ive-

Application of the perspect

in the

ique i

based reading techn
nuclear 1&C context

CORSICA work report 2011

Jussi Lahtinen

VTT TECHNOLOGY 9

Application of the perspective-
based reading technique in the
nuclear 1&C context

CORSICA work report 2011

Jussi Lahtinen

ISBN 978-951-38-7621-0 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 2242-122X (URL: http://www.Vvtt.fi/publications/index.jsp)

Copyright © VTT 2012

JULKAISIJA — UTGIVARE - PUBLISHER

VTT

PL 1000 (Vuorimiehentie 5, Espoo)
02044 VTT

Puh. 020 722 111, faksi 020 722 4374

VTT

PB 1000 (Bergsmansvagen 5, Esbo)

FI-2044 VTT

Tfn +358 20 722 111, telefax +358 20 722 4374

VTT Technical Research Centre of Finland
P.O. Box 1000 (Vuorimiehentie 5, Espoo)
FI-02044 VTT, Finland

Tel. +358 20 722 111, fax + 358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

Application of the perspective-based reading technique in the nuclear 1&C
context
CORSICA work report 2011

Jussi Lahtinen. Espoo 2012. VTT Technology 9. 45 p. + app. 7 p.

Abstract

Inspections and reviews are one of the most effective ways of detecting errors in software
development. The methods are also cost-effective because defects can be spotted early
in the development, and thus the cost of repairing the defects is lower.

Reading techniques are the procedures that are used in the inspection or review of a
software artefact. The most common procedures are simple ad-hoc reading and a check-
list-based reading technique. However, more advanced and detailed procedures have
been created for various purposes.

This report reviews the state-of-the-art software reading techniques used in inspec-
tions and reviews, and briefly reviews some of the empirical research in this context. The
majority of the empirical research results indicate that, for example, perspective-based
reading is more cost-effective and can detect more defects than more basic reading tech-
nigues.

This report also describes how perspective-based reading can be applied to the in-
spection of nuclear-domain requirement specifications. For this purpose, seven perspec-
tive-based reading scenarios have been created.

Keywords software inspection, review, reading technique, perspective-based reading, nuclear,
requirements specification

Contents

ADSTIACT ... 3
Lo INEFOAUCTION ettt 6
1.1 Inspection benefitS........ccooviiiiiiiiiiii 7
1.2 IMProving iNSPECLONScceeiiiiiiieiiie et 8
2. Reading tECANIQUES ... 10
2.1 Ad-hOC r€ading........cccvviiiiiiiiiiiiiiiiiiii 10
2.2 Checklist-based reading............ccccccciiiiiiiiii 11
2.3 Reading by stepwise abstraction...............ccccccociiiiiiiii 11
2.4 ACHVE AESIGN FEVIEWSeevvieiieiiiiitiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenenenes 12
2.5 Scenario-based reading techniquescccccccciiiiiii, 12

2.5.1 Defect-based reading
2.5.2 Scenario-based reading based on function point analysis.......... 13

2.5.3 Perspective-based reading........coooeeeeiiiiiiniiieeeeeeeeeeeeeeee 14

2.5.4 Perspective-based usability iNSPection...........ccooevveveiiiiiiieeennnn. 14
2.6 Scope-based reading.............cccvviiiiiiiiiii 15
2.7 Usage-based readingccccccciiiiiiiiiiiiiiii 16
2.8 Traceability-based reading............cccccccciiiiiiiii 16
2.9 Abstraction-driven technique............cccccccoiiiiii 18
2.10 Task-directed software iNSPectionccccccceiiiiiiiii 19
Perspective-based reading (PBR)........ccoooiiiiiiii 20
3.1 PEISPECLIVES. .. .uuiiiiiiiiiiiieeeteetteeeete bbbttt ettt e et eeeneeennae 21
3.2 Reviewer Work productS...........cccccciiiiiiii 21
3.3 Cognitive analysis 0f PBR..........cccccccciiiiiiiiiiii 22
3i4 SCENAIIOS. . ceeiiiieiiiiie ettt 22
3.5 BXAMPIE..coiiiiiiiiiiiiii 23
3.6 Scenario development...........ccccciiiii 24
3.7 Review of empirical research on perspective-based reading 26
Application of the PBR technique in the nuclear domain 29
4.1 Example system description and requirementseeeeeeeeeeeeeene 30

4.1.1 ROd CONLrol SYSLEM ...cooeeiiiiiiieeeeeeeee e, 30

4.1.2 EPRI requirements specification.............cccoeeeeiiiiiiiiiiiien 32
4.2 Identification of document stakeholders..............cccoovviiiiiiiiiiiiniinnnn. 33

4.2.1 Long system life-time ..., 33

4.2.2 System design process COMPpIEXitYoooeeeeeeiiiiiiiiiiiiiieieeeeennn 34

4.2.3 Regulator's role........cooouiiiiiiiii e, 35

4.2.4 Safety IMPOrtanCe.........cooeviiiiiiieeee, 35

4.2.5 Contract WOrk ChaiNS............evveiiiiiiiiiiiiiiee e 35

4.2.6 PBR perspective identification and specification........................ 36

4.3 Scenario usage CONSIAEIatiONSuuuuruuuuuurerenrereeennneennennnneneennenennes 37

D SUMIMIAIY ettt e e et et e e e e e e neb s 39

REFEIENCES ... 41
Appendices

Appendix A: Example scenarios

1. Introduction

Inspection is a well-defined process used for defect detection in software projects.
Typically, inspected software artefacts include requirements, design documenta-
tion, test plans, and code. Similar techniques used in software projects include
walkthroughs and reviews. For clarity, we refer to the definition in the IEEE Stand-
ard 1028-2008 [IEEE, 2008], which provides the following descriptions:

e Aninspection is ‘a visual examination of a software product to detect and
identify software anomalies, including errors and deviations from standards
and specifications.’

e A walkthrough is ‘a static analysis technique in which a designer or pro-
grammer leads members of the development team and other interested
parties through a software product, and the participants ask questions and
make comments about possible anomalies, violation of development
standards, and other problems.’

e Avreview is ‘a process or meeting during which a software product, set of
software products, or a software process is presented to project personnel,
managers, users, customers, user representatives, auditors or other inter-
ested parties for examination, comment or approval.’

The word inspection is sometimes used to refer to a Fagan inspection, the first
formally defined inspection technique, which has been used as a model for many
subsequent inspection techniques. Fagan’s technique [Fagan, 1976] was the first
formally defined inspection technique. The technique is based on a team of re-
viewers following a step-by-step procedure (Figure 1).

The inspection team members play roles according their skills and knowledge.
The team member roles defined by Fagan are: moderator, author, reader, and
reviewer. The moderator manages the inspection team and coordinates the in-
spection process. The author is the programmer who is responsible for the work
product under inspection. A reader is a person who paraphrases the work product
during the meeting. A reviewer is a person who reviews the work product. A team
member may play several roles.

Six steps are defined in the Fagan inspection procedure, and they are as follows:

e Planning. The material under inspection is determined, and the responsi-
bilities of the inspection team are set.

1. Introduction

e Overview. An overview of the product is presented to the inspectors. The
scope of the work is determined.

e Preparation. The reviewers go through the material individually with the
goal of understanding it thoroughly.

e Inspection meeting. The inspection team assembles. The reviewers state
their findings, which are recorded by the moderator.

e Rework. The author reassesses and modifies the work product. The re-
work is verified by holding another inspection.

e Follow-up. The moderator ensures that defects have been repaired.

Novel inspections are typically modified versions of the Fagan inspection. A par-
ticular software inspection can be characterised using a taxonomy of inspection
approaches that has four dimensions: the technical, economic, organisational, and
tool dimensions [Laitenberger, 2002]. Most research in the software inspection
area focuses on which of the aspects in these dimensions has a positive influence
on the inspection results.

l

Planning s Overview +——» Preparation ——»{ Meeting] Rework — Follow-up

Figure 1. The Fagan inspection process.

The technical dimension describes how the inspection is tailored for a particular
situation. The technical dimension includes the inspection process (e.g. in Figure 1),
the inspected artefact, the roles of the participants, team size, and the applied
reading technique.

The economic dimension deals with evaluating whether the inspection is worth
commencing. This includes the aspects of quality, effort, and duration of the in-
spection.

The organisational dimension includes organisational issues that affect the out-
come of the inspection. These are the members of the inspection team, the project
structure, culture, management, budget, quality, and productivity goals.

The tool dimension represents the tool support used for the inspection. For ex-
ample, there are some software tools that support defect detection or document
handling.

1.1 Inspection benefits

The effectiveness of inspections in detecting defects has been evaluated by many
researchers. As an example:

1. Introduction

e Fagan reported in his work that inspections detected 93% of all defects in a
program by IBM. In two other projects, the effectiveness of inspections was
over 50% [Fagan, 1986].

e The code inspections used at HP typically found 60% to 70% of the defects
[Grady and van Slack, 1994].

e Inspections used in many occurrences indicated that the effectiveness of
code inspections was typically in the range of 30% to 75% [Barnard and
Price, 1994].

In addition to the effectiveness of defect detection of software inspections, the
effort required to perform inspections is rather low when compared to other defect
detection methods, such as testing. The cost of detecting and correcting a defect
during inspections is much lower than detecting and correcting the defect during
the testing phase of the product. The effort required per found defect has been
widely studied. As an example:

e The ratio of fixing defects during inspection to fixing defects during formal
tests varies from 1:10 to 1:34 according to [Kaner, 1998], 1:20 according to
[Remus, 1984], and 1:13 according to [Kan, 1995].

o [Weller, 1993] reports that the time needed per defect in inspection is 1.43
hours (6 hours per defect in testing).

o [Kelly, 1992] found that, on average, 1.75 hours are required per defect in
design inspections; 1.46 hours in code inspections; and 17 hours per de-
fect in testing.

In conclusion, a majority of studies indicate that inspections are very effective in
detecting defects, and that the cost of defect correction, when using inspections, is
much lower than if the defect was found in a later developmental phase.

1.2 Improving inspections

The influence of modifications on various inspection aspects has been studied.
Studies such as [Porter and Johnson, 1997] indicate that typical meeting-based
review methods are neither more effective nor less effective than non-meeting-
based review methods with respect to defect detection effectiveness. In fact, the
non-meeting inspections found more defects, but there was no significant differ-
ence. In addition, the size of the inspection team and the coordination style of the
inspection do not, apparently, increase the effectiveness of inspections [Porter and
Votta, 1997].

Instead, explicit training in program understanding improves inspection effec-
tiveness [Rifkin and Deimel, 1994]. It seems that individual preparation for inspec-
tions is the most important element contributing to the effectiveness of the inspec-
tion [Christenson, 1990; Laitenberger et al., 2002]. Defect detection is more an
individual than a group activity, and the strategies that the individual inspectors

1. Introduction

use to understand and examine the artefact have great influence on the inspection
results. Thus, advanced reading techniques that guide the individual preparation
process can be useful in increasing defect detection effectiveness.

