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Abstract

This paper explores the applicability of game theory to the modelling of enterprise
networks. Although these networks have traditionally been studied by the quali-
tative methods of industrial management, the utilisation of game theory seems to
provide new tools and solution concepts for studying them. The paper reviews ear-
lier game theoretic studies on inter-firm cooperation and presents a general step-
wise pattern for game theoretic modelling of network economy. In addition, the
paper constructs a game theoretic model for studying possibilities for creating in-
novative incentives in an enterprise network.

Inter-firm cooperation is characterised by the interaction of several decision-ma-
kers where, on the one hand, the network companies seek joint gains by network-
ing, but, on the other hand, individual companies have their own objectives which
may be in partial con ict with those of other companies. Here, game theory pro-
vides tools for the formal analysis of situations where multiple decision-makers
may have partially con icting interests, but cooperation between them is allowed.

The determination of innovation incentives in enterprise networks is studied thro-
ugh an application of game theoretic modelling. An example from the boat-
building industry is presented to illustrate the relevance of innovation incentives in
enterprise networks. Specifically, three different equilibrium concepts are applied
to determine innovation incentives under different circumstances. The proposed
model helps award innovations that improve the efficiency of the network. In ad-
dition, the efficiency-improving arrangements can be implemented so that none
of the network companies has to suffer. Consequently, the enterprise network be-
comes innovative and the network companies need not fear their own losses when
the efficiency-improving arrangements are implemented. The model also helps
share the surplus utility gained through the innovation among the companies of
the network.
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Preface

VTT Industrial Systems / Industrial Management has a long tradition on the re-
search of networked economy. In most of the earlier studies, which have been car-
ried out at the VTT Industrial Management group, the approach to the problem at
hand has been qualitative. However, in order to construct theoretically sound tools
for enterprise-network management, more formal methods are needed. Hence,
VTT Industrial Management group has opened a new field of research, that isfor-
mal decision-making tools for industrial management.

This paper examines the potential of applyinggame theoreticmodels and tech-
niques to support decision-making in networked business environment. The gen-
eral research problem is to apply game theoretic concepts in describing and devel-
oping cooperative practices in enterprise networks. A long term objective of the
research is to create a game theoretic methodology and tool package for enterprise-
network management.

This work was made possible by the support of the VTT Technical Research Cen-
tre of Finland. Thanks are due to my co-researchers at VTT Industrial manage-
ment group for providing an encouraging working environment. I would particu-
larly like to thank Professor Urho Pulkkinen for sharing his immense professional
knowledge. Equally, I would like to thank Professor Ahti Salo from Helsinki Uni-
versity of Technology for his invaluable advice and ideas during the writing of this
paper. I also wish to acknowledge Mr. Petri Kalliokoski and Mr. Magnus Simons
for their constructive comments and the discussions, which helped me obtain bet-
ter understanding of industrial management and network economy. In addition,
Mr. Torkel Tallqvist of Nautor Ltd. contributed with his real-life experience in
enterprise networks; many thanks to him.

Espoo, May 11, 2004

Toni Jarimo
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1 Introduction

Strategic enterprise networks have provided a new kind of advantage for com-
panies operating in dynamic and competitive fields of business. The earlier hi-
erarchical, buyer-oriented demand supply chains – traditionally found in the US
and Japanese auto industries – have had to yield to collaborative multilateral net-
work production. In addition, advancements in information and communication
technologies, globalisation of technology-intensive firms, and freedom of move-
ment for researchers have fostered a degree of inter-firm research and develop-
ment. (Mintzberg et al. 1998, Hyötyläinen 2000)

New modes of industrial activity call for up-to-date models to support decision-
making in firms engaged in a network economy. The network companies make
their decisions in conditions where, on the one hand, the companies aim at win-win
situations with their network partners, but, on the other hand, endeavour to improve
their own benefits individually. In consequence, the interests of separate network
companies may be partially conflicting, in pursuance of the common objective of
global efficiency (Ollus et al. 1998). This view diverges from the usual approach
to decision-making, which considers the issue from the perspective of a single
decision-maker (see e.g. Clemen 1995).

Traditionally, a network economy has been studied by the qualitative means of
industrial management. In this paper, we shall approach enterprise networks from
a mathematical perspective. The particular methodology to be used isgame theory.
Game theory is a mathematical means for the formal analysis of the decision-
making of multiple decision-makers, calledplayers. The players interact with
each other in a given framework, thegame, which is defined specifically in each
case. Each player possesses a set of alternative actions, orstrategies, the execution
of which affects the amounts of utility that the players individually obtain. The
amounts of utility are measured by the players’utility functions(Myerson 1997).
It is expected that formal modelling of enterprise networks will provide new tools
and solution concepts to aid decision-making concerning network economy.

We postulate that the concepts of game theory fit those of enterprise networks well:

• Companies in the network are the players, with (possibly) partly conflicting
interests.

• Companies have their own available strategies, which they play in order to
achieve their goals.
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• Cooperation between companies can lead to globally increasing utility.

The companies can be, for instance, part of a horizontal network, in a vendor-
customer relationship, or even competitors. The applications are many, including
pricing of products or services, contract negotiation, and production network man-
agement. One of the aims of game theoretic analysis is topredict the players’
behaviourin situations of (partially) conflicting interests and thus to yield infor-
mation to support decision-making in a networked business environment. More
specifically, game theoretic models aim to bring out optimal strategies for the
players, reveal and eliminate possibilities for opportunism, and illustrate causal
relationships in interaction between the players, for instance. For practical pur-
poses, we expect that the models can be exploited to identify win-win situations
among cooperating companies and thus to improve the competitive advantage of
enterprise networks.

The main objective of this paper is to evaluate the applicability of game theoretic
models to the management of enterprise networks. We shall find out the prereq-
uisites, limitations, and advantages of game theoretic analysis. In addition, we
shall present a framework for the systematic construction of game theoretic mod-
els. The modelling process is illustrated by a case study, in which we examine
incentive strategies for innovation management in an enterprise network. The pi-
lot company of the case study is the Finnish sailing-yacht builderNautor Ltd.

The structure of this paper is as follows. Section introduces basic concepts of
game theory and reviews earlier game theoretic studies concerning enterprise net-
works. Herein, we also present a general guideline for game theoretic modelling
of network cases. Section 2.7 presents a model by which efficiency-improving in-
centives can be determined and the utility from win-win situations shared among
network companies. In Section 3.8 we illustrate the use of the model with a nu-
merical example. Section 4.5 discusses the advantages and disadvantages of our
model and summarises the results and conclusions of the paper.
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2 Earlier Game Theoretic Studies on Network Economy

2.1 Basic Concepts of Game Theoretic Models

The use of a game theoretic model requires the identification of three elements,
namely

1. theplayersof the game

2. the availablestrategiesfor the players

3. the players’ individualutility functions, which map the set of all possible
strategies to real numbers.

In addition, a game can be characterised according to several case-specific at-
tributes. For instance, the game can be

• cooperativeor non-cooperative

• of perfect informationor of imperfect information.

• deterministicor stochastic

• staticor dynamic.

Of the above-mentioned, the first pair describes the possibility of interaction be-
tween the players. The form of interaction can be e.g. communication, side-
payments or readiness to cooperate. The second pair depicts the players’ amount
of information in the situation. Third, if the game contains uncertainties it is said
to be stochastic, otherwise it is deterministic. Lastly, if the players make their de-
cisions successively and the earlier decisions affect the set of available strategies
in the forthcoming decision-making, then the game is said to be dynamic. Again,
in a static game the players make their decisions simultaneously. (Myerson 1997)

In a cooperative game, the aim is to achieve apareto optimalsolution i.e. such
strategies for the players in which no strategy can be changed without reducing
someone’s utility. On the other hand, we may assume that a non-cooperative game
with rational players is driven to aNash equilibrium, in which, for each player,
it is unprofitable to individually change the strategy from the equilibrium (Nash
1951). The majority of practical cases lie somewhere in between the two extremes
of genuine cooperation and total competition.
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In a game of imperfect information or in a dynamic game, one player (theleader)
may have the opportunity to constructincentivesfor other players (thefollow-
ers). The purpose of the incentives is to make the followers choose their strategies
optimally for the leader. In addition, such asymmetric situations may create op-
portunities for cheating or otherwise opportunistic behaviour. Hence, one purpose
of game theoretic analysis is toidentify and eliminate possibilities for cheating.
In the following sections, some of the earlier game theoretic studies concerning
inter-firm activity are briefly reviewed.

2.2 Cooperation in Research and Development Projects

2.2.1 Repeated Prisoner’s Dilemma

In the field of economics, the well-knownPrisoner’s Dilemma1 has been the sub-
ject of interest in numerous studies (see e.g. Jarillo 1993, pp. 138, Nooteboom
1999, Nurmilaakso 2000, pp. 47). The reason for this is that many practical prob-
lems reduce to Prisoner’s Dilemmas when being modelled as a game.

A widely used example of such a problem is that of a common research project of
two separate companies (players). The companies’ strategies are either to coop-
erate or to “free ride” (a concept brought out by e.g. Nooteboom 1999). By free
riding we mean that a player tries to benefit from the project without investing in
it. If both players cooperate, the research project is a success and both players
obtain an equal utility of, say, 10. If one of the players cooperates but the other
one free rides, the result is a partial success, in which case the free riding player
receives the results of the project for free and derives a utility of 15, whilst the
cooperating player has put more effort into the project and, thus, incurs a nega-
tive utility -5. Lastly, if both players free ride, there is no gain from the project.
Nor have the players contributed to the project, thus giving a zero utility to both
players. Figure 1 presents the game in its matrix form.

The research project problem presented in Figure 1 is a Prisoner’s Dilemma type
of game. The unique Nash equilibrium of this game is that both players choose to
free ride(f1, f2), which can be seen, for instance, by the fact that, for both players,
cooperating is strongly dominated by free riding. However, in playing strategies
(c1, c2) both players would be better off, that is(f1, f2) is not pareto efficient.

1For the story behind Prisoner’s Dilemma, see e.g. Luce and Raiffa (1957).
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Player 2

Player 1

cooperate(c2) free ride(f2)
cooperate(c1) (10,10) (-5,15)

free ride(f1) (15,-5) (0,0)

Figure 1. Research Project Game in the Matrix Form.

Axelrod (1984) has carried out a fruitful study ofRepeated Prisoner’s Dilemma. In
this game, two players play Prisoner’s Dilemma repeatedly for anex anteunknown
number of turns, always knowing the outcomes of all the previous turns. In the end,
the utility for both players is the sum of the utilities of individual rounds. In his
book, Axelrod presents the results of a Repeated Prisoner’s Dilemma Tournament,
in which the competitors’ task was to construct an algorithm which would play the
game against other algorithms. The winning algorithm appeared to be the simplest
one of those sent to the tournament, named “Tit-for-Tat”. The run of the algorithm
is as follows:

Round 1: Cooperate

Round k: Play the same strategy which the opponent played in roundk − 1.

Axelrod (1984) summarises four properties that make the Tit-for-Tat strategy both
robust and successful:

1. It does not drive the players to conflictwhile cooperating as long as the
opponent cooperates.

2. It penalisesthe opponent instantly from free riding.

3. It is forgivingafter a conflict if the opponent is willing to cooperate.

4. Its behaviour istransparent, making it easy for the other player to adapt to
the pattern of the game.

It is noteworthy that, despite the fourth property, even an action rule particularly
aimed at defeating the Tit-for-Tat strategy did not perform any better (see Axelrod
1984). In fact, as Nurmilaakso (2000) suggests, knowing that the opponent is
playing Tit-for-Tat, encourages the other player to cooperate. Nurmilaakso’s idea
is to usereputationas a tool to model pledges (i.e. incentives and threats) within
enterprise networks.

11



2.2.2 Nooteboom’s Model for Free Riding

Nooteboom (1999, A3.2) presents a more detailed game theoretic study concerning
free riding in a joint R&D project. According to Nooteboom, problems tend to
arise when it is difficult toobservethe partners’ actual contributions to the project.
The situation becomes a Prisoner’s Dilemma if bilateral free riding yields a better
utility than one-sided cooperation does. This is the case, for instance, if there is a
risk of information spillover to a direct competitor.

