7A versus the fraction of lignin in the 
solid adsorbent. The exponent = 2/3 correspond to a sp herical particle, while the 
exponent = 1/2 correspond to an infinitely long cylinder. The graph contains four 
data points in each of the three groups. The lines in between the points have no 
meaning except for aiding the visualization of the points in each group. 

The results by Heiss-Blanquet et al. (2011) support a square root dependency 
between bound enzyme and cellulose fraction. 

Considering a fairly dense mixture of fibers in water, not all fiber surfaces are 
equally well accessible. The available surface area is guesstimated to be roughly 
proportional to the volume fraction of water in the mixture. 

7.6.3 Binding sites 

Kim and Hong (2001) discovered that Cel7A and Cel6A each adsorb onto two 
different adsorption sites. The two-line Scatchard plots in (Kim & Hong, 2001) can 
only be reproduced by assuming that there are two mutua lly exclusive packing 
lattice structures. Dual Langmuir binding would not give two lines, but one smooth 
curve. The (Kim & Hong, 2001) data are for 30 min, while the data are for 120 min. 
It seems the surface needs a l ittle more time to relax when two lattices are sup-
posed to coexist on the surface. 

The maximum binding capacity of each enzyme is roughly halved when they 
occupy the same surface (Kim & Hong, 2001). They simply share the surf ace. 
However, slightly denser packing is achieved, probably because the lattice blocks 
are slightly different in shape. Their respective catalytic domains may also adsorb 
to distinct surface sites the other can not use. 
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According to Table 2 i n Palonen et al. (2004), the CBD will still find adsorption 
spots when the CD can not. The CBD is only 3–9 kDa compared to the approxi-
mately 50 kDa CD (Igarashi et al., 2006; Suurnäkki et al., 2000). 

To sum up after Chapters 1.6.1 and 1.6.2, endoglucanases and exoglucanases 
adsorb onto the surface of cellulose. Cel7A adsorbs to the reducing end with both 
CBD and CD. C el6A adsorbs to the non-reducing end wi th both CBD and CD. 
Cel7A, Cel6A, and Cel7B can adsorb anywhere in between using only their CBD. 
Cel7B can adsorb anywhere on an intact cellulose chain with both CBD and CD. If 
both domains are adsorbed, the enzyme is held more tightly on the cellulose sur-
face. For numerical convenience, no enzyme is allowed to adsorb only by its cata-
lytic domain (CD), although enzymes lacking a CBD certainly do just that. 

Even if the enzyme amount in the solution has reached a near constant value, 
changes may still occur at the surface. The competitive binding isotherm in Kim 
and Hong (2001) i s an indication that the surface has not had time to relax in 30 
minutes. Figure 7.7 shows a hypothetical example of how the enzyme amount in 
solution may be nearly constant, but there are still significant changes occurring 
on the surface. 

 

Figure 7.7. Hypothetical example of an almost constant level of total adsorbed 
enzyme despite changes in the population of adsorption sites. The example shows 
a greatly exaggerated effect. 

7.6.4 Rate of adsorption 

The rate of adsorption depends on the rate of mixing (Nidetzky et al., 1994). With-
out complications, enzyme adsorption onto cellulose is believed to achieve equilib-
rium within approximately 60 minutes (Wang et al., 2011). However, due to the 
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progressive enzymes sweeping across the surface of cellulose, the rate of adsorp-
tion will have to be fit for each substrate and enzyme cocktail combination. 

7.6.5 Temperature dependency of dissociation constants 

This chapter pertains to enzyme adsorption onto cellulose. The dissociation con-
stants are affected by temperature (Heiss-Blanquet et al., 2011). The enthalpies of 
dissociation according to Equation (7.6.1) was fitted to dissociation constants at 
5°C (Kim & Hong, 2001), 30°C (Igarashi et al., 2006; Igarashi et al., 2011), and 
45°C (Jäger et al., 2010). The relatively large collection of Langmuir adsorption 
constants collected by Zhang and Lynd (2004) could not be used because they 
assumed only one type of binding sites. 

diss
T2 T1

2 1

1 1ln ln HK K
R T T

æ öD
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è ø  (7.6.1) 

The enthalpy of dissociation for the tighter binding site for Cel7A is probably 
somewhere between 43.6 kJ/mol and 63.6 k J/mol, more probably between 46 
kJ/mol and 51 kJ/mol. The dissociation constant is likely to be between 0.09 µM 
and 0.31 µM. The dissociation enthalpy value ΔHdiss = 43.6 kJ/mol is consistent 
with a dissociation constant Kdiss = 0.184 µM at 30°C. The above correlation is 
valid from 4°C to 45°C, although it can be used at even higher temperatures. 

The enthalpy of dissociation for the weaker binding site for Cel7A was fitted to 
only two t emperatures since no data was available for 45°C. The dissociation 
enthalpy value ΔHdiss = 75.8 kJ/mol is consistent with a dissociation constant Kdiss 
= 2.3 µM at 30°C. The above correlation is valid from 4°C to 30°C, although it can 
probably be used at higher temperatures. With these parameters, the dissociation 
constant for the weaker binding site would be around 10 µM at 45°C. With typical 
enzyme dosages around 1 µM, this would not easily show up in adsorption meas-
urements where the adsorption reaction is terminated with centrifugation. 

According to Heiss-Blanquet et al. (2011), endoglucanase 1 (EG1) is desorbed 
in equal proportions to cellobiohydrolase 1 (CBH1) when going from 4°C to 45°C. 
Therefore, Cel7B was assumed to have t he same biding enthalpies as Cel7A. 
Jäger et al. (2010) measured a dissociation constant Kdiss = 2.2 µM at 45°C. The 
weaker binding site for Cel7B was assumed to have the same dissociation con-
stant as Cel7A at 30°C. 

Both enthalpies of dissociation for Cel6A were assumed identical to those of 
Cel7A. After Kim and Hong (2001), the dissociation constant for the weaker biding 
site is 13.6 nM at 5°C, and the dissociation constant for the tighter biding site is 
119 nM at 5°C. 

According to Heiss-Blanquet et al. (2011), 15% to 38 % less CBH1 wa s ad-
sorbed at 45°C than at 4°C. The correlations made here estimate that the corre-
sponding value is between 23% (tight binding site) and 85% (weak binding site). 
The decrease of adsorbed CBH2 at 45°C compared to 4°C was between 50% and 
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100% (Heiss-Blanquet et al., 2011). Although the number of weak and strong bind-
ing sites are unknown in t he Heiss-Blanquet case and CBH2 generally adsorbs 
weaker than CBH1, their results can be considered approximate validation of our 
dissociation parameters. It is also interesting to note that adding bovine serum al-
bumin at 4°C has approximately the same effect as increasing the temperature 
(Heiss-Blanquet et al., 2011), i.e. the weakly bound enzymes are desorbed. 

Temperature should not affect the maximum number of adsorption sites as long 
as the enzyme remains soluble (Kim & Hong, 2001; Heiss-Blanquet et al., 2011; 
Igarashi et al., 2006; Igarashi et al., 2011). The initial surface area for adsorption is 
much larger for cellulose III than for cellulose I (Igarashi et al., 2011). The average 
surface area needs to be fitted for substrates coming from each type of pretreatment. 
Furthermore, the initial numbers of weak and tight binding sites need to be fitted. 

7.6.6 pH dependency of dissociation constants 

Binding of the wild-type Cel7A CBD is practically insensitive to pH (Linder et al., 
1999). The small dependence is roughly captured by a quadratic curve fit (7.6.2), 
where a = -0.008180854, b = 0.074401689, and c = 0.830836384. Cel7B and 
Cel6A were assumed to not have a pH-dependency. 

rfExoProgAds = (a * pH + b) * pH + c (7.6.2) 

The bindings of Cel7B and Cel6A to cellulose were assumed to not have a pH-
dependency. 

7.6.7 Temperature dependency of adsorption rate 

The temperature dependency of the adsorption rate measured at 4°C, 22°C and 
30°C (Linder & Teeri, 1996) was fitted to an Arrhenius equation. The enthalpy of 
activation was 70 kJ/mol with kref = 0.028467938 at 30°C. All other adsorption 
rates were assumed to have the same activation enthalpy. 

7.6.8 Inhibition by small molecules 

Cellulose-binding domains have three tyrosine or tryptophan moieties spaced 
ideally for adsorbing onto three glucan repeating units. If the aromatic structure is 
capable of associating with glucan repeating units, then it is likely that it also asso-
ciates with its smaller counterparts: glucose and cellobiose. 

Small molecules such as glucose, cellobiose, and xylose may directly interact 
with the cellulose-binding domain of the enzyme, condense onto the surface of 
cellulose thereby reducing the number of effective adsorption sites, or they may 
slow down the movement of enzymes by increasing the apparent viscosity. This 
may mathematically be described as competitive inhibition parallel to enzyme 
adsorption onto cellulose. 
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7.7 Hydrolytic reactions 

The saccharification of cellulose proceeds either through the cellobiose intermedi-
ate or directly to glucose (Figure 7.8). 

 

Figure 7.8. Primary enzymatic mechanisms in cellulose hydrolysis. The abbreviated 
notation refers to β-glucosidase enzyme (E), cellobiose (B), and glucose (G). 

Once the enzyme has adsorbed onto cellulose, the act ive center needs to find a 
free chain-end. It is often presumed that small molecules competitively inhibit this 
step (Bansal et al., 2009). After the hydrolytic step, the product molecule desorbs. 
While desorption is often assumed instantaneous (Bansal et al., 2009), we assume it 
is in equilibrium. Since we have no direct evidence, i.e. measurements to fit the 
parameters, we assume that the binding constant is determined by the solubility of 
the product. 

After product desorption, exoglucanases need to slide along the chain to the 
next position (Beckham et al., 2011; Igarashi et al., 2011). This progression step is 
unlikely to be a limiting factor, although traffic jamming on the surface of cellulose 
has been proposed in literature (Igarashi et al., 2011). However, the rate is not 
necessarily strictly proportional to the free surface area. It actually tapers off and 
attains a constant value for large empty surfaces. 

β-Glucosidases bind t o cellobiose, whereupon a water molecule executes the 
hydrolytic reaction. The two product molecules are then desorbed one at a time. 
All reactions are reversible and limited by rate expressions. 

Understanding the extent and mechanisms the appa rent inhibition of β-
glucosidases could improve the basis for optimizing saccharification systems 
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(Bohlin et al., 2010). The above scheme is superior to any overall Henri-Michaelis-
Menten based kinetic expression regardless of the inhibition scheme used. The 
existence and necessity of both EG and EGG complexes make all simple forms of 
product inhibition schemes fail. Furthermore, the reversibility of the net reaction 
has been thoroughly documented (Andrić et al., 2010a & 2010b). 

7.7.1 Beta-glucosidase 

The kinetic parameters for the inter-conversion of β-glucosidase and all its sub-
strate-enzyme complexes were fitted. The parameters were selected such that the 
apparent equilibrium constant for the hydrolysis reaction connecting cellobiose 
and glucose was satisfied at 50°C. The apparent equilibrium constant at 50°C was 
calculated from thermodynamic parameters published by Tewari et al. (2008) and 
Goldberg and Tewari (1989). The reaction quotients at the end of many hydrolysis 
experiments are far smaller than the equilibrium constant. It also appears that the 
more enzyme is used, the higher the reaction quotient. We hypothesize that the 
existence of the EGG complex slow down the rate of hydr olysis to such an extent 
that equilibrium conversion is not reached within typical hydrolysis times. 

The majority of the apparent kinetic constants were taken from literature studies 
focusing on this particular reaction (see below). In the case of β-glucosidase, 
Isothermal Titration Calorimetry has proven to be a convenient quantification tool 
for the rate of reaction (Tewari et al., 2008; Bohlin et al., 2010). Since the en-
thalpies of transglycosylation reactions are negligible, the enthalpy of hydrolysis is 
measured directly (Bohlin et al., 2010). The method relies on measuring the en-
thalpy of reaction and thus avoids the problems with quantifying subtle changes in 
substrate and product concentrations. Jeoh et al. (2005) published kinetic parame-
ters including substrate inhibition. Bohlin et al. (2010) studied the kinetics of the 
hydrolysis of cellobiose. 

7.7.2 The progressive exoglucanase Cel7A 

Cel7A activity is linearly proportional to the amount of enzyme adsorbed onto 
suitable reducing ends on the substrate (Nidetzky et al., 1994). Furthermore, the 
movement requires some free surface area and therefore the rate is also propor-
tional to the free surface area. However, since the reach of a single enzyme is 
limited, the amount of free surface quickly becomes irrelevant with increasing free 
surface area as long as the immediate vicinity of the enzyme is free. This is well 
captured by saturation kinetics. 

The reducing end surface sites specific for progressive exoglucanases are as-
sumed inaccessible to the other enzymes. The CBD of Cel7A may compete with 
Cel7B for other surface sites. Progressive exoglucanases tend to get stuck (see 
Chapter 1.9 for details). Once they pile up on one another, their combined pushing 
force may peel off chain segments (Igarashi et al., 2011). This was modeled as 
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spontaneous release from the stuck state with a rate proportional to the surface 
concentration of stuck enzyme squared. 

7.7.3 The non-progressive exoglucanase Cel6A 

The non-progressive exoglucanase Cel6A adsorb onto the non-reducing end of 
cellobiose chains and sharpen up the fiber (Igarashi et al., 2011) via a clipping 
action. The primary pr oduct is a cellobiose molecule although some glucose is 
also produced. See Chapter 1.7.8 for details on the product specificity. 

The rate is proportional to the amount of Cel6A adsorbed onto suitable non-
reducing ends. Cel6A may also interact near nicks, making them larger. When nicks 
are large enough, they count as free chain ends for progressive exoglucanases. 

The CBD of Cel6A may also compete with Cel7B for surface sites. Although 
there are some reports that other enzymes compete with Cel6A for the non-
reducing ends (Nidetzky et al., 1994), this effect was omitted. 

7.7.4 The endoglucanase Cel7B 

The endoglucanase Cel7B adsorb onto the surface of cellulose and use a water 
molecule to hydrolyze a bond along the cellulose chain. The primary product is a 
nick in the chain. However, if two nicks are close enough to each other, a glucose 
or cellobiose molecule may detach from the surface. The rate is proportional to the 
amount of Cel7B tightly adsorbed onto the surface. 

The action of the endoglucanase enzyme may set free stuck enzymes by mak-
ing the obstacles smaller. 

Endoglucanase slow down due to surface crowding (Nidetzky et al., 1994), but 
this is a consequence of competition for adsorption spots. Only when the catalytic 
domain is adsorbed onto the surface, the enzyme is active. When the enzyme con-
centration increases, the preferred lattice structure has less catalytic domains and 
more cellulose binding domains. See Chapter 1.6.3 for details on the binding sites. 

7.7.5 Temperature dependency 

In the models by Kadam et al. (2004) and Zheng et al. (2009) the apparent tempera-
ture dependency of reaction kinetics was approximated without denaturation. By 
explicitly including temperature-dependent denaturation and after refitting the en-
thalpy of activation, the present model is valid for a wider range of temperatures. 

Measurements at optimal pH and at different temperatures are often reported in 
publications of enzyme characterization. The data series will show an exponential 
temperature dependency, which usually taper off when measurement uncertain-
ties become dominant in the high-rate limit. The temperature dependency is hardly 
ever anything other than an Arrhenius parameter. 
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Arrhenius-like activation energies were fitted to the mostly exponential parts of 
the temperature-dependent rates. The value 38.0 kJ/mol for the progressive ex-
oglucanase Cel7A was obtained by fit to Figure 3C in Karboune et al. (2008) 
(P. funiculosum cellobiohydrolase). The value 48.4 kJ/mol for the non-progressive 
exoglucanase Cel6A was obtained by fit to data from Figure 1 in Baker et al. (1992) 
(T. reesei cellobiohydrolase II, avicel substrate). The value 38.0 kJ/mol for the en-
doglucanase Cel7B was obtained by fit to Figure 3A in Karboune et al. (2008) 
(P. funiculosum endo-1,4-β-D-glucanase). The value 52.5 kJ/mol for β-glucosidase was 
obtained by fit to Figure 3B in Karboune et al. (2008) (P. funiculosum β-glucosidase). 
It is a mere coincidence that two of the values are almost identical. 

7.7.6 pH dependency 

Hydrolytic enzymes usually fall into the enolase family, where the active center 
typically contains a catalytic triad. Regardless if the mechanism is inverting or non-
inverting, it occurs by several shifts in electron density between this triad of amino 
acid side chains. The rate of such electron shifts is inversely proportional to the 
difference in the acid dissociations constants of the two participating residues. 
Because of this mechanism, the pH-optimum is quite limited. 

The pH-dependency of hydrolytic enzymes is often visually described as a bell-
shaped curve. Classical bell-shaped curves (7.7.1) describe two acid dissociation 
constants and adequately capture the enzyme activity near the pH-optimum. 
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An enzyme having two acids with different pKa values can be in three states: both 
acids protonated, one acid protonated, and both acids deprotonated. The concen-
tration of the intermediate constituent has the characteristic shape of a bell. If only 
this constituent is capable of catalyzing a reaction, the reaction rate and therefore 
the extent of reaction in a fixed-time assay will have the same shape. 