This work focuses primarily on one aspect of inspections: the reading techniques.
State-of-the-art reading techniques are reviewed, and one reading technique
called perspective-based reading is applied to the inspection of requirements
specifications in the nuclear context.

2. Reading techniques

Based on experimental studies in [Porter and Johnson, 1997], it is concluded that
typical meeting-based review methods are neither more effective nor less effective
than non-meeting-based review methods with respect to defect detection effec-
tiveness. In fact, the non-meeting inspections found more defects, but there was
no significant difference.

The critical view regarding meetings is not consistent among researchers.

Some researchers emphasise the importance of meetings in learning and sharing
knowledge. In the study that found meetings ineffective [Porter and Johnson,
1997], the meetings still succeeded in eliminating more false positive defects.
In [Porter and Votta, 1997], it is also stated that the organisation of the inspection
(inspection team size, inspection coordination) does not significantly increase the
inspection effectiveness. Instead, as is noted in [Rifkin and Deimel, 1994], explicit
training in program understanding may improve inspection effectiveness. Several
studies [Christenson, 1990; Laitenberger et al., 2002] have reported results that
support the claim that individual preparation for inspections is the most important
element contributing to the effectiveness of the inspection. Defect detection is
more an individual than a group activity, and the strategies that the individual
inspectors use to understand and examine the artefact have a great influence on
the inspection results. Thus, advanced reading techniques that guide the individu-
al preparation process can be useful in increasing defect detection effectiveness.

A reading technique is a set of instructions given to the inspector in order to
guide the inspection process. A reading technique can also be thought of as a
defect detection strategy. The most popular reading techniques are ad-hoc read-
ing and checklist-based reading.

2.1 Ad-hoc reading

Ad-hoc reading does not give any guidance for inspectors. The inspector simply
attempts to find as many defects as possible by examining the document or arte-
fact using the skills and knowledge he/she has. It is evident that the ad-hoc tech-
nigue is very dependent on the individuals performing the inspection. Ad-hoc read-
ing is the most common reading technique used in inspections.

10

2. Reading techniques

2.2 Checklist-based reading

In checklist-based reading (CBR), the inspector is given a list of questions that are
to be answered during the inspection. The questions are written to draw the atten-
tion of the inspector to some aspects of the inspected artefact that are often found
defective. Checklists give support to the inspector, and the result of the inspection
is not as dependent on the skills of the individual inspectors as in ad-hoc reading.
One major disadvantage of using CBR is that only defects of a particular type are
detected (defects detectable by answering the questions). Thus, hard-to-find de-
fects that can be found through a deep understanding of the artefact are often
missed. The CBR technique can only find errors that have been previously en-
countered or thought of as the list of inspection questions is written.

Another disadvantage is that the checklist is typically quite generic, and some
of the questions might not be suitable for the artefact. CBR is typically also missing
instructions on how the questions should be answered (i.e. should the inspector
read through the document once and then answer the questions, or examine the
document while considering a single question at a time). Finally, in CBR techniques,
the reviewers are overloaded with excessive information as the checklists tend to
be extensive, and the reviewer must go through all of the reviewed documentation.

2.3 Reading by stepwise abstraction

Cleanroom [Selby et al., 1987] is a software engineering process developed at
IBM that focuses on defect prevention to produce highly reliable software. Only a
small part of the Cleanroom process incorporates reading techniques. The Clean-
room process relies on formal methods, incremental implementation, development
without program execution and statistical testing. In Cleanroom, the testing pro-
cess is completely separated from the development process. Thus, the developers
rely on other techniques to assert the correctness of their implementation. One of
these integrated techniques, verification-based inspection, is described in [Dyer,
1992]. The inspection technique described in this paper forms an informal proof of
the correctness of a code artefact carried out in conversation or in writing. The
reading technique is known as ‘reading by stepwise abstraction’.

In reading by stepwise abstraction, the inspector decomposes each function into
a set of component functions, and then derives the function of the entire program
from these component functions. The inspector starts from the individual code
statements, and abstracts the functions that these statements compute. Then the
inspector selects a higher-level structure of the code and abstracts it using the
previous reasoning. The procedure is repeated until the final function has been
abstracted and articulated, and can be compared against the specification of the
program. Reading by stepwise abstraction is limited to the inspection of code
artefacts.

11

2. Reading techniques

2.4 Active design reviews

Active design reviews [Parnas and Weiss, 1985] is an inspection technique for
design artefacts that is based on the following ideas:

1. Reviewers should focus on aspects that suit their expertise.

2. Desired reviewer characteristics should be specified and the reviewers se-
lected based on these specifications.

3. In addition to defect detection, the reviewers should be encouraged to
make positive assertions about the design (i.e. documenting positive ob-
servations as well).

4. The designer asks questions from the reviewer.
5. Designers and reviewers conduct small meetings of 2-5 people.

In active design reviews, the reviewers are chosen so that their expertise covers
the design completely. One reviewer can then work more effectively by focusing
on subjects relevant to their expertise and ignoring the irrelevant parts. It is also
important that the reviewers think hard what they are reading. The reviewers are
forced to take an active role by asking questions that can only be answered by
careful study of the document. The reviewers may also be asked to write a small
program that implements some part of the reviewed design.

The active design review process has three steps. The first step is an overview
of the design and schedule. In the next step, the reviewers go through the design
and answer the questions formulated by the designer. In the third step, the de-
signers read the answers by the reviewers and discuss together until comprehen-
sion of all issues is reached.

2.5 Scenario-based reading techniques

A paper by Porter and Votta [Porter and Votta, 1994] launched an active period of
research on reading techniques. In the paper, a reading technique titled ‘scenario-
based reading’ is introduced. Later on, the term ‘scenario-based reading’ was
defined as a general-level term, and the technique described in the paper is usually
referred to as ‘defect-based reading’. Variations on the original technique can be
referred to as scenario-based techniques. These techniques have much in com-
mon with the principles of the active design review technique. Scenario-based
reading techniques are based on scenarios that give customised guidance for
inspectors. The guidance is more specific than the instructions given in checklist-
based reading. It may be a set of questions, an assignment, or explicit instructions
on how to perform the review. A scenario also draws the inspector’s attention to
only a particular type of defect. Each inspector typically uses a different scenario,
and it is assumed that the overall team will be more effective, detecting fewer
overlapping defects.

12

2. Reading techniques

2.5.1 Defect-based reading

Defect-based reading [Porter and Votta, 1994] and [Porter et al., 1995] was the
first scenario-based reading technique that was used to review software require-
ments specification documents. The technique gives the reviewers specific or-
thogonal detection responsibilities (i.e. scenarios) that are derived from particular
classes of faults. In [Porter et al., 1995] the scenarios are derived from checklist
questions used to review documents. In the paper, the three different scenarios
were based on three fault classes: 1) data type inconsistencies, 2) incorrect func-
tions, and 3) missing or ambiguous functions. A scenario consists of a set of ques-
tions that the reviewer must answer while examining the document. Simplified
examples of the scenario questions are:

e Identify all data objects. Are all data objects mentioned in the overview
listed in the external interface section? (Data type consistency scenario)

o Identify all specified system events. Is the specification of these events
consistent with their intended interpretation? (Incorrect functionality
scenario)

e Identify the required precision, response time, and so on for each func-
tional requirement. Are all required precisions indicated? (Ambiguities
or missing functionality scenario)

Each reviewer applies a single scenario (looks for one fault class only) and the
reviewers together achieve sufficient coverage of the document. [Porter et al.
1995] found in their studies that defect-based reading techniques detected 35%
more defects than reviewers applying ad-hoc or checklist-based reading tech-
nigues. Defect-based reading helped concentrate on certain defects but was not
less effective at detecting other defects. The experiment results also indicated that
checklist-based reading was no more effective than ad-hoc reading.

In a controlled experiment, defect-based reading was compared to CBR and
ad-hoc reading for inspection of software requirements specifications. The defect-
based reading technique had a higher defect detection rate (improvement of 35%)
than the other methods. The experiment was replicated using a partial factorial
randomised experimental design. The replication also indicated that the defect-
based technique had a higher fault detection rate than the other methods [Porter,
1994 and Votta; Porter et al., 1995]. These results were obtained using graduate
students as test subjects. Later, the results were also confirmed using professional
software developers [Porter and Votta, 1998].

2.5.2 Scenario-based reading based on function point analysis
[Cheng and Jeffrey 1996] also studied the inspection of software requirements specifi-

cations and hypothesised that other strategies for scenario partitioning might per-
form as well as partitioning based on fault classes. They assumed that the effec-

13

2. Reading techniques

tiveness of the scenario-based approach was the consequence of a reduction in
work load. Their decomposition of scenarios was based on a function point analy-
sis (FPA). In FPA, software is seen as a collection of internal logical files, external
interface files, external inputs, external outputs, and external inquiries. Using this
classification, the software can be divided into orthogonal areas: files, inputs,
outputs, and inquiries. These areas are constructed into function point scenarios
that investigate different aspects of the software requirements specification:

1. Overview scenario
File scenario

Input scenario
Output scenario
Inquiry scenario.

arwbd

Again, each scenario consists of questions that focus on specific function-point
items.

The created scenario-based reading technique was compared to an ad-hoc ap-
proach in which the reviewers were required to develop their own inspection strat-
egy prior to the inspection. The results showed that the self-set strategy was more
effective in detecting defects than the approach based on function-point scenarios,
but the difference was not statistically significant. The result still supports the claim
that experienced people might be able to create inspection strategies that are
better than a provided set of scenarios.

In [Cheng and Jeffrey, 1996], scenario-based reading based on function point
analysis was compared to self-set inspection strategies to inspect software re-
quirements specifications. No significant difference between the two groups was
found in their inspection performance.

2.5.3 Perspective-based reading

In the perspective-based reading (PBR) technique software artefacts are examined
from the perspectives of the artefacts’ stakeholders in order to identify defects.
The technique is covered in detail in Chapter 3.

2.5.4 Perspective-based usability inspection

The perspective-based method has also been applied to the inspection of software
usability [Zhang et al., 1998]. Traditional usability inspection techniques such as
heuristic evaluation, cognitive walkthrough, and pluralistic walkthrough have a
rather low problem detection rate. In perspective-based inspection, different in-
spection sessions focus on a subset of usability issues covered by one of several
usability perspectives. The perspectives provide a point of view, and a list of ques-
tions that represent usability issues and a procedure for the inspection.

The perspectives defined in the paper [Zhang et al., 1998] were: novice use,
expert use, and error handling. The novice use perspective handled issues con-

14

2. Reading techniques

cerning users with very little experience of using the system. The second perspec-
tive, expert use, dealt with issues related to the efficiency, flexibility and consistency
of the system. For the error handling perspective, the inspectors tried to come up
with possible errors in the system.