Several solutions to avoid the problem are suggested. Firstly, if the research topic
is complicated or the information produced is tacit, all the partners need to con-
tribute to the project in order to be able to utilise the results achieved through the
project. Secondly, some sort of repayment could be constructed. However, the use
of such payment requires good measurement of the partners’ contributions to the
project, which, in many cases, may be impossible to implement. The third solu-
tion is the one discussed in Section 2.2.1, i.e. there is hope of joint R&D projects
also in the future. Therefore, the partners might be willing to engage in mutual
cooperation in order to keep the partnership alive. In addition, even if there is no
continuity in sight for the current partnership, the companies might want to sustain
their reputation for being a good research ally.

Nooteboom models the characteristics of a joint R&D project – in the concepts of
game theory – as follows. The utility function for playeri is

ui = −citi + sijrjiti + (1− sji)rijtj + pititj , (1)

where

i, j are the indices for partners

ti is the amount of contribution to the project fromi

ci is the unit cost ofi’s contribution to the project. The main cause for this is
the risk that vital information is spilled to a competitor.

rji is the unit utility forj of i’s contribution

sij is the repayment share ofrjiti from j to i

pi denotes the unit utility fori of the partners’ teamwork, which is measured
as the multiplicationtitj .

12



Player 2
Pl

ay
er

1 cooperate (t2 = 1) defect (t2 = 0)
cooperate u1 = −c1 + s12r21 + (1− s21)r12 + p1 u1 = −c1 + s12r21

(t1 = 1) u2 = −c2 + s21r12 + (1− s12)r21 + p2 u2 = r21 − s12r21

defect u1 = r12 − s21r12 u1 = 0
(t1 = 0) u2 = −c2 + s21r12 u2 = 0

Figure 2. Game (1) in its Matrix Form.

The game is simplified in such a way that either partner has two alternative strate-
gies:

1. transfer competence to the project,ti = 1

or

2. defect from the project,ti = 0.

Letting available strategies be the aforementioned and the number of players be
two, then the game, in its matrix form, is as depicted in Figure 2. Clearly, mutual
cooperation becomes a Nash equilibrium if

−ci + sijrji + (1− sji)rij + pi > rij − sjirij

=⇒ pi + sijrji > ci, (2)

i.e. if the unit benefit from teamwork and the repayment share together are greater
than the cost of transferring competence into the project. The condition (2) also
implies that if there is no benefit from teamwork(pi = 0), then

sijrji > ci (3)

is necessary for(ti = 1 ∀ i) to be the Nash equilibrium. In this case, a positive
repaymentsij of the received knowledge is essential. Respectively, ifpi is great
enough, more precisely, if

pi > ci, (4)

then there is no need for a repayment at all.

In his study, Nooteboom ends up with several hypotheses concerning the joint
R&D project:
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H1 Mutual cooperation is likely to take place if the value of the exchanged
knowledge(rij) is high and the risk of knowledge spillover to a competitor
(ci) is low. A high r is usually achieved when the information in question
is advanced and complex. Similarly, tacit information, vertical partnership,
small number of partners and good monitoring of spillover indicate lowc.

H2 Whenc is high, it is still possible for the partners to arrive at mutual coop-
eration. However, the requirement is that either condition (2) is fulfilled or
there is expectation of future cooperation, whose net present value is greater
than the utility gained from one-off defection.

H3 A high c leads to better control of spillover and free riding.

H4 Small firms have few partners and their information is tacit, which drives
them to look for more partners, but also makes them interesting candidates
to other firms who are looking for partners.

Hypotheses H1-H3 follow directly from the game presented in Figure 2. On hy-
pothesis H4, Nooteboom (1999, pp. 16) gives two reasons for the tacitness of in-
formation in small firms:

1. knowledge is more based on craftsmanship, which tends to be tacit

2. production management is more informal, including less written documents
or explicit models.

Nooteboom also claims that external relations are of greater value for small firms
rather than for large firms, thus motivating small firms to look for more partners.
On the other hand, the motivation for a number of private entrepreneurs to be a
private entrepreneur is precisely theirindependence of other people.

2.2.3 Optimal Number of Partners According to Nooteboom

The model presented in the previous section is constructed to give an answer to
the question whether a company should seek partners or stay independent. The
next question – if the answer to the first one is “seek partners” – is then,how many
partners should a company have? Again, Nooteboom (1999, A3.3) constructs a
game, in which the utility function for playeri is now

ui = −citinj + ritj + pititj + mini + vitjnj , (5)

14



where

ni is a binary variable with valuesni = 1 when i has multiple partners and
ni = 0 wheni has a single partner.

mi is the benefit fori of having multiple partners. Sources of benefit are e.g. im-
provement of bargaining position, sharing risk among partners, and multiple
sources of learning.

vi is the additive benefit fori of i’s partner having multiple partners, hence
increasing the number of sources of learning.

Other variables are identical to those described in Section 2.2.2.

Playeri’s set of strategies isSi = {(0, 0), (0, 1), (1, 0), (1, 1)}, where each pair
si = (n, t) denotes playeri’s strategy combination ofni andti. In a two-player
game, by investigating the possible outcomes, two equilibria are found:

1. mutual cooperation with both players having multiple partners,
s1 = s2 = (1, 1)

2. mutual defection with both players having multiple partners,
s1 = s2 = (1, 0),

the latter being a prisoner’s dilemma equilibrium. Nooteboom (1999) brings out
the following hypotheses from the model:

H5 Having multiple partners(si = (1, t)) dominates monogamy(si = (0, t))
if unconditional benefit is gained by multiplicity.

H6 Monogamous mutual cooperation(s1 = s2 = (0, 1)) is optimal if c >

m + v. However, it is not an equilibrium.

H7 Mutual defection(s1 = s2 = (1, 0)) becomes an inefficient equilibrium if
c > p.

H8 Cooperation with multiple partners(si = (1, 1)) is an equilibrium ifp > c.

The situation of hypothesis H6 arises when the risk of spillover is greater than the
benefits of having multiple partners and multiple sources of learning(c > m+ v).
The hypothesis H7 comes into question if the risk of spillover is greater than the
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benefit of teamwork(c > p), respectively H8 if(p > c). Tacit knowledge often
implies the case in H8; the risk of information spillover is low and successful joint
production requires mutual teamwork.

Severaladvantagesare gained as the number of partners increases:

1. sources of learning have more variation

2. risk is shared among a greater number of players

3. possibilities for bargaining grow better.

The followingdisadvantagesare also the consequence of an increasing number of
partners:

4. greater costs due to greater consumption of resources

5. risk of spillover increases.

Hence a player would like to have plenty of partners who all have few partners.
However, since each of these partners would also like to be the “hub” of the net-
work, Nooteboom (1999) formulates an optimisation problem, as follows. Con-
sider the marginal utility ofnth partner to playeri. According to points 1 to 5 the
marginal utility is

dui(ni) = y − b · (ni − 1)− anj , (6)

which is decreasing in the number of partners(ni) and partners’ partners (nj de-
notes the number of partners that partnerj has). The net effect of points 1 to 4 is
modelled byy − b · (ni − 1) and the effect of point 5 by−anj . The utility to i of
havingn partners is the sum

ui(ni) =
ni∑

k=0

dui(k) = ni(y − anj)−
bn2

i

2
, (7)

which is a concave function ofni. Hence, the maximum utility is obtained by
setting the first derivative to zero, yielding

n∗i =
y − anj

b
, (8)

which is the optimal number of partners fori.

In game theoretic terms,n∗i in (8) is i’s reaction curveaccording tonj . With ex-
changed indicesi andj, formula (8) isj’s reaction curve. The Nash equilibrium of
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optimal number of partners can be found in the intersection ofi’s andj’s reaction
curves:

n∗i = n∗j =
y

a + b
. (9)

Nooteboom (1999) summarises the analysis with the following hypothesis:

H9 Three factors affect the number of partners. First, the number of partners
increases with the additive benefit of having more partners(y). Secondly,
the number of partners decreases with a higher risk of spillover(a) and,
third, decreases with a faster decline in marginal utility gained from new
partners(b).

A high value ofy is characterised by the vital importance of new technology,
whereas higha implies transparency of technology and highb implies complexity
and narrow specialisation of competence.

2.3 Game Theoretic Models of Demand Supply Chain Management

Bakos and Brynjolfsson (1993) have carried out a comprehensive study of the
optimal number of suppliers for a buyer. In their paper, Bakos and Brynjolfsson
construct a game theoretic model on the basis that reducing the number of suppliers
results in increased incentives for the suppliers to foster immaterial advancements.
Immaterial investments such as better quality, responsiveness, and innovativeness
are difficult – if not impossible – to describe in contracts between supplier and
buyer.

Bakos and Brynjolfsson conclude that if the buyer sets great store by noncon-
tractible investments, it may be optimal to have a small number of suppliers, re-
gardless of search and transaction costs. However, relying on few suppliers is not
always optimal. If the immaterial gains are of lesser importance, then it is optimal
to increase the number of suppliers until the marginal cost of searching equals the
expected marginal utility of having several suppliers. Second, if the immaterial
investments from the buyer’s part are of great importance, then the buyer gains
bargaining power with the increasing number of suppliers.

Globally, the optimal number of partners is found somewhere in between the two
extreme cases, i.e. having few partners versus having several partners. Bakos and
Brynjolfsson suggest that the global optimum is achieved as an average of the two
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extreme-case optima, weighted by the relative importance of immaterial invest-
ments versus coordination costs.

Corbett and DeCroix (2001) have studied supplier incentives in the situation where
the client is supplied withindirect materials. Indirect materials such as e.g. paint
or other chemicals are not directly related to the final product manufactured, but
are necessarily used at some point of the manufacturing process. In consequence,
the client wants to reduce the use of the indirect material, whereas the supplier’s
profits depend on increasing volume.

The paper of Corbett and DeCroix (2001) analyses several contracts that motivate
the supplier to cooperate with the buyer, in order to reduce the consumption of the
indirect material. Game theoretic analysis shows that such contracts can always
increase the profit of the supply chain, but do not necessarily entail reduction in
consumption. Corbett and DeCroix also conclude that, generally, it is not practi-
cable to reduce consumptionand increase profits concurrently.

2.4 Information Sharing in a Network

Very often, improving the global efficiency of an enterprise network requires vi-
ableflow of informationbetween the partners of the network. However, sharing
confidential information, even between partner companies, is normally consid-
ered unfavourable in firms. A few game theoretic approaches to the problem have
been published, among others those of Wolters and Schuller (1997) and Li (2002),
which we shall briefly review.

Wolters and Schuller (1997) have developed a dynamic game theory model in order
to study how a supplier and a buyer can be encouraged to trust each other. In the
model, both players repeatedly have the opportunity to behave opportunistically,
which terminates the partnership but yields benefit for the opportunistic party. The
utility to both players grows sustainably as the game continues without exits.

The conclusion of Wolters and Schuller (1997) is that, in the sense of fostering
trust, it is beneficial for the buyer to have fewer suppliers who are encouraged to
engage in R&D cooperation with the buyer. The suppliers are rewarded by longer
contracts, which provide economical stability and incentives for value-adding in-
novations.

Li (2002) investigates vertical information sharing, considering, on one hand, the
total benefit for the network and, on the other hand, the disadvantage from the
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“direct effect” and the “leakage effect”. By the former, Li (2002) means the op-
portunistic behaviour that a participant involved in the information sharing may
engage in. The latter derives from the advantage that a competitor may attain by
observing the actions of the informed parties.

Li’s (2002) paper introduces two examples, in which the willingness to share in-
formation is examined. The first example illustrates a case where both the di-
rect effect and the leakage effect discourage downstream network companies from
sharing their demand information upwards in the network. Surprisingly, in the sec-
ond example, the leakage effect actson the behalfof the retailers that pass their
cost information upwards to the distributors. The benefit from the leakage effect
may even outweigh the disadvantage of the direct effect, thereby making openness
attractive to the network companies.