These acids can be assumed to be essential to at least one limiting step. If all 
three states are capable of catalyzing the reaction and they have different turnover 
numbers, then the overall rate is described by the sum. Thus, the enzymatic activity 
may be different in each state. Depending on the relative magnitude of the activities, 
the bell-shaped curve could be standing on a staircase, i.e. the enzyme activity not 
going to zero at both ends. A third acid is typically seen as a shoulder if the limiting 
step changes between states. 

The pH-activity curve is not only pKa-sensitive but also slope-sensitive and the 
slopes are different for the acidic and basic branches (Maurelli et al., 2008). The 
curvature is rarely a perfect sigmoidal shape, but stretched or compressed in 
some way. Simple stretching or compression comes from having a population of 
enzymes, each with slightly different chemical environment. 
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The distribution of electron density will be different in and around the active cen-
ters of the three constituents. Reaction mechanisms are essentially only electron 
density moving from one place to ano ther. Therefore, one may expect that the 
rate-limiting steps may be different for the three environments. By itself, this may 
not be important, but it makes a difference for the acid-base equilibria. 

The local electron density around ionizable groups affects their apparent pKa, 
which complicates the modeling. The rates of acid-base equilibria compete directly 
with the r ate-limiting step of the enzyme-catalyzed reaction. This leads to the 
concept of characteristic times for each rate-limiting step. Furthermore, each rate-
limiting mechanism may be affected differently by foreign ions and Donnan parti-
tioning. Consequently, the effective concentration experienced by a s pecific rate-
limited mechanism is different from the concentration it would be at perfect acid-
base equilibrium. In practice, it means that the concentrations of constituents in 
Equation (7.7.6.1) can be construed as separate acid-base equilibria. It also im-
plies that sy mmetry is not a required property. Some experimental pH-
dependencies are symmetric (Ruttersmith & Daniel, 1991) and some are not 
(Maurelli et al., 2008). Many are hard to distinguish (An et al., 2004; Becker et al., 
2001) and some depend on the presence of ions (Huang et al., 1988). 

If denaturation can be ignored, the slope is i nversely proportional to the time 
constant of the event step that particular amino acid is involved in. A steep curve 
and thus a large time constant indicate an event that lasts longer than the rate-
limiting step. The slope-determining factors describe e.g. the effects of foreign ions 
and Donnan partitioning. 

While a detailed thermodynamic-kinetic model could have been constructed for 
describing these distorted bell-shaped curves, we went with a computationally 
easier approach. The engineering approach was to reproduce the measured curve 
as closely as possible but wi thout dwelling too much on the detailed mechanism 
behind it. The parameters used for replicating the curves are not intended to hold 
any physical significance since they contain multiple effects. 

The parameters for the progressive exoglucanase Cel7A was obtained by fitting the 
chosen bell-shaped curve (7.7.2) to data from Figure 1C i n Karboune et al. (2008) 
(P. funiculosum cellobiohydrolase). The parameters for the non-progressive exoglu-
canase Cel6A was obtained by fit to data from Figure 2 in Koi vula et al. (2002) 
(T. reesei Cel6A). The parameters for the endoglucanase Cel7B was obtained by 
fit to Figure 4A in Kwon et al. (1999) (T. viride endoglucanase I). The parameters 
for β-glucosidase were obtained by fit to Figure 1B i n Karboune et al. (2008) 
(P. funiculosum β-glucosidase). The curves corresponding to these parameters 
are plotted in Figure 7.9. 
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The scalefactor is intended solely for normalization. The taufactors affect the 
slopes and the pKa values affect the width of the bell. 
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Figure 7.9. pH dependency of hydrolytic rates for Cel7A, Cel6A, Cel7B, and 
β-glucosidase. 

7.7.7 Effect of ions 

Ions affect the rate of hydrolysis in the entire pH and temperature range of hydrolytic 
enzymes (Huang et al., 1988). Both anions and cations display a double binding 
relationship between activity and the concentration of the ion (An et al., 2004; Huang 
et al., 1988). Fortunately, the amount of ions coming along with the biomass is in 
most cases so low that only the first binding interaction needs to be modeled. If there 
are additional ions from pretreatment or added with the pH buffer, these concentra-
tions may exceed the threshold and the second binding event is needed. 

Since the effect of different cations is not additive (Huang et al., 1988), their bind-
ing to the active center must be competitive. The combination of size-exclusion and 
charge-exclusion could explain the competition and the total loss of activity induced 
by heavy metals. Heavy metals also catalyze the denaturation of enzymes. 

The two most c ommon pH-buffers are acetate and citrate buffers. A buffer is 
theoretically not needed since the hydrolys is reaction does not create any new 
acids. However, the problem with an unbuffered solution is that the precious en-
zymes may denature prematurely or perform poorly due to less t han optimal pH 
values. The buffer anions also bind metal ions. Depending on the concentration of 
metal ions, the effect can be either positive or negative. 

Some versions of our hydrolysis models implement a thermodynamic solution 
model describing the aqueous solution, including buffer action, ash release, and 
some complexation. These implementations are based on thermochemical calcu-
lation software (Koukkari, 2009; Blomberg & Koukkari, 2011; Koukkari et al., 2011; 
Blomberg & Koukkari, 2009). 
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7.7.8 Product specificities 

The product specificities of hydrolytic enzymes probably depend on a lot of factors 
and are likely to change during the course of hydrolysis. However, a fixed product 
profile was assumed for each of the enzymes. 

The average product specificity of the progressive exoglucanase (Cel7A) and 
endoglucanase (Cel7B) were adopted from Eriksson et al. (2002). The progressive 
exoglucanase Cel7A make about 80 mol-% cellobiose and 20 mol-% glucose. The 
endoglucanase side reaction produced on average 55 m ol-% cellobiose and 45 
mol-% glucose. 

The pH-dependent product profile of non-progressive exoglucanase (Cel6A) 
was fitted to the two data points at pH 5 and pH 7 i n (Wohlfahrt et al., 2003). The 
enzyme Cel6A strongly favors cellobiose over glucose. 

The enzyme β-glucosidase produces glucose from cellobiose and t hus has a 
trivial product profile. 

7.7.9 Inhibition by small molecules 

The active center of all hydrolytic cellulases has a large number of hydrogen 
bonds interacting with the substrate. Thus, it can be expected that almost all sug-
ars present some inhibitory effect. Any mutation will probably reduce the inhibitory 
effect of one substance but increase it for another. Compounds very similar to 
sugars, such as 5-HMF and furfural, may also inhibit the enzyme by competitive 
inhibition. Furthermore, furans tend to chelate metal cations, which may or may 
not be required for enzymatic activity. 

Fermentation products like ethanol and glycerol usually act as co-solvents, 
thereby reducing the force keeping the hydrophobic regions out of water. While 
sometimes classified as competitive inhibition, the effect of ethanol might be better 
described by reversible denaturation. See Chapter 7.11 for more details. 

7.8 Product desorption 

Product desorption is a key stage in the hydrolysis of cellulose and cellobiose. It is 
rarely instantaneous except at very low substrate loadi ngs. It requires not only 
solvent (water), but also adequate mixing/diffusion. The desorption constants were 
approximated by the solubility constants due to the lack of measurements specifi-
cally quantifying product desorption. 

In the case of β-glucosidase, the two-step desorption of products imply vastly 
nonlinear inhibition that can not be ade quately captured by a single competitive, 
non-competitive, or mixed inhibition term. Modeling the nonlinear nature requires 
two terms instead of one. 

The temperature dependent solubility of glucose, xylose, and cellobiose was 
calculated from the thermodynamic data published by (Tewari et al., 2008; Gold-
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berg and Tewari, 1989). At temperatures below 53°C, glucose monohydrate is the 
more stable solid, thus severely limiting the solubility of glucose. Whether or not this 
remains an accurate analogy for product desorption depend on the existence of a 
single water molecule. The higher the temperature, the more glucose may dissolve, 
and product desorption is a smaller problem. As it turns out, only the solubility of 
cellobiose is severely limiting the overall conversion of cellulose into glucose. 

The solubilities reported by Gray et al. (2003) seemed slightly better at 20°C. 
Therefore, the solubilities predicted by the thermodynamic parameters were ad-
justed by a factor such that they coincided with the solubility measurements per-
formed by Gray et al. (2003) at 20°C. This scaling was needed only for glucose 
and xylose. 

7.8.1 Temperature dependency of dissociation constants 

The temperature dependency of the dissociation constants, i.e. the solubilities, 
were calculated from the standard enthalpy of formation, the standard entropy of 
formation, and the heat capacity of each of the constituents involved. 

The same data allows the calculation of the equilibrium constant between cello-
biose and glucose. The equilibrium constant reduces with increased temperature. 
Glucose is thus favored at low temperatures while cellobiose is m ore favored at 
high temperatures. At 50°C and high solid loading, the equilibrium extent may 
indeed be limiting the amount of glucose compared to the amount of cellobiose. If 
the same scaling for glucose is allowed as in the above solubility case, then the 
equilibrium constant is a real concern. The difficult is in determining the (thermo-
dynamic) activities of glucose and cell obiose in this highly non-ideal mixture of 
solids, ash, ions, enzymes, and soluble organic compounds. 

7.9 Traffic jamming 

The linear progression of Cel7A along the length of the cellulose fiber can be de-
scribed with an analogy of traffic lanes. Each enzyme requires a certain amount of 
room, more room than a single lane would give them. While this is like modeling an 
extra wide transport, every vehicle is an extra wide transport occupying neighboring 
lanes. Traffic jams are therefore much more frequent. If the amount of Cel7A on the 
surface is too high, they will interact with each other and slow down the overall rate 
of hydrolysis (Igarashi et al., 2011; Palonen et al., 2004; Suchy et al., 2011). Specifi-
cally, when buffer rinse is introduced in a system with high enzyme loading, some of 
the enzyme overcrowding is removed and rapid hydrolysis follow. 

The enzymes can also get stuck if lignin or another cellulose fiber lay across the 
lane a progressive enzyme attempt to traverse. 
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7.10 Cellulose surface area and thickness 

The hydrolytic enzymes Cel7A, Cel6A, and Cel7B display synergy both when 
acting simultaneously and sequentially (Zhang & Lynd, 2004; Bansal et al., 2009). 
An elaborate construction of different adsorption surface sites and mechanistic 
actions was designed to reproduce some of the known relationships. Since the 
degrees of synergy depend not only on the enzymes but on the subs trate, it has 
been left to the user to fit appropriate parameters for their particular system. 

Heiss-Blanquet et al. (2011) BSA binding studies and Igarashi et al. (2011) 
atomic force microscopy (AFM) imaging indicate that Cel6A chip away and sharp-
en the non-reducing ends of cellulose crystals, thereby reducing the total number 
of adsorption events linearly with time. The same studies show that the adsorption 
of endoglucanases does not change at f irst and the n reduce to a small value. 
Similarly, it seems that Cel7A adsorption increase at first and then decrease to 
effectively zero. 

Exoglucanases increase the surface concentration of prime endoglucanase 
spots by removing longer chain fragments. Similarly, endoglucanases increase the 
surface concentration of prime exoglucanase spots by introducing nicks. Endoglu-
canases and the non-progressive exoglucanase may then enlarge nicks into 
chain-ends. According to Table 2 in (Palonen et al., 2004), the surface will first run 
out of exoglucanase spots, presumably because they require long cellulose chains. 

As long as the computationally convenient cellulose fiber thickness is larger 
than a single layer of cellulose strands, the consumption of a chain-end in the 
reducing end produces another. The progressive exoglucanase will consume the 
chain-end if it its origin is a nick. Similarly, the non-progressive exoglucanase 
action reduces the number of Cel6A-specific surface sites only when the thickness is 
low. Similar constructions have been proposed since Converse and Optekar (1993). 

In the end we ended up with 5 surface sites. The three major enzymes modeled 
adsorb to these sites according to Table 7.1. Once adsorbed, there are six en-
zyme activities to model. The reaction stoichiometries depend a little on the 
amount of cellulose according to Table 7.2 and Table 7.3. The possible cell entries 
are “substrate”, “product”, “increases”, and “decreases”. The first two indicate that 
their stoichiometric coefficient is equivalent to unity. The specific term “substrate” 
also indicates that it is absolutely necessary for the reaction to proceed. If a quan-
tity “decreases”, it means that it is only partially consumed e.g. because the previ-
ous exposes another from beneath, but one that is not as accessible. The “in-
creasing” keyword is used when there is a finite nonzero probability of something 
other than the main function occurring immediately after a reaction step. 
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Table 7.1. The three enzymes (the progressive exoglucanase Cel7A, the non-
progressive exoglucanase Cel6A, and the endoglucanase Cel7B) adsorb selectively 
to the five types of surface sites. The cell entry state “active” if the enzyme adsorb 
with both CBD and CD. 

 Cel7A Cel6A Cel7B Site description 
A_prog active     Reducing end 

A_chip   active   Non-reducing end 

A_chain active     Loose chain on surface 

A_nick   active active Crystal defect 

A_endo inactive inactive active Crystal surface 

A_nick   active active Crystal defect 

A_endo inactive inactive active Crystal surface 
 

Table 7.2. The consequences of each of the six adsorbed enzyme activities when 
the crystal is thicker than a single layer of cellulose strands. See text for 
explanations on cell entries.  

 
Cel7A on 
A_prog 

Cel7A on 
A_chain 

Cel6A on 
A_chip 

Cel6A on 
A_nick 

Cel7B on 
A_nick 

Cel7B on 
A_endo 

A_prog 
      

A_chip 
      

V_chip 
  

decreases 
   

A_chain 
 

decreases 
 

increases increases 
 

A_nick 
   

decreases decreases product 

A_endo 
substrate 
and  
product 

substrate 
and product  

decreases decreases substrate 

Products product product product product product 
 

Thickness decreases decreases 
  

decreases decreases 

Stuck Cel7A increases increases 
  

decreases decreases 
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Table 7.3. The consequences of each of the six adsorbed enzyme activities when 
the crystal is thinner than a single layer of cellulose strands. See text for explanations 
on cell entries.  

 Cel7A on 
A_prog 

Cel7A on 
A_chain 

Cel6A on 
A_chip 

Cel6A on 
A_nick 

Cel7B on 
A_nick 

Cel7B on 
A_endo 

A_prog decreases      
A_chip   substrate    
V_chip       
A_chain  decreases     

A_nick    substrate substrate  
A_endo substrate substrate substrate substrate substrate substrate 

Products product product product product product product 

 

The progressive exoglucanase Cel7A peels the surface like a cheese-scraper. 
Each layer peeled away reveals another just like it from beneath until the thick-
ness runs out. Therefore, the surface are a (Aprog) will not change due to the 
action of Cel7A in Table 7.2. 

The non-progressive exoglucanase Cel6A sharpens the non-reducing end one 
chip at a time (Igarashi et al., 2011). It will consume a triangle in the perpendicular 
cross-section of the cellulose bundle. The volume of the triangle is determined by 
the original thickness and the or iginal cellulose surface area. Therefore, the 
V_chip volume will only reduce during hydrolysis until there is no more chipping 
that can be done. The adsorption area A_chip will neither increase nor decrease 
due to the chipping action. It will at most be slightly moved sideways. The charac-
teristics of each enzyme modeled are shown in Figure 7.10. 

 

Figure 7.10. Perpendicular cross-section of a cellulose bundle. The white bars 
represent continuous cellulose chains in layers, the blue octagons are Cel7A, the 
yellow spheres are Cel7B, and the purple parallelograms are Cel6A. The leftmost 
endoglucanase has just made a nick in the chain underneath. 

7.11 Ethanol inhibition 

Ethanol is known to affect the rate of catalysis (Bezerra & Dias, 2005). However, 
the exact mechanism is sometimes uncertain. Ethanol acts like a co-solvent dis-
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solving both small molecules and enzymes. Which of the effects is stronger at any 
particular instance is unknown. An ad hoc modulation based on data from Chen 
and Jin (2006) was included. 

7.12 Conclusions 

The mathematical model presented here describes the enzymatic hydrolysis of 
dilute acid pretreated lignocellulosic biomass. The model captures the trends and 
approximate magnitudes of effects relevant to the hydrolysis of cellulose. 

This engineering model has the broadest operation range publicly known to 
date. The model includes effects of pH, temperature, solid loading, enzyme dos-
age, and process time. Since it is not a correla tion model, the outcome can be 
simulated with or without select phenomena. Therefore, the relative importance of 
different phenomena can be investigated. The select phenomena include activity 
of water, instantaneous product desorption, surface crowding, enzyme adsorption 
onto lignin, temperature effects, pH effects, enzyme denaturation, and water reten-
tion value. Furthermore, parameters such as temperature, enzyme amounts, pH, 
and solid loading can be varied to a much greater extent than for correlation models. 

The mechanistic action of the enzymes is described in high detail for an engi-
neering model. The inclusion of phe nomena like activi ty of water, desorption of 
product, and surface-movement of enzymes is exceptional among engineering 
models. Furthermore, the model contains rare parameters like water retention 
value, free surface area, and reversible kinetics for β-glucosidase. This may be the 
first model to describe such a variety of stalled enzyme complexes. 