The perspective-based usability inspection method was evaluated in an exper-
iment. The method was compared to a control group using heuristic evaluation to
find usability problems in a web-based data collection form interface. The im-
provement of the perspective-based technique over the heuristic evaluation tech-
nigue was 30% on average. The focused attention helped inspectors to find more
problems in certain categories without the total number of problems found suffering
[Zhang et al., 1998].

2.6 Scope-based reading

Many reading techniques are used only for defect detection. However, reading
techniques can also be applied to improve learning. For example, [Shull, 1998]
introduces the scope-based reading (SBR) technique. Scope-based reading is a
reading technique that is used to help software developers construct designs from
object-oriented frameworks. The technique is used as a tool to understand what a
system does by abstracting the important information in the system and identifying
relevant reusable portions.

The system that the techniques were applied to in the paper [Shull, 1998] con-
sisted of a class hierarchy and a model that describes how objects derived from
the class hierarchy are meant to interact with each other. The framework can then
be used to solve a particular problem. The purpose of the SBR reading techniques
was to enhance software developers’ understanding as they studied a framework
that they had not used before.

The user of an SBR technique is given instructions that are based on two pro-
cedures: an abstraction procedure and a use procedure. The abstraction proce-
dure discusses how the functionality of the framework is understood. The use
procedure describes how reusable functionality can be identified in the framework.

Two separate reading techniques were introduced by Shull: the hierarchy-
based technique and the example-based technique.

In the hierarchy-based technique, the framework is described through the class
hierarchy and an object model that describes how dynamic behaviour is imple-
mented. The abstraction procedure is based on this description. The inspectors
concentrate on abstract classes in the class hierarchy and then iterate through
levels of concrete classes to find the most specific class for a particular task. In the
use procedure, the relevant classes are found, and it is deduced whether a single
class can be used to implement a particular behaviour or if several classes should
be combined. In the paper [Shull, 1998], the hierarchy-based technique was as-
sumed to give the user a broader knowledge of the framework than the example-
based technique.

15

2. Reading techniques

In the example-based technique, the framework is looked at through a set of
example applications that demonstrate the functionality provided by the frame-
work. The created abstraction procedure guides the user through the levels of
detail within the set of examples at varying levels of complexity. The user selects
examples from the example set and identifies the objects and methods in these
examples that are responsible for the implementation in the example. The use
procedure of the example-based technique consists of identifying the examples
that are likely to contain reusable functionality and identifying the potentially rele-
vant classes and methods in those examples. The example-based technique was
assumed to concentrate more on the specific functionality of the framework that
were most relevant to the particular task at hand. The example-based technique
was found to be very useful, especially in introducing novice users to the frame-
work.

2.7 Usage-based reading

Usage-based reading (UBR) [Thelin et al., 2001] is a technique for design inspec-
tions. The idea behind the technique is that not all faults are equally important. In
UBR, the goal is not to find as many faults as possible, but to find the most critical
faults. Thus, UBR focuses the inspector’s effort on detecting faults that most nega-
tively affect system quality if not fulfilled.

The inspection technique of UBR is as follows. The inspector has a set of use
cases that have been developed during requirements specification. Then the in-
spector traces and manually executes the use cases on the inspected design,
using the requirements specification as a reference. During the inspection, the
inspector ensures that the design fulfils the goal of the use case, and that all relevant
functionality is provided.

In order to focus the user’s perception on the most critical design aspects, the
use cases are prioritised. The prioritisation can be done by a group of users using
pair-wise comparisons according to the analytic hierarchy process [Saaty and
Vargas, 2001]. Using the priorities of the use cases, the inspection can then follow
either a ranked-based or a time-controlled procedure. In ranked-based reading,
the use cases are gone through starting from the use case with the highest priority.
In time-controlled reading, the reviewer divides the available time between the use
cases so that higher ranked use cases receive more time.

Reviewers using usage-based reading are significantly more efficient and effective
in detecting the most critical faults than reviewers using checklist-based reading
[Thelin et al., 2003].

2.8 Traceability-based reading

A reading technique for inspecting high-level UML design diagrams is presented in
[Travassos et al., 1999a; Travassos et al., 1999b]. The technique, called traceability-
based reading (TBR) focuses only on inspecting high-level object-oriented designs

16

2. Reading techniques

represented in UML. The purpose of the presented reading technique is to verify
that design diagrams are consistent among themselves and that they capture the
requirements adequately.

Defect taxonomy is used and applied to the object-oriented designs to detect
defects from the UML diagrams. The taxonomy defines five defect types: omission,
incorrect fact, inconsistency, ambiguity, and extraneous information.

The major difference in TBR when compared to other reading techniques is
that, for checking the correctness of a design, two separate reading tactics (hori-
zontal and vertical reading) are performed. Horizontal reading verifies that the
design diagrams are correct and consistent among themselves. Vertical reading
ensures that the design diagrams are consistent with respect to the system'’s func-
tional requirements and use cases. The two techniques are both defined within the
family of traceability-based reading techniques.

Horizontal reading refers to reading techniques that are used to read and com-
pare documents built in the same software life-cycle phase. A specific reading
technique is defined for each pair of diagrams that can be usefully compared to
each other. In the paper [Travassos et al., 1999b], the presented horizontal tech-
nigues are basically syntactical comparisons of:

e Class diagrams with respect to class descriptions

e Class diagrams with respect to state machine diagrams

e Sequence diagrams with respect to state machine diagrams
e Sequence diagrams with respect to class diagrams.

As an example, sequence diagrams illustrate messages between objects, while
state diagrams show how the system responds to events that can be messages,
or services of functions. The idea of horizontal reading is to help reduce the se-
mantic gap between different documents by exploring these differences.

While horizontal reading identifies whether all of the design diagrams describe
the same system, vertical reading verifies whether the design diagrams represent
the right system, which is specified in the requirements and use cases. [Travassos
et al., 1999b] describe the following vertical reading techniques:

e Comparing class descriptions with respect to textual requirements
e Comparing sequence diagrams with respect to use cases

e Comparing state machine diagrams with respect to textual requirements
and use cases.

The guidelines given to the inspector given in every (horizontal or vertical) reading
technique consist of instructions on how to use a certain marking system to high-
light some concepts in the diagrams using pen and paper. After this, defects are
identified by detecting discrepancies among the markings.

The authors of [Travassos et al., 1999b] performed a feasibility study on the
TBR techniques and found that both horizontal and vertical reading techniques
were necessary in order to cover all defects in the design diagrams. Subjects
using vertical reading reported, on average, slightly more defects of omission and

17

2. Reading techniques

incorrect facts, while subjects using horizontal reading tended to report more de-
fects of ambiguity and inconsistency.

2.9 Abstraction-driven technique

The performance of inspections is suggested to suffer from the delocalised nature
of the software. This means that, in order to understand some parts of the code
artefact, such as a line of code or a class, one has to have a previous knowledge
of other methods, classes or libraries that are not part of the code under inspec-
tion. Because of this delocalisation, the inspection of object-oriented code docu-
ments can be troublesome.

As one solution to this problem, [Dunsmore et al., 2001] proposes that a specific
reading technique could make the inspection of such documents more efficient.
The resulting technique, titled the abstraction-driven technique, provides a strategy
for reading code in a certain order, and a procedure for improving the inspector’s
understanding of the code:

e Reading order guidelines. The code of the entire system is first analysed,
and the classes with the fewest interdependencies are inspected first. In a
similar way, the methods within the classes are analysed, and methods
with the fewest interdependencies are inspected first.

e Procedure for improving understanding. As the code is read, the in-
spector shall reverse engineer each method and class, and write an ab-
stract specification for each method. The specification should be brief, in
natural language, and complete. The authors of [Dunsmore et al., 2001]
propose that the same abstraction technique that is used in the reading by
stepwise abstraction technique (Section 2.3) can be used to come up with
the specifications. While reading a method, all references to external clas-
ses shall be traced and understood.

An experimental investigation was also conducted in [Dunsmore et al., 2001], in
which the systematic abstraction-driven technique was compared against ad-hoc
reading techniques. As a result, the abstraction-driven technique was slightly more
effective, but no significant difference was found. However, the application of the
abstraction-driven technique appeared to find the delocalised defects better, and
to help the weaker test subjects in detecting defects. Additionally, the abstraction-
driven technique found more defects as the test subjects first ran through the
code, reducing the need to re-read methods.

In an empirical investigation, the abstraction-driven reading technique was
compared to ad-hoc techniques to detect defects in object-oriented code [Dun-
smore et al., 2001]. The abstraction-driven technique was slightly more efficient,
but the difference was not statistically significant.

18

2. Reading techniques

2.10 Task-directed software inspection

Task-directed inspection (TDI) [Kelly et al., 2004] is a reading technique that was
developed for the inspection of safety-related industrial legacy software in a par-
ticular environment. The technique includes a procedure for inspecting code mod-
ules for defects, and verifying their consistency with respect to documentation.
Another part of the technique is a set of features related to the inspection process.

Task-directed inspection includes three inspection tasks that are to be per-
formed on each code module. The tasks are broadly described below:

e Task 1. Create a data dictionary for the module that includes definitions,
units, and a meaning for each variable. Verify that the variable is used in a
corresponding manner.

e Task 2. Write a description of the code’s logic and insert the description as
a comment to the code.

e Task 3. Create a cross-reference between the code and the specifications
in the documentation (manual) of the code. Create cross-reference tags
and embed the tags to both the code and the documentation. Report mis-
matches.

Some aspects of the task-directed inspection technique resemble scenario-based
reading. Some peculiarities of the TDI technique related to the inspection process
are listed below:

¢ Individual work is emphasised, with no Fagan-style inspection meetings.

e Work is assigned to inspectors with knowledge of the particular domain.
There is typically only one inspector per code module.

e The same person performs all of the inspection tasks on the same module.
e The inspection coordinator role is significant.

e Individual inspectors perform their work at their own pace whenever they
have time, resulting in efficiency and low costs.

[Kelly et al., 2004] performed a case study using the TDI technique in an industrial
setting. An inspection of 50 000 lines of code resulted in 950 findings, of which 6%
were serious defects. The amount of documented code increased significantly and
the users were satisfied with the outcome.

19

3. Perspective-based reading (PBR)

Perspective-based reading (PBR) [Basili et al., 1996] is a reading technique used
in software inspections. The goal of perspective-based reading is to examine a
software artefact description from the perspectives of the artefact's stakeholders in
order to identify defects.