2.5 Utility Sharing in a Network

Thus far, we have discussed means ofimproving the efficiencyof enterprise net-
works. As a result of an efficiency arrangement, the network attains a utility, which
is shared among the network companies. In game theoretic terms, such situations
can be characterised asn-person bargaining games. The concept of bargaining in
games was first introduced by Nash (1950) and thereafter discussed by e.g. Shap-
ley (1953), Kalai and Smorodinsky (1975), and Roth (1979). Shapley’s (1953)
result, theShapley value, was the first one to reckon with coalitions, which is an
essential part inn-person games. Gul (1989) proved that the Shapley value is an
applicable solution concept also in non-cooperative bargaining.

Thomson (2003) extensively studies different mechanisms for sharing the liquida-
tion value of a bankrupt firm among the creditors. The case is not common for
an enterprise network, although the similarity to utility sharing can be seen. An-
other recent paper on utility sharing is that of Ginsburgh and Zang (2003). They
examine a situation where a syndicate of service providers offer the customer a
limited-time access pass to their services. The customer pays the syndicate a fixed
amount, independent of the usage of the services. In their paper, Ginsburgh and
Zang (2003) suggest that the mechanism to be used in sharing the profit from the
passes among the members of the syndicate is the Shapley value.
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2.6 Conclusions on Literature Review

Few game theoretic studies on enterprise networks have been carried out. Some of
the topics, among others, have been

• “free riding” in joint R&D projects

• contracts in supplier-buyer networks

• information sharing in a network

• utility sharing among network companies.

Most of the earlier papers can only give superficial guidelines for network manage-
ment. Concrete help for decision-makers may be difficult to perceive, despite the
paper of Ginsburgh and Zang (2003), which gives specific rules for utility sharing
in the case at issue.

In Section 2.7 we introduce a game theoretic model that brings a wider perspec-
tive to the management of enterprise networks. Namely, the model combines the
mechanisms for innovation incentivesand thesystematic method for sharing util-
ity, which is attained by innovations. In addition, the modelallows the use of
threats, resp.coalition formationbetween network companies. Based on the liter-
ature review, the next section discusses game theoretic modelling in general. The
general framework is then applied to construct the innovation-incentive model in
Section 2.7.

2.7 Modelling Enterprise Networks as a Game

This section provides general rules by which an industry representative can con-
structgame theoretic modelsof networking cases.A modelis an imitation of a
real-world structure often referred to asa system, which, for some reason, cannot
be analysed in practice. A good model simulates the system as elaborately as is
possible, for all practical purposes. Hence, the level of detail in the model has to be
proportioned to the objective of the model. A convenient model can be utilised to
study theoretically contemporary networking issues in a systematic manner. More
generally, an introduction to mathematical modelling can be found in e.g. Ljung
and Glad (1994).
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In order to construct a game theoretic model of a network case, several elements
have to be identified. First, thecase has to be boundedand theobjective of the
analysishas to be fixed. Within each subsequent step of the modelling process, it
is vital to recall the original object and compare the ongoing work with the purpose
of using the model. Otherwise, if the original objective is lost, some parts of the
model may easily become too detailed and the model itself will not be of any use
in practice.

The second thing is to define theplayers of the game. This is usually a straightfor-
ward task; the players are the parties who are somehow involved in the situation.
Usually, in a network economy, the players are companies of an enterprise network
or companies that are in a vendor-customer relationship, which also intuitively
seems evident.

Third, the players’sets of available strategiesare defined. More clearly, a player’s
set of available strategies consists of the player’s feasible alternative actions in
association with the case being investigated. The available strategies are case-
specific and depend on the context of the situation. For instance, if the object of
interest is a joint R&D project of an enterprise network, the available strategies for
one network company could be for instance

1. contribute to the project

or

2. “free ride” in the project.

The preceding example with two available strategies is a highly abstracted model.
A more concrete set of available strategies would be, e.g. any amount of money be-
tween 0eand 10000e , which the company decides to invest in the R&D project.
The use of threats and incentives also enter the concept of strategy. However,
overtly dominated strategy options are to be excluded. The properties of the strat-
egy sets have great influence on the structure and dynamics of the game. First,
the amount of information available to players in the act of decision-making may
crucially affect the players’ decisions and thus has to be taken into account in the
model. Second, the order of the players’ decision-making has to be identified so
that the dynamics of the game will be correctly modelled.

The fourth task in the modelling process is to construct the players’utility func-
tions. Generally, each player has a different utility function, which may contain
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expectation values. A utility function determines the amount of utility that a player
obtains from each possible combination of strategies that the players of the game
may decide to execute. The utility functions play a major role in game theory since,
naturally, each player tries to choose his strategy in such a way that his own utility
is maximised. Thereby, for each player, there exists at least one strategy combi-
nation that is optimal for the player. It is noteworthy that a player is only capable
of choosing his own action. Nevertheless, a player may influence the decisions of
other players by e.g. negotiations, threats and coalitions.

When the basic elements – the players, the strategy sets and the utility functions –
of the game have been constructed, the model is usable, in theory. However, the
model is not complete, and should not be used, before it isvalidated. The vali-
dation process is the final cross-check that the model is applicable to the purpose
it was originally planned for. At minimum, the validation process includes the
following tasks:

• Recall the model’s original purpose and cross-check the applicability of the
model.

• Verify the amount of information that the use of the model demands and
ensure the availability of the information.

• Verify that the model is solvable in terms of mathematical complexity.

If the validation process addresses a mismatch between the original objective and
the structure of the model, then the necessary corrections to the model have to be
made.

Otherwise, if the model seems valid for the purpose it was intended for, then the
model can be applied to the analysis of the original case. A common objective of
game theoretic analysis is topredict the players’ behaviour. This is normally being
done with the assumption that the players are rational and thus want to maximise
their own utility. However, since the players’ objectives might be conflicting, some
sort of compromise orequilibrium of the game will be the focus of the analysis.
The equilibria in different types of games are normally found by some form of
optimisation, which is the commonly used mathematical means in game theoretic
analysis. Depending on the case being studied, one can solve for e.g. equilibrium
points, the optimal combination of strategies, bargaining outcomes, identification
of potential of opportunism, coalition formation, etc.
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In order to exploit the model later on as well, it has to bemaintainedby updat-
ing it whenever the surrounding circumstances change. A network economy is a
dynamic environment and, thus, changes in the number of players, in the players’
strategy sets, and in the players’ interests are usual.

In the following, we present a stepwise pattern for game theoretic modelling of
cases concerning network economy. Figure 3 depicts the modelling process.

Step 1. Outline the problem.Clarify the objective of the analysis and bear it in
mind throughout the whole modelling process.

Step 2. Identify the players of the game.Usually, the players of the game are
the companies that are involved in the case.

Step 3. Identify the players’ available strategies.Here, it is important to recog-
nise the strategy alternatives that areessentialto the networking case being
studied.

Step 4. Identify the players’ utility functions. The purpose of a player’s utility
function is to furnish values for any combination of strategies that the players
of the game may execute.

Step 5. Validate the model.The validation process cross-checks the applicability
of the model to the purpose that it was originally planned for. If, for some
reason, the model is not suitable, then resume Step 2.

Step 6. Apply the model.The way of using the model depends on the objective
of the analysis, which has been determined in Step 1.

Step 7. Maintain the model. For future use, the model has to be updated when
the circumstances change.

In summary, the basic elements of a game theoretic model are1)the players of
the game,2)the available strategies of the players and3)the utility functions of
the players. The basic elements are common to all games and thus have to be
identified in order to perform a game theoretic analysis. The interrelationships
between players, the information structure, and the dynamics of the game are de-
termined case-specifically.
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Step 1. Outline problem

Step 2. Identify players

Step 3. Identify strategies

Step 4. Utility functions

Step 5. Validate model

Step 6. Apply model

Step 7. Maintain model

No need for
improvement

Need for
improvement

Original objective

Update when
needed

Figure 3. Game Theoretic Modelling Process.
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3 Predetermined Innovation Incentives for Supplier
Networks

3.1 Description of the Problem

Consider a network that consists of aclient and severalsuppliers(Figure 4). The
network forms a supply chain in which each of the companies carries out a specified
task, which is part of the manufacturing of a final product. The client pays the sup-
pliers a fixed paymentpi for their workwi for each unit manufactured.

After having finished several products, it may happen that a possible rationalisation
manoeuvre is identified in the manufacturing process. Our interest is in a situation
where, in order to carry out the rationalisation, work has to be transferred from one
supplier to another. Our aim is tofind a mechanism for redefining the paymentsto
the suppliers in such a situation. For instance, consider the following case:

Example 3.1 (Installing HPAC in boat building) The client of this example is a
Finnish sailing-yacht manufacturerNautor, who has recently launched the pro-
duction of a new type of boat, theSwan 45. Nautor has accumulated a network of
suppliers, each working on one component of the new boat. Among others, there
are two suppliers pertinent to this example: a hull manufacturer and a heating,
plumbing and air-conditioning (HPAC) installer.

In the construction of the very first boats, the HPAC installer himself drilled holes
for the pipelines into the ready-made hull. Drilling the holes was time-consuming,

Core Company

Supplier 1 Supplier 2
�

�

�

Supplier n
p1

p2

pn

Work is
transferred

w1 w2

Figure 4. Enterprise Network with a Client and Several Suppliers.
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since the drillman had to work in a constricted space and in uncomfortable posi-
tions. The striking change was to transfer the drilling of the holes from the HPAC
installer to the hull construction, where the work could be done before the hull was
assembled. Needless to say, this transfer of work speeded up the manufacturing
process significantly.

The remaining question in Example 3.1 – and in numerous other cases beyond the
scope of this study – ishow does the change in the suppliers’ work load affect
the prices paid by the client? It seems apparent that the receiving supplier needs
some compensation for the additional work in order to give his approval to the
rationalisation. In addition, the mechanism should be anincentiveto encourage
the suppliers to develop such profitable solutions on their own initiative. Hence,
a predefined mechanismfor re-evaluation of the fixed payments is needed. In the
following sections, we shall introduce a game theoretic approach to the problem
and present a solution for the re-evaluation of payments.

3.2 Modelling the Work-Transfer Problem as Game

The playersof the game are:

1, . . . , n− 1 the suppliers of the network

n the client,

i.e. indices1, . . . , n − 1 denote the suppliers, and indexn denotes the client. Let
N denote the set of players{1, . . . , n} and letNs ⊂ N beNs = {1, . . . , n− 1}.

In the status quo, a playeri ∈ Ns performs workwi, for which he receives a
positive paymentpi from n. Hence,the profit for playeri is

profiti = pi − vi, (10)

wherevi is i’s non-negative costs for the activitywi (consisting of labour costs,
material costs, etc.). Following the problem setting in Section 3.1, let∆wi denote
the change – negative or positive – ini’s work load, and let∆vi(∆wi) be the
change ini’s costs that depends on∆wi. For convenience,∆vi(∆wi) will be
denoted by∆vi in the following. It is reasonable to assume that∆vi carries the
same sign as∆wi.
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Let ∆pi denote the change ini’s fixed payment due to the transfer of work. The
change ini’s profit is then

πi(∆pi) = ∆pi −∆vi, ∀ i ∈ Ns. (11)

Since playern makes the payments∆pi to players1, . . . , n− 1, the change in his
profit is

πn(∆p) = −
n−1∑
i=1

∆pi, (12)

where∆p denotes the vector(∆p1 . . . ∆pn−1). We shall use (11) asthe utility
function for playersi ∈ Ns and (12) asthe utility function for playern. Hence,
in thestatus quoall the players’ utilities are equal to zero, which is also thedis-
agreement outcomeof the game, as is illustrated in Figure 5. We assume that a
player’s utility increases linearly with respect to increase in profit. A generalisa-
tion to a non-linear (e.g. concave) utility function does not alter the implications of
this study; it may complicate the calculus, though. Because the utilities are mea-
sured in monetary units, the assumption oftransferable utilitycan be made (for
the definitions, see e.g. Myerson 1997).