There are some important limitations to th is model. The structure of the bio-
mass is not included. Therefore, this model is quite specific to dilute acid pretreat-
ed straw-like lignocellulosic biomass. The enhancing effect at low concentrations 
and the detrimental effect at high concentrations of soluble ions are not included. 
Therefore, the precise influence of ash composition and the choice of buffer are not 
captured by the model. Enzyme denaturation due to unusual reduction potentials is 
not included. The kinetics is quite specific to Celluclast 1.5 and Novozyme 188. 

The ionic strength and the interactions of specific ions with the enzymes have 
been omitted from this model. Enzyme activities are known to be ion-specific. It is 
also conceivable that a proportion of t he ash-content of the raw material is re -
tained after pretreatment. These inorganic ions and molecules may then affect the 
rate of hydrolysis in a matter not captured by the current model. 
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8. Fermentation 
Bioreactor is a key unit operation in biorefinery processes. The hydrolyzed sugars 
are often converted to ethanol or other products by fermentation. Most of today’s 
models for bioreactors are empirical data-based models and thus their operation 
window is rather limited and case specific. In this project, we used metabolic net-
works of the micro-organism as a basis of the bioreactor model. Metabolic networks 
present the reaction stoichiometries within the network and thus form a mechanism 
for the model. These so called dynamic flux balance models (DFBA) have been 
seen as a great opportunity for designing and optimizing fermentation processes. We 
have developed an efficient parameter estimation method for DFBA models, which is a 
key step in using the models in process engineering applications. We also used these 
models to estimate the isobutanol production by metabolically modified yeast. 

8.1 Extracellular kinetics 

The starting point for most of our fermentation models is a set of measured time 
profiles for extracellular metabolites and the evolution of carbon dioxide. Typically, 
the concentrations of acetic acid, ethanol, glucose, glycerol, xylose, fructose, and 
xylitol are analyzed by high-pressure liquid chromatography (HPLC). Minor acids 
like succinic acid, lactic acid, and malic acid may also be measured. The amount 
of biomass is often followed with both optical density measurements (OD) and as 
cell dry weight (CDW). The temperature and weight of the fermentation vessel are 
sometimes recorded continuously. The amount of acid or base required to keep 
the pH constant is routinely recorded. Dissolved oxygen and the oxygen difference 
in inlet and outlet gas streams can also be measured. 

The precise protocol for fitting a set of ordinary differential equations (ODE) to 
describe the measurements is outside the scope of this text. However, rest as-
sured that such fits can be made, especially with a little insight to the structure of 
the dependencies. The measurements rarely fit well to perfectly mass-balanced 
differential equations. In our experience, it is best to deal with such issues in later 
analyses rather than here in the first step. 
An example of yeast growing on glucose is presented in Figure 8.1. Several dis-
tinct physiological states can be identified. First, the yeast grows on glucose and 
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produces ethanol, acetate, and glycerol. When the glucose runs out, there is an 
adaptation period. After the adaptation period, the yeast consumes acetate, etha-
nol, and glycerol. The acetate is depleted first. Shortly after, the glycerol is deplet-
ed. Finally, also the ethanol is depleted. 

Yeast Saccharomyces cerevisiae strain CEN.PK113-7D was cultivated under 
aerobic conditions on 20 g/L D-glucose on Delft minimal mineral medium in a 
5-liter B.Braun Biotech bioreactor at 30°C at pH 5 controlled using 2 M NaOH 
(Tohmola et al., 2011). Extracellular D-glucose, acetate, glycerol and ethanol were 
measured automatically at 10-minute intervals using a Medicel on-line HPLC with 
cross-flow filtration for obtaining a cell-free sample. An HPX-87H fast acid column 
was used for analyte separation and refractive index detection was utilized for 
quantification. Cell density was measured from the same samples taken for the 
on-line HPLC using optical Trucell probe. Carbon dioxide and oxygen in the off-
gas were measured using Bluesens probes. 

 

Figure 8.1. An example of yeast growth kinetics fitted to data published by 
Tohmola et al. (2011). The individually scaled boundary fluxes versus time accen-
tuate the observed physiological states. ‘Growth on glucose’ ends after around 
420 minutes. Although ethanol and glycerol are consumed during the ‘adapta tion 
period’ from 420 to 550 and during ‘growth on acetate’ from 550 to 660 minutes, 
the period from 660 to 870 minutes is considered ‘growth on glycerol’ and the 
period from 870 to 1000 minutes is considered ‘growth on ethanol’. 

If the evaporation rate of ethanol is measured separately for the specific reactor 
used and the operating conditions employed, a correction for the loss of ethanol 
via the purge gas can be made. 

8.2 Flux balance analyses 

The primary purpose of these flux balance analyses was to extend the size of t he 
system of differential equations. The known fluxes were calculated from the fitted 
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differential equations once the state vector was given. The remaining boundary 
fluxes were calculated based on f lux balance, i.e. material conservation, and the 
mathematically convenient assumption of maximal biomass yield. Flux balance 
calculations were done separately for each time point in the series. The networks 
iND750 (Duarte et al., 2004), iMM904 (Herrgard et al., 2008), and a modification of 
the network in Pitkänen (2005) were used. 

Depending on the scope of the network, the fluxes for H+, NH4+, HPO42-, SO42-, 
etc. crossing the boundary of the cell are being calculated. These boundary fluxes 
are sensitive to the stoichiometry of the biomass-forming reaction. Both the known 
and the calculated boundary fluxes affect the extracellular solution. The pH of the 
extracellular solution would quickly drop if there were no pH controller. By knowing 
the hydrogen atom balanced fluxes across the boundary of the cell, the base con-
sumption to keep the extracellular pH constant can be estimated. Figure 8.2 com-
pares the base consumption estimates for iND750 and iMM904 to the experi-
mental values. The figure also compares the biomass predictions for each of the 
considered metabolic networks. 

For the inoculums, cells grown on an YPD-plate were taken into 25 ml Delft 
medium in 100 ml Erlenmeyer-flasks and incubated in a plate shaker (30°C, 150 rpm) 
over night. The cell broth was moved into 250 ml Erlenmeyer-flasks with 75 ml 
Delft medium and incubated in a plate shaker (30°C, 150 rpm) for 4–6 hours. At 
this point the cell density (OD 600) in the inoculums was about 3. An adequate 
amount of the cell broth was centrifuged (4°C, 2000 rpm, 5 min) and the cells were 
re-suspended into 40 ml of the growth media lacking the sources of carbon. 

 
Figure 8.2. Comparison of experimental data and simulation based on genome-wide 
metabolic model for base consumption and biomass accumulation. Saccharomyces 
cerevisiae was grown anaerobically on glucose and xylose. 

8.3 Minimal internal fluxes 

Intracellular flux patterns are alternate, distinct, yet equally optimal flux-balance solu-
tions (Mahadevan & Schilling, 2003) obtained using only external metabolite uptake 
and secretion measurements. Their analysis may provide useful biological insight 
(Baughman et al., 2011). The robustness of a particular flux distribution at a single 
time point can be evaluated using flux variability analysis or modifications thereof. 
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The success, robustness, and reliability of dynamic flux balance cal culations 
can be evaluated by exploring the feasible flux space at the optima. Even with two 
metabolic objectives, the feasible space, i.e. the number of alternate equally opti-
mal flux distributions, is rarely a singular point when using genome scale metabol-
ic networks. Assuming either transcriptional or translational constriction, the feasi-
ble space can be further reduced. The so called minimal internal fluxes are alter-
nate solutions to a flux balanc e problem where the fluxes are additionally limited 
by either transcriptional or translational constriction. 

Minimal flux patterns may be determined either by minimizing the number of 
non-zero reactions or by minimizing the sum of flux magnitudes. Assuming tran-
scriptional constriction, the nu mber of different enzymes is as small as possible 
since once and RNA strand has be en created, any number of enzymes may be 
produced. Assuming translational constriction implies that the total amount of 
enzyme is limiting. Reality may not fit either extreme, but these are the simplifica-
tions needed for making the mathematical description computationally tractable. 

The algorithms by Lee et al. (2000) and Murabito et al. (2009) are quite effec-
tive in producing all alternative patterns for a specific optimal metabolic objective. 
Minor variations of these algorithms find the minimal number of internal fluxes. 
Since it has been proposed that the fluxes of most e nzymatically catalyzed reac-
tions are limited by translation rather than transcription, it makes sense that the 
cell would minimize the total amount of protein required. While this amount can be 
estimated based on catalytic efficiencies (Shlomi et al., 2011), minimizing the sum 
of absolute flux magnitudes is proposed as a substitute. Unlike the total flux objec-
tive by Holzhütter (2004), this objective avoids using equilibrium constants, which 
are a significant source of uncertainty due to poorly predictable Gibbs energies in 
genome wide networks. 

For each time point, the limits of select boundary fluxes were set by the measured 
changes in the extracellular composition. Biomass yield was optimized by flux bal-
ance analysis on a genome scale metabolic network. In a sequential optimization 
step, the sum of fluxes was minimized while combinatorially varying the allowable 
flux patterns for a fixed biomass flux value. The proposition of flux patterns was 
recursive like in a branch and cut algorithm. Surprisingly, only a single level of recur-
sion was required, making the algorithm fairly time-efficient. The second optimization 
uses a network with only non-negative fluxes. Thus, the algorithm finds all alterna-
tive flux distributions for the minimal sum of absolute flux magnitudes. 

The differential equations relating to Figure 8.1 were used as time-dependent 
boundary constraints in dynamic flux balance calculations with the iMM904 network. 
Alternative flux distribution sets were obtained for each time point. Each set of mini-
mal internal fluxes contain 5 to 10 flux distributions. Five physiological states were 
identified by comparing minimal flux patterns for subsequent time points. Figure 8.3 
shows which time points share patterns. Both rows and columns represent time 
points equally spaced 30 min apart. Growth states are highlighted with a blue back-
ground color. The most notable difference to Figure 8.1 is that the ‘adaptation period’ 
begins roughly half an hour before glucose is completely depleted. 
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A highly ordered sequence of changes in most pathway feeds occurs during ‘ace-
tate adaptation’. The alternate carbon metabolism runs hyperactive. For each path-
way lead, multiple sequential reactions exchange in ‘Glycine and Serine Metabo-
lism’, ‘Oxidative Phosphorylation’, ‘Phospholipid Biosynthesis’, ‘Purine and Pyrimi-
dine Biosynthesis’, ‘Pyruvate Metabolism’, ‘Sterol Metabolism’, ‘Fatty Acid Biosyn-
thesis’, ‘Tyrosine, Tryptophan, and Phenylalanine Metabolism’, ‘Valine, Leucine, and 
Isoleucine Metabolism’, and in the ‘Nucleotide Salvage Pathway’. Minor rerouting 
occurs for Alanine, Aspartate, Threonine, Lysine, and Glutamate syntheses. 

Just prior to ‘growth on acetate’, glycolysis is reversed. When acetate runs out 
just prior to ‘growth on glycerol’, NAD/NADP cofactor specificities change, ATPase 
is activated, and TCA cycling is turned on. When glycerol uptake ceases, the 
source of glycerol for lipid synthesis is switched from uptake to synthesis. 

 

Figure 8.3. Flux pattern versus flux pattern matches for time points during the 
cultivation. The blue boxes show distinct physiological states. The experimental 
data of the aerobic yeast Saccharomyces cerevisiae cultivation demonstrates a 
Crabtree effect of ethanol, glycerol and acetate being produced from glucose and 
then consumed after glucose depletion and diauxic shift. 

The measured (Tohmola et al., 2011) and calculated biomass formation rates 
differ at the end of growth on glucose and during growth on acetate (Figure 8.4). 
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The former may be attributable to volume restrictions, i.e. the cell having an upper 
limit for the total amount of protein present (Baughman et al., 2011). Except for the 
anomalous peak top, there are two continuously accessible patterns during growth 
on glucose. One pattern has 299 nonzero fluxes, the other 300. The latter dis-
crepancy in Figure 8.4 is probably due to erroneous ATP cost of acetate uptake or 
the use of an alternate acetate uptake path not included in the network. 

 

Figure 8.4. Measured and calculated biomass formation rates differ at the end of 
‘growth on glucose’ and during ‘growth on acetate’. 

Figure 8.5 and Figure 8.6 show how the two objectives for calculating the minimal 
internal fluxes compare in each other’s eyes. Figure 8.5 show the expected con-
sequence of trying to duke it out with as few enzymes as possible but later having 
to create new ones anyway. Figure 8.6 on the other hand is quite interesting. 

 

Figure 8.5. This comparison of the two objectives for calculating minimal internal 
fluxes shows the sum of magnitudes with respect to cultivation time. 
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Figure 8.6. This comparison of the two objectives for calculating minimal internal 
fluxes shows the number of nonzero fluxes with respect to cultivation time. 

The sum of flux magnitudes appears to be a good measure of overall metabolic 
activity. It seems to capture cell physiology much better than the minimal number 
of reactions. The associated number of reactions is less sensitive to the choice of 
time points (data not shown) and the time-traces appear smoother. If the metabol-
ic burden is proportional to the number of enzymes, the proposed objective cap-
tures the relative difficulty of growth on different substrates as is indicated by the 
specific rate of biomass formation. 

The fact that blue and white spheres touch at the end of growth on glucose in-
dicates that there is some merit to the total enzyme restriction (Shlomi et al., 
2011). During the adaptation period, the organism is probably as conservative with 
new enzymes as possible, thereby sticking to the white spheres. Once the mRNAs 
have been produced, the system is back onto the blue track. At the end of growth 
on ethanol, the organism is more or less in the same state as before the gl ucose 
pulse except it probably had a little more non-essential enzymes tagging along. 

8.4 Modeling fermentation in SSF 

For the purposes of testing simultaneous saccharification and fermentation a small 
model of yeast growth on glucose was added to one of the hydrolysis models. 
Creative scaling was required to change the units from g/kg mixture to g/kg water. 

Glucose uptake was assumed to be limiting bacterial growth and thus described 
by a Monod equation. Ethanol inhibition on growth was described in (Luong, 1985). 
Complete extinction by cell death was not necessary to include, only the reduced 
activity due to ethanol. Regretfully, this was enough to limit the maximum accumu-
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lated concentration of ethanol to approximately 90 g/kg mixture regardless of the 
total amount of glucose provided. 

The production of the primary carbon products (carbon dioxide, acetate, etha-
nol, and glycerol) and the minor acids (f ormic, succinic, malic, and l actic) were 
described using yield factors. This model contained the pH controller’s base con-
sumption as one of the dependent variables. 

The SSF model predictions were very similar to the results presented in those 
of Song et al. (2009) and van Zyl et al. (2011). 

8.5 Mathematical formulation of bioreactor model and 
parameter estimation 

A mathematical framework for a fermenting bioreactor simulation, parameter esti-
mation and optimization was further developed. The bioreactor model (DFBA 
model) is divided into three compartments: 1) macroscopic extracellular model 
describing mass, energy balances in reactor, 2) microscopic intracellular model 
describing metabolic fluxes inside cells and extracellular transfer fluxes, 3) models 
for flux boundaries and metabolite uptake rates. Model and compartments are 
illustrated in Figure 8.7. 

 

Figure 8.7. Bioreactor model compartments. 1) macroscopic extracellular model, 
2) microscopic intracellular model, 3) models for flux boundaries and metabolite 
uptake rates. 

The macroscopic model depicts a typical CSTR reactor with extensions for dy-
namic batch and fed-batch behavior. Microscopic model is a steady-state stoichi-
ometric model of a micro-organism, where the metabolite fluxes inside the cells 
are calculated using flux balance analysis (FBA). FBA is based on reaction stoi-
chiometries within the metabolic network, and some of t he metabolic fluxes are 
constrained based on e.g. maximum metabolite uptake rates. The solution for all 
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the fluxes is found by finding a set of fluxes that maximize the cellular growth. The 
models for flux boundaries and metabolite uptake rates are usually based on em-
pirical correlations. The overall model is formulated as a set of differential and 
algebraic equations (DAE). 

An important step in constructing a predictive bioreactor model is estimating the 
model parameters from experimental data. The number of parameters in DFBA 
models is often rather small, say around 10, but the parameters may be strongly 
dependent on each other. Parameters are also often estimated from limited data. 
We have de veloped a gradient based parameter estimation method for DFBA 
models complemented with a parameter selection algorithm (Leppävuori et al., 
2011). These methods allow one to fi t the model to target system and the model 
can be used to predict the behavior of the process. DFBA models have been used 
to e.g. design the sugar feeding strategy in fed-batch fermentation (Hjersted & 
Henson, 2006). The parameter estimation method is computationally efficient even 
with today’s largest genome-scale metabolic networks, and thus the latest availa-
ble knowledge of the cell metabolism can be utilized in fermentation process de-
sign. Example of measured and simulated data is presented in Figure 8.8. 