When compared to non-procedural reading techniques such as ad-hoc reading,
the PBR technique can be characterised as:

e Systematic. The specific steps of the review process can be defined.
e Focused. Different reviewers focus on different aspects of the document.

e Customisable. PBR is customisable depending on the project and organi-
sation. The PBR technique does not formalise a certain set of inspection
procedures used for every possible software artefact, but instead instructs
how the perspectives and procedures can be created based on the soft-
ware artefact at hand.

e Allowing controlled improvement. Based on experience from previous
reviews, the scenarios used can be improved by modifying the questions
that are part of the scenarios.

e Allowing training. The specific review procedure allows the training of re-
viewers because the technique does not rely on the reviewer's experience
with recognizing defects [Shull et al., 2000].

Perspective-based reading has been applied to various software documents. At
least requirements documents [Basili et al., 1996], design models [Laitenberger
and Atkinson, 1999], and code documents [Laitenberger and DeBaud, 1997] have
been inspected using PBR. PBR techniques are expected to reduce human influ-
ence on the inspection results, and increase the cost-effectiveness of the inspec-
tions. The empirical research on the PBR technique is discussed in Section 3.7.
Most research papers indicate that PBR is significantly more efficient and cost-
effective than traditional reading techniques (ad-hoc and checklist-based reading).

20

3. Perspective-based reading (PBR)

3.1 Perspectives

One main idea of the perspective-based reading technique is the same idea as in
all scenario-based reading techniques: to inspect a document from different re-
viewer perspectives. In PBR, the perspectives are derived from the stakeholders
of the document, that is, the most relevant people that actually use the inspected
artefact during its life cycle. The reasoning behind this is that a document is prob-
ably of high quality when potential stakeholders that use the document cannot
detect any defects in it [Shull et al., 2000].

Typical perspectives for an inspection of a requirements specification document
could include a designer's perspective, a tester's perspective and a user's per-
spective. This is because the people with these perspectives (a designer, a tester,
and a user) are probably the most relevant stakeholders that actually use the
requirements specification at some point in the product’s life cycle.

In practice, the higher quality achieved by reviewer perspectives manifests itself
in higher defect coverage, and a more in-depth analysis of the faults. These con-
sequences of reviewer perspectives have also been analysed empirically. The
results of [Basili et al., 1996] and [Robbins and Carver, 2009] indicate that the use
of reviewer perspectives provides a better coverage of found defects, and that the
perspectives correspond to the kind of faults the reviewer finds (a reviewer using a
certain perspective tends to find more defects related to that perspective). Be-
cause different perspectives view different aspects of the document as important,
the review group together can achieve higher overall coverage of the defects in
the document. The number of overlapping defects found by different reviewer
perspectives should also decrease.

Furthermore, because each reader is responsible for only a narrow focused
view of the document, any potential errors are analysed more rigorously. The in-
depth aspect becomes more effective when the perspective of an individual re-
viewer is selected in such a way that it allows the reviewer to use their special
knowledge and perform in a way that naturally suits them.

3.2 Reviewer work products

Another key characteristic of the PBR method is the active role of reviewers in the
inspection. The idea is that the reviewer creates a high-level version of a work
product that the user would normally create from their perspective. For example, a
reviewer working from a tester’s perspective could create a high-level test plan for
the system or part of the system. A reviewer working from a designer's perspective
could create a high-level design model. A user perspective work product could be
a user manual or a set of use-cases.

By creating work products based on the reviewed document, the reviewer is
forced to actually think from the given perspective. The intention is that, by producing
work products themselves, the reviewers obtain a more profound understanding of
the system, and thus are able to detect more defects that are difficult to find and

21

3. Perspective-based reading (PBR)

not just superficial errors. These work products might also be used at later stages
of the life cycle of the system so that the work does not go to waste.

In PBR, the high-level work products are used to analyse whether the reviewed
document conforms to them. As the reviewer creates a work product, the reviewer
answers a set of questions designed to point out various possible defects in the
reviewed document [Shull et al., 2000].

3.3 Cognitive analysis of PBR

The cognitive processes used in the PBR technique were analysed in [Robbins
and Carver, 2009]. They analysed PBR using the protocol analysis method that is
used to analyse the cognitive processes used in problem-solving tasks. In protocol
analysis, the reviewer thinks aloud through their work and this data is then collect-
ed and analysed. The analysis helps understanding of the cognitive processes
and memory usage needed to perform the task.

The cognitive analysis led to several conclusions:

e The cognitive process (named defect trigger) of combining knowledge usu-
ally precedes defect detection.

e The found defects were classified a posteriori based on the perspective
that is most likely to find the defect. Using a statistical test, it was then con-
cluded that reviewers found significantly more defects of the type associated
with their perspective.

e Previous experience related to the reviewer's perspective leads to a statis-
tically significant increase in the use of that knowledge. Other domain
knowledge (for example, knowledge of the system that the document con-
cerns) does not correlate with the use of that knowledge.

3.4 Scenarios

A PBR scenario is a document of instructions, typically only a few pages long. For
each perspective, one or more scenarios are written that consist of specific and
repeatable actions that the reviewer has to perform, and a set of questions that the
reviewer should answer. As described earlier, the actions are related to producing
high-level work products to gain an understanding of the product from a particular
perspective. Questions about the activity or the work product are then answered to
identify potential defects.

22

3. Perspective-based reading (PBR)

PBR Scenario

Introduction explaining the stakeholder’s interests in the
artefact

}_ Instructions on extracting the information relevant for
examination

A2 } Questions answered while following the instructions

Figure 2. The PBR scenario structure (from [Laitenberger, 2000]).

The basic PBR scenario structure is illustrated in Figure 2. A scenario consists of
three parts: an introduction, instructions, and questions:

e The introduction part explains the stakeholder’s interests in the reviewed
artefact, and the information that is relevant from the stakeholder’s point of
view.

e The instructions explain how to read the reviewed document, and how to
extract the relevant information from it. The creation of the high-level work
product is also specified.

e A set of questions is provided that are answered while following the instruc-
tions. The questions focus the attention of the reviewer on specific aspects
of the artefact.

3.5 Example

An example of a tester scenario for reviewing requirements specifications is pro-
vided in [Basili et al., 1996]. However, the example does not have an explicit intro-
duction part. An interpolated and slightly modified version of that example is pro-
vided in Figure 3.

23

3. Perspective-based reading (PBR)

A scenario for a tester’s perspective

Introduction

Assume you are reviewing the requirements specification from the perspective of a tester.
The tester makes sure that the requirements are correct by creating a set of test cases that
covers all relevant functionality of the system. A tester needs requirements that are testable
and unambiguous. In this perspective you will create test cases for requirements. A test case
consists of inputs, and the expected outputs for these inputs. Follow the instructions and
answer the questions.

Instructions

For each requirement, generate a test or set of tests that allow you to ensure that an
implementation of the system satisfies the requirement. Use your standard test approach and
technique, and incorporate test criteria in the test suite. In doing so, ask your self the
questions provided below. Write down all identified defects.

Questions

L. Do you have all the information necessary to identify the item being tested and the
test criteria? Can you generate a reasonable test case for each item based upon the
criteria?

2. Can you be sure that the tests generated will yield the correct values in the correct
units?

3. Are there other interpretations of this requirement that the implementer might make
based upon the way the requirement is defined? Will this affect the tests vou
generate?

4. Is there another requirement for which you would generate a similar test case but
would get a contradictory result?

5. Does the requirement make sense from what you know about the application or

From what is specified in the general description?

Figure 3. An example of a scenario for reviewing requirements specifications from
the tester’s perspective.

3.6 Scenario development

The perspective-based reading technique does not include the scenarios them-
selves that a reviewer could use. It is possible that the reviewed software artefact
is similar to the artefacts examined in research papers. In these cases, the exam-
ples provided by the researchers (e.g. [Basili, 2011]) can be used as a foundation
for the scenarios.

If the reviewed software artefact differs in a significant way from these exam-
ples, new scenarios must be created. A process for developing new PBR scenari-
os is introduced in [Laitenberger and Atkinson, 1999]. The process consists of five
steps:

24

3. Perspective-based reading (PBR)

1. Identification of review documents. As the inspected software artefact
(e.g. a requirements specification of a particular subsystem) has been de-
termined, the documents containing relevant information about that system
need to be identified and gathered. The documents can be textual descrip-
tions, design documents, or graphical models.

2. Stakeholder identification. The stakeholders that have a particular role in
the software development process are specified. Possible roles include: the
producer of the preceding description of the artefact, the producer of the
subsequent description of the artefact, a tester, a maintainer, a user, and a
domain expert. The most relevant stakeholders should be selected as the
perspectives for the scenarios.

3. ldentification of relevant information. The most important information for
each perspective is identified. The stakeholders can be interviewed to get
answers to questions such as: What does the particular stakeholder need
to know about the document to complete their task? How is this information
extracted from the document?

4. Creating scenario instructions. Now the scenario can be written. The in-
troductory part of the scenario describes the interests of a stakeholder. The
instructions guide the reviewer to extract relevant information, as identified
in the previous step. The instructions should be written in a detailed manner.
The instructions should also demand that the inspector documents the work.

5. Creating scenario questions. Questions should be written based on typi-
cal problems in the particular environment. The questions should be such
that they can be answered with the understanding achieved based on the
extracted information. The questions should take into account all relevant
defect types. As an example, requirements defects taxonomy was created
in [Shull et al., 2000] in order to facilitate question composition so that all
defect types are taken into consideration. The taxonomy is presented in
Table 1.

Once the scenarios have been established, they can be used on all documents of
the same type. In practice, as the scenarios have been used in reviews, the sce-
narios should, if necessary, be modified and improved based on the experience of
applying them.

25

3. Perspective-based reading (PBR)

Table 1. Defect types in requirements.

Missing Any significant requirement related to functionality, performance, design
information constraints, attributes, or external interface that is not included.
Undefined software responses to all realisable classes of input data in all
realisable classes of situations.
Sections of the requirements document.
Figure labels and references, tables, and diagrams.
Definitions of terms and units of measurement.
Ambiguous Multiple interpretations caused by using multiple terms for the same char-
information acteristic or multiple meanings of a term in a particular context.
Inconsistent Two or more requirements that conflict with one another.
information

Incorrect fact

A requirement-asserted fact that cannot be true under the conditions speci-
fied for the system.

Extraneous
information

Unnecessary or unused information (at best, it is irrelevant; at worst, it may
confuse requirements users).

Miscellaneous
defects

Other errors, such as including a requirement in the wrong section.

3.7 Review of empirical research on perspective-based
reading

PBR has already been studied empirically in several different studies. Some results
are summarised below.

Results indicating that PBR is more effective than an ad-hoc or a checklist-
based technique:

1. In [Basili et al., 1996], two runs of a controlled experiment were conducted
to test the effectiveness of PBR against a reading technique usually used
at NASA. Specifically, the hypothesis was that PBR would provide a wider
coverage of detected defects than the ad-hoc technique as a result of the
non-overlapping inspector perspectives. The reading techniques were ap-
plied to requirements documents. Teams applying PBR achieved signifi-
cantly better coverage of documents than teams that did not apply PBR. In
addition, the individual PBR reviewers performed significantly better than
ad-hoc reviewers on generic requirements documents in the second con-
trolled experiment.