We present the problem as a two-stage game. In the first stage, the playern defines
a ruleφ, by which∆pi’s will be determined if the work load of players1, . . . , n−1
change. Hence, the set of (pure) strategies available to playern is the familyF of
functions which map the changes in work load to changes in payments:

φ ∈ F , F = {φ | φ : IRn−1 7→ IRn−1}. (13)

Let φi denote the rule that concerns playeri.

In the second stage, one or more of the players1, . . . , n− 1 discover(s) an option,
which improves the efficiency of the network but requires transfer of work inside
the network. Knowing the re-evaluation rule, he may now choose his strategy
between coming up with the option(ci = a) or withholding the option(ci = b).
Let us denote the set of strategies available to playeri ∈ Ns by Ci = {a, b}. The
game in itsextensive formis illustrated in Figure 5.

At the moment of decision-making, the players are familiar with the full history
of the game, i.e. in Stage 2 playeri ∈ Ns knows the strategyφ that playern has
chosen in Stage 1. Hence, the game is dynamic withperfect information(Luce
and Raiffa 1957). In addition, since the utility function of each player iscommon
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Stage 1

Stage 2

Player n

Player i ∈ Ns

define rule φ

�

(π1, . . . , πn)

come up, ci = a

�

(0, . . . , 0)

withhold, ci = b

Figure 5. Game in the Extensive Form.

knowledge2 among the players, the game is ofcomplete information(Gibbons
1992).

Pulling the elements together, the work-transfer game in itsstrategic formis:

Γ = (N, (Ci)i∈Ns , φ, (πi)i∈N ) , (14)

where

N is the set of playersN = {1, . . . , n}.
Ns is the set of suppliersNs = {1, . . . , n− 1}.
Ci is the set of strategies available to playersi ∈ Ns, Ci = {a, b}.
φ is a functionφ : IRn−1 7→ IRn−1, which denotes the strategy of (15)

playern i.e. the rule defined by the client,φ = (φ1 . . . φn−1).

πi denotes the utility to playeri ∈ N . For i ∈ Ns, πi is defined in

(11) and fori = n, πi is defined in (12).

2For the definition ofcommon knowledge, see Aumann (1976).
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3.3 Analysis of Equilibria

In stage one, playern may act as a Stackelberg leader and choose his strategy in
such a way that playersi ∈ Ns are encouraged to propose rationalising ideas (von
Stackelberg 1934). It is therefore crucial to the outcome of the game that the player
i ∈ Ns has the information of the ruleφ at the moment of decision-making (for
Stackelberg games, see e.g. Başar and Olsder 1982, Gibbons 1992).

Assume that playersi ∈ Ns are in equivalent positions, in which case, without loss
of generality, we can restrict our study to concern the utility of a singlei ∈ Ns. A
rational playeri ∈ Ns chooses to playci = a if the consequences are profitable
i.e. if

πi > 0
(11)
=⇒ ∆pi −∆vi > 0. (16)

We can replace∆pi in (16) byφi(∆wi), obtaining

φi(∆wi) > ∆vi, (17)

which defines theinfimumfor φ ∈ F , on which playeri ∈ Ns is still willing to
play ci = a.

Again, replacing∆pi in equation (12) byφi(∆wi), the utility to playern becomes

πn(∆wi) = −
n−1∑
i=1

φi(∆wi). (18)

Since the playern makes the final decision on the payments, it is necessary that
his utility becomes positive:

πn(∆wi) > 0 =⇒
n−1∑
i=1

φi(∆wi) < 0. (19)

Hence, we have obtained two criteria, namely (17) and (19), that enable the ratio-
nalisation manoeuvre to be put into practice. Replacingφi(∆wi) in (19) by the
right hand side of (17) gives us

n−1∑
i=1

∆vi < 0. (20)

That is to say, the total change in the costs of the players’ work load has to be
negative, which also intuitively seems clear.
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3.4 Definite Form for Incentive Strategy

We present one possible formulation for the ruleφi. Let Nw ⊆ Ns beNw = {i ∈
Ns | ∆wi 6= 0}. Let nw = |Nw| be the cardinality ofNw. We constructφ on the
following conditions:

πn = πi, ∀ i ∈ Nw (21)

πi = 0, ∀ i ∈ Ns \Nw. (22)

Condition (21) is to say that the players involved in the work transfer process
(i ∈ Nw) and the client(n) benefit equally. Condition (22) implies that the other
players’ payments stay unchanged. Placing (11) and (12) into (21) and replacing
∆pi’s with φi’s we obtain the followingnw equations:

−
∑

i∈Nw

φi = φi −∆vi, ∀ i ∈ Nw. (23)

Equations (23) form a linear system of equations withnw variables, which are
the rules{φi | i ∈ Nw}. Hence, solving the system forφi’s leads to the unique
solution (see Appendix A):

φi =
nw

nw + 1
∆vi −

1
nw + 1

∑
j∈Nw

j 6=i

∆vj

=
(nw + 1)∆vi −∆vi −

∑
j∈Nw

j 6=i
∆vj

nw + 1

=
(nw + 1)∆vi −

∑
j∈Nw

∆vj

nw + 1

= ∆vi −
1

nw + 1

∑
j∈Nw

∆vj ∀ i ∈ Nw, (24)

giving each player an equal payoff of

π∗i = − 1
nw + 1

∑
i∈Nw

∆vi, ∀ i ∈ Nw ∪ {n}. (25)

In game theoretic terms, the allocation (24) is called anegalitarian solutionsince
it satisfies both theweak efficiencyandequal-gainsconditions. Weak efficiency
guarantees that all the utility will be shared among the players and equal-gains
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denotes that the players benefit equally. If the utilities in (21) are weighted with
coefficientsλi i.e.

λnπn = λiπi, ∀ i ∈ Nw, s.t.
∑

i∈Nw∪{n}
λi = nw + 1, (26)

then the solution is calledλ-egalitarian. Myerson (1997)

Furthermore, solution (24) satisfies the criteria (17) and (19) if∆vi’s satisfy con-
dition (20). Note also that for each playeri ∈ Nw ∪ {n} the maximum possible
utility is

πmax = −
∑

i∈Nw

∆vi, when (27)

πj = 0, ∀ j ∈ Nw ∪ {n}, j 6= i.

In addition, since allocation (24) satisfies thegreatest goodprinciple, it is said to
be autilitarian solution. An allocation that is both egalitarian and utilitarian is the
Nash bargaining solution(see, Nash 1950, Myerson 1997, pp. 383).

Let F denote the set offeasible divisions of utilityto πi’s, and letπ denote the
vector that consists ofπi’s for i ∈ Nw ∪ {n}. Since the game issymmetric, in the
sense that (see e.g. Roth 1979)

πi,min = πj,min ∀ i, j ∈ Nw ∪ {n} and (28)

π ∈ F =⇒ every permutation ofπ is also contained inF , (29)

the egalitarian solution conforms to those presented by Nash (1950), resp. Kalai
and Smorodinsky (1975). Usually, such bargaining solutions are applied only in
two-player games because these solutions do not take account ofcoalitions, which
may play an important role inn-player games (Luce and Raiffa 1957, pp. 155).
Hence, a coalitional analysis of the game (14) will be studied in Section 3.7.

Figure 6 presents the graphical interpretation of the egalitarian solution in a three-
player case (two suppliers and a client). The feasible regionF forms a tetrahedron
whose apex concurs with the origin(πi = 0 ∀ i ∈ N), and whose other vertices
point the maximum utilities (27) for each player. The solution (25) is found in the
tetrahedron’s bottom-triangle centroid, i.e. the intersection of medians.

The implementation of the incentive strategy described in this section requires that
the suppliersare familiar withthe change in their costs(∆vi) which arises due to
the efficiency arrangement. Usually, companies have trouble-free access to such
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Figure 6. Feasible Region and the Utilities of Three Players.

basic information and hence the information requirement for players1, . . . , n− 1
is not an obstacle to the improvement of conditions.The client(playern), for one,
needs this information from each player1, . . . , n − 1 individually. Whether this
is possible depends on the internal relationships of the network, i.e. whether the
suppliers trust their headman enough to share their confidential information with
the headman. This case illustrates the importance of open-book management in
enterprise networks.

3.5 Potential for Cheating

Cheating may occur in two forms. First,the suppliersmay give untrue information
about the change in their costs(∆vi), trying to benefit more from the work-transfer
operation. This lessens the share of utility to the other players and, in the extreme
case, extinguishes the whole benefit from the operation. Therefore, it becomes less
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π∗n − αn)
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or, if (32)

(0, 0, 0)

Figure 7. Cheating of Suppliers.

attractive for other players to accept the work transfer.

Consider the occasion of two suppliers, which is illustrated in Figure 7. Letπ∗’s
be the players’1, . . . , n payoffs that are obtained by the fair-play re-evaluation of
the suppliers’ payments (25). Letα’s denote the changes in the players’ utilities
if i unilaterally distorts the truth to his own advantage(ci = ui). In consequence,
player i obtains the additive benefitαi > 0, whereas other players take losses
maintaining thezero sum:

αi −
∑

k
k 6=i

αk = 0. (30)

Respectively, letβ’s denote the shifts in utilities in the case ofj’s one-sided cheat-
ing, and letγ’s denote the shifts if cheating is multilateral among the suppliers.

As can be seen in the Figure 7, telling the truth(t) is strongly dominatedby being
untruthful(u). Thus, the only Nash equilibrium of the game presented in Figure 7
is multilateral cheating(ui, uj). In such equilibrium, playern takes all the losses.
However, since playern makes the final decision on the execution of the rational-
isation manoeuvre, he might well decide not to put it into practice. To be specific,
the rejection takes place if

γn > π∗n (31)

or, by equation (30), ∑
k

k 6=n

γk > π∗n. (32)
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In consequence, all the players gain zero utility, which turns the game into apris-
oner’s dilemma. Recognising this fact may reduce the willingness to cheat.

Another option for cheating appears tothe client, who may decide not to follow the
predefined rule for re-evaluation of the payments but, instead, compensate the sup-
pliers less than what would be appropriate. However, such opportunistic behaviour
would, obviously, lead to great mistrust between the suppliers and the client and
hence to the rejection of all future cooperation.

Summarising this section, two possibilities for cheating are revealed. First, the
suppliers might exaggerate or underrate their work loads or costs in order to ob-
tain greater payments than they would fairly deserve. This, however, leads to a
prisoner’s dilemma where the utility to each player is zero. Hence, it does not
pay for the suppliers to cheat. Secondly, the client may cheat by not following the
predefined rule. Such an action is extremely hostile and, thus, can be ignored. As
a conclusion, cheating in both cases is unprofitable.

3.6 Use of Threats

Originally, the concept of threats in negotiation was brought out by Nash (1953).
By threat one means inconvenience – or lessening of utility – that a player can
cause to another player. Nash’s idea was that the players of the bargaining game
each find an optimal threat, which is to be executed if the negotiations fail. That
is, the threats define a new disagreement point for the bargaining game.

In the bargaining solution, a player’s utility may increase as the other player’s
utility in the disagreement point decreases. Thischilling effectmakes the players
want to set their threats so that the other player’s state in the case of disagreement
seems as unfavourable as possible. Formally, let(τ1, τ2) be the threats of players 1
and 2. Letωi(τ1, τ2) be the utility to playeri in the bargaining solution with the
disagreement point(τ1, τ2). Each player wants to set his threat so as to maximise
his value of the game:

τ∗1 = arg max
τ1

ω1(τ1, τ
∗
2 ) (33)

τ∗2 = arg max
τ2

ω2(τ∗1 , τ2). (34)

In his paper, Nash (1953) has proven the existence of the optimal threats(τ∗1 , τ∗2 )
using the Kakutani fixed-point theorem (Kakutani 1941).
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The game (14) described in Section 3.2, however, is not a pure bargaining game,
but contains successive decisions in it. For dynamic games, Gibbons (1992, pp. 55)
has introduced the notioncredibility of threats. Defined complementarily, a threat
is noncredibleif the executor of the threat, in the situation of disagreement, is him-
self worse off when executing the threat than he would be by restraining himself
from executing the threat. In other words, one should not believe a threat that is
harmful also to the executor of the threat. Credibility of the threats is an essential
part of the threat analysis, since noncredible threats can normally be ignored in the
analysis.