 

Figure 8.8. Example of simulated and measured metabolite concentrations in 
bioreactor (Leppävuori et al., 2011) 
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8.6 Isobutanol as an example of novel fermentation product 

The yield, titer, and production rate of nove l products can be predicted based on 
dynamic flux balance analyses and experimental data (Tohmola et al., 2011; Du-
arte et al., 2004). Predictive physiological modeling is based on combining an 
extracellular process model (ordinary differential equations) with intracellular flux 
balance (linear programming) to accurately describe growth on various substrates, 
self-limiting factors, and product titer (Herrgard et al., 2008). These tools were 
applied for comparing n-butanol to isobutanol and for predicting the realistic yields 
of ethanol and isobutanol. 

8.6.1 Isobutanol versus n-butanol 

There are many ways to evaluate the general feasibility of a novel path. One of the 
first things to do is to calculate the optimal theoretical yield. A net path stoichiome-
try is generated in the process. Altogether six paths were investigated in relation to 
this work. The paths link two substrates (glucose and xylose) with three products 
(isobutanol, n-butanol, and ethanol) as shown by the stoichiometry in Table 8.1. 

Table 8.1. The net path stoichiometry for six paths spanning two substrates and 
three products. 

Substrate glucose glucose glucose xylose xylose xylose 

Product ethanol n-butanol isobutanol ethanol n-butanol iso-
butanol 

Glucose -1 -1 -1    
Xylose    -1 -1 -1 
H2O   1   0.83 
H+  3.43   2.86  
CO2 2 2.57 2 1.67 2.14 1.67 
Ethanol 2   1.67   
n-Butanol  0.86   0.71  
Isobutanol   1   0.83 
 
A path profile is a cofactor-unbalanced subset of the reactions involved in the net 
path stoichiometry. The path profiles utilizing glucose are given in Table 8.2. 
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Table 8.2. The path profiles for six pertinent subpaths from glucose to product. 

Substrate glucose pyruvate ATP pyruvate pyruvate pyruvate 
Product pyruvate CO2 ADP ethanol n-butanol isobutanol 
Glucose -1      
Pyruvate 2 -1  -2 -2 -2 
H2O 2 -2 -1  1 1 
H+ 4 4  -4 -2 -2 
CO2  3  2 2 2 
NAD -2 -5  2 4 2 
NADH 2 5  -2 -4 -2 
ADP -2 -1 1    
ATP 2 1 -1    
Pi -2 -1 1    
Ethanol    2   
n-Butanol     1  
Isobutanol      1 
 

The carbon efficiency of the path to n-butanol is clearly lower than for isobutanol 
or ethanol. This can be deduced from the row for carbon dioxide i n Table 8.1. 
Furthermore, the path produces a large amount of protons as another byproduct. 
This massive generation rate of protons would quickly acidify the intracellular 
space and cause severe stress to the organism. The acidification of the intracellu-
lar space and t he need f or more reducing equivalents than glycolysis provides 
(evident by for NADH in Table 8.1) are the primary reasons why organisms also 
produce ethanol and acetone in the A BE-process. Reducing equivalents are car-
ried by the Nicotinamide Adenine Dinucleotide cofactors denoted NADH for the 
reduced form and NAD for the oxidized form. 

The regeneration of excess Adenosine Tri-Phosphate is here represented by 
the hydrolysis of ATP (third path in Table 8.2), but would in reality go to the up-
keep of cellular structures. The upper limit of productivity, i.e. the maximum pro-
duction rate of ethanol and isobutanol is determined by the ATP m aintenance 
requirement at zero growth. Since the subpaths from pyruvate to all three product 
use NADH, they compete directly with oxidative phosphorylation. Oxidative phos-
phorylation is active whenever oxygen is available, making these processes most 
product-efficient at low oxygen (anaerobic) conditions. 

8.6.2 Isobutanol predictions 

The theoretical yield is never achieved in practice because the cell needs to repair 
itself and actively maintain the desired functionality by producing more enzymes to 
replace those that are spontaneously degraded. This implies a small growth re-
quirement. Since large metabolic changes occur when the organism adapts from 
anaerobic conditions to microaerobic conditions, the average cell in industrial 
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anaerobic cultivations is maintained below this limit. The lowest predicted product 
yield, i.e. the most probable outcome, is at the very edge where anaerobic meets 
microaerobic. 

The major oxygen-dependent growth stages are anaerobic, microaerobic, and 
aerobic. Computationally, anaerobic states are characterized by only using oxygen 
for such reactions that absolutely must have oxygen and whose products can not 
be produced by any other means. Fully aerobic is computationally equivalent to 
having all reducing equivalents balanced out by oxidative phosphorylation. Micro-
aerobic is co mputationally the intermediate, where reducing equivalents are re-
generated by both oxidative phosphorylation and e.g. alcoholic fermentation. 

By varying the ratio of oxygen versus glucose, the three growth states can be 
computed by optimizing biomass yield as a primary objective and the product yield 
as a secondary objective. The realistic yields are then obtained as the yields at the 
bend in the curve between anaerobic and microaerobic states. The predicted 
realistic yields are listed in Table 8.3. The production path to isobutanol can be 
implemented either in the cytosol or in the mitochondrion. These two predictions 
differ because of the compartment-specific cofactor balances. 

Table 8.3. Realistic yields predicted by flux balance analysis. 

Substrate Glucose Glucose Glucose Xylose Xylose Xylose 
Product ethanol isobutanol isobutanol ethanol isobutanol isobutanol 
Compartment cytosol cytosol mitochondria cytosol cytosol mito-chondria 
Glucose -1 -1 -1    
Xylose    -1 -1 -1 
H2O 0.281 1.078 1.096 0.093 1.621 0.837 
H+ 0.110 0.059 0.072 0.037 0.157 0.002 
CO2 1.751 1.867 1.836 1.584 1.775 1.661 
Dry biomass 0.022 0.012 0.014 0.007 0.031 0.001 
Ethanol 1.731   1.578   
Isobutanol  0.928 0.912  0.526 0.830 

8.6.3 Maximum titer 

The titer for isobutanol is limited by the toxicity of the product. This limitation has 
something to do with the membrane. Presumably, the membrane integrity is jeop-
ardized when the amount of isobutanol in the membrane exceeds 20 mol-%. This 
value is roughly every fifth membrane surface molecule, indicating that each 
membrane lipid is adjacent to two foreign molecules. The relative reduction of 
charged membrane lipids lowers the screening potential that keeps ions from 
crossing the membrane. The amount of isobutanol in the membrane was predicted 
using the octanol-water partition coefficient. The octanol-water partition coeffi-
cients were estimated based on Hammett relations using commercial software 
[ACD Labs Structural Designer]. The molecular weights, the partition coefficients 



8. Fermentation
 

119 

and the maximum titers predicted using Equation (8.6.1) are tabulated in Table 8.4 
for select products of interest. 
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Table 8.4. The molecular weight (MW), the base 10 logarithm of the octanol-water 
partition coefficient (LogP), and the predicted maximum titer for select products of 
interest. 

Product MW 
[g mol-1] 

LogP Maximum titer 
[g (kg water)-1] 

Uncertainty 
interval 

Ethanol 46 -0.1 102 80–184 
Isobutanol 74 0.68 27 18–42 
n-Butanol 74 0.84 19 12–29 

 
Isobutanol titers reported in literature are 4.9 ± 0.1 g/L (Smith et al., 2010), 2.62 g/L 
(Li et al., 2011), and 10 ± 0.5 g/L (Baez et al., 2011). The ethanol tolerance has 
been reported to be somewhere between 90 g/L and 140 g/L (Pereira et al., 2011). 

8.6.4 Thermodynamic analysis 

The path from pyruvate to isobutanol was analyzed with energy diagrams. An 
energy diagram is a graphical visualization of Gibbs energy changes that are 
somehow connected to each other. Each bar in Figure 8.10 represents one pre-
dicted Gibbs energy change. The six reactions are described in Table (8.2). The 
lumped reactions R2R3 and R4R5 are the sum of the individual reactions R2, R3, 
R4, and R5. The Gibbs energy change for a reaction (ΔrG) is calculated as a sum 
of the Gibbs energies of formation (ΔfGk) for reactants and products weighted by 
their stoichiometric factors (νk) in any given reaction. 

r fk k
k

G GnD = Då
 (8.6.2) 

Five estimates for the transformed Gibbs energies of formation were obtained. 
The Gibbs energy of formation for the gas phase constituents were estimated with 
the methods by Marrero and Gani (MG), by Constantinou and Gani (CG), and by 
Joback and Reid (JR) as implemented by the ProPred software component within 
the ICAS package. The Gibbs energy of solvation was estimated using the COS-



8. Fermentation 
 

120 

MOtherm software. The Gibbs ene rgy of formation for the aque ous constituent 
(ΔfGk,aq) is the sum of the Gibbs energy of formation for the gaseous constituent 
(ΔfGk,g) and the Gibbs energy change of solvation (ΔsGk) according to the relation: 

f ,aq f ,gk k s kG G GD = D + D
 (8.6.3) 

Conventional Gibbs energies are reported on a pa rticular scale where the stand-
ard reference energy of the hydrogen ion is zero at a concentration of 1 M. The 
convention in biochemistry is to use an energy scale where the energy of the 
hydrogen ion is zero at a concentration corresponding to pH 7. Energies on the 
former scale can be translated to energies in the latter scale by the use of a Le-
gendre transform, where the energy of the hydrogen ion is determined from the pH 
and total number of hydrogen component (nH) in the reaction system: 

f ,aq f ,aq H f H,aqk kG G n G¢D = D - D
 (8.6.4) 

( )f H,aq f H,aq ln 10 pHG G RT -D = D +d

 (8.6.5) 

The transformed Gibbs energies of formation have been directly estimated by a 
group contribution method developed by Jankowski et al. (2008). The method is 
largely based on the apparent Gibbs energy changes and apparent equilibrium 
constants found in the Standard Reference Database 74, compiled by the National 
Institute of Standards and Technology (Beckham et al., 2011). A recent group 
contribution approach made from the same data and estimated acidity constants 
(pKa values) will estimate traditional Gibbs energies of formation (Noor, 2011, 
personal communication). 

The aqueous Gibbs energies were also estimated via the solid state by first es-
timating the Gibbs energy of formation for the solid substances and then adding 
estimates for solubility. Since the so lid state prediction method was not directly 
applicable to these compounds, the two alternate ways were chosen for each ad 
hoc extrapolation alternative given. In the end, this did not have that big of an 
effect on the overall predictions. 

The pathway investigated here is the path from pyruvate to isobutanol. The path 
consists of six enzymatically catalyzed reactions, of which two are cata lyzed by 
the same enzyme. The seven metabolites are shown i n Figure 8.9. Reactions 3 
and 6 use NADH, while reactions 1 and 5 produce one carbon dioxide molecule. 
Reaction 4 produces one water molecule. Every isobutanol molecule requires two 
pyruvate molecules. Table 8.1 contains the overall stoichiometry of this path. 
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Figure 8.9. Molecular structures of t he seven metabolites in t he path from py-
ruvate to isobutanol. The metabolite alpha,beta-dihydroxy-isovaleric acid has two 
plausible stereochemical structures. The top row represents the three first reac-
tions and the second row the three last reactions. 

The Gibbs energy changes for reactions in the path from pyruvate to isobutanol 
are calculated from the five estimates of the Gibbs energies of formation and dis-
played in the e nergy diagram in Figure 8.10. The reactions are denoted R1 thru 
R6. The notation R2R3 implies the combination of reactions 2 and 3, i.e. skipping 
an intermediate. These lumped reactions are particularly useful to use when the 
energy of an intermediate could not be generated. 

 

Figure 8.10. An energy diagram of the reactions participating in the path from 
pyruvate to isobutanol. The path has 6 steps, but since thermodynamic properties 
could not be generated for all intermediates, two lumped reactions are also includ-
ed. See text for explanations. 
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As for most biochemical paths, the least thermodynamically feasible reactions 
occur in the beginning of the paths where carbon is committed to the path. Alt-
hough the MG-method overestimates the stability of 3-hydroxy-3-methyl-2-
oxobutanoic acid, the predictions for the combined reaction R2R3 are surprisingly 
similar for all six methods. 

As customary to biochemical paths, the commitment to this pathway in the begin-
ning of it is the thermodynamic bottleneck. The high sensitivity to substrate, enzyme, 
and cofactor concentrations enable optimal control of the flux thru the pathway. 

This path is active at nearly any conditions (pH, NADH/NAD cofactor ratio, total 
concentration). Large amounts of NAD will cause the path to slow down. 

8.6.5 Discussion 

While there is a combinatorial number of ways to use the property predictions by 
ICAS, ACD Labs, and COSMOTHERM, the method above was chosen for having 
the least amount of extra assumptions of ideality or otherwise. The spread in pre-
dictions is large for any given metabolite, but smaller for reactions and Gibbs energy 
changes in general. 

Although a single condition was use to compare the selected prediction meth-
ods, it represents well all conditions considered. The influence of metabolite-
specific concentrations has a marginal effect on all but the rate-controlling enzyme. It 
is concluded that the rate of catalysis is a bigger concern than the feasibility. 

8.6.6 Summary 

Based on the optimal theoretical yield and the stoichiometry of the net path, isobu-
tanol is clearly the better product compared to n-butanol. The production of isobu-
tanol has the greatest potential in an environment with little oxygen. The maximum 
titer for isobutanol was predicted to be around 27 gr ams per kilogram water. The 
path from pyruvate to isobutanol is thermodynamically feasible under a wide range 
of conditions. A single enzyme controls the co mmitment of carbon flux t o this 
pathway and it therefore important for studying the regulation of this path. 
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9. Bark-based bioethanol production 
The process under study was a bark biorefinery depicted in Figure 9.1. It consists 
of hot water extraction of bark at ambient pressure to i solate the bark speciality 
compounds for use in adhesives or fine chemicals. The extract, containing poly-
phenols, stilbenes and mono- and polysaccharides, goes through solids separa-
tion followed by ultrafiltration and stilbene separation. The polyphenols fraction is 
then evaporated and finally spray-dried. The produced crude tannin contains ca. 
25% polysaccharides, mostly glucose, the rest being predominantly tannin and 
tannin-like polyphenols. The extracted and pressed bark is diluted using permeate 
from tannin extract ultrafiltration, neutralized using lime, cooled to 45°C and sent 
to enzymatic hydrolysis. The hydrolysed bark suspension is fermented and t he 
produced alcohol concentrated using distillation. The distillation bottoms are con-
centrated to 30% dry content using multiple effect evaporation that is heat inte-
grated with the distillation column and sent to combustion. 

The extraction of bark is done in a counter-current fashion. The bulk of fresh 
water entering the process is used to dilute and wash the ex tracted bark before 
and during pressing. The filtrate from pressing is recycled back to extraction. 

The main design variables are: 

1. Fresh water intake. It has an influence on the extraction consistency, the 
concentration of dissolved bark component in the crude ex tract and t he 
amount of waste water produced. 

2. Hydrolysis consistency. It has an influence on the sugar concentration after 
hydrolysis and hydrolysis yield. The influence on yield is not considered in 
the present model. 

3. Steam efficiency (kg steam / kg water evaporated) in various evaporation tasks. 

4. Closing of water circulations by evaporating surplus UF-filtrate from tannin 
and stilbene recovery. The closing of water circuits eliminates the cost as-
sociated with waste water treatment and somewhat increases the ethanol 
yield. The decision variables 1 to 3 are continuous, whereas variable 4 is a 
binary one. There is no point of buil ding an evaporation plant t o partially 
close the water circuits. 
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In addition to the above design variables there are a number of uncertain process 
parameters like yields, separation efficiencies, dry contents after solid-liquid sepa-
rations, etc. A third set of parameters influencing the profit function only is com-
posed of the prices of utilities consumed and those of products produced. 

 

Figure 9.1. The Bark Biorefinery. 

As described in Chapter 3.2 the bark biorefinery process was st udied with two 
methods of global sensitivity analysis, namely the method of separating model 
parameters and variables and the Elementary Effects (EE) method. The Elemen-
tary Effects sensitivity analysis was conducted by generating 204 samples (each 
consisting of values for the 33 factors, see Appendix E), simulating all the samples 
and performing post-simulation statistical analyses. In the EE method the post -
simulation analysis comprises of calculating for each factor in two numerical indi-
cators, namely mi and si. These two values are used to determine whether the 
parameter is important or negligible. Typically a so-called (m,s)-plot is used, in 
which each parameter is plotted using its mi as the x-coordinate and si as the y-
coordinate. A typical (m,s) plot is shown in Figure 9.2. An example of Elementary 
Effects (m,s)-plot. The figure also shows typical interpretations of the results. In the 
plot of Figure 9.3 also the codes are shown for the five most important factors. 
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Figure 9.2. An example of Elementary Effects (m,s)-plot. 

 

Figure 9.3. Bark biorefinery EE (m,s)-plot with names of five most important fac-
tors as explained in the text. 
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The conclusion is that factor coded by x29 is by far the most important one. This 
parameter is the steam unit price (€/ton). The next four factors (x3, x28, x30 and x5) 
are the fresh water feed to leaching, fuel price, tannin price and steam consump-
tion in the evaporation. 