26

3. Perspective-based reading (PBR)

2. The PBR technique was studied in a fractional factorial experiment to ex-
amine the technique’s effectiveness in supporting individual defect detec-
tion in code documents. The results indicated that PBR has an influence on
individual defect detection, and that the overlap of defects detected from
different perspectives is low. The experiment also indicated that defect de-
tection is more of an individual than a group activity, suggesting that small-
er inspection teams would be more effective [Laitenberger and DeBaud,
1997].

3. PBR was compared to checklist-based reading for defect detection in code
documents. The comparison was a series of three studies: a quasi-
experiment and two internal replications. PBR was statistically found to be
more effective than CBR. In addition, the PBR was more cost-effective than
CBR [Laitenberger et al., 2000].

4. [Laitenberger, 2001] reviews the results of three empirical studies that
compare the cost-effectiveness of PBR, checklist-based reading and ad-
hoc reading. Results indicated that PBR is a more cost-effective technique,
and that the effect of human experience on inspection results is reduced
when PBR is used.

5. An experimental evaluation of the PBR technique determined that the
technique can improve the number of defects found by both individuals and
teams in certain contexts. The PBR technique was found most useful for
novice users. More experienced reviewers tend to fall back into using tradi-
tional techniques when reviewing documents, as their previous experience
interferes with the process of the reading technique [Shull, 1998].

Results indicating that PBR is not significantly more effective than ad-hoc reading
or checklist-based reading:

1. A study of PBR [Basili et al., 1996] was replicated in order to better under-
stand the complementary aspects of different PBR perspectives. The re-
sults showed that PBR was more effective than CBR in one of the two re-
quirements documents used in the comparison. The study also found that
when the perspectives found similar defects, there was no overall benefit
observed for the perspective-based technique [Maldonado et al., 2006].

2. [Freimut et al., 2001] examined the effect of reading techniques on the accu-
racy of various defect content estimation techniques (estimating the total
number of defects in a document). The empirical study compared two read-
ing techniques: checklist-based reading and scenario-based reading (which
was a combination of both perspective-based reading and traceability-based
reading). The inspected artefact was a requirements document. No differ-
ence in the accuracy was observed between the two reading techniques.

27

3. Perspective-based reading (PBR)

Five of the research papers report that PBR has been significantly more effective
than a more traditional reading technique. Two results indicate that the difference
between the techniques’ effectiveness is not statistically significant.

28

4. Application of the PBR technique in the
nuclear domain

To apply perspective-based reading in the nuclear domain, one should first decide
what software artefacts are under review. It has already been demonstrated that
PBR is applicable to various software artefacts such as requirements documents
[Basili et al., 1996], design models [Laitenberger and Atkinson, 1999], and code
documents [Laitenberger and DeBaud, 1997]. The nuclear domain software life
cycle and the software artefacts do not much differ from the generic software
artefacts. As an example, the nuclear domain Category A software standard IEC
60880 [IEC 60880, 2006] specifies the following documents in its typical list of
software documentation:

e System requirements specification

e System specification

e Software requirements specification

e Software quality assurance plan

¢ Detailed recommendations

e Software verification plan

e Software aspects of system integration plan

e Software design specification

e Software design verification report

e Software test specification

e Software code verification report

e Software test report

e Software aspects of integrated system verification report
e Software aspects of the system validation plan

e Software aspects of the system validation report
¢ Software user manual

e Software aspects of the commissioning test plan
e Software aspects of the commissioning test report
e Documents relating to software modifications

e Anomaly report

e Software modification request

e Software modification report

e Software modification control history.

29

4. Application of the PBR technique in the nuclear domain

None of the documents in the list is nuclear specific, but the documents are likely to
contain aspects only related to the nuclear domain. Therefore, it seems that the PBR
technique can be used at least on the main nuclear domain software artefacts, such
as requirements specification, design phase documents, and code. Other documen-
tation from the list above is also a potential target for PBR reviews. For each differ-
ent software artefact planned for PBR application, several detailed PBR scenarios
should first be developed according to the guidelines provided in Section 3.6.

In what follows, example PBR scenarios are developed for nuclear-domain re-
quirements specifications. An exemplar requirements specification [EPRI, 2000] is
used as a reference for a typical requirements specification document. The resulting
scenarios are in Appendix A.

4.1 Example system description and requirements

The first step of PBR scenario development is to identify the documents relevant
to the software artefact under review. In this running example, the target system is
a rod control system upgrade. The overall system and the generic requirements
specification for the system are described in [EPRI, 2000]. The document is a
generic requirements specification for a rod control system upgrade for Westing-
house pressurized water reactors. Similar requirements specifications could be
used in, for example, nuclear automation renewal projects.

4.1.1 Rod control system

The rod control system is part of the power control system. The power control
system adjusts reactor power and temperature deviations through control rod
motion. The task of the rod control system is to move the control rods based on
the demand signals from the reactor control system or the reactor operator. The
control rods are organised into groups, and these groups are further organised
into shutdown banks and control banks. The control bank groups are used in reac-
tor power control. All shutdown and control groups are used to safely shut down
the reactor.

The rod control system and other interacting systems and components are de-
picted in Figure 4. The functions of the rod control system can be divided into
three modules:

e Rod control logic: contains the timing logic, bank sequencing, bank overlap,
and interlock processing functions. Based on signals from the operator and
the reactor control function, command signals are output to power cabinets
to move the control rods.

e Power cabinets: Provides electricity to the system.

e Reactor Operator HMI: The user interface that uses “soft controls” and
CRT displays.

30

4. Application of the PBR technique in the nuclear domain

The rod control system interacts with other systems, including:

Control rod drive mechanisms: An electromagnetic device which sequen-
tially energises and de-energises three coils to move a rod control cluster
up or down in single step increments.

Rod control motor-generator sets: The source of electrical power to the
control rod drive mechanisms and the rod control system is from two mo-
tor-generator sets.

Reactor trip breakers: The reactor trip breakers can be tripped manually by
operators or automatically in the reactor protection system. A trip causes all
control bank and shutdown bank rods to drop into the core.

Rod stop interlocks: Prevent uncontrolled power escalation by blocking rod
withdrawal while allowing rod insertion.

Rod position indication system: Provides axial position information to the
main control room for all of the control rod clusters.

Reactor control system (process instrumentation such as reactor coolant
temperatures, NIS power, turbine power, etc.)

Plant computer software: Provides the operator with comparative infor-
mation regarding rod positions.

The upgrade includes replacing logic and power cabinets with modern hardware
and software. A CRT-based human-system interface is specified.

31

. Application of the PBR technique in the nuclear domain

RPI
Detectars
Lifi
. CROM
Movable Coils
Stationary

Assemblies

L1111

Rod Position Indication

Rod positions

MG Sets Rod Stop
3-phase power Interlocks
N

Power Cabinets

CRDM Current Orders
Current Order Verification
Urgent Alarm Protection
Double Gripper

I
Verification
and status

¥

Motion commands

Rod Control Logic

External Scram Signal
(optional)

Reactor Control
(Optional)

I

Tave, Tref, NIS power,

Reactor Control
(Existing)

Rod speed and
direction

EE‘ Turbine power
Bank Overlap 5
Bank Sequencing |
Auto/Manual/Bank PPC Software
Bank Insertion Limits
Deviation Moniter
=
3
Controls :
In-Haold-0Out . Annunciators
Bank Select Displays
Alarm Reset

Lift Disconnect

Front Control Panel

Shadowed = New Components

Figure 4. The rod control system upgrade.

4.1.2 EPRI requirements specification

The scope of the document covers hardware, software, and system requirements.
Interface requirements, power generation, the user interface, and the local area
network are also covered to some extent. The EPRI document is quite generic and
can be adapted to specific plants. In this work, the main focus is on the software

requirements of the EPRI document.

32

4. Application of the PBR technique in the nuclear domain

4.2 ldentification of document stakeholders

The next step in scenario development is the identification of document stake-
holders. Nuclear domain requirements specifications are generally developed
similarly to any other requirements specifications. The stakeholders for generic
software requirements specifications are identified for example in [Shull et al.,
2000]. Stakeholder identification requires the identification of who will use the
system and requirements specification and in what way. In [Shull et al., 2000], it is
identified that a requirements specification has three major uses at later stages of
the life cycle:

e A description of the customer’s needs
e A basis for the system design
e A point of comparison for system tests.

This suggests that three distinct perspectives are relevant for generic require-
ments specifications: a user perspective, a designer perspective, and a tester
perspective. The designer requires that sufficient detail is provided in the require-
ments specification. The tester wants requirements that can be tested. A user of
the system requires general completeness and correctness.

These three perspectives are also relevant in nuclear domain reviews. However,
other perspectives might be relevant as well. The life cycle of a requirements
specification should be analysed to find other potentially relevant perspectives.
Special features of nuclear-domain systems, such as emphasised safety require-
ments, the regulator’s role, and the long life-time of the plant, should also influence
the stakeholder identification process. Nuclear-specific aspects related to require-
ments specifications are discussed in what follows.

4.2.1 Long system life-time

A nuclear power plant (NPP) has quite a long operational life-time (appr. 60
years). Renewal of systems within this period is often necessary. An existing sys-
tem may have to be replaced or entirely new systems built. Reasons for system
renewal might include: new regulation demanding better systems, old systems
becoming obsolete, or an increase in the safety of the plant. From the system
renewal perspective, it is relevant that the requirements written for a system are
easily extensible. Furthermore, it is relevant that the reasoning behind the written
requirements is stated explicitly so that the requirements are not later casually
changed or neglected.

The long life-span of an NPP also indicates the importance of the repairability
of the system, the modifiability of the system, and the importance of periodic tests
and overall maintenance of the system. From this perspective it is important that
the requirements pay attention to, for example, defect detection and correction
methods.

33

4. Application of the PBR technique in the nuclear domain

The concept of maintainability [Avizienis et al., 2004] covers all these issues re-
lated to a long system life-span. Maintainability is the ability to undergo modifica-
tions and repairs, including:

e Corrective maintenance (repairs)

e Preventive maintenance (removal of dormant faults)

e Adaptive maintenance (modifications caused by environment changes)
e Augmentative maintenance (changes to the system’s function).

The maintainability of an NPP system is seen as an important aspect. In Appen-
dix A, we define a maintainer’s perspective scenario for the inspection of require-
ments specifications. This perspective encompasses the concern for proper sys-
tem renewal, modification, and repairs.