In a supplier-buyer relationship a threat could be e.g. a termination of the contract.
More generally, within enterprise networks, some examples of threats are (in the
order of severity):

• segmentation/categorisation of the partner

• alteration in prices

• termination of partnership

• revelation of confidential information to e.g. a competitor

• hostile takeover of the opponent.

Of the above list, the last four points are self-explanatory, but the first point needs
more explanation. Assume that companyA is in a somewhat leading role in an
enterprise network. The companyA, therefore, has the option of categorising its
partners into distinct classes, for instance, in order of lessening closeness:strategic
partners, R&D partners, business partners, etc.(see e.g. Vesalainen 2002, pp. 40).
CompanyA could set a threat of changing the classification of another company
in the network to a lower class inA’s grading.

Because in game (14) an alteration in pricespi is exactly what we have already
discussed in the previous sections, there is no point in using such a threat. Instead,
it may be fruitful to examinewhat happens if the suggested alteration in prices
is not commonly accepted. Thus, in analysing the threats in game (14), this study
concentrates on the third item in the list above. Therefore, assume that each player
i ∈ N has an additional possible strategy, threatτi, which is the termination of the
partnership. The threatsτi ∀ i ∈ N have to be added into the dynamic model of the
game, depicted in the game tree of Figure 5. Because of the nature of the game, it is

35



Stage 1

Stage 2

Stage 3

Player n

Player i ∈ Ns

define rule φ

Player j ∈ Nw ∪ {n}

come up, ci = a

�

(π1, . . . , πn)

keep partnership

�

(τ1, . . . , τn)

terminate partnership

�

(0, . . . , 0)

withhold, ci = b

Figure 8. Game in the Extensive Form Including Threats.

not relevant to consider that the players would threaten each other, unless the game
has advanced beyond Stage 2 and the playeri ∈ Ns, who is making the decision
in Stage 2, has decided to come up with his idea i.e. playci = a. Thus, Figure 8
expands the game tree to include the possibility of threatening to terminate the
partnership.

In the situation of Figure 8, the threatτi is noncredible if and only ifτi < 0. That
is, a rational player would not realise a threat that causes losses to himself, because,
by maintaining the current conditions he would be better off. In consequence, if
the companies of the network are mutually dependent on each other, there is no
credible threat of terminating the partnership, and the threats can be ignored.

If, however, there exists a playerj such thatτj ≥ 0 andτn < 0, then playerj’s
threat is credible and should be taken into account. This is the case where sup-
plier j has an optional client who is at least as profitable as playern, whereas forn,
loosing supplierj would cause losses. These circumstances motivate playerj to
ask for more thanπ∗j , which would be the payoff from theegalitarian solutionπ∗

in (25).

One possible solution is to generalise Nash’s (1953) theory ton players. Mathe-
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matically, this is straightforward. The Nash product forn players becomes

n∏
i=1

(xi − δi), (35)

wherexi is the share of utility to playeri in cooperation, andδi is the disagreement
payoff to playeri. The maximisation of the Nash product (35) defines a unique
strongly efficient vectorx, which is the Nash solution to then-player bargaining
problem (see Myerson 1997, pp. 417).

Hence, the share of utility in the threat game presented in Figure 8 can be defined
by the unique strongly efficient vectorπ ∈ F that maximises the Nash product:

π∗ = arg max
π

∏
i∈Nw∪{n}

(πi − τi). (36)

The maximisation of (36) is equivalent to solving the following conditions

πi − τi = πj − τj ∀ i, j ∈ Nw ∪ {n} (37)∑
i∈Nw∪{n}

πi
(27)
= −

∑
i∈Nw

∆vi. (38)

Conditions (37) and (38) form a linear system of|Nw|+1 equations containing the
same number of unknown variables (theπi’s). Thus, solving the system forπi’s
defines vectorπ uniquely (see Appendix B).The compensation paymentφ can
then be calculated from (11):

φi(τ ) = πi(τ ) + ∆vi, (39)

whereτ denotes the vector that consists ofτi’s such thati ∈ Nw ∪ {n}.

3.7 Coalitional Analysis

3.7.1 Motivation and Basic Concepts

In Section 3.3, the game has been generalised ton players without considering
coalitions. However, as the following example illustrates, there exists a need for
coalitional analysis:

Example 3.2 (Installing HPAC in boat building) Recall the Example 3.1 of Sec-
tion 3.1. There are three players in this game, namely, the HPAC installer{1}, the
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hull manufacturer{2}, and the client{3}. Let us assume that, in the occasion
of work transfer, player 3 has proactively decided to apply the egalitarian solu-
tion (24) to re-evaluate the payments to players 1 and 2, and that this is common
knowledge.

Suppose that player 1 has an idea of transferring the drilling work to player 2.
Player 1 now has to decide, whether he will bring the possibility of the rational-
isation manoeuvre to common knowledge. As a rational player, he will make this
decision according to his expectations on the share of the total utility attained by
the work transfer (Figure 5). Evidently, a coalition of players 1 and 2 could be bet-
ter off leaving the player 3 uninformed of the work transfer and, thereby, sharing
the total utility (27) bilaterally. That is, since player 3 does not bring any added
value to the game, neither should he gain from the game “for free”.

However, if player 3 requires that he is familiar with the manufacturing process,
e.g. to assure certain quality in the final product, he may accuse players 1 and 2 of
breaking the contract when the trickery comes to light (the consequences of which
depend on the contract, etc.).

The Example 3.2 motivates the following coalitional analysis. First, the concepts
of coalitions in game theory are briefly reviewed (for a detailed description, see
e.g. Myerson 1997). A coalition orsyndicateis any nonempty subsetS of N :

S ⊆ N, S 6= ∅. (40)

Thecharacteristic functionν(S) is a function

ν : P(N) 7→ IR, (41)

whereP(N) is the power setof N . The characteristic function represents the
amount of utility that a coalitionS ⊂ N can guarantee to its members, regardless
of the strategies of the players in the competing coalitionN \ S (see e.g. Jones
1980, Myerson 1997). Occasionally,ν(S) is referred to as theworth of coalition
S.

In the literature, several different definitions of characteristic functions have been
presented, some of which will be briefly discussed here. The first method to define
the characteristic function is aminimaxrepresentation, suggested by von Neumann
and Morgenstern (1944). For a coalitionS ∈ N , the characteristic function is

ν(S) = min
cN\S

max
cS

∑
i∈S

πi(cS , cN\S), (42)
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wherecX denotes the strategies of players in coalitionX. In other words, the
worth of coalitionS is the sum of individual utilities to the members ofS when
the complementary coalitionN \ S plays its most offensive strategy againstS.
It can be shown that the characteristic functionν in (42) satisfies two properties,
stated by Luce and Raiffa (1957):

(i) ν(∅) = 0
(ii) S, T ⊂ N, S ∩ T = ∅ =⇒ ν(S ∪ T ) ≥ ν(S) + ν(T ).

(43)

For the proof, consult e.g. Jones (1980, pp. 187). The first property (i) is to say
that a coalition with no players neither achieves nor loses anything. The second
property (ii) is calledsuperadditivity, that is a union of two coalitions can perform
at least as well as the two separate coalitions. The property (ii) is calledadditivity
if, instead of the inequality, only the equality holds, i.e. if (Jones 1980)

ν(S ∪ T ) = ν(S) + ν(T ) ∀ S, T ⊂ N, S ∩ T = ∅. (44)

Further, a coalitional game is calledinessentialif its characteristic function is addi-
tive. Other coalitional games are calledessential(Luce and Raiffa 1957). Inessen-
tial games are not interesting in the sense of coalitions, since each player is able to
guarantee himself a certain amount of utility, regardless of alliances.

Another way of defining the characteristic function is the payoff when both coali-
tionsS andN \ S play their defensive strategies

c∗S = arg max
cS

∑
i∈S

πi(cS , c∗N\S) (45)

c∗N\S = arg max
cN\S

∑
i∈N\S

πi(c∗S , cN\S). (46)

That is, both coalitions maximise their own utility assuming that the other coalition
behaves similarly. The strategy pair (45) and (46) is called thedefensive equilib-
rium representation(Myerson 1997). The problem with this definition is that the
pair (c∗S , c∗N\S) does not necessarily exist. Nonetheless, if such a strategy pair
exists, then the characteristic function is defined to be

ν(S) =
∑
i∈S

πi(c∗S , c∗N\S). (47)

It is noteworthy that the defensive equilibrium (45)-(46) is a sort of generalisation
of the Nash equilibrium of non-cooperative games (see, Nash 1951).
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Harsanyi (1963) proposes yet another definition for the characteristic function,
which is a generalisation of Nash’s (1953)rational threatscriteria to then-player
game. Harsanyi’s idea is that, instead of maximising merely the total utility (45),
a coalition should maximise thedifference between its own total utility and the
competitors’ total utility. Thus, the coalitions’ optimal strategies become

c∗S = arg max
cS

∑
i∈S

πi(cS , c∗N\S)−
∑

j∈N\S
πj(cS , c∗N\S)

 (48)

c∗N\S = arg min
cN\S

∑
i∈S

πi(c∗S , cN\S)−
∑

j∈N\S
πj(c∗S , cN\S)

 . (49)

Again, the characteristic function is calculated from (47), this time with the strate-
gies(c∗S , c∗N\S) obtained from (48) and (49).

3.7.2 Core and Coalition Formation in the Work-Transfer Game

Bearing in mind the original goal, which is to determine feasible incentives for
the suppliers, we must find a means to predict the formation of coalitions in the
supplier-client game. Gillies (1953) has introduced the conceptcore of a coali-
tional game, which we define as follows. Let vectorx = (x1, . . . , xn) be any
payoff allocation, orimputation, to playersi ∈ N . Imputationx is in thecoreof a
coalitional game, if∑

i∈N

xi = ν(N) and
∑
i∈S

xi ≥ ν(S) ∀ S ⊆ N. (50)

That is to say, an imputationx is in the core, if no coalition can insure its members
a strictly better payoff than inx. Hence, a coalition can be assumed stable if and
only if it is able to offer its members a utility allocation that is in the core. Within
the definition of the core (50), it is natural to use the minimax representation (42)
of the characteristic function, because then players inS can assure themselves a
strictly better payoff than inx, regardless of what the players inN \ S do, if and
only if

∑
i∈S xi < ν(S) (Luce and Raiffa 1957, Jones 1980, Myerson 1997).

In the game of Example 3.2, assuming that there are no threats of any kind and that
the characteristic function is (42), the core is

{x ∈ IR3 | x1 + x2 = −(∆v1 + ∆v2), x3 = 0}. (51)

That is, the suppliers 1 and 2 share the utility obtained from the rationalisation
manoeuvre, and player 3 is left with zero payoff.
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3.7.3 Threats in Coalitional Analysis of the Work-Transfer Game

As presented in Section 3.6, the work-transfer game (14) includes the possibility
of two kinds of threats. Firstly, a supplier possesses the threat of terminating the
contract, similar to the case in the analysis of Section 3.6. Secondly, the client
can also threaten the suppliers with termination of the contract, if two or more of
the suppliers ally against the client, and the client gains the information that the
coalition has been formed. Since each supplier is in an equivalent position, we
present this threat game as a two-player game between a supplier and the client
(see Figure 9). For eachi ∈ Nw, j ∈ N , let τj(i) denote the utility to playerj
if the contract betweeni andn is terminated. For convenience, we writeτi(i) =
τi, ∀ i ∈ Nw.