The conclusion of the Elementary Effects analysis is well in line with the previ-
ous bark biorefinery sensitivity analyses. 
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10. The comparison of greenhouse gas 
emissions from barley straw based 
ethanol and butanol 

The aim of this study was to assess the difference between the greenhouse gas 
(GHG) emissions of ethanol and butanol by i nterpreting the RED methodology. 
First, the greenhouse gas emissions of both bioliquids were calculated separately. 
Then the difference between the GHG emissions of ethanol and butanol was de-
duced. The values for the necessary parameters were gathered from literature 
sources. When no reliable data was found, the parameters were assumed roughly 
based on expert guesses. The default values for process parameters of biofuel 
processing are derived from in-house data of VTT. The uncertainty analysis was 
carried out using a stochastic Monte Carlo simulation. The results for the GHG 
emissions of ethanol and butanol and the difference between them are presented 
as probability distributions. 

10.1 Concept description 

The main features of ethanol and butanol processes are outlined in Figure 10.1. 
The raw material for these bioliquids was assumed to be barley straw. First, the 
barley straw is mill ed to small pieces and then the milled straw is bl ended with 
water. Pretreatment is necessary to allow the enzymes to hydrolyse the cellulose 
to monometric sugars. The selected pretreatment method is steam explosion with 
addition of acid catalyst H2SO4 (sulphuric acid). Then the raw material flow is 
diluted with water and the pH is adj usted with NaOH (sodium hydroxide). Enzy-
matic hydrolysis converts the hemicelluloses and the celluloses to monometric 
sugars which are then fermented by yeast. In the process the solid residue (co-
product 1) is filtrated from the product flow before ethanol or butanol is distilled. 
The residue f rom distillation (co-product 2) is concentrated in the evaporation 
plant. The ethanol/butanol process is integrated to combined heat and power 
(CHP) plant. 
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Figure 10.1. Simplified block diagram of ethanol and butanol processes. Fermen-
tation and distillation unit processes (marked in green) are different in ethanol and 
butanol processes while the rest are identical. 

The process parameters for ethanol and butanol processes are presented in Table 
10.1. The plant capacity is 160 000 tons of straw in dry matter per year. The oper-
ation rate of the plant was assumed to be 95%. 

Table 10.1. Process parameters for ethanol and butanol processes. 

Name Unit Min. 
value 

Default 
value 

Max. 
Value 

Distribu-
tion 

Utilization rate of the plant % 90% 95% 99% Beta 
Electricity consumption of milling kW 203 290 377 Normal 
Yield of milled straw % 98% 99% 100% Beta 
Consumption of high pressure steam 
(200°C) in pretreatment MW 10 15 19 Normal 

Consumption of H2SO4  g/kgd.m 1,75 2,50 3,25 Normal 
Consumption of NaOH  g/kgd.m 20,51 29,30 38,09 Normal 
Electricity consumption of pretreatment kW 21 30 39 Normal 
Consumption of enzymes g/kgd.m 136 194 252 Normal 
Electricity consumption of hydrolysis kW 21 30 39 Normal 
Electricity consumption of fermentation kW 581 830 1079 Normal 
Low pressure steam (85°C) from pre-
treatment to fermentation MW 2,0 2,9 3,8 Normal 

Consumption of low pressure steam 
(85°C) in fermentation MW 1,8 2,5 3,3 Normal 

Consumption of yeast g/kgd.m 211 301 391 Normal 
Bioliquid loss included in co-product 1 g/kgd.m 5 10 20 Weibull 
Yield of co-product 1 gd.m/kgd.m 358 512 666 Normal 
Yield of dilute ethanol gd.m/kgd.m 139 199 258 Normal 
Yield of dilute butanol gd.m/kgd.m 119 170 221 Normal 
Consumption of middle pressure steam 
(140°C) in distillation of ethanol  MW 7 10 13 Normal 

Consumption of middle pressure steam MW 12,6 18 23,4 Normal 

Milling and 
blending

Thermal
pretreatment

Enzymatic
hydrolysis

FermentationFiltrationDistillation & 
Absolution
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Name Unit Min. 
value 

Default 
value 

Max. 
Value 

Distribu-
tion 

(140°C) in distillation of butanol  
Yield of bioliquid in distillation % 92% 95% 98% Beta 
Yield of co-product 2 gd.m/kgd.m 213 304 395 Normal 
Low pressure steam (100°C) from 
pretreatment to evaporation MW 8,1 11,5 15,0 Normal 

Consumption of low pressure steam 
(100°C) in evaporation MW 7,2 10,3 13,4 Normal 

Electricity consumption of evaporation kW 63 90 117 Normal 
Yield of co-product 2 from evaporation % 96% 97% 98% Beta 

 

10.2 Parameters for GHG emission calculations 

10.2.1 Emissions from the cultivation of raw materials 

According to the RED, emissions from the cultivation of raw materials shall include 
emissions from the cultivation process itself; from the collection of raw materials; 
from waste and leakages; and from the production of chemicals or products used 
in the cultivation. 

It has been estimated that collection of straw diminishes the soil nitrous oxide 
emissions. For example Malhi et al. (2006), Malhi & Lemke (2007) and Gregorich 
et al. (2005) have studied these emissions. The N2O emissions depends e.g. on 
precipitation, fertilization and soil type. In this study the figures used for N2O loss 
per hectare are based on Malhi & Lemke (2007) because no country-specific data 
for Finland was available. At the same time the carbon balance of the field is esti-
mated to reduce due to straw collection. The changes in soil carbon stocks due to 
raw material cultivation or harvesting have not been considered in the default 
values of the RED. Neither does RED give instructions on how to calculate these 
emissions or which time frame to use in calculations. Despite the lack of instruc-
tions, these emissions were taken into account in this study, because they ar e 
closely related to the emissions from the cultivation of raw materials. In this study 
it was estimated that after 20 years 19% of the carbon from straw is still remaining 
in the soil if the straw is left on soil. This figure is based on Swedish COUP-model 
(Jansson & Karlberg 2001; Salo, 2007). 

The loss of nutrients in the soil due to collecting of straw is compensated by fer-
tilization. The amount of fertilizer needed to compensate the loss was estimated 
using figures presented in Malhi and Lemke (2007). The emissions from the 
manufacturing of fertilizers are based on Mäkinen et al. (2006). The emissions 
from production and transportation of the fertilizer, and the direct and indirect N2O 
emissions from soil were taken into account (Mäkinen et al., 2006). 

The emissions from straw collecting and t ransportation, from fertilization, from 
changes in soil carbon stock and emission saving from diminished N2O emissions 
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are presented in Table 10.2. Emissions from straw collection and transportation 
are based on Mäkinen et al. (2006). The emissions from diesel fuel production, 
distribution and dispensing are based on Edwards et al. (2007). The CO2 emissions 
from diesel fuel use were calculated using emissions coefficient of 68 gCO2/MJ 

(Statistics Finland, 2007). CH4 and N2O emissions estimates were 0.16 and 1.12 g/MJ 
respectively. The lower heating value used for diesel was 42.9 MJ/kg and the 
density 830 g/l. 

Table 10.2. Parameters for the emission calculation from cultivation of raw materials. 

Name Unit Min. 
value 

Default 
value 

Max. 
Value 

Distri-
bution 

N2O emission saving due to straw collecting gN/ha -50 25 143 Weibull 
Collecting rate of straw % 60% 70% 80% Normal 
Yield of straw kgwet/ha 1450 3603 6100 Normal 
Yield of straw per hectare kg/ha 1041 1225 1409 Normal 
Moisture content of straw % 12% 13% 14% Beta 
Heating value of straw as received MJ/kg 16,7 17,1 17,4 Normal 
Increased amount of fertilization due to straw 
collecting kgN/ha 2 14 27 Weibull 

Carbon content of straw % 45% 46% 47% Beta 
Carbon remaining in soil after 20 years if straw 
isn't collected % 0% 10% 19% Beta 

CO2 emissions from fertilizer production kgCO2/t 455 506 557 Normal 

N2O emissions from fertilizer production kgN2O/t 1,5 2,0 3 Normal 

CH4 emissions from fertilizer production kgCH4/t 0,1 0,2 0,2 Normal 

Diesel consumption in transportation of fertilizers g/t, km 18,5 22,4 29,9 Weibull 

Diesel consumption in collecting of straw l/MWh 0,6 0,8 0,9 Normal 
Diesel consumption in transportation of straw l/MWh 0,5 1,0 2,0 Weibull 
Diesel consumption in breaking of bundles  l/MWh 0,9 1,0 1,1 Normal 
N2O emissions from soil gN2O/kgN 4 26 112 Weibull 
Emissions from production of diesel fuel tCO2eq/l 2953 3281 3609 Normal 

10.2.2 Emissions from processing 

In the production of ethanol and butanol, emissions from processing stage consist 
of electricity and steam generation, and manufacturing of yeast, enzymes, sul-
phuric acid and sodium hydroxide. Parameters for these emissions are presented 
in Table 10.3. 

In case 1 the electricity is supplied from outside to the bioliquid production plant, 
whereas in case 2 it is assumed to be prod uced within the production plant. The 
RED defines that in accounting for the consumption of electricity not produced 
within the fuel production plant, the greenhouse gas emission intensity of the pro-
duction and distribution of that electricity shall be assumed to be equal to the av-
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erage emission intensity of the production and distribution of electricity in a defined 
region (EC, 2009). The annual production-based CO2 emission intensities of elec-
tricity consumption between 2000 and 2008 in the Nordic countries (lower limit), 
Finland (default value) and EU-27 (upper limit) were used (Soimakallio & Saikku 2012). 
The emissions of sulphur acid and sodium hydroxide are based on Mäkinen et al. 
(2006). The emissions from enzyme production are based on Ecoinvent (2010) 
and emissions from yeast production are based on Nielsen et al. (2007). 

In both cases the steam is provided by CHP plant combusting the two ligneous 
co-products. The need for start and back-up fuel was estimated to be 1% of the 
energy content of the co-products. Heavy fuel oil was assumed to be start and 
back-up fuel. 

Table 10.3. Emissions from chemical inputs to the process. 

Name Unit Min. 
value 

Default 
value 

Max. 
Value 

Distri-
bution 

Emissions from H2SO4 kgCO2/kg 137 195 254 Normal 
Emissions from NaOH kgCO2/kg 836 1195 1553 Normal 
Emissions from yeast production kgCO2eq/kg 0,51 1,01 1,52 Normal 
Emissions from enzyme production kgCO2eq/kg 1 6 10 Normal 

10.2.3 Emissions from transportation and distribution 

According to Edwards et al. (2007) emissions from diesel fuel transportation and 
distribution equals 1.1 gCO2eq/MJ. This figure i ncludes emissions from transport 
(barge, rail, and pipeline), depot, distribution and dispensing. It was assumed that 
there is no difference in corresponding emissions of ethanol and butanol com-
pared to diesel fuel. These emissions were assumed to be normally distributed 
within the uncertainty range of ±30%. The heating values for ethanol and butanol 
are 27 MJ/kg and 33 MJ/kg, respectively. 

10.2.4 Emission saving from excess electricity from cogeneration 

The emission saving from excess electricity from cogeneration shall be taken into 
account when the fuel used for cogeneration is an agricultural crop residue (EC, 
2009). Straw is an ag ricultural residue but in both cases the CHP plant uses co-
products 1 and 2 for cogeneration which actually are not straw but li gneous co-
products of the process. Thus it is not clear whether these ligneous co-products 
should be handled as agricultural crop residue. The emission saving from excess 
electricity cogeneration was assumed to be taken into account. 

According to t he RED when calculating the excess electricity, the size of the 
cogeneration unit should be assumed to be the minimum necessary for the co-
generation plant to supply the heat that is needed in processing the fuel. The 
greenhouse gas emission saving should be taken to be equal to the amount of 
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greenhouse gases that would emitted when the equal amount of electricity is pro-
duced in a power plant using the same fuel as the cogeneration plant. (EC, 2009.) 

The emission saving was calculated assuming that straw is used in power plant 
to produce the same amount of electricity than the excess electricity from cogen-
eration. The efficiency for electricity production is based on the harmonised effi-
ciency reference value for separate production of electricity from agricultural bio-
mass in a production plant that is constructed between 2006 and 2011 (COM 
2007). The CH4 and N2O emission factors are based on Tsupari et al. (2007). The 
emission saving consists of emissions from straw collecting and transportation, 
fertilization, and changes in soil carbon stocks and the loss of N2O emissions due 
to straw collection. The rest of the parameters needed in the calculation of the 
emission saving are presented in Table 10.4 (most of the parameters are already 
presented in Chapter 10.2.1 and they are not represented here). 

Table 10.4. Parameters for the calculation of the emission saving from excess energy. 

Name Unit Min. 
value 

Default 
value 

Max. 
Value 

Distri-
bution 

Emissions from electricity production gCO2/kWh 96 221 449 Uniform 
Consumption of HFO  % 0,5% 1% 4% Beta 
Primary energy need in HFO production kJprim/MJ 979 1088 1197 Normal 
Emissions from HFO production gCO2eq/MJ 77 86 95 Normal 
Boiler efficiency % 0,80 0,88 0,96 Normal 
Electricity efficiency in CHP plant % 35% 40% 45% Beta 
Electricity efficiency in condense power plant % 20% 23% 25% Beta 
Heating value of co-products in dry matter MJ/kg 19 21 22 Normal 
N2O emissions from combustion of co-products mgN2O/MJ 0 5 10 Normal 
N2O emissions from combustion of straw mg/MJfuel 1 2 6 Weibull 
CH4 emissions from combustion of straw mg/MJfuel 0,5 1,0 3,2 Weibull 
 

10.3 Results 

The results are presented as probability distributions. In case 1 (Figure 10.2), 
where the production plant and the CHP pl ant are considered as independent 
units, the emissions of butanol are slightly higher than emissions of ethanol in 
corresponding process. The small difference is due to a smaller yield of butanol 
and a greater energy demand in distillation of butanol compared with distillation of 
ethanol. The difference between the emissions of butanol and ethanol as per 
cents in cases 1 and 2 are presented in Figure 10.4 
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Figure 10.2. Emissions from ethanol and butanol production in case 1 where the 
production plant and the CHP plant is considered as independent units. 

In case 2 (Figure 10.3), where the production plant and the CHP plant are consid-
ered as one combined unit, the emissions of butanol are significantly higher than 
the emissions of ethanol. The greater difference is mainly due to a system bound-
ary setting. The butanol process consumes more steam than the ethanol process. 
Due to higher steam consumption, the amount of electricity sold to t he grid is 
smaller in butanol case than in ethanol case. This leads to different results. 

 

Figure 10.3. Emissions of ethanol and butanol in case 2 where the production 
plant and the CHP plant are considered as one combined unit. 
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Figure 10.4. The difference of emissions from butanol production compared with 
ethanol production in case 1 and 2. Positive values indicate that the emissions of 
butanol are higher compared to those of ethanol. 

The contribution of each parameter to the result was measured using Spearman’s 
rank correlation. Only the correlations that have absolute value more or equal to 
0.1 are presented in Table 10.5. In case 1 for both butanol and ethanol processes 
the most significant parameters are the amount of carbon remaining in the soil, the 
increased amount of fe rtilization, N2O emissions from soil, and emissions from 
enzyme production. In c ase 2 the most significant parameters are yield of co-
products, yield of ethanol/butanol and, emissions from enzyme production. The 
most significant parameters contributing the difference in emissions between eth-
anol and butanol are the yield of ethanol/butanol and the consumption of middle 
pressure steam in distillation. 
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Table 10.5. Spearman’s rank correlations for each case. 

Name  Ethanol 
case 1 

Butanol 
case 1 

Ethanol 
case 2 

Butanol 
case 2 

Differ-
ence 

case 1 

Differ-
ence 

case 2 
Carbon remaining in soil after 20 
years if straw isn’t collected 

0,573 0,563 0,279 0,301   

Increased amount of fertilization 
due to straw collecting 

0,354 0,355 0,161 0,182   

N2O emissions from soil 0,343 0,346 0,16 0,186   
Emissions from enzyme production 0,33 0,338 0,35 0,305   
Yield of dilute ethanol -0,277  -0,307  0,708 0,537 
Yield of co-product 2 -0,246 -0,27 -0,327 -0,326   
Yield of co-product 1 -0,126 -0,13 -0,479 -0,468   
Heating value of co-products in 
dry matter 

  -0,228 -0,215   

Consumption of high pressure 
steam (200°C) in pretreatment 

  0,203 0,191   

Boiler efficiency   -0,161 -0,182   
Consumption of low pressure 
steam (100°C) in evaporation 

  0,155 0,137   

Electricity efficiency in CHP plant   -0,138    
Consumption of middle pressure 
steam (140°C) in distillation of 
ethanol 

  0,1   -0,239 

Consumption of middle pressure 
steam (140°C) in distillation of 
butanol 

   0,233 0,1 0,426 

Yield of dilute butanol  -0,274  -0,322 -0,656 -0,579 

10.4 Summary and inference 

The renewable energy directive (RED) of t he EU sets mandatory targets to in-
crease the use of renewable energy by 2020 in the EU Member States. The RED 
introduced sustainability criteria for transportation biofuels and other bioliquids in 
order to ensure that their increasing production does not cause serious environ-
mental and social problems. As a part of these criteria, the first ever mandated 
methodology was introduced to calculate GHG emission reductions resulting from 
the use of biofuels instead of fossil fuels. The main objective of this paper was to 
calculate the difference in GHG emissions of ethanol and butanol in corresponding 
process by applying the methodology provided in the RED. The bioliquid production 
was assumed to be integrated into a combined heat and power production (CHP) 
plant. The sensitivities and uncertainties were studied by setting various system 
boundaries and using stochastic modelling to explore the parameter uncertainty. 