4.2.2 System design process complexity

The design process of an NPP-related system is a complex process. Many things
have to be taken into consideration. Typically, systems are designed by many
people together, responsible for different areas of the design. One person hardly
has all the necessary knowledge and skills to evaluate all the relevant design
aspects of a system at the same time. In addition to the typical designer role, a
nuclear-domain system may have, for instance, the following roles related to sys-
tem design:

e System safety engineer, making sure that the system remains operational
even as individual components fail

e Plant process designer, focusing on the nuclear process
e Electrical wiring designer

e Nuclear physicist

e HMI designer.

The special aspect here is the large amount of information needed to design a
nuclear-specific system. There are many design constraints and rules that you
have to know in order to analyse whether the requirements are complete. In an
NPP, it is not enough that the system functions correctly; it also has to follow, for
example, licensing regulations, plant procedures, and standards.

Each of the various designer roles can be seen as a potential PBR perspective.
However, that leads to a large group of inspectors. In our approach, the designer
perspective defined in Appendix A corresponds to all these designer roles. It is
important from the designer’s perspective that all design constraints related to the
different aspects above are explicitly written down in the requirements specification.

The previous PBR techniques have neglected many of the issues related to the
design of a complex system (such as an NPP safety system). This is because the
systems reviewed using PBR have been software implementations and the related

34

4. Application of the PBR technique in the nuclear domain

hardware and environment issues have not been part of the inspection. Design
constraints have not been addressed as a specific concern. In our technique,
evaluating design constraint coverage is seen as an important task. The task is
interpreted as a part of the designer’s perspective.

4.2.3 Regulator’s role

One special aspect of the nuclear-domain requirements is that they have to be
approved by the regulator. In practice, this means that the requirements specifica-
tion is reviewed by the regulator body. The objective of the regulator’s review is to
compare the requirements to the requirements given by law and by the Finnish
YVL guides. The regulator wants to make sure that the main safety requirements
and design principles are followed and that reactor safety is ensured. Other than
that, the regulator probably focuses on the referred standards followed, and the
overall quality of the documentation.

4.2.4 Safety importance

Another nuclear aspect is the great importance of safety. The “safety as high as
reasonably achievable” principle is often quoted. The nuclear-domain safety pre-
cautions are manifold: the defence-in-depth principle calls for multiple protection
measures that back each other up in case one measure fails. In addition, some
protection measures are built in as redundant and diverse to achieve failure tolerance.

In spite of all these precautions, the effects of a faulty safety system can still be
severe, and thus a lot of effort is put into the verification of the functions of the
systems. For example, a nuclear safety system is typically thoroughly tested and
simulated, and also undergoes various independent analyses, including analysis
by formal and semi-formal analysis methods. From the safety point of view, it is
essential that the verification is extensive and the behaviour in all improbable
corner cases of the system function are also analysed. It is also imperative that
the potential common-cause failures are thoroughly evaluated and identified.

An independent verifier is also a stakeholder in the requirements specification.
The verifier performs, for example, a formal analysis against the requirements
specification. Similarly to the tester, the verifier needs requirements that can be
verified. When formal methods are used, it is also necessary that the requirements
are detailed enough to consider all possible system behaviour. A verifier might
also be interested in looking for potential loopholes in the requirements.

4.2.5 Contract work chains
Construction of a nuclear power plant is a huge project. Some work is distributed

to contractors. For example, the requirements specification might be given as
input to a contractor to create some part of the system. The contractor might hire a

35

4. Application of the PBR technique in the nuclear domain

subcontractor to perform the work. The requirements specification is given to the
subcontractor. The potential problem is that the subcontractor might not be aware
of all related nuclear-specific guidelines and design principles that are not explicitly
mentioned in the requirements specification documentation. Considering this, it
might be interesting to find out whether the individual requirements are such that
they could have varying interpretations depending on the background of the reader.
Could a person with no detailed nuclear-domain knowledge understand the re-
quirements in a different way?

4.2.6 PBR perspective identification and specification

Based on the considerations above, we identify seven possible stakeholder roles
that can be used as a perspective in the PBR reading technique. The specifics
(relevant information for the perspective, a work product created to obtain this
information) of each perspective are discussed below. The resulting reading sce-
narios are in Appendix A.

e Designer: Reads the requirements from the system designer’s perspec-
tive. Additionally, must evaluate whether the various design constraints re-
lated to the system are explicitly identified in the requirements. The designer
wants to know whether the requirements and design constraints are de-
tailed enough for the design to be made. This information can be easily
found by creating a small prototype design (for example a state machine
diagram) and checking if some aspects of the design are unclear.

e Tester: Reads the requirements from the tester’s perspective. Is interested
in whether the requirements can be used to form test cases. The tester
samples the requirements and writes actual test cases to find out if the re-
quirements are suitable.

e User/operator: Reads the requirements from the system user's perspec-
tive. Is interested in the overall completeness and correctness of the re-
quirements. The user creates a set of the most common use cases based
on the requirements, and examines whether any difficulties in the use-case
specification arise.

e Maintainer: Focuses on maintainability issues. Are the requirements such
that they support system repairs and modifications? To find this out, the
maintainer produces a data flow diagram describing the system functions,
and analyses the dependencies between these functions. For each identified
function, the maintainer writes down the motivation behind this function.
The maintainer also identifies other requirements that are dependent on
changes related to the function. The maintainer writes down how defects in
the function are detected and corrected.

e Verifier: Focuses on corner case analyses and identification of common-
cause failures in the requirements. In order to identify whether unexpected

36

4. Application of the PBR technique in the nuclear domain

corner cases are addressed, the verifier samples the requirements and
produces a set of negative requirements (requiring what the system should
not do). The verifier also produces a fault tree of the system and identifies:
(1) where similar functions are used in many system components, (2) sys-
tem functions that are dependent on hardware located in the same physical
space, (3) probable components that will require maintenance. (Note: the
verifier is typically also interested in the testability of the requirements, but
because that aspect is already handled by the tester perspective, the verifier
shall focus on other matters.)

e Regulator: Focuses on overall quality and references, and compares the
requirements specification to other regulations. The regulator creates a list
of standards and other relevant documents that are referred to in the re-
quirements specification. The regulator produces a data flow diagram of
the system components. Based on the diagram, the regulator identifies the
parts in which the concepts of redundancy, diversity, and physical separa-
tion are applied. The regulator also writes down inconsistencies within the
document, and compares the document structure to an example structure
provided in a standard (e.g. IEEE 830-1998).

e Contractor: Focuses on whether the requirements can be misunderstood if
they are read by a person not familiar with the nuclear domain. The con-
tractor samples the requirements and writes down whether nuclear-domain
knowledge is required to understand the requirement. Is this knowledge re-
ferred to in the proximity of the requirement? What would be the possible
alternative interpretation of the requirement?

4.3 Scenario usage considerations

Our analysis led to a total of seven separate scenarios. Using all of the scenarios
would require an inspection group consisting of at least seven people. This is quite
a lot, and many researchers suggest that using smaller groups is more effective.
We also recommend that discretion is used when selecting PBR perspectives to
be used in an inspection. We have defined a set of perspectives that, in general,
have greater relevance in a nuclear-domain system. However, only the most rele-
vant perspectives should be selected, depending on the case, so that the effec-
tiveness of the inspection does not suffer.

In addition, the defined perspectives and scenarios are not of equal importance.
The most fundamental perspectives, such as designer and tester, should perhaps
always be included. The contractor perspective, on the other hand, is quite one-
sided and not necessarily important at all. It might also be possible to merge some
of the tasks given for the scenarios into a single scenario, thus decreasing the
number of scenarios but maintaining the same tasks.

It would be important for the usability and effectiveness of the defined scenarios
to be evaluated in a real case study. It is difficult to estimate their usefulness with-

37

4. Application of the PBR technique in the nuclear domain

out experimentation. PBR inspection papers also encourage refining and modifying
the scenarios based on the experiences of using them. Only actual use reveals
which scenarios are useful and which ones should be discarded in future reviews.

The scenarios should be used by people who have previous experience in the
context of the perspective. The best review results have been achieved in cases
where the reviewers get to make use of their special know-how. Reviewer experi-
ence has a lot of importance when reviewers using the designer perspective are
selected, because the perspective requires a lot of knowledge from various do-
mains. It might be useful to use several reviewers to apply the designer’s perspec-
tive, each with a slightly different background (for example process engineer,
safety engineer, and physicist).

38

5. Summary

Inspections and reviews are one of the most effective ways of detecting errors in
software development. The methods are also cost-effective because the defects
can be spotted early in the development, and the cost of repairing the defects is
thus lower.

Reading techniques are procedures that are used in the inspection and review
of software artefacts. The most common reading techniques are simple ad-hoc
reading and checklist-based reading. However, more advanced and detailed pro-
cedures exist for various purposes.

In this paper, state-of-the-art reading technigues used in software inspections
have been reviewed. The study identified 13 reading technigues that can be used
in the inspection of a software product. Some reading techniques are specific to a
life-cycle phase-, some reading techniques can be used on practically any soft-
ware artefact. Some empirical research concerning the reading techniques was
also reviewed. The majority of the results indicate that advanced reading tech-
nigues such as perspective-based reading can find more defects and are more
cost-effective than ad-hoc reading and checklist-based reading.

The perspective-based reading technique was examined more closely. The
reading technique is based on reading a software document from different stake-
holder perspectives. Detailed instructions called scenarios are written for each
perspective. The idea is that inspectors detect fewer overlapping defects and are
more effective when they focus only on a subset of the matter. In PBR, inspectors
are also instructed to create their own work products, in order to force the inspectors
to think from the given perspectives.

The application of the PBR technique was assessed in the nuclear context.
The technique seems applicable to the inspection of several nuclear-domain doc-
uments. As an example of how the technique could be used, PBR was applied to
the inspection of requirements specifications. The EPRI requirements specification
[EPRI, 2000] was used as an example of a typical requirements specification in
the nuclear field. In this context, a few nuclear specific aspects were identified that
should be considered: the complexity of the design process, the long system life-
span, the regulator’s role in system development, sub-contractor issues, and the
great importance of safety.

39

5. Summary

Based on these special concerns, seven PBR perspectives were identified. A
reading scenario was written for each perspective. The derived reading perspec-
tives/scenarios were: designer, tester, user/operator, maintainer, verifier, regulator,
and contractor. The scenarios are intended to be used by a separate inspector so
that each inspector focuses on only a small part of the requirements specification.
If a smaller group of inspectors should be available, only the most relevant per-
spectives should be selected, depending on the case, so that the effectiveness of
the inspection does not suffer. Not all defined perspectives and scenarios are of
equal importance. The most fundamental perspectives, such as designer and
tester, should perhaps always be included in the inspection. A contractor perspec-
tive should carry a smaller weight than these. Finally, the best review results are
expected when the reviewers are able to make use of their special know-how.
Thus, the person reviewing from the designer's perspective should have some
previous knowledge related to the design phase.