Of the outcomes of the game presented in Figure 9, let us make the following
assumptions:

πn > 0 (52)

xi > πi > 0. (53)

Thus, independent of the values ofτ ’s, for playeri ∈ Ns both strategiesa andc

weakly dominate the strategyb of withholding the rationalisation idea (see Fig-

Player n

Pl
ay

er
i
∈

N
w

cooperate (α)
prevent
rationalisation (β)

terminate
contract (γ)

cooperate (a) (πi, πn) (0, 0) (τi, τn)

withhold (b) (0, 0) (0, 0) (τi, τn)

ally against
client (c)

(xi, 0) (0, 0) (τi, τn)

terminate
contract (d)

(τi, τn) (τi, τn) (τi, τn)

Figure 9. Coalition Formation Between Suppliers with Threats of Terminating
Contract.
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Playern

P
la

ye
ri
∈

N
w

cooperate(α)
terminate
contract(γ)

cooperate(a) (πi, πn) (τi, τn)

ally against
client (c)

(xi, 0) (τi, τn)

terminate
contract(d)

(τi, τn) (τi, τn)

Figure 10. Coalition Formation Between Suppliers with Threats of Terminating
Contract, Reduced Game.

ure 8), which would provide the zero payoff to all players (unless termination of
contract by playern). Again, independent of the values ofτ ’s, for playern play-
ing β is weakly dominated by playingα. Hence, the game is substantially equiva-
lent to that in Figure 10, in which the dominated strategies have been omitted.

In order to make the threat analysis interesting, let us assume

τi < 0 and 0 ≤ τn < πn (a)
or

0 ≤ τi < πi

(53)
< xi and τn < 0. (b)

(54)

Otherwise, if bothτ ’s were positive, then the contract would already have been
proactively terminated. On the other hand, if bothτ ’s were negative, then the
threats would be noncredible and no player would terminate the contract, having
the alternative of keeping the current contract. Thus, with the assumption (54)
there is always one player who possesses a credible threat against another. Fur-
thermore, no player gains so much from terminating the contract that termination
would dominate all other strategies without question.

In the instance of (54a), the unique non-cooperative Nash equilibrium is(c, γ),
which is the only strategy pair that survives the iterated elimination of dominated
strategies. Elaborately, considering Figure 10,c dominatesa andd, in which case
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playern executes his credible threatγ. On the contrary, given (54b), the unique
Nash equilibrium of the game is(c, α).

Henceforth, we shall consider the situation as a whole, i.e. between not only one
supplier and the client, but with all the playersi ∈ Nw included. Let us divide the
setNw into two disjoint subsets, namelyWa andWb, such that

Wa = {i ∈ Nw | 0 ≤ τn(i) < πn} (55)

Wb = {i ∈ Nw | τn(i) < 0}. (56)

In other words, players inWa are more dependent on the clientn than players
in Wb. This is due to the credible threat that playern possesses against players
in Wa. Against players ofWb, playern has no credible threats. Assume further,
that Wa ∩ Wb = ∅ (by definition) and thatWa ∪ Wb = Nw, which is a direct
implication of the assumption (54a).

Let us define thecoalitional threat gameas a generalisation of the game (14) as
follows:

ν = (S ⊆ (Wa ∪Wb ∪ {n}), CS , ν(S)) , (57)

whereCS = ×i∈SCi is the set of strategies of the players inS andν(S) is a
characteristic function.

Evidently, if Wa = ∅, then the core of the coalitional game (57) is

{x ∈ IRn |
∑

i∈Nw

xi = −
∑

i∈Nw

∆vi,
∑

j∈N\Nw

xj = 0}. (58)

That is, playersi ∈ Nw share the whole utility gained within the rationalisation
manoeuvre, leaving the clientn with zero utility. This is possible, becausen’s
threats against the players inNw are not credible.

However, if∃ i ∈ Wa, then playern possesses a credible threat againsti and, since
Nw \ {i} are not able to perform the rationalisation manoeuvre withouti, the dis-
agreement payoff for eachj ∈ Nw is τj(i), which is assumed to be inefficient (54).
Therefore, ifWa 6= ∅, the core is

{x ∈ IRn |
∑

i∈Nw∪{n}
xi = −

∑
i∈Nw

∆vi,
∑
j∈N

j /∈Nw∪{n}

xj = 0}. (59)

Let us callSg = Nw ∪ {n} thegrand coalition. The results (58) and (59) seem
intuitively clear; unless the client is in a strong – such as monopsonistic, etc. –
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position against at least one of the suppliers, the network of suppliers can form
coalitions wherein e.g. work can be transferred and the utility derived therefrom
can be shared inside the coalition. On the other hand, if the suppliers are dependent
on the client, then he is able to disrupt the coalition of suppliers, and no coalition
except for the grand coalition will manage to succeed. Within the grand coalition,
the client is also able to claim a share of the total utility.

3.7.4 Shapley Value

The core as a solution concept has several limitations. First, the core can be empty.
In fact, Jones (1980, pp. 202) has proven that the core of any essential constant
sum game is empty. Second, the core can be very sensitive to small changes in the
power structure of the game (see e.g. Myerson 1997). Third, the core of an essen-
tial game, when nonempty, does not uniquely define the appropriate imputation
(Luce and Raiffa 1957, Jones 1980).

A more elaborate means of finding an outcome forn-player bargaining is theShap-
ley value, which was introduced by Shapley (1953). In his paper, Shapley com-
poses three axioms that the bargaining outcome should satisfy, and he then proves
that such allocation exists and that the allocation is unique. The Shapley value for
playeri of a coalitional gameν is

ϕi(ν) =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!
|N |!

(ν(S ∪ {i})− ν(S)) , (60)

whereν(X) is the characteristic function (the worth) of coalitionX.

An intuitive interpretation of the Shapley value is as follows. Assume that the|N |
players of the game are outside of an empty room and that there exists one door
that leads into the room. Then there are|N |! possible ways how the players can
line up at the door. Assume that the players line up randomly in the queue and that
each ordering is equally likely. For playeri, there are|S|! different ways to order a
coalitionS in front of playeri in the queue. Respectively, there are(|N |−|S|−1)!
ways to order the rest of the playersbehindi. Hence, if the players enter the room
one at a time in the order determined by the queue, then the probability thati,
when he enters the room, finds the coalitionS there is|S|!(|N |−|S|−1)!

|N |! . Playeri’s
additional value to coalitionS is ν(S ∪ {i}) − ν(S). Thus,i’s Shapley value is
his expected additional value to a coalition that has formed into the room ahead
of him.
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In calculation of the Shapley value of game (14), if no threat strategies are existent,
we can use the characteristic function of (42), suggested by von Neumann and
Morgenstern (1944). In this case, the Shapley values for the players of the game
presented in Section 3.2 become

πi = ϕi =

{
1

|Nw|πmax ∀ i ∈ Nw

0 ∀ i ∈ N \Nw,
(61)

whereπmax is the total utility to be shared, defined in (27). In other words, the
suppliers that are involved in the work-transfer process share the whole utility of
the rationalisation manoeuvre. By symmetry, each supplieri ∈ Nw gains the same
amount of utility. Note also that the core in (51) contains the allocation (61).

3.7.5 Harsanyi’s Modified Shapley Value

Harsanyi (1963) has extended the Shapley value to comprise the use of threats, as
well as the case ofnon-transferable utility. The NTU games are left beyond the
scope of this study. However, as has been discussed already, the possibility of using
threats is an essential part of the game. For this purpose, Harsanyi (1963) presents
a modified Shapley value, which is calculated from the original formula (60) but
with a particular characteristic functionν(S). Contrary to the von Neumann and
Morgenstern (1944) characteristic function,ν(S) in the modified Shapley value
is to be determined from (47) using the strategies obtained from equations (48)
and (49).

The rest of this section presents the solution to the work-transfer game according
to the modified Shapley value. Recall the division of setNw into two disjoint
subsetsWa (55) andWb (56). We again restrict the analysis to two interesting
cases, namely

1. Wa = ∅

2. Wa 6= ∅.

The first case implies that playern possesses no credible threats against any of the
players inNw. Hence, the modified Shapley values are equal to those presented
in (61). The latter case, however, entails a different solution, the modified Shapley
values of which will be calculated first for players inWa, then for players inWb

and finally for playern, as follows.
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Let S̄ denote the set of players that are left out of the coalitionS ∪ {i} i.e. S̄ =
(Nw ∪ {n}) \ (S ∪ {i}). The marginal utility of a playeri ∈ Wa to coalitionS is

ν(S ∪ {i})− ν(S) =


πmax − τn(i), S̄ = ∅
−τn(i), n ∈ S, S̄ 6= ∅
τi, n /∈ S.

(62)

That is, if i is the last player to enter the grand coalitionSg = Nw ∪ {n}, then
i is the critical player who allows the rationalisation manoeuvre to be put into
practice. Therefore, since it is necessary for the execution of the rationalisation
manoeuvre that the grand coalitionNw ∪ {n} is formed, the last player to join the
grand coalition carries the total utilityπmax.

If i andn are part of a same coalition, then it does not pay forn to execute his
threat of terminating the contract withi. Hence, wheni enters a coalitionS thatn
belongs to, the coalition loses the value ofn’s threat i.e.τn(i) (≥ 0 by 54a and 55).
On the other hand, ifi enters a coalitionS, such thatn /∈ S, theni carries the cost
of n’s threat i.e.τi (< 0 by 54a and 55).

The probability thati is the last player to join the grand coalition is

P (S̄ = ∅) =
1

|Nw|+ 1
. (63)

The probability that wheni entersS, n belongs toS andS ∪ {i} does not form
the grand coalition, is

P (n ∈ S, S̄ 6= ∅) =
|Nw|−1∑

k=1

k

|Nw|
· 1
|Nw|+ 1

=
1

|Nw| · (|Nw|+ 1)

|Nw|−1∑
k=1

k

=
1

|Nw| · (|Nw|+ 1)
· 1 + |Nw| − 1

2
· (|Nw| − 1)

=
1
2
· |Nw| − 1
|Nw|+ 1

. (64)

The probability thatn is not a member ofS is

P (n /∈ S) =
|Nw|∑
k=1

k

|Nw|
· 1
|Nw|+ 1
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=
1

|Nw| · (|Nw|+ 1)
· 1
2
· |Nw| · (|Nw|+ 1)

=
1
2
. (65)

Thus, combining the marginal utilities (62) and the corresponding probabilities
(63)-(65), the expected marginal utility ofi ∈ Wa to coalitionS becomes

ϕi =
πmax − τn(i)
|Nw|+ 1

− τn(i)
2

· |Nw| − 1
|Nw|+ 1

+
τi

2

=
πmax

|Nw|+ 1
− τn(i)

2
+

τi

2
, i ∈ Wa, (66)

which is the modified Shapley value for a playeri ∈ Wa.

For a playerj ∈ Wb the situation is simpler. The marginal utility of a player
j ∈ Wb to coalitionS is

ν(S ∪ {j})− ν(S) =

{
πmax, S̄ = ∅
0, S̄ 6= ∅.

(67)

Again, if j is the last player to enter the grand coalitionSg = Nw ∪ {n}, then
j carries the total utilityπmax. Otherwise, ifS ∪ {j} does not form the grand
coalition, thenj’s additional value toS is zero. The probabilityP (S̄ = ∅) is equal
to that in (63). Thus, the modified Shapley value for a playerj ∈ Wb becomes

ϕj =
πmax

|Nw|+ 1
, j ∈ Wb. (68)

Finally, let us determine the modified Shapley value for playern. The marginal
utilities are

ν(S ∪ {n})− ν(S) =


πmax −

∑
i∈Wa

τi, S̄ = ∅∑
i∈Wa∩S̄

τn(i)−
∑

i∈Wa∩S

τi, S̄ 6= ∅. (69)

In other words, ifn completes the grand coalition, he carries the total utility of
the rationalisation manoeuvre and, in addition, removes the burden of the threat
of terminating contracts betweenn and the players inWa. Again, if S̄ is left
unempty, then the threats against players inWa ∩ S̄ are enforced and the threats
against players inWa ∩ S are cancelled.
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The probabilityP (S = ∅) is once again obtained from (63). The conditional
probabilities that a playeri ∈ Wa belongs toS̄ when |S̄| = k, or to S when
|S| = |Nw| − k are, respectively,

P (i ∈ S̄ | k) =
k

|Nw|
(70)

P (i ∈ S | k) =
|Nw| − k

|Nw|
. (71)

Hence,n’s expected marginal utility to a coalitionS is

ϕn =
πmax −

∑
i∈Wa

τi

|Nw|+ 1

+
|Nw|∑
k=1

1
|Nw|+ 1

 ∑
i∈Wa

(
k

|Nw|
· τn(i)− |Nw| − k

|Nw|
· τi

)
... (for the calculations, see Appendix C)

=
πmax

|Nw|+ 1
+

∑
i∈Wa

τn(i)
2

−
∑

i∈Wa
τi

2
. (72)

Obviously, the modified Shapley value for the suppliers that are not involved in
the rationalisation process is zero:

ϕk = 0, k ∈ Ns \Nw. (73)

Summarising, the modified Shapley values of the coalitional threat game (57) for
the players inN are

ϕi =
πmax

|Nw|+ 1
− τn(i)

2
+

τi

2
, i ∈ Wa (a)

ϕj =
πmax

|Nw|+ 1
, j ∈ Wb (b)

ϕk = 0, k ∈ Ns \Nw. (c)

ϕn =
πmax

|Nw|+ 1
+

∑
i∈Wa

τn(i)
2

−
∑

i∈Wa
τi

2
. (d)

(74)

It is straightforward to verify that the players’ modified Shapley values (74) sum
up to the total available utility:∑

i∈Wa

ϕi +
∑

j∈Wb

ϕj + ϕn = πmax, (75)
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that is, the allocationΦ = (ϕ1 . . . ϕn) is efficient.