The emissions of butanol were overall higher than the emissions of ethanol. 
The difference is mainly due to a lower energy yield and higher consumption of 
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steam in distillation of butanol compared with ethanol. 20 year time frame was 
used for changes in soil carbon balances in every studied case. If the time frame 
is expanded, for example to 100 years, the emissions of ethanol and butanol 
would decrease significantly. Consideration of the bioliquid process and the CHP 
plant as one combined unit increases the emissions of ethanol and butanol. This is 
due to the fact that more emissions from CHP plant are attributed to the buta-
nol/ethanol than when the units are considered separately. Though the setting of 
system boundary affects the results, the emissions of butanol seem to be higher 
than the emissions of ethanol despite the chosen calculation method. 

The RED leaves room for setting various system boundaries and parameters. 
These may have significant impact on the GHG performance of biofuel or bioliq-
uid. It is possible that two different biofuel chains with no significant differences in 
their characteristics give totally different emission results. In order to avoid this 
kind of situation more specific guidelines on setting the syst em boundaries and 
selecting the parameters for the calculation of actual GHG performance values of 
biofuels or bioliquids should be published to support the RED. 

Liable actors may under certain conditions use the d efault values for GHG 
emissions and emission saving for the biofuels and other bioliquids provided in the 
RED. The default greenhouse gas emission saving of wheat straw ethanol is 85% 
(EC, 2009). The production of wheat straw ethanol can be seen as a very similar 
bioliquid process as barley straw ethanol considered in this study. The default 
value for emission reduction given in the RED is significantly higher than the re-
sults of this study, due to different assumptions. For example, changes in soil 
carbon stocks due to raw material cultivation or harvesting have not been consid-
ered in the default values of the RED. Thus, it could be justified to ignore them 
also when calculating actual GHG emissions. However, the treatment of changes 
in soil carbon balances influences the results. The appropriate time frame and 
method to account for changes in soil carbon balances should be fixed in the 
framework of the RED. 

The difference between the emissions of ethanol and butanol is highly depend-
ent on the yield of bioliquids and the energy demand in distillation. More accurate 
process data is needed in order to determine which bioliquid process produces 
less greenhouse gas emissions. In addition, not much emission data was available 
for enzymes and yeast. Especially, the emissions from enzyme production have 
relatively high contribution to the results. Therefore, the data for emissions from 
enzyme and yeast production should be more accurate. 
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11. Conclusions 
The Biorefinery will eventually be a production plant consisting of separate unit 
operations and processes. For their modelling, not only the structure and dimen-
sions of the various devices must be known, but it is essential to know the meces-
sary material properties as well as chemical reaction rate parameters of the bio-
based process streams. Some of the less well known biorefining unit processes 
were studied in terms of these properties and parameters. The chosen unit pro-
cesses were flash condensation of the fast biomass pyrolysis, thermal and en-
zyme catalysed hydrolysis of lignocellulosic biomass as well as fermentation of the 
forest biomass hydrolysis product. In addition, a flowsheet based mass and ener-
gy balance was developed for the bark biorefinery, the key factors of which were 
then assessed by using the El ementary efficiency sensitivity analysis. With the 
results from hydrolysis and fermentation models, a comparison of the greenhouse 
gas emissions from barley straw based ethanol and butanol was eventually made. 

The biorefining processes appear generally similar to those found in petrochemical 
and biochemical industries; yet they include often a great number of molecules and 
their mixtures and many times as more or less dilute aqueous solutions. The reaction 
rates are often affected by mixture complexity or enzyme saturation. In general, how-
ever, dilute solutions and complex mixtures make down stream processing more de-
termining for overall profitability than the reaction rates of bioprocesses. 

In cases where the molecules as well as reactive processes and pathways can 
be identified, it is possible to use advanced estimation methods for their physico-
chemical properties. However, such complex mixtures as pyrolysis condensates it 
appears to be quite t edious to distinguish the sali ent components, which then 
could be utilised as representative for the modelling of desired unit operations. It 
remains a further challenge to develop reliable models to these mixtures to be 
utilised for e.g. the subsequent upgrading or fractionation processes. 

Metamodelling could be used to support some of the necessary sensitivity anal-
ysis of the numerous model parameters while preparing for optimisation tasks; yet 
it was concluded that the phenomenon-based physicochemical modelling of the 
biorefining processes most often requires nonlinear mathematics and discontinui-
ties e.g. due to phase changes. Such phenomena are difficult to i nclude in the 
present metamodelling techniques and their modelling is in general well taken 
care of in chemical engineering methods. 
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With reasonable assumptions, flowsheet energy and mass balance modelling of 
the biorefinery becomes possible, sometimes also by using (unphysical) correla-
tion or metamodels for those stages, to which a reliable phenomenon-based phys-
ical model is not accessible. Due to the great number of parameters, a sensitivity 
analysis is needed to support right conclusions. The model results are best ap-
plied for life-cycle and emission impact assessments. 
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12. Report summary 
Biorefining unit processes were studied in terms of their physicochemical model-
ling properties and parameters. The material properties were estimated by using 
available equilibrium data for selected model compounds. The assessment was 
made by using the pr ograms Aspen, ICAS, Cosmo-RS and Cosmo-SAC. The 
properties and parameters were further used in appropriate equation of state 
(EOS) models for the fla sh condensation of t he fast biomass pyrolysis, thermal 
and enzyme catalysed hydrolysis of lignocellulosic biomass and f ermentation of 
the hydrolysis product to bioethanol and biobutanol. Reaction kinetic modelling 
was applied for a number of unit processes including hydrodeoxygenation of the 
pyrolysis condensate, hydrothermal processing of lignocellulosisc biomass as well 
as for its low-temperature hydrolysis and fermentation of the hydrolysis solution. 
Optimisation of the fermentation model parameters was performed in co-operation 
with Carnegie-Mellon University. 

Surrogate metamodelling could be used t o support the necessary sensitivity 
analysis of model parameters while preparing for optimisation tasks; yet it was 
concluded that the phenomenon-based physicochemical modelling of the biorefin-
ing processes most often requires nonlinear mathematics and discontinuities e.g. 
due to phase changes, which are difficult to include in the present metamodelling 
techniques. 

A mass and energy balance based cost estimation model was constructed for 
the biorefinery using bark as feedstock. A comparison of CO2 emission from 
(straw-based) bioethanol and biobutanol production was made on the basis of the 
aforementioned fermentation models. The bark-based biorefinery producing main-
ly tannin and ethanol proved economically challenging. The results also show that 
biobutanol is in general more demanding (in terms of greenhouse gas emissions) 
than production of bioethanol. The viability of the chemical engineering simulation 
methodology in mode lling the unit operations and processes of the biorefinery 
could be asse ssed. More work, however, is needed to gain a reliable material 
property base for such simulations, as well as f or appropriate recognition of t he 
dominant modelling parameters. 
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1,2-Ethanediol Acetic acid -0.1343 -0.0648 39.8 46.0 122.7 15 xTp 363.2 363.2 1.4 39.7 Schmid B. et al., Fluid Phase Equilib.,  
2007, 258, 115–124 

1,2-Ethanediol m-Cresol -0.0350 -0.0080 18.2 10.6 5.1 13 xyTp 468.2 475.6 101.3 101.3 Othmer D. F. et al., Ind. Chem. Chem., 
1949, 41, 572 

1,2-Ethanediol Methane 0.0431 0.1653 135.6 123.8 204.1 6 xTp 398.2 398.2 135.0 18170.0 Jou F. -Y. et al., The Canadian J Chem 
Eng., 1994, 72, 130–133 

1,2-Ethanediol p-Cresol -0.0343 0.0096 18.5 8.0 4.5 13 xyTp 467.9 475.2 101.3 101.3 Othmer D. F. et al., Ind. Chem. Chem., 
1949, 41, 572 

Benzaldehyde m-Cresol -0.0195 -0.0432 7.0 6.9 20.0 3 xyTp 389.2 409.9 13.3 13.3 Vosrikova V. N. et al., Khim. Prom.  
(Moscow), 1978, 5, 345 

Benzaldehyde o-Cresol -0.0135 -0.0300 24.0 25.0 25.8 7 xyTp 409.5 415.9 26.7 26.7 Vostrikova V. N. et al., Zh. Prikl. Khim. 
(Leningrad), 1980, 53, 2763 

Benzaldehyde p-Cresol -0.0145 -0.0300 7.3 12.7 10.5 4 xyTp 390.3 408.1 13.3 13.3 Vostrikova V. N. et al., Zh. Prikl. Khim., 
1980, 53, 2118 

Benzaldehyde Phenol -0.0185 -0.0488 12.6 19.8 13.2 6 xyTp 388.3 395.4 13.3 13.3 Vostrikova V. N. et al., Zh. Prikl. Khim., 
1978, 51, 211 

Benzene Acetic acid -0.0574 0.0810 43.3 26.0 20.0 17 xyTp 352.8 391.4 101.3 101.3 Haughton C. O., Brit. Chem. Eng.,  
1967, 12, 1102 

Benzene Benzaldehyde 0.0079 0.0145 25.4 24.5 28.4 21 xTp 413.7 413.7 35.5 480.9 Nienhaus B. et al., J. Chem. Eng. Data, 
1998, 43, 941–948 

Benzene Cyclohexane 0.0145 0.0216 2.1 1.5 4.2 11 xyTp 423.2 423.2 58.2 604.3 Wisniewska B. et al., Fluid Phase Equilib., 
1993, 86, 173 

Benzene Cyclohexene 0.0094 0.0167 1.5 2.5 5.7 15 xyTp 352.1 355.3 98.7 98.7 Harrison J. M. et al., Ind Eng Chem., 
1946, 38, 117 

Benzene m-Cresol 0.0059 0.0091 37.3 40.0 50.1 11 xTp 353.3 474.7 101.3 101.3 Piatti L., Z. Phys. Chem., 1930, 152, 36 
Benzene Methylcyclo-

hexane 
0.0120 0.0118 13.1 13.2 14.8 7 xTp 353.2 353.2 53.6 101.0 Van Pham S., Thesis Leipzig, 1983 
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Benzene Phenol -1.0683 -2.1148 1094.9 1068.5 1834.2 17 xTp 413.6 413.6 30.2 480.3 Nienhaus B. et al., J. Chem. Eng. Data, 
1998, 43, 941–948 

Benzene Toluene 0.0024 0.0048 6.3 5.0 7.0 11 xTp 393.2 393.2 129.7 299.0 Schmidt G. C., Z. Phys. Chem.,  
1926, 121, 221 

Benzene Water -0.0945 -0.1941 1588.4 1580.2 1966.3 4 xTp 298.0 473.0 5000.0 5000.0 Mathis J. et al., J. Chem. Eng. Data, 
2004, 49, 1269–1272 

Carbon dioxide 1,2-
Ethanediol 

-0.0525 -0.1715 1120.7 991.0 1114.8 9 xTp 398.2 398.2 960.0 38400.0 Zheng D.-Q. et al., Fluid Phase Equilib., 
1999, 155, 277–286 

Carbon dioxide Acetic acid 0.0335 0.0195 95.3 104.8 104.7 7 xyTp 353.2 353.2 2100.0 11100.0 Bamberger A. et al., Journal of Supercritical 
Fluids, 2000, 17, 97–110 

Carbon dioxide Benzaldehyde 0.0836 0.0466 67.7 36.6 100.6 9 xyTp 393.2 393.2 6170.0 22340.0 Walther D., Maurer G., Ber. Bunsen-Ges. 
Phys. Chem., 1992, 96, 981–988 

Carbon dioxide Benzene 0.1172 0.1135 79.0 68.7 81.9 16 xyTp 344.3 344.3 6895.0 10920.0 Nagarajan N., Robinson R. L. Jr., J. Chem. 
Eng. Data, 1987, 32, 369–371 

Carbon dioxide Catechol 0.0391 -0.0419 30.3 23.2 460.2 5 xyTp 473.2 473.2 1013.3 5066.3 Yau J., Tsal F., J. Chem. Eng. Data, 
1992, 37, 141–143 

Carbon dioxide Cyclohexane 0.1488 0.1288 59.7 39.2 123.7 14 xyTp 344.3 344.3 6870.0 10930.0 Nagarajan N., Robinson R. L. Jr., J. Chem. 
Eng. Data, 1987, 32, 369–371 

Carbon dioxide Ethanol 0.0455 0.0977 162.5 64.7 63.3 11 xyTp 344.8 344.8 800.0 11930.0 Joung S. N. et al., Fluid Phase Equilibria, 
2001, 185, 219–230 

Carbon dioxide Ethyl acetate -0.0339 -0.0617 121.1 141.5 247.3 7 xyTp 393.0 393.0 5060.0 11970.0 Tian Y.-L. et al., J. Chem. Eng. Data, 
2004, 49, 1554–1559 

Carbon dioxide Guaiacol 0.0834 0.0512 66.0 57.5 344.5 10 xyTp 393.2 393.2 2000.0 20000.0 Lee M. et al., Fluid Phase Equilibria, 
1999, 162, 211–224 

Carbon dioxide Methanol 0.0167 0.0685 95.5 55.7 72.5 13 xyTp 342.8 342.8 670.0 12390.0 Joung S. N. et al., Fluid Phase Equilibria, 
2001, 185, 219–230 
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Carbon dioxide Methyl 
acetate 

-0.0287 -0.0528 72.6 46.2 39.5 11 xyTp 313.2 313.2 735.0 7974.6 Ohgaki K., Katayama T., J. Chem. Eng. 
Data, 1975, 20, 3, 264–267 

Carbon dioxide Methylcyclo-
hexane 

0.1782 0.1492 225.9 241.6 264.4 11 xTp 302.2 302.2 577.0 6484.0 Nasrifar Kh. et al., Fluid Phase Equilibria, 
2003, 204, 1–14 

Carbon dioxide p-Cresol 0.0803 0.0709 48.4 35.9 98.3 10 xyTp 423.2 423.2 2000.0 20000.0 Lee M. et al., Fluid Phase Equilibria, 
1999, 162, 211–224 

Carbon dioxide Phenol 0.0731 0.0666 19.3 16.7 237.6 5 xyTp 423.2 423.2 1013.3 5066.3 Yau J., Tsal F., J. Chem. End. Data, 
1992, 37, 141–143 

Carbon dioxide Toluene 0.1108 0.1171 37.0 24.9 59.3 8 xyTp 477.0 477.0 1179.0 15223.6 Ng H.-J., Robinson D. B., J. Chem. Eng. 
Data, 1978, 23, 325–327 

Carbon dioxide Water -0.0660 0.1245 102.9 44.1 24.0 7 xyTp 598.2 598.2 14999.8 43499.3 Takenouchi S., Kennedy G. C., Am. J. Sci., 
1964, 262, 1055 

Cyclohexane Acetic acid -0.0118 0.0941 39.0 46.5 42.4 12 xyTp 352.0 391.3 101.3 101.3 Baradarajan A, Satyanarayana M., Indian J. 
Technol., 1967, 5, 264 

Cyclohexane Cyclohexene 0.0028 0.0066 1.8 3.9 1.7 21 xyTp 353.8 355.9 101.3 101.3 Marrufo B. et al., Fluid Phase Equilibria, 
2009, 279, 1, 11–16 

Cyclohexane Guaiacol -0.0238 -0.0280 22.2 19.5 212.5 11 xTp 323.2 323.2 32.6 36.2 Ksiazczak A., Kosinski J. J., J. Chem. Eng. 
Data, 1991, 36, 351 

Cyclohexane m-Cresol -0.0001 -0.0030 99.0 107.2 86.5 9 xTp 313.2 313.2 21.7 24.5 Azimi-Pour H., Rev. Inst. Fr. Pet. Ann. 
Combust. Liq., 1960, 15, 1–52 

Cyclohexane Methylcyclo-
hexane 

0.0024 0.0025 22.5 22.1 25.2 8 xyTp 356.8 371.5 101.3 101.3 Richards A. R., Hargreaves E., Ind. Eng. 
Chem., 1944, 36, 9, 805–808 

Cyclohexane Toluene 0.0053 0.0113 5.5 5.2 11.2 15 xyTp 420.1 451.1 506.6 506.6 Chen G. et al., J. Chem. Ind. Eng. (China), 
1994, 45, 94 

Ethanol 1,2-
Ethanediol 

-0.0135 -0.0049 17.6 28.2 46.1 11 xyTp 351.5 470.5 101.3 101.3 Li J. et al., Fluid Phase Equilibrium, 
2000, 169, 75–84 

A3 

Appendix A: Binary interaction param
eters for PC

-SAFT, SR
K m

odel, 
param

eter fitting accuracy, experim
ental data used for the fitting



 

 

1s
t c

om
p 

2n
d 

co
m

p 

PC
-S

A
FT

 k
_i

j 

SR
K

 k
_i

j 

PC
-S

A
FT

 e
rr

or
 * 

SR
K

 e
rr

or
* 

PS
R

K 
er

ro
r *

 

# 
po

in
ts

 

Q
ua

lit
y 

T 
an

ge
 (K

) 

p 
ra

ng
e 

(k
Pa

) 

Source 

Ethanol Acetic acid -0.0794 -0.0559 13.3 20.3 74.6 16 xyTp 353.4 388.2 101.3 101.3 Amer Amezaga S., Fernandez Biarge J., An. 
Quim. 1973, 69, 569 

Ethanol Benzene 0.0076 0.1212 31.5 14.0 14.8 11 xyTp 388.0 408.4 446.1 446.1 Ellis S. R. M., Clark M. B., Chem. Age India, 
1961, 12, 377 

Ethanol Catechol 0.0067 0.0928 136.1 110.2 341.4 5 xTp 290.2 290.2 2.0 4.1 Weissenberger G. et al., Monatsh. Chem., 
1925, 46, 471 

Ethanol Cyclohexane 0.0460 0.1090 11.4 37.7 21.4 14 xyTp 347.4 350.5 101.3 101.3 Zhao J. et al., Fluid Phase Equilibria, 
2006, 242, 147–153 

Ethanol Guaiacol -0.0954 -0.0129 75.3 58.5 84.9 6 xTp 290.2 290.2 1.0 3.6 Weissenberger G. et al., Monatsh. Chem., 
1925, 46, 471 

Ethanol Hydrogen -6.0337 -
14.6570 

2624.1 2627.0 3343.0 8 xTp 498.2 498.2 33300.0 10290.0 Brunner E., Hueltenschmidt W., J. Chem. 
Thermodyn., 1990, 22, 73–84 

Ethanol m-Cresol -0.1470 -0.0782 101.8 66.5 64.6 11 xTp 351.5 474.7 101.3 101.3 Piatti L., Z. Phys. Chem., 1930, 152, 36 
Ethanol Methylcyclo-

hexane 
0.0496 0.1170 9.6 57.3 9.4 22 xyTp 345.3 368.8 101.3 101.3 Sànchez-Russinyol M. d. C. et al., J. Chem. 