The effectiveness of the created PBR scenarios should be determined (and the
scenarios modified based on the experiences) in an actual case study. This is left
for future research. The created scenarios are intended for requirements specification
reviews only. If documents in other life-cycle phases are reviewed, the scenarios
should be changed to reflect the stakeholders of those types of documents. The
scenario development process for that purpose is reviewed in this report.

40

References

Avizienis, A., Laprie, J.-C., Randell, B. and Landwehr, C. 2004. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, Vol. 1, pp. 11-33.

Barnard, J. and Price, A. 1994. Managing Code Inspection Information. |IEEE
Software, Vol. 11, Issue 2, pp. 59-69.

Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Serumgard, S.,
and Zelkowitz, M. 2011. Lab package for the empirical investigation of
perspective-based reading. http://www.cs.umd.edu/projects/SoftEng/
ESEG/manual/pbr_package/manual.html (accessed: 15 March, 2012).

Basili, V. R., Green, S., Laitenberger, O., Shull, F., Sgrumgérd, S. and Zelkowitz,
M. V. 1996. The empirical investigation of perspective-based reading.
Empir Softw Eng-Int J., Vol. 1, pp. 133-164.

Cheng, B. and Jeffrey, R. 1996. Comparing inspection strategies for software
requirements specifications. In: Proceedings of the 1996 Australian Soft-
ware Engineering Conference, pp. 203-211.

Christenson, D.A., Huang, S.T. and Lamperez, A.J. 1990. Statistical quality control
applied to code inspections. IEEE Journal of Selected Areas of Commu-
nication, Vol. 8, Issue 2, pp. 196-200.

Dunsmore, A., Roper, M. and Wood, M. 2001. Systematic object-oriented inspec-
tion — An empirical study. In: Proceedings of ICSE '01 23" International
Conference on Software Engineering. IEEE Computer Society Washington
DC, USA.

Dyer, M. 1992. Verification-based Inspection. In: Proceedings of the 26th Annual Ha-
waii International Conference on System Sciences, pp. 418-427.

EPRI 2000. Requirements Specification for Rod Control System Upgrade: A Ge-
neric Specification for Westinghouse Pressurized Water Reactors. Elec-
tric Power Research Institute 1000969.

Fagan, M. E. 1976. Design and code inspections to reduce errors in program
development. IBM Sys. J. Vol. 15, No. 3, pp. 182-211.

Fagan, M. E. 1986. Advances in software inspections. IEEE Transactions on Soft-
ware Engineering, Vol. 12, Issue 7, pp. 744-751.

41

http://www.cs.umd.edu/projects/SoftEng/ESEG/manual/pbr_package/manual.html

Freimut, B., Laitenberger, O. and Biffl, S. 2001. Investigating the impact of reading
techniques on the accuracy of different defect content estimation tech-
niques. In: Proceedings of the 7th International Symposium on Software
Metrics (METRICS '01). IEEE Computer Society, Washington DC, USA.

Grady, R. B. and van Slack, T. 1994. Key lessons in achieving widespread inspec-
tion use. IEEE Software, Vol. 11, Issue 4, pp. 46-57.

IEC 2006. Nuclear power plants — Instrumentation and control systems important
to safety — Software aspects for computer-based systems performing
category A functions, International Electrotechnical Commission 60880.

IEEE Standard 2008. IEEE Standard for Software Reviews and Audits, 1028-2008.

Kan, S. H. 1995. Metrics and models in software quality engineering. Addison-
Wesley Publishing Company.

Kaner, C. 1998. The performance of the n-fold requirement inspection method.
Requirements Engineering Journal, Vol. 2, No. 2, pp. 114-116.

Kelly, D. and Shepard, T. Task-directed software inspection. 2004. J. Syst. Softw.,
Vol. 73, Issue 2, pp. 361-368.

Kelly, J. C., Sherif, J. S. and Hops, J. 1992. An analysis of defect densities found
during software inspections. Journal of Systems and Software, Vol. 17,
Issue 2, pp. 111-117.

Laitenberger, O. 2001. Cost-effective Detection of Software Defects through Per-
spective-based Inspections. Empirical Software Engineering, Vol. 6, Is-
sue 1, pp. 81-84.

Laitenberger, O. 2002. A survey of software inspection technologies. In: Handbook
on Software Engineering and Knowledge Engineering. Vol. 2: Emerging
Technologies, River Edge: World Scientific, pp. 517-555.

Laitenberger, O. and Atkinson, C. 1999. Generalizing perspective-based inspection
to handle object-oriented development artifacts. In: Proceedings of the 1999
International Conference on Software Engineering, 1999. Los Angeles,
CA, USA, pp. 494-503.

Laitenberger, O., Beil, T. and Schwinn, T. 2002. An industrial case study to examine
a non-traditional inspection implementation for requirements specifications.
Empirical Software Engineering, Vol. 7, Issue 4, pp. 345-374.

42

Laitenberger, O. and DeBaud, J.-M. 1997. Perspective-based reading of code
documents at Robert Bosch GmbH, Tech. Rep. ISERN-97-14.

Laitenberger, O., El Emam, K. and Harbich, T. 2000. An internally replicated qua-
si-experimental comparison of checklist and perspective-based reading
of code documents. IEEE Transactions on Software Engineering.

Mafra, S. N. and Travassos, G. H. 2005. A skeptical discussion regarding experi-
mentation in software engineering based on reading techniques studies.
http://lens.cos.ufrj.br:8080/eselaw/proceedings/2005/interestedareas/ES
ELAW2005 paperl0 mafra.pdf (accessed: 15 March, 2012).

Maldonado, J. C., Carver, J., Shull, F., Fabbri, S., Déria, E., Martimiano, L., Men-
donga, M. and Basili, V. 2006. Perspective-based reading: A replicated
experiment focused on individual reviewer effectiveness. Empirical Soft-
ware Engineering, Vol. 11, Issue 1, pp. 119-142.

Parnas, D. L. and Weiss, D. 1985. Active design reviews: principles and practices.
In: Proceedings of the 8th International Conference on Software Engineer-
ing, pp. 132-136. Also Available as NRL Report 8927, 18 November 1985.

Porter, A. A. and Johnson, P. M. 1997. Assessing software review meetings: Re-
sults of a comparative analysis of two experimental studies. IEEE Trans-
actions on Software Engineering, Vol. 23, Issue 3, pp. 129-144.

Porter, A. and Votta, L. G. 1994. An experiment to assess different defect detection
methods for software requirements inspections. In: Proceedings of the 16th
International Conference on Software Engineering, pp. 103-112.

Porter, A. A. and Votta, L. G. 1997. What makes inspections work? |IEEE Soft-
ware, Vol. 14, Issue 6, pp. 99-102.

Porter, A. and Votta, L. 1998. Comparing detection methods for software require-
ments inspections: A replication using professional subjects. Empirical
Software Engineering, Vol. 3, Issue 4, pp. 355-379.

Porter, A. A., Votta, L. G. and Basili, V. R. 1995. comparing detection methods for
software requirements inspections: A replicated experiment. |IEEE
Transactions on Software Engineering, Vol. 21, Issue 6, pp. 563-575.

Remus, H. 1984. Integrated software validation in the view of inspections/reviews.
In: Proc. of a symposium on Software validation: inspection-testing-
verification-alternatives. Elsevier North-Holland, Inc. New York, NY, USA
ISBN 0-444-87593-X, pp. 57—64.

43

http://lens.cos.ufrj.br:8080/eselaw/proceedings/2005/interestedareas/ESELAW2005_paper10_mafra.pdf

Rifkin, S. and Deimel, L. 1994. Applying program comprehension techniques to
improve software inspection. In: Proceedings of the 19th Annual NASA
Software Eng. Laboratory Workshop. NASA.

Robbins, B. and Carver, J. 2009. Cognitive factors in perspective-based reading:
A protocol analysis study. In: Proceedings of the 2009 International
Symposium on Empirical Software Engineering and Measurement
(ESEM), Lake Buena Vista, FL, USA, October 15-16, 2009.

Saaty, T. L. and Vargas, L. G. 2001. Models, methods, concepts & applications of
the analytic hierarchy process. Kluwer Academic, Boston, USA.

Shull, F. 1998. Developing techniques for using software documents: A series of
empirical studies. Ph.D. Dissertation. University of Maryland at College
Park. MD, USA.

Shull, F., Rus, I. and Basili, V. 2000. How perspective-based reading can improve
requirements inspections. Computer, Vol. 33, Issue 7, pp. 73-79.

Selby, R. W., Basili, V. R. and Baker, F. T. 1987. Cleanroom software development:
An empirical evaluation. IEEE Transactions on Software Engineering,
SE-13, Issue 9, pp. 1027-1037.

Thelin T., Runeson, P. and Regnell, B. 2001. Usage-based reading — an experi-
ment to guide reviewers with use cases. Information and Software Tech-
nology, Vol. 43, Issue 15, pp. 925-938.

Thelin, T., Runeson, P. and Wohlin, C. 2003. An experimental comparison of
usage-based and checklist-based reading. IEEE Transactions on Soft-
ware Engineering, Vol. 29, Issue 8, pp. 687—704.

Travassos, G. H., Shull, F., Carver, J. and Basili, V. R. 1999a. Reading techniques
for OO design inspections. In: Proceedings of the Twenty-fourth Annual
Software Engineering Workshop. Goddard Space Flight Center, Green-
belt, MD, USA, December 1999.

Travassos, G. H., Shull, F., Fredericks, M. and Basili, V. R. 1999b. Detecting de-
fects in object oriented designs: Using reading techniques to increase
software quality. In: Conference on Object-oriented Programming Systems,
Languages & Applications, pp. 44-56.

Weller, E. F. 1993. Lessons from three years of inspection data. IEEE Software,
Vol. 10, Issue 5, pp. 38-45.

44

Zhang, Z., Basili, V. and Shneiderman, B. 1998. An empirical study of perspective-
based usability inspection. In: Proceedings of the Human Factors and Ergo-
nomics Society 42nd Annual Meeting. Chicago, IL, USA, pp. 1346-1350.

45

Appendix A: Example scenarios

A.1 Designer scenario for requirements specifications

Introduction: Assume you are reading the requirements from a system designer’s
perspective. You are interested in knowing whether the requirements are detailed
enough for the design to be made based on them. Concentrate also on whether
the design constraints cover all relevant aspects of the system.

First read the instructions and questions below and then proceed to follow the
instructions while writing down observations related to the questions. Document all
your work products so that the inspection is traceable and your work is repeatable.

Instructions: Based on the requirements, create a high-level design of the system
that encompasses all system functions, relevant data objects and structures. As a
part of your design, produce the data flow diagram of the system.

Questions:
1. Are the system interfaces appropriately defined?
Is all necessary functionality defined in the requirements?
Is all information available to create the design?

2

3

4. Are there unclear requirements?

5. Are all relevant design constraints of the system explained?
6

. Are all necessary data sources, destinations and stores defined? Are data
types defined?