Since the players ofWa are in a weaker bargaining position than the players ofWb,
the modified Shapley value for the players inWa (74a) is strictly less than that for
players inWb (74b). In fact, players inWb obtain the same amount of utility that
the egalitarian solution (25) would give, and players inWa forfeit an amount of
utility – proportional to the strength ofn’s threat(τn(i), τi) – to playern.

The incentive strategiesφi andφj for i ∈ Wa andj ∈ Wb according to the modi-
fied Shapley values are obtained by replacingπi in (11) byϕi andϕj , respectively:

φi = ∆vi +
πmax

|Nw|+ 1
− τn(i)

2
+

τi

2
, ∀ i ∈ Wa. (a)

φj = ∆vj +
πmax

|Nw|+ 1
, ∀ j ∈ Wb (b)

(76)

The incentives (76a) and (76b) take account of the fact that the suppliers inWa are
more dependent on the clientn than the suppliers inWb. Hence, it is reasonable
that the incentive for the suppliers inWa is lower than that for the suppliers inWb.

3.8 Summary of Innovation Incentives Model

In this section, we have introduced a game that models efficiency-improving ar-
rangements in enterprise networks. We have studied the conditions that a rationali-
sation manoeuvre requires in order to take place. Often, when a rationalisation ma-
noeuvre is implemented, the costs of some network companies increase, whereas
the costs of some other companies in the network reduce. The first criterion for the
rationalisation is that thetotal reduction in costs is greater than the total increase in
costs. The other criterion is that each of the network companies are better off after
the rationalisation has been carried out. That is, thecompanies whose costs in-
crease need a compensation paymentin order to accept the implementation of the
rationalisation manoeuvre. The main idea of our model is that when the network
companies know that they will be compensated in the case of a rationalisation ma-
noeuvre, then the companies are willing to implement efficiency-improving ideas.
Hence, the model determines appropriate compensation payments and, in addition,
shares the surplus utility obtained by rationalisation. The utility sharing is studied
in three different cases. First, it is assumed that the companies do not threaten each
other, nor will they ally against each other. The second case allows threats between
the firms. The third case is the most general, allowing threats and coalitions inside
the enterprise network. In the next section, we present a numerical example.
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4 Numerical Application of Innovation Incentives

4.1 Initiation

This section applies the results of Section 2.7 to a network that consists of two sup-
pliers and a client (Figure 11). Let us denote the two suppliers by indices 1 and 2
and the client by index 3. The network manufactures a product, which is being
sold to end-customers by the client. The suppliers both have a vital role in the net-
work, supplying the client with certain components of the final product, for which
the client pays the suppliers a fixed payment per each component.

Among other duties, supplier 1 carries out a job that, according to cost accounting,
involves the expenses of 800eper each final product manufactured. In negoti-
ations within the network, it has become clear that supplier 2 could perform the
same job with costs of only 200e . That is, by transferring the work from sup-
plier 1 to supplier 2 the network could save up to 600eper final product. This
rationalisation manoeuvre, however, necessitates a change in the fixed payments
(∆pi’s) that the client effects to the suppliers. By this simple example, we shall
illustrate the calculation of the different reallocations, which are suggested in the
Section 2.7.

Following the notation introduced in Section 2.7, we haveN = {1, 2, 3} and the
set of suppliers that are involved in the work transfer process areNw = {1, 2}.

Client

Supplier 1 Supplier 2

∆p1

∆p2

Work is
transferred

∆v1 = −800 e ∆v2 = 200 e

Figure 11. Enterprise Network of the Example.
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The changes in the suppliers’ costs are

∆v1 = −800 e

∆v2 = 200 e ,

and the total benefit of the work transfer is (from 27)

πmax = −
∑

i∈Nw

∆vi = −(−800 + 200) e = 600 e .

It is noteworthy that, when no threats exist, in the determination of∆pi’s it is
sufficient to know the values of∆vi’s; no additional information is needed. In the
following Section 4.2, we shall calculate the egalitarian solution with no threats
(cf. Section 3.4). Thereafter, in Section 4.3, we shall consider the use of threats
and find Nash’s relative threats solution (cf. Section 3.6). Finally, in Section 4.4,
we shall calculate the allocation according to the modified Shapley value (cf. Sec-
tion 3.7.5). Section 4.5 compares the results of the different solution concepts.

4.2 Egalitarian Solution without Threats

The egalitarian solutionyields the reallocation calculated from the equation (24):

∆p1 = ∆v1 +
1

|Nw|+ 1
· πmax = −800 e +

1
2 + 1

· 600 e = −600 e ,

∆p2 = ∆v2 +
1

|Nw|+ 1
· πmax = 200 e +

1
2 + 1

· 600 e = 400 e .

That is to say, the supplier 1, whose work load decreases, incurs a fall of−600e in
the fixed payment from the client. Supplier 2, for one, receives a supplement of
400e for the increased work load. The corresponding utilities, i.e. changes in
profit, become (by 11)

π∗1 = ∆p1 −∆v1 = −600 e + 800 e = 200 e ,

π∗2 = ∆p2 −∆v2 = 400 e − 200 e = 200 e .

The utility to the client is (by 12)

π∗3 = −
∑

i∈Nw

∆pi = −(−600 + 400) e = 200 e ,

Thereby, in the egalitarian solution, all the participants’ utilities are equal, exactly
as should be the case by (21).
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4.3 Relative Threats Solution

The relative threats solutionenables the use of threats, i.e. such actions that can
harm a network company if committed by another company of the network. To
illustrate how threats can affect the reallocation of the payments, let us assume
that the client can terminate the contract with the supplier 1. Assume further,
that the client can easily find a substitute supplier, whereas for the supplier 1 it is
difficult to find a new customer. Hence, if the contract is terminated, the losses to
supplier 1 are valued atτ1 = −150 e , proportioned to the income of supplier 1
from the present client. The client would not suffer any losses from the termination
of the contract (τ3(1) = 0 e ). Under these circumstances, the client possesses a
credible threat against supplier 1.

The utilities according to the relative threats approach are solved from the system
of linear equations (37)-(38), which, in this example, consists of three equations:

(i) π1 − τ1 = π2

(ii) π2 = π3 − τ3(1)
(iii) π1 + π2 + π3 = πmax

=⇒
π1 + 150 e = π2

π2 = π3

π1 + π2 + π3 = 600 e .

Inserting (ii) into (i) and (iii) yields

(iv) π1 + 150 e = π3

(v) π1 + π3 + π3 = 600 e .

Solving equation (iv) forπ1 and inserting it into (v) gives

(vi) π3 − 150 e + π3 + π3 = 600 e =⇒ πT
3 = 250 e .

From (i) and (ii) we obtainπT
1 = 100 eandπT

2 = 250 e , respectively. The
changes in the payments to suppliers become (by 11)

∆p1 = πT
1 + ∆v1 = −700 e ,

∆p2 = πT
2 + ∆v2 = 450 e .

That is to say, in consequence of supplier 1’s dependence on the client, supplier 1
loses 100e in comparison with the egalitarian solution of Section 4.2. The surplus
100e is divided up evenly among the client and supplier 2.
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4.4 Modified Shapley Value

In determining the solution according to the modified Shapley value, we assume
the same interdependencies inside the network as in Section 4.3, i.e. the client
possesses a credible threatτ1 = −150 eagainst supplier 1. Therefore, the set
Nw = {1, 2} can be divided into two subsets, namelyWa = {1} andWb = {2}.
SinceWa 6= ∅, the changes in payments are calculated from (76):

∆p1 = ∆v1 +
πmax

|Nw|+ 1
− τ3(1)

2
+

τ1

2

= −800 e +
600 e
2 + 1

− 0 e
2

− 150 e
2

= −675 e ,

∆p2 = ∆v2 +
πmax

|Nw|+ 1

= 200 e +
600 e
2 + 1

= 400 e .

With this reallocation of the payments, the utility is shared in the network as fol-
lows (by 11 and 12):

πS
1 = ∆p1 −∆v1 = −675 e + 800 e = 125 e ,

πS
2 = ∆p2 −∆v2 = 400 e − 200 e = 200 e ,

πS
3 = −

∑
i∈Nw

∆pi = −(−675 + 400) e = 275 e .

4.5 Comparing Different Solution Concepts

Table 1 compares the results of the previous three Sections 4.2, 4.3, and 4.4. The
results are depicted in Figure 12. As can be seen, the egalitarian solutionπ∗ yields
an equal payoff of 200e to each company of the network (recall that a company’s
utility is measured as the change in its profit). This is due to the fact that the
egalitarian solution was constructed by defining that the players’ utilities should
be equal.

The relative threats solutionπT penalises the supplier 1 for his dependency in
respect of the client. Thus, supplier 1’s utility inπT diminishes fromπ∗ propor-
tionally to his losses in a situation of disagreement. The thereby released utility
(100e ) is balanced between the client and supplier 2, who would not come to any
harm, if the work transfer were rejected.
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Table 1. Comparison of the Different Solution Concepts.

Company π∗ (e ) πT (e ) πS (e )

1 200 100 125
2 200 250 200
3 200 250 275

Also the solution according to the modified Shapley valueπS takes the dependent
situation of supplier 1 into account. However, the only participant who benefits
from the weakness of supplier 1 is the one who has the potency to execute the
threat, i.e. the client. Again, supplier 1 suffers a loss of utility (−75 e ), which is
transferred to the client in its entirety. The transferred utility is proportional to the
strength of the client’s threat, but it is smaller in amount than in the relative threats
solution. Also the client is better off inπS than inπT, because the third party, i.e.
supplier 2, does not benefit from the client’s threat against supplier 1.
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Figure 12. Comparison of the Different Solution Concepts.
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It is common to all the three solution concepts that an efficiency-improving ar-
rangement leads to a win-win situation among the companies that are involved in
the arrangement. When this is a well-known fact within a network, then thecom-
panies of the network are willing to implement efficiency-improving ideas. Hence,
the networktakes advantage of an innovative atmosphereinside the network and
thus thecompetitive advantage of the network sharpens.
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5 Discussion and Conclusions

5.1 Predetermined Innovation Incentives

The ability to improve efficiency via networking is an important advantage, which
should be taken into consideration in enterprises. Since rationalisation usually en-
tails potential for win-win situations among the participating companies, the mech-
anisms of networking induce the firms to implement efficiency-improving ideas.
When such an incentive mechanism is inbuilt in the contracts among the network
companies, then the atmosphere of the network is innovative and the network is
able to improve its competitiveness (Bidault et al. 1998).

The theoretical basis for the incentive mechanisms can be formed, for instance,
by a game theoretic study. The main contribution of this paper is a game theo-
retic model that defines financial incentives for the suppliers of a demand supply
network in order to bring forth ideas of rationalising the manufacturing process.
Section 2.7 presents three solution concepts, the characteristics of which are illus-
trated by an example case in Section 3.8. The solution concepts are quantitatively
compared and discussed in Section 4.5. Here, we discuss the solution concepts for
the implementation of the innovation incentive.