Eng. Data, 2004, 49, 1258–1262 
Ethanol o-Cresol -0.1090 -0.0143 64.8 13.2 103.9 14 xTp 350.1 461.9 95.8 95.8 Prasad T. E. V. et al., Fluid Phase Equilib., 

2006, 244, 86–98 
Ethanol p-Cresol -0.1504 -0.0729 75.1 57.5 74.3 12 xTp 350.0 472.9 95.2 95.2 Prasad T. E. V. et al., Fluid Phase Equilib., 

2006, 244, 86–98 
Ethanol Phenol -0.0977 -0.0253 58.3 27.9 83.2 6 xTp 288.2 288.2 0.8 3.2 Weissenberger G. et al., Monatsh. Chem., 

1924, 45, 425 
Ethanol Toluene 0.0235 0.0998 11.2 26.9 17.1 12 xyTp 349.7 383.7 101.3 101.3 Aleykutty T. K., Srinivasan D., Indian J., 

Technol., 1975, 13, 345 
Ethanol Water -0.0254 -0.1045 9.7 15.0 12.9 19 xyTp 409.9 435.3 666.9 666.9 Otsuki H., Williams F. C., Chem. Eng. Data 

Series, 1953, 49, 55 
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Ethyl acetate Acetic acid -0.2068 -0.0351 75.2 40.4 66.3 26 xyTp 350.6 388.9 101.3 101.3 Calvar N. et al., Fluid Phase Equilibria, 
2005, 235, 215–222 

Ethyl acetate Benzene -0.0407 0.0043 6.3 1.2 2.8 19 xyTp 350.3 353.2 101.3 101.3 Carr A. D., Kropholler H. W., J. Chem. Eng. 
Data, 1962, 7, 26 

Ethyl acetate Cyclohexane 0.0032 0.0752 4.2 3.9 2.6 13 xyTp 344.8 350.7 101.3 101.3 Chao K. C., Thesis, Wisconsin, 1956 
Ethyl acetate Ethanol -0.0716 0.0340 17.7 5.9 7.3 24 xyTp 345.2 350.8 101.3 101.3 Calvar N. et al., Fluid Phase Equilibria, 

2005, 235, 215–222 
Ethyl acetate m-Cresol 0.0083 0.1026 227.6 218.3 1073.6 7 xTp 288.2 288.2 1.2 4.9 Weissenberger G. et al., Monatsh. Chem., 

1925, 46, 1 
Ethyl acetate o-Cresol 0.0180 0.1024 272.8 274.4 1018.3 7 xTp 288.2 288.2 2.5 5.8 Weissenberger G. et al., Monatsh. Chem., 

1925, 46, 1 
Ethyl acetate p-Cresol 0.0079 0.0745 219.0 243.2 1112.4 7 xTp 288.2 288.2 1.2 5.5 Weissenberger G. et al., Monatsh. Chem., 

1925, 46, 1 
Ethyl acetate Toluene -0.0335 0.0163 10.0 4.9 6.1 18 xyTp 350.8 382.0 101.3 101.3 Carr A. D., Kropholler H. W., J. Chem. Eng. 

Data, 1962, 7, 26 
Formic acid Acetic acid 0.0230 0.0186 14.7 21.0 27.2 17 xyTp 374.0 391.3 101.3 101.3 Alpert N., Elving P. J., Ind. Eng. Chem., 

1949, 41, 2864 
Formic acid Benzene 0.0069 0.1521 579.4 110.9 103.6 12 xyTp 333.1 333.1 25.4 69.1 Vrevsky M. S. et al., Z. Phys. Chem., 

1928, 133, 377 
Formic acid Carbon 

dioxide 
-0.0026 0.2248 433.8 452.0 509.5 9 xTp 393.2 393.2 9180.0 23260.0 Byun H.-S. et al., Ind. Eng. Chem. Res., 

2000, 39, 4580–4587 
Formic acid Methyl 

acetate 
-0.1624 -0.0519 61.9 27.6 154.7 23 xyTp 330.3 373.4 101.0 101.0 Fu H. et al., Zhejiang Daxue Xuebao, 

1987, 21, 52 
Formic acid Toluene 0.0205 0.1375 528.8 34.5 57.7 19 xyTp 298.2 298.2 3.8 8.7 Lakhanpal M. L. et al., Indian J. Chem., 

1975, 13, 1309 
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Hydrogen Acetic acid -0.0422 -1.2393 149.9 155.3 634.6 17 xyTp 343.2 343.2 270.0 7400.0 Jonasson A. et al., Fluid Phase Equilibria, 
1998, 152, 67–94 

Hydrogen Benzene -0.0907 2.6791 5.9 25.4 59.1 3 xyTp 533.2 533.2 4158.4 11470.0 Connolly J. F., The Journal of Chemical 
Physics, 1962, 36, 11, 2897–2904 

Hydrogen Carbon 
dioxide 

-0.6452 0.1033 12.1 30.6 48.5 6 xyTp 289.9 289.9 6575.9 17528.9 Barrick P. L. et al., Tech. Rep. Afml TR, 
1966, 66–390 

Hydrogen Cyclohexane 0.0689 0.1462 178.7 180.2 237.4 11 xTp 303.2 303.2 887.0 4743.0 Tsuji T. et al., Fluid Phase Equilibrium, 2005, 
228–229, 499–503 

Hydrogen Cyclohexene 0.1334 0.5071 225.1 224.0 394.2 5 xTp 373.0 373.0 790.8 6996.1 Herskowitz M. et al., J. Chem. Eng. Data, 
1983, 28, 164–166 

Hydrogen Ethyl acetate -0.1724 0.1719 181.9 181.8 264.1 4 xTp 291.0 291.0 1600.0 4600.0 Wainwright M. S. et al., J. Chem. Eng. Data, 
1987, 32, 22 

Hydrogen m-Cresol -0.1822 3.9926 13.4 44.8 41.7 7 xyTp 662.0 662.0 2681.0 25370.0 Simnick J. J. et al., J. Chem. Thermodyn., 
1979, 11, 531–537 

Hydrogen Methane -0.4740 -0.0182 36.4 36.3 30.2 9 xyTp 173.7 173.7 3566.6 10831.6 Sagara H. et al., J. Chem. Eng. Data,  
1972, 5, 4, 339–348 

Hydrogen Methanol -0.3113 -1.4443 182.8 169.3 205.5 6 xyTp 308.2 308.2 2000.0 11000.0 Bezanehtak G. B. et al., J. Chem Eng. Data 
2002, 47, 161–168 

Hydrogen Methyl 
acetate 

-0.1267 0.2912 146.4 139.3 201.1 4 xTp 291.0 291.0 1150.0 3110.0 Wainwright M. S. et al., J. Chem. Eng. Data, 
1987, 32, 22 

Hydrogen Methylcyclo-
hexane 

0.0665 0.1081 199.6 202.4 234.6 8 xTp 303.2 303.2 1236.0 4323.0 Tsuji T. et al., Fluid Phase Equilibrium,  
2005, 228–229, 499–503 

Hydrogen Toluene 0.1131 2.0756 22.4 133.2 90.4 5 xyTp 575.2 575.2 5015.6 25351.5 Simnick J. J. et al., J. Chem. Eng. Data, 
1978, 23, 4, 339–340 

Hydrogen Water -0.3747 -2.2631 142.3 96.1 332.7 8 xTp 373.2 373.2 2533.1 101325.0 Krichevsky I. R., Kasarnovsky J. S., J. Am. 
Chem. Soc., 1935, 57, 11, 2168–2171 
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m-Cresol Carbon 
dioxide 

0.0921 0.1058 135.2 120.5 125.3 5 xyTp 373.2 373.2 10200.0 30000.0 Pfohl O. et al., Fluid Phase Equilibria,  
1997, 141, 179–206 

Methane Acetic acid 0.2300 0.2256 128.1 130.7 158.0 13 xyTp 348.0 348.0 310.0 6250.0 Jonasson A. et al., Fluid Phase Equilib., 
1998, 152, 67–94 

Methane Benzene 0.0477 0.1231 12.2 26.9 47.6 6 xyTp 501.2 501.2 5123.9 14557.1 Lin H. M. et al., J. Chem. Eng. Data,  
1979, 24, 2, 146–149 

Methane Carbon 
dioxide 

0.0602 0.1096 16.2 7.4 37.2 10 xyTp 270.0 270.0 3198.8 8432.3 Somait F. A., Kiday A. J., J. Chem. Eng. 
Data, 1978, 23, 4, 301 

Methane Cyclohexane 0.0549 0.0648 7.4 44.9 39.7 14 xyTp 444.3 444.3 827.4 20063.6 Reamer H. H. et al., Ind. Eng. Chem. Data 
Ser., 1958, 3, 2, 240 

Methane Ethanol 0.0278 0.0344 5.9 26.0 74.0 5 xyTp 333.4 333.4 2594.0 10464.0 Suzuki K., Sue H., J. Chem. Eng. Data, 
1990, 35, 63–66 

Methane m-Cresol 0.0237 0.3093 36.9 27.9 59.2 4 xyTp 663.4 663.4 5116.8 15249.2 Simnick J. J. et al., Fluid Phase Equilibria, 
1979, 3, 145–151 

Methane Methanol 0.0495 -0.0172 59.4 72.9 92.1 11 xyTp 330.0 330.0 1379.0 41368.5 Hong J. H., Malone P. V., Jett M. D., Koba-
yashi R., Fluid Phase Equilib.,  
1987, 38, 83–96 

Methane Methyl 
acetate 

-0.0134 0.0852 95.8 91.0 517.0 6 xTp 298.2 298.2 101.3 7990.0 Xia S. et al., CHEMICAL 
ENGINEERING(CHINA), 2005, 33, 4, 68 

Methane Methylcyclo-
hexane 

0.0907 0.1274 10.9 21.8 58.0 8 xyTp 473.2 473.2 3350.0 18020.0 Richon D. et al., J. Chem. Eng. Data,  
1991, 36, 104 

Methane Toluene 0.0494 0.1787 18.2 34.5 59.7 5 xyTp 543.2 543.2 3077.2 11510.3 Lin H. M. et al., J. Chem. Eng. Data,  
1979, 24, 2, 146–149 

Methanol 1,2-
Ethanediol 

-0.0255 0.0045 70.7 84.1 83.0 14 xyTp 337.3 472.2 101.3 101.3 Baker T. H. et al., J. Chem. Eng. Data,  
1964, 9, 11 

Methanol Acetic acid -0.0884 -0.0548 10.9 34.4 75.4 19 xyTp 338.9 387.9 101.3 101.3 Amer A. S., Fernandez B. J., An. Quim., 
1973, 69, 569 
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Methanol Benzaldehyde -0.0150 0.2438 269.4 301.3 849.3 6 xTp 293.2 293.2 7.5 12.3 Weissenberger G. et al., Monatsh. Chem., 
1925, 46, 47–56 

Methanol Benzene 0.0118 0.1242 14.2 33.0 7.3 10 xyTp 373.2 373.2 312.3 417.8 Butcher K. L., Medani M. S., J. Appl. Chem., 
1968, 18, 100 

Methanol Cyclohexane 0.0575 0.1122 12.2 56.1 19.0 13 xyTp 327.4 353.9 101.3 101.3 Budantseva L. S. et al., Zh. Fiz. Khim., 1975, 
49, 260 

Methanol Cyclohexene 0.0416 0.1145 21.0 48.2 24.6 13 xyTp 329.2 356.2 101.3 101.3 Budantseva L. S. et al., Zh. Fiz. Khim., 1975, 
49, 260 

Methanol Ethanol -0.0018 -0.0147 2.5 8.0 23.1 10 xyTp 393.2 393.2 427.8 620.5 Piatti L., Z. Phys. Chem., 1930, 152, 36 
Methanol Ethyl acetate -0.1076 0.0208 49.8 18.7 6.0 19 xyTp 335.3 348.0 101.3 101.3 Akita K., Yoshida F., J. Chem. Eng. Data, 

1963, 8, 484 
Methanol Guaiacol -0.1919 0.0036 238.7 133.1 144.4 10 xyTp 338.0 478.0 101.3 101.3 Chalov N. V. et al., Kh. Gidroliz. Lesokhim. 

Prom-st., 1955, 8, 11 
Methanol m-Cresol -0.2647 -0.1377 184.1 132.3 214.3 14 xTp 336.3 473.8 95.5 95.5 Prasad T. E. V. et al., J. Chem. Thermodyn., 

2006, 38, 1696–1700 
Methanol Methylcyclo-

hexane 
0.0638 0.0928 15.2 123.1 19.9 30 xyTp 333.2 333.2 27.1 102.9 Scheller M. et al., J. Prakt. Chem.,  

1969, 311, 974 
Methanol o-Cresol -0.2159 -0.0379 111.3 39.0 46.1 9 xyTp 337.9 463.9 101.3 101.3 Chalov N. V. et al., Gidroliz. Lesokhim. 

Prom-st., 1955, 8, 11 
Methanol p-Cresol -0.2901 -0.1489 211.2 176.5 274.8 12 xTp 336.2 472.9 95.2 95.2 Prasad T. E. V. et al., Fluid Phase Equilib., 

2006, 244, 86–98 
Methanol Toluene 0.0151 0.1091 27.9 61.9 17.2 13 xyTp 336.8 383.8 101.3 101.3 Budantseva L. S. et al., Zh. Fiz. Khim.,  

1975, 49, 1844 
Methanol Water -0.0338 -0.0753 11.4 13.3 14.0 22 xyTp 386.0 421.2 506.6 506.6 Hirata M. et al., Computer aided data Book 

of vapor-liquid equilibria, Elsevier 1975 
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Methyl acetate Acetic acid -0.1982 -0.0113 51.6 41.5 50.2 14 xyTp 332.6 377.7 101.3 101.3 Balashov M. I., Serafimov L. A., Khim. Khim. 
Technol., 1966, 9, 885 

Methyl acetate Benzene -0.0327 0.0321 20.1 20.4 25.5 11 xTp 363.2 363.2 135.3 299.6 Schmidt G. C., Z. Phys. Chem.,  
1926, 121, 221 

Methyl acetate Cyclohexane 0.0105 0.1009 7.3 10.4 9.6 14 xyTp 328.7 347.5 101.3 101.3 Nagata I., J. Chem. Eng. Data, 1962, 7, 461 
Methyl acetate Ethanol -0.0961 0.0276 31.1 36.2 42.4 7 xTp 333.2 333.2 47.0 99.7 Perelygin V. M., Suntsov Yu. K., Izv. Vyssh. 