7. Can the data flow diagram be used to trace the behaviour in actual cases?

Al

Appendix A: Example scenarios

A.2 Tester scenario for requirements specifications

Introduction: Assume you are reading the requirements from a system tester’s
perspective. You are interested in knowing whether the requirements are such that
test cases can be written based on them. Concentrate on finding vague, ambigu-
ous and unclear requirements.

First read the instructions and questions below and then proceed to follow the
instructions while writing down observations related to the questions. Document all
your work products so that the inspection is traceable and your work is repeatable.

Instructions: For each requirement, create a test case or a set of test cases that
can be used to verify that requirement. Try to create tests based on the equiva-
lence sets of inputs (one test case for each functionally different outcome). Docu-
ment inputs and expected outputs for each test case.

Questions:
1. Is all relevant information available to produce the test cases (inputs)?
2. Is the outcome of the test specified unambiguously?

3. Is there an alternative interpretation of the requirement that would result in
a functionally different outcome?

A2

Appendix A: Example scenarios

A.3 User/operator scenario for requirements specifications

Introduction: Assume you are reading the requirements from the operator’s per-
spective. You are interested in knowing whether the requirements adequately
describe the common functions of the system. Concentrate on the overall correct-
ness and completeness of the requirements.

First read the instructions and questions below and then proceed to follow the
instructions while writing down observations related to the questions. Document all
your work products so that the inspection is traceable and your work is repeatable.

Instructions: Based on the requirements, produce a set of the most common and
critical use cases. Document the use cases carefully. Define the inputs required to
perform the user functions and the outputs generated by each function. Define the
flow of system control in a diagram.

Questions:
1. Is all relevant information available for the creation of the use cases?
2. Are the requirements ambiguous?

3. Are there situations in which the wrong operator action causes safety issues?
Is the proper operation in these situations evident?

A3

Appendix A: Example scenarios

A.4 Maintainer scenario for requirements specifications

Introduction: Assume you are reading the requirements from a system maintainer’s
perspective. You are interested in knowing whether the requirements support
system repairs and modifications. Concentrate on whether the reasons for the
requirements are explained and if there are dependencies between requirements.
Low coupling and high cohesion are also indicators of good maintainability of the
requirements.

First read the instructions and questions below and then proceed to follow the
instructions while writing down observations related to the questions. Document all
your work products so that the inspection is traceable and your work is repeatable.

Instructions: Based on the requirements, create a data flow diagram describing the
functions of the system. Analyse the dependencies between these functions. For
each function:

1. Write down the motivation behind the requirements for the function.

2. Write down the defect detection and correction methods related to that
function.

Questions:

1. Is maintenance/repair of the system parts acknowledged in the require-
ments?

2. Are the requirements written in a coherent manner, using explicit cross-
referencing?

3. Is there redundancy in the requirements specification (with the same re-
quirement mentioned in several parts of the document)?

4. Is each requirement expressed separately, using a unique name or refer-
ence number?

5. If possible, is there a reference to the source of the requirement in earlier
documents?

6. Could the system use more modularity in its structure?

7. Could the interaction between different parts of the system be decreased?

A4

Appendix A: Example scenarios

A.5 Verifier scenario for requirements specifications

Introduction: Assume you are reading the requirements from the perspective of
an independent verifier using formal methods. You are interested in knowing
whether the requirements cover all possible behaviour of the system. Concentrate
on improbable cases, unusual user actions, and so on. Try to think of scenarios in
which contradictions could arise. In addition, try to think of scenarios in which a
single event could cause the system to fail (common-cause failures).

First read the instructions and questions below and then proceed to follow the
instructions while writing down observations related to the questions. Document all
your work products so that the inspection is traceable and your work is repeatable.

Instructions:

1.

For each requirement, think of a possible negative version of that require-
ment (requiring what the system should not do). Write down the negative
counter-parts.

Create a high-level fault tree of the system. Identify the minimal cut sets of
the fault tree. Identify and document parts of the system: (1) where similar
functions are used in many system components, (2) where system func-
tions that are dependent on hardware are located in the same physical
space, (3) where components will often require maintenance.

Questions:

1.

Is the written negative requirement also a requirement for the system? Has
it been explicitly mentioned in the requirement specification? Should it be
mentioned?

Do the negative requirements remind you of cases in which the system
functionality or proper action is not specified?

Is there functionality in the system that might contradict the written negative
requirement? Can it be verified that the system does not necessarily per-
form disallowed actions?

Could the system fail because of a functionally similar design being used in
many components?

Is the system adequately distributed so that an environmental disaster
does not affect all critical system components at the same time?

. Are there components in which the wrong human action (e.g. maintenance)

could cause the failure of the system?

A5

Appendix A: Example scenarios

A.6 Regulator scenario for requirements specifications

Introduction: Assume you are reading the requirements from a regulator’s per-
spective. You are interested in knowing whether the requirement specification is of
good quality and follows all necessary laws, guidelines, and standards. Concen-
trate on whether redundancy, diversity, and physical separation are applied in the
system.

First read the instructions and questions below and then proceed to follow the
instructions while writing down observations related to the questions. Document all
your work products so that the inspection is traceable and your work is repeatable.

Instructions:

1. Based on the requirements, create a data flow diagram depicting the sys-
tem components. Identify and write down the parts in which the concepts of
redundancy, diversity, and physical separation are applied.

2. Create a list of standards and other relevant documents that are referred to
in the requirements specification.

Questions:

1. Are the safety principles stated in the Finnish YVL guides applied in an ad-
equate manner?

2. What standards are followed? Are there deficiencies in the references in
the document?

3. Are there any inconsistencies within the document?

4. Does the requirements specification address all relevant topics in the ex-
ample structure of a requirements specification document as required in
IEEE 830-1998?

5. Is each requirement expressed separately, using a unique name or refer-
ence number?

A6

Appendix A: Example scenarios

A.7 Subcontractor scenario for requirements specifications

Introduction: Assume you are reading the requirements from a subcontractor’s
perspective. You do not have extensive knowledge of specific nuclear-domain
design constraints. Concentrate on whether the requirements can be misinterpret-
ed by a person outside the nuclear field.

First read the instructions and questions below and then proceed to follow the
instructions while writing down observations related to the questions. Document all
your work products so that the inspection is traceable and your work is repeatable.

Instructions: For each requirement, write down the nuclear domain design con-
straints that have to be known in order to understand it. Think of alternative inter-
pretations and write them down.

Questions:
1. Is the requirement unclear?
2. Could the requirement be written differently?

Is the design constraint related to the requirement mentioned in close proximity to
the requirement in the text? Is the design constraint mentioned in the requirements
specification at all?

A7

Series title and number

VTT Technology 9

Title

Application of the perspective-based reading
technique in the nuclear 1&C context
CORSICA work report 2011

Author(s)

Jussi Lahtinen

Abstract

Inspections and reviews are one of the most effective ways of detecting
errors in software development. The methods are also cost-effective
because defects can be spotted early in the development, and thus the
cost of repairing the defects is lower.

Reading techniques are the procedures that are used in the inspection
or review of a software artefact. The most common procedures are simple
ad-hoc reading and a checklist-based reading technique. However, more
advanced and detailed procedures have been created for various purposes.

This report reviews the state-of-the-art software reading techniques
used in inspections and reviews, and briefly reviews some of the empirical
research in this context. The majority of the empirical research results
indicate that, for example, perspective-based reading is more cost-
effective and can detect more defects than more basic reading tech-
niques.

This report also describes how perspective-based reading can be ap-
plied to the inspection of nuclear-domain requirement specifications. For
this purpose, seven perspective-based reading scenarios have been
created.

ISBN, ISSN

ISBN 978-951-38-7621-0 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 2242-122X (URL: http://www.Vvtt.fi/publications/index.jsp)

Date

March 2012

Language

English

Pages

45 p. + app. 7 p.

Name of the project

CORSICA

Commissioned by

Keywords software inspection, review, reading technique, perspective-based reading, nuclear,
requirements specification
Publisher VTT Technical Research Centre of Finland

P.O. Box 1000, FI-02044 VTT, Finland, Tel. 020 722 111

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

Application of the perspective-based reading
technique in the nuclear I&C context.
CORSICA work report 2011

Inspections and reviews are one of the most effective ways of
detecting errors in software development. The methods are also cost-
effective because defects can be spotted early in the development,
and thus the cost of repairing the defects is lower.

6 ADOTONHO3L 11A

Reading techniques are the procedures that are used in the inspection
or review of a software artefact. The most common procedures are
simple ad-hoc reading and a checklist-based reading technique.
However, more advanced and detailed procedures have been created
for various purposes.

This report reviews the state-of-the-art software reading techniques
used in inspections and reviews, and briefly reviews some of the
empirical research in this context. The majority of the empirical
research results indicate that, for example, perspective-based reading
is more cost-effective and can detect more defects than more basic
reading techniques.

This report also describes how perspective-based reading can be
applied to the inspection of nuclear-domain requirement
specifications. For this purpose, seven perspective-based reading
scenarios have been created.

>
T
T
=
Q
=
o
=]
o
S
—
=3
o
ye
@
)
T
@
s}
=
<
®
o
o]
(7]
o
Q
=
o
o
Q
=]
Q@
~—
@
0
=y
=
e
=
[
=
=
=
®

SBN 978-951-38-7621-0 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 2242-122X (URL: http://www.vtt.fi/publications/index.jsp)

sr

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Abstract
	Contents
	1. Introduction
	1.1 Inspection benefits
	1.2 Improving inspections

	2. Reading techniques
	2.1 Ad-hoc reading
	2.2 Checklist-based reading
	2.3 Reading by stepwise abstraction
	2.4 Active design reviews
	2.5 Scenario-based reading techniques
	2.5.1 Defect-based reading
	2.5.2 Scenario-based reading based on function point analysis
	2.5.3 Perspective-based reading
	2.5.4 Perspective-based usability inspection

	2.6 Scope-based reading
	2.7 Usage-based reading
	2.8 Traceability-based reading
	2.9 Abstraction-driven technique
	2.10 Task-directed software inspection

	3. Perspective-based reading (PBR)
	3.1 Perspectives
	3.2 Reviewer work products
	3.3 Cognitive analysis of PBR
	3.4 Scenarios
	3.5 Example
	3.6 Scenario development
	3.7 Review of empirical research on perspective-basedreading

	4. Application of the PBR technique in thenuclear domain
	4.1 Example system description and requirements
	4.1.1 Rod control system
	4.1.2 EPRI requirements specification

	4.2 Identification of document stakeholders
	4.2.1 Long system life-time
	4.2.2 System design process complexity
	4.2.3 Regulator’s role
	4.2.4 Safety importance
	4.2.5 Contract work chains
	4.2.6 PBR perspective identification and specification

	4.3 Scenario usage considerations

	5. Summary
	References
	Appendix A: Example scenarios