Theegalitarian solution, referred to asπ∗, reflects complete cooperation between
the companies, seeing that the utility is shared equally among the parties involved.
Hence, we suggest thatπ∗ is to be used when the firms have no intention of harm-
ing each other. This could be the case with affiliated companies, for instance.
Apart from this, therelative threats solution(πT) includes the possibility that the
firms may make threats against each other. Threatening may occur for instance
between supplier and client, between brand owner and retailer, or in horizontal
networks, in which casesπT is a suitable solution. In addition toπT, the solution
according to themodified Shapley value(πS) takes into account coalition forma-
tion. Consequently,πS can be used if the firms have hostile attitudes against each
other, which is the situation in e.g. horizontal competition.

Generally, the major advantages of the use of the model are:

1. A win-win situation emerges if a rationalisation manoeuvre is carried out.

2. The information requirements of the companies are minimum.

3. The companies need not exchange confidential information.
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4. Cheating is non-profitable.

In the following, we discuss points 1-4.

In the model, the utility function of a network company is defined as thechange
in profit. Therefore, if there is no change in a firm’s profit – or the manufacturing
process remains unchanged – then the utility of the firm remains zero. However,
the rationalisation of the manufacturing process, by definition, produces surplus
utility. Sharing the total utility among the network enhances the profit of the com-
panies, hence creating a win-win situation.

In consequence of the form of the utility function, the only information needed is
the network companies’ cost changes due to the rationalisation manoeuvre. In or-
der for the rationalisation manoeuvre to be feasible, the sum of the cost changes has
to be negative i.e. the amount of decreasing costs exceeds the amount of increasing
costs. It seems natural that the total utility obtained by the efficiency-improving
arrangement is defined to be the sum of the cost changes. Therefore, each of the
solution concepts presented in Section 2.7 defines the innovation incentive as a
share of the total utility, which can be easily calculated as the sum of the cost
changes.

A critical assumption in the model is that the network companies agree to reveal
information on their own cost changes due to the rationalisation arrangement. We
motivate the assumption by two arguments. First, the amount of cost information
to be revealed is normally limited to a single operation that a network company
performs among its other duties. That is, the information is only a piece of the
total cost information of the company and, hence, is not likely to cause harm to
the company in the hands of another firm. Secondly, the information need only
be exposed to one agent, who is able to determine the new allocation of payments
inside the network. The agent could be, for instance, the client of the network, an
independent consultant, or even a computer program. Except for the agent who
calculates the payment reallocation, an individual participant of the rationalisation
process accesses only the information on his own costs and the total sum of the
other participants’ cost changes, which an individual can calculate using the infor-
mation on his own payment reallocation. In consequence, there is no fundamental
risk3 that confidential information leaks to a third party who would benefit from

3A comprehensive risk analysis requires a probabilistic approach and is left beyond the scope of
this study. For risk management in network economy, see e.g. Hallikas et al. (2001).
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the information at the expense of the companies of the network. Thus, we may
assume that the firms have no restrictions to share the necessary information.

Cheating, in this case, may occur in two ways. The companies involved in the
rationalisation process may distort their cost changes in order to obtain greater
compensation from the rationalisation than would be appropriate. However, this
form of cheating quickly becomes non-profitable, since it reduces the total utility
of the rationalisation arrangement, thus making the arrangement itself seem infea-
sible to other companies. The other possibility for cheating occurs for the firm that
ultimately effects the payments to the other companies. The firm may decide not
to pay the predetermined compensation payments, which, self-evidently, causes
massive mistrust between the network companies. The prospect of such extreme
behaviour is beyond the scope of this study.

The model cannot adapt to every possible situation. We have assumed that the
game is played with complete and perfect information, i.e. the utility functions
and the previous actions of the participating companies are common knowledge
to all participating companies. This, however, need not be the case. Hence, a
target for development could be to extend the model to contain uncertainties of,
for instance, cost changes and disagreement outcomes. Harsanyi (1967-68) con-
ceptualised games with incomplete information by introducinggames in Bayesian
form. Thereafter, the theory of Bayesian games has been developed to a sophisti-
cated level by numerous researchers. Consequently, the (mathematical) means for
the analysis of games with uncertainties exist.

5.2 Summary and Conclusions

In this paper, we have studied the potential of game theoretic modelling of en-
terprise networks. We have presented a stepwise guideline to the building of
game theoretic models that are utilised to support decision-making in the business-
network environment. We have also constructed and analysed a game theoretic
model that serves as a tool for determining innovation incentives in enterprise net-
works. In addition, our model provides rules for sharing utility among the compa-
nies of a network.

Our postulate thatgame theory is a suitable machinery for formal modelling of en-
terprise networkswas found reasonable. Game theoretic analysis supports analyt-
ical decision-making in situations that involve multiple decision-makers who may
have (partially) conflicting interests. Consequently, game theoretic models can be
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exploited to evaluate the possibilities of networking and to find out the premises
for successful cooperation. For instance, game theoretic analysis helps to find
win-win situations by networking, to collaboratively improve the cost efficiency
of networks, and to improve the competitive advantage of networks.

In practice, promising models are implemented in contracts between firms. For
instance, the incentive model presented in this paper could be implemented by
proactively contracting the payment reallocation rule in the case of a rationalisation
manoeuvre. The person who can take the advantage of mathematical models in
decision-making is the firm’s partnership manager or a worker reporting directly
to the manager. The utilisation of the models requires the capability to approach
problems analytically. However, the person does not need to have a mathematical
background; a basic understanding of the key concepts will suffice.

Probably the most complex part in mathematical modelling of enterprise networks
is the estimation of model parameters, which are usually used in utility functions.
The problem arises when immaterial benefits, such as quality, innovativeness or
responsiveness, have to be assessed quantitatively. Thus, the modelling of such
intangible attributes calls for efficient evaluation mechanisms. The mathematical
complexity of game theoretic models is case-specific. However, some general
conclusions concerning network-economy models can be drawn. First, if utility
can be measured in monetary units, then we may assume that utility is transferable,
which simplifies the calculus. Second, a model that includes more than two players
has to account for coalition formation, which again may complicate the analysis.

The general frame of game theoretic modelling presented in Section 2.7 systemises
the model building and aids industry decision-makers in constructing game theo-
retic models of their own contemporary networking cases. Our case model pre-
sented in Section 2.7 offers several mechanisms for determining innovation incen-
tives and sharing utility in a network. The essential use of the model is to create
an innovative and efficiency-improving atmosphere inside an enterprise network.
Such conditions lead to win-win situations and thus to an absolute gain in utility
among the members of the network.

This paper has brought a new perspective to the discussion on decision-making in
relation to enterprise networks. The research area is broad; the following – mostly
unexplored – subjects have arisen from discussions with firms:

• appraisal / valuation of services provided to a customer

• risk-, cost- and profit-sharing in a network
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• investment-sharing in a network

• R&D project management in a network

• simulation of enterprise networks

• modelling uncertainties by Bayesian games.

For further research, these topics yield interesting opportunities to be modelled as
games, in which the players are either part of a horizontal network or in a vendor-
customer relationship. Besides game theory, other mathematical methodologies
may also provide useful tools for network analysis. For instance, network opti-
misation, portfolio analysis, real-option theory, and other mechanisms for group
decision-making are subjects that could be explored in connection with network
economy.
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Appendix A: Calculation of the Egalitarian Incentives

The equations (23) can be written

φi +
∑

i∈Nw

φi = ∆vi, ∀ i ∈ Nw, (A1)

which form the following system of linear equations:

2φ1 + φ2 + . . . + φnw = ∆v1

φ1 + 2φ2 + . . . + φnw = ∆v2

... (A2)

φ1 + φ2 + . . . + 2φnw = ∆vnw .

In matrix form this becomes
2 1 · · · 1

1 2
...

...
... 1

1 · · · 1 2




φ1

φ2

...
φnw

 =


∆v1

∆v2

...
∆vnw

 .

nw×nw nw×1 nw×1

(A3)

The solution is obtained by inverting the(nw × nw)-matrix:


φ1

φ2

...
φnw

 =



nw
nw+1 − 1

nw+1 · · · − 1
nw+1

− 1
nw+1

nw
nw+1

...

...
... − 1

nw+1

− 1
nw+1 · · · − 1

nw+1
nw

nw+1




∆v1

∆v2

...
∆vnw

 , (A4)

which uniquely defines theφi’s as presented in (24).



Appendix B: Calculation of the Incentives with Threats

The system (37)-(38) is equivalent to

π1 − τ1 = π2 − τ2

π2 − τ2 = π3 − τ3

... (B1)

πnw − τnw = πn − τn∑
i∈Nw∪{n}

πi
(27)
= πmax.

By moving theπi’s to the left hand side and theτi’s to the right hand side we
obtain

π1 − π2 = τ1 − τ2

π2 − π3 = τ2 − τ3

... (B2)

πnw − πn = τnw − τn∑
i∈Nw∪{n}

πi
(27)
= πmax.

Writing this in matrix form yields

1 −1 0 · · · 0

0 1 −1
...

...
...

... ... ... 0
0 · · · 0 1 −1
1 1 · · · 1 1




π1
...

πnw

πn

 =


τ1 − τ2

τ2 − τ3
...

τnw − τn

 .

(nw+1)×(nw+1) (nw+1)×1 (nw+1)×1

(B3)

Clearly, the(nw + 1) × (nw + 1)-sized coefficient matrix is non-singular and,
hence, can be inverted. The unique solution of the system becomes


π1
...

πnw

πn

 =



1 −1 0 · · · 0

0 1 −1
...

...
...

... ... ... 0
0 · · · 0 1 −1
1 1 · · · 1 1



−1 
τ1 − τ2

τ2 − τ3
...

τnw − τn

 . (B4)



Appendix C: Calculation of the Modified Shapley Value
for the Client

ϕn =
πmax −

∑
i∈Wa

τi

|Nw|+ 1

+
|Nw|∑
k=1

1
|Nw|+ 1

 ∑
i∈Wa

(
k

|Nw|
· τn(i)− |Nw| − k

|Nw|
· τi

)
︸ ︷︷ ︸

= ∗

(C1)

∗ =
1

|Nw| · (|Nw|+ 1)
·
|Nw|∑
k=1

∑
i∈Wa

[k · τn(i)− (|Nw| − k) · τi]︸ ︷︷ ︸
= ∗∗

(C2)

∗∗ =
|Nw|∑
k=1

∑
i∈Wa

[k · τn(i)− |Nw| · τi + k · τi]

=
|Nw|∑
k=1

k ·

 ∑
i∈Wa

τn(i) +
∑

i∈Wa

τi

− |Nw|
∑

i∈Wa

τi


=

 ∑
i∈Wa

τn(i) +
∑

i∈Wa

τi

 |Nw|∑
k=1

k − |Nw|
∑

i∈Wa

τi

|Nw|∑
k=1

1

=

 ∑
i∈Wa

τn(i) +
∑

i∈Wa

τi

 |Nw| · (|Nw|+ 1)
2

− |Nw|2
∑

i∈Wa

τi (C3)

Replacing∗∗ in (C2) by (C3) yields

∗ =
(∑

i∈Wa
τn(i) +

∑
i∈Wa

τi
)
(|Nw|+ 1)

2(|Nw|+ 1)
−

2|Nw|
∑

i∈Wa
τi

2(|Nw|+ 1)

=
(|Nw|+ 1)

∑
i∈Wa

τn(i) + (1− |Nw|)
∑

i∈Wa
τi

2(|Nw|+ 1)
(C4)

Finally, replacing∗ in (C1) by (C4) yields

ϕn =
πmax

|Nw|+ 1
+

∑
i∈Wa

τn(i)
2

+
(1− |Nw|)

∑
i∈Wa

τi − 2
∑

i∈Wa
τi

2(|Nw|+ 1)

=
πmax

|Nw|+ 1
+

∑
i∈Wa

τn(i)
2

−
∑

i∈Wa
τi

2
, (C5)

which is the desired result (72).
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