Uchebn. Zaved. Pishch. Tekhnol.,  
1974, 3, 94 

Methyl acetate Ethyl acetate 0.0142 0.0209 18.4 16.8 27.0 11 xTp 353.2 353.2 122.4 211.7 Schmidt G. C., Z. Phys. Chem.,  
1926, 121, 221 

Methyl acetate Methanol -0.1087 0.0315 37.6 10.3 8.9 20 xyTp 326.9 337.9 101.3 101.3 Mato F., Cepeda E., An. Quim. Ser. A., 
1984, 80, 338 

Methyl acetate Toluene -0.0306 0.0384 7.1 8.9 15.1 24 xyTp 331.0 379.7 101.0 101.0 Wisniak J., Tamir A., J. Chem. Eng. Data, 
1989, 34, 16–19 

Methyl acetate Water -0.1129 -0.1988 38.1 78.5 52.5 8 xyTp 353.2 353.2 83.1 218.4 Perelygin V. M., Volkov A. G., Izv. Vyssh. 
Ucheb. Zaved. Pishch. Tekhnol., 1970, 124 

Methylcyclo-
hexane 

Phenol 0.0367 0.0125 105.2 113.4 111.4 9 xyTp 374.3 423.2 101.3 101.3 Drickamer H. G. et al., Trans. Am. Inst. 
Chem. Eng., 1945, 41, 555 

Methylcyclo-
hexane 

Toluene 0.0114 0.0291 2.1 22.8 1.5 29 xyTp 348.2 348.2 32.6 45.7 Diaz Pena M., Compostizo A., J. Chem. 
Eng. Data, 1983, 28, 30 

o-Cresol 1,2-
Ethanediol 

-0.0351 0.0087 18.4 8.8 16.4 13 xyTp 462.0 468.1 100.0 100.0 Brusset H. et al., Chim. Ind. Genie Chim., 
1968, 99, 207 

o-Cresol Carbon 
dioxide 

0.0638 0.0574 172.4 146.2 200.3 5 xyTp 373.2 373.2 10400.0 26000.0 Pfohl O. et al., Fluid Phase Equilibria,  
1997, 141, 179–206 

o-Cresol m-Cresol 0.0005 -0.0022 2.4 2.9 2.7 21 xTp 464.4 475.5 101.0 101.0 Fox J. J., Barker M. F., J. Soc. Chem. Ind., 
London, 1917, 36, 842 
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o-Cresol p-Cresol -0.0061 -0.0106 8.2 7.5 16.3 22 xTp 462.4 473.2 96.4 96.4 Selvam S. P. et al., Fluid Phase Equilibria, 
1992, 78, 261–267 

p-Cresol Catechol 0.0231 0.0044 32.7 39.1 14.1 11 xyTp 453.2 453.2 15.5 55.7 Hwang S. et al., Fluid Phase Equilibria, 
2000, 172, 183–196 

Phenol 1,2-
Ethanediol 

-0.0518 -0.0117 15.5 11.5 10.4 12 xyTp 454.7 468.5 100.0 100.0 Brusset H. et al., Chim. Ind. Genie chim., 
1968, 99, 207 

Phenol m-Cresol -0.0002 -0.0035 10.8 16.5 12.8 5 xyTp 397.2 407.6 13.3 13.3 Vostrikova V. N. et al., Khim. Prom.,  
1978, 5, 345 

Phenol Methanol -0.2099 -0.0447 111.1 31.0 53.0 21 xyTp 337.9 455.0 101.3 101.3 Hu W. et al., Fluid Phase Equilibria, 2004, 
219, 265–268 

Phenol o-Cresol 0.0009 -0.0005 3.0 4.0 2.6 22 xTp 453.2 462.4 96.4 96.4 Selvam S. P. et al., Fluid Phase Equilibria, 
1992, 78, 261–267 

Phenol p-Cresol -0.0050 -0.0096 7.1 6.8 16.8 21 xTp 453.2 473.2 96.4 96.4 Selvam S. P. et al., Fluid Phase Equilibria, 
1992, 78, 261–267 

Toluene 1,2-
Ethanediol 

0.0051 0.0030 244.2 190.8 271.7 61 xTp 323.2 323.2 0.3 12.5 Witting R. et al., Ind. Eng. Chem. Res.,  
2001, 40, 5831–5838 

Toluene Acetic acid -0.0431 0.0878 42.0 21.4 26.5 22 xyTp 377.6 391.2 101.3 101.3 Haughton C. O., Chem Eng. Sci.,  
1961, 16, 82 

Toluene Benzaldehyde 0.0084 0.0160 44.8 46.3 52.6 13 xyTp 383.8 452.2 101.3 101.3 Rao K. V. et al., J. Chem. Eng. Data,  
1981, 26, 413 

Toluene m-Cresol 0.0210 0.0320 23.8 31.8 24.4 13 xyTp 363.2 363.2 11.5 53.3 Sartakova O. Yu. et al., Zh. Prikl. Khim.  
(S.-Petersburg), 1996, 69, 1077 

Toluene o-Cresol 0.0132 0.0121 26.1 27.7 29.2 8 xyTp 363.2 363.2 12.4 48.0 Klauck M. et al., Ind. Eng. Chem. Res., 
2009, 47, 15, 5119–5126 

Toluene p-Cresol 0.0191 0.0301 18.0 20.2 14.7 19 xyTp 383.9 475.4 101.3 101.3 Marks D. E., Wingard R. E., J. Chem. Eng. 
Data, 1960, 5, 416 

A10 

Appendix A: Binary interaction param
eters for PC

-SAFT, SR
K m

odel, 
param

eter fitting accuracy, experim
ental data used for the fitting 



 

 

1s
t c

om
p 

2n
d 

co
m

p 

PC
-S

A
FT

 k
_i

j 

SR
K

 k
_i

j 

PC
-S

A
FT

 e
rr

or
 * 

SR
K

 e
rr

or
* 

PS
R

K 
er

ro
r *

 

# 
po

in
ts

 

Q
ua

lit
y 

T 
an

ge
 (K

) 

p 
ra

ng
e 

(k
Pa

) 

Source 

Toluene Phenol 0.0270 0.0189 15.2 16.3 21.3 21 xyTp 383.7 445.9 101.3 101.3 Drickamer H. G. et al., Trans. Am. Inst. 
Chem. Eng., 1945, 41, 555 

Toluene Water -0.1150 -0.2695 1588.5 1580.4 2054.3 4 xTp 298.0 473.0 5000.0 5000.0 Mathis J. et al., J. Chem. Eng. Data,  
2004, 49, 1269–1272 

Water 1,2-
Ethanediol 

0.0087 -0.0095 22.6 28.4 70.6 7 xTp 371.7 469.7 97.3 97.3 Kumar P. et al., Indian Chem. Eng.,  
1982, 24, 14 

Water Acetic acid -0.1068 -0.1565 6.6 16.5 44.0 17 xyTp 403.6 426.8 273.7 273.7 Othmer D. F. et al., Ind. Eng. Chem.,  
1952, 44, 1864 

Water Cyclohexane 0.3693 0.2623 387.2 458.9 164.8 7 xTp 627.0 651.1 80000.0 80000.0 Broellos K. et al., Ber. Bunsen-Ges. Phys. 
Chem., 1970, 74, 682–686 

Water Ethyl acetate -0.0986 -0.2540 7.6 7.9 47.6 6 xyTp 369.2 373.2 101.3 101.3 Anoshin I. M., Salnikov A. P., Izv. Vyssh. 
Uchebn. Zaved., Pishch. Tekhnol., 1976, 4, 145 

Water Formic acid -0.1520 -0.2662 16.4 17.2 73.6 14 xyTp 407.1 417.1 298.2 298.2 Gilburd M. M. et al., Zh. Prikl. Khim.,  
1984, 57, 915 

Water m-Cresol -0.0605 -0.0656 53.8 32.6 32.3 7 xyTp 363.2 363.2 35.6 70.3 Klauck M. et al., Ind. Eng. Chem. Res., 
2009, 47, 15, 5119–5126 

Water Methane 0.0159 -0.3001 69.8 178.4 236.2 6 xyTp 318.1 318.1 1003.0 34610.0 Chapoy A. et al., Fluid Phase Equilibria, 
2003, 214, 101–117 

Water o-Cresol -0.0248 -0.0633 63.4 134.6 98.7 9 xyTp 372.2 443.7 101.3 101.3 Brusset H., Gaynes J., Comp. Rend.,  
1953, 236, 1563 

Water Phenol -0.0348 -0.0254 61.0 143.0 118.6 18 xyTp 372.8 455.2 101.3 101.3 Brusset H., Gaynes J., Comp. Rend.,  
1953, 236, 1563 

* The relative error is provided by Aspen Plus software. 

A11 

Appendix A: Binary interaction param
eters for PC

-SAFT, SR
K m

odel, 
param

eter fitting accuracy, experim
ental data used for the fitting 





 

B1 

Appendix B: Langmuir-Hinshelwood 
reaction rate by Horiuti-Polanyi 
mechanism for Reaction 4.3.1 
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Equivalently for 
Reaction 4.3.2; 

Equivalently for 
Reaction 4.3.3; 

Equivalently for 
Reaction 4.3.4; 

   



 

 

 
Table C.1. Experimental data at 175°C (concentration in mol/dm3). 

Time (min) C_GUA C_prod-ucts C_methoxycycl
o-hexanone 

C_methyl-1,2-
cyclohexanediol 

C_cyclohex-
anol 

C_cyclohex-ane 

0 0,136231 0 0 0 0 0 

10 0,116574 0.007551 0,00136 0,006191 0 0 

20 0,10954 0.015373 0,002688 0,012024 0,000661 0 

40 0,100126 0.030156 0,004545 0,024337 0,001274 0 

60 0,085517 0.045089 0,00536 0,037919 0,00181 0 

80 0,077904 0.05516 0,005275 0,047599 0,002286 0 

100 0,064417 0.062786 0,004356 0,055847 0,002583 0 

 
Table C.2. Experimental data at 175°C (concentration in mol/dm3). 

Time (min) C_GUA C_prod-ucts C_methoxycycl
o-hexanone 

C_methyl-1,2-
cyclohexanediol 

C_cyclohex-
anol 

C_cyclohex-ane 

0 0,137423 0 0 0 0 0 

10 0,114452 0.011145 0,002016 0,008671 0,000458 0 

20 0,099087 0.025831 0,003756 0,02117 0,000905 0 

30 0,084072 0.04356 0,004636 0,037464 0,00146 0 

A
ppendix C

: The experim
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D
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40 0,071691 0.05552 0,004532 0,049166 0,001821 0 

60 0,059871 0.067342 0,003865 0,061272 0,002206 0 

120 0,04793 0.076065 0,00286 0,070686 0,00252 0 

 
Table C.3. Experimental data at 200°C (concentration in mol/dm3). 

Time 
(min) 

C_GUA C_prod-
ucts 

C_methoxycyclo-
hexanone 

C_methyl-1,2-
cyclohexanediol 

C_cyclohex-
anol 

C_cyclohex-ane 

0 0,138445 0 0 0 0 0 

15 0,05419 0.059921 0,029761 0,028919 0,001241 0 

2 0,009762 0.116237 0,022016 0,08916 0,004469 0,000592 

70 0,002077 0.125068 0,009634 0,108953 0,005851 0,00063 

80 0,000905 0.129047 0,006192 0,115684 0,006489 0,000682 

90 0,000291 0.124317 0,003309 0,113891 0,006456 0,000661 

100 0 0.120736 0,001866 0,111595 0,006605 0,000669 
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Table C.4. Experimental data at 200°C (concentration in mol/dm3). 

Time 
(min) 

C_GUA C_prod-ucts C_methoxycyclo-
hexanone 

C_methyl-1,2-
cyclohexanediol 

C_cyclohex-
anol 

C_cyclohex-
ane 

0 0,137839 0 0 0 0 0 

10 0,105121 0.015709 0,007169 0,007988 0,000552 0 

20 0,045043 0.079219 0,028574 0,047522 0,002631 0,000491 

30 0,020898 0.105227 0,029433 0,071918 0,003877 0 

40 0,014328 0.114213 0,026316 0,082968 0,004505 0,000424 

60 0,004557 0.126265 0,014652 0,105186 0,005976 0,000451 

120 0,003229 0.126745 0,010149 0,109144 0,006752 0,000701 
 

Table C.5. Experimental data at 220°C (concentration in mol/dm3). 

Time 
(min) 

C_GUA C_prod-ucts C_methoxycyclo-
hexanone 

C_methyl-1,2-
cyclohexanediol 

C_cyclohex-
anol 

C_cyclohex-
ane 

0 0,171643 0 0 0 0 0 

15 0,089447 0.033077 0,018776 0,011973 0,002328 0 

50 0,007961 0.159852 0,019333 0,120499 0,02002 0 

70 0,00119 0.112843 0,002384 0,088023 0,022436 0 
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80 0,000667 0.114472 0,00138 0,088472 0,024621 0 

90 0,000377 0.114549 0,000771 0,08803 0,025748 0 

100 0 0.113786 0 0,086324 0,027461 0 

 
Table C. 6. Experimental data at 220°C (concentration in mol/dm3). 

Time 
(min) 

C_GUA C_prod-ucts C_methoxycyclo-
hexanone 

C_methyl-1,2-
cyclohexanediol 

C_cyclohex-
anol 

C_cyclohex-
ane 

0 0,171535 0 0 0 0 0 

10 0,130799 0.00345 0 0,002668 0,000782 0 

20 0,04551 0.066965 0,031899 0,027842 0,006561 0,000663 

30 0,020136 0.126469 0,032871 0,082743 0,010034 0,00082 

40 0,012019 0.11907 0,021051 0,085335 0,011811 0,000873 

60 0,00395 0.118973 0,010066 0,093366 0,014611 0,000931 

120 0,001544 0.119757 0,002682 0,094303 0,021608 0,001164 
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Appendix D: Rate differences of the 
guaiacol HDO reaction 

 

Figure D1. Concentration profile of guaiacol inside the catalyst caused by diff u-
sion only for experiment 1 (Table C1). 

 

Figure D2. Concentration profile of guaiacol calculated with power law reaction 
rate equations, diffusion and reaction to methoxycyclohexane is taken into ac-
count. Experiment 1 (Table C1). 





 

 

 

Code Type Factor description 
Values 

Nom. Min Max. 

x2 Const. Feed Reference heating value (MW) 12.7   
x3 Var. Feed Fresh water to leaching (kg/kg dry bark) 10 5 20 
x4 Var. Hydrolysis and fermentation Hydrolysis consistency 0.2 0.1 0.3 
x5 Var. Evaporation Steam consumption kg steam/kg water evaporated 0.3 0.15 1 
x6 Var. Stilbene recovery Separation efficiency 0.8 0 0.8 
x7 Var. Degree of water cycle closure 0.999  0.999 
x8 Par. Leaching Leaching yields, Conversion of [Lignin] 0.275 0.2 0.3 
x9 Par. Leaching Leaching yields, Conversion of [C5 Poly] 0.15 0.1 0.2 
x10 Par. Leaching Leaching yields, Conversion of [C6 Poly] 0.25 0.2 0.3 
x11 Par. Leaching Leaching yields, Conversion of [Tannin] 0.2 0.15 0.25 
x12 Par. Leaching Leaching yields, Conversion of [Stilbene] 0.12 0.05 0.15 
x13 Par. Leaching Leaching yields, Conversion of [Lipofilics] 0.6   
x14 Par. Leaching Leaching yields, Conversion of [Silica(s)] 0.2 0.15 0.3 
x15 Par. Leaching Consistency of leached bark after dewatering 0.25 0.2 0.3 
x16 Par. Leaching Consistency of bark after bark press 0.38 0.25 0.5 
x17 Par. Stilbene recovery Purity 0.5 0.3 0.7 
x18 Par. Stilbene recovery Dry content 0.2 0.1 0.4 
x19 Par. Tannin recovery Conversion of polysugars to permeate-size molecules 0.01 0 0.75 
x20 Par. Tannin recovery Volume reduction in ultrafiltration 3 1 5 
x21 Par. Tannin recovery Ultrafiltration retentions, Tannin, lignin and stilbene 0.98 0.8 0.99 
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Code Type Factor description 
Values 

Nom. Min Max. 
x22 Par. Tannin recovery Ultrafiltration retentions, Lipofilics 0.99 0.5 0.9 
x23 Par. Tannin recovery Ultrafiltration retentions, Polysugars 0.7 0.5 0.8 
x24 Par. Hydrolysis and fermentation Hydrolysis yield 0.7 0.6 0.8 
x25 Par. Hydrolysis and fermentation Fermentation conversions, Conversion of [Glucose(aq)] 0.7 0.6 0.9 

x26 Par. Hydrolysis and fermentation 
Fermentation conversions, Conversion of  
[Xylose(aq)] 0.01 0.01 0.9 

x27 Par. Distillation Dry content after evaporation 0.3 0.2 0.5 
x28 Par. Unit prices Fuel (€/MWh) 20 4 30 
x29 Par. Unit prices Steam (€/ton) 12 3 16 
x30 Par. Unit prices Tannin (€/ton) 300 200 1000 
x31 Par. Unit prices Stilbene (€/ton) 3000 2000 10000 
x32 Par. Unit prices Ethanol (€/ton) 500 400 800 
x33 Par. Unit prices Enzyme (€/ton EtOH) 80 40 120 
x34 Par. Unit prices COD in effluent (€/ton) 400 50 500 
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