
Juhani Hirvonen, Eija Kaasinen, Ville Kotovirta, Jussi Lahtinen,
Leena Norros, Leena Salo, Mika Timonen, Teemu Tommila,
Janne Valkonen, Mark van Gils & Olli Ventä

Intelligence engineering framework

	 	 VTT WORKING PAPERS 140

ISBN 978-951-38-7480-3 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT 2010

JULKAISIJA – UTGIVARE – PUBLISHER

VTT, Vuorimiehentie 5, PL 1000, 02044 VTT
puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 5, PB 1000, 02044 VTT
tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 5, P.O. Box 1000, FI-02044 VTT, Finland
phone internat. +358 20 722 111, fax +358 20 722 4374

Technical editing Maini Manninen

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

3

Series title, number and
report code of publication

VTT Working Papers 140
VTT-WORK-140

Author(s)
Juhani Hirvonen, Eija Kaasinen, Ville Kotovirta, Jussi Lahtinen, Leena Norros,
Leena Salo, Mika Timonen, Teemu Tommila, Janne Valkonen, Mark van Gils
& Olli Ventä
Title
Intelligence engineering framework

Abstract
A number of advanced algorithms and mostly software-based technologies have
been developed in recent decades in order to solve problems in complex technical
systems. Examples that have been actively studied include machine learning, artifi-
cial intelligence, pattern recognition, neural networks, fuzzy logic, statistical methods,
operation analysis and, most recently, sensor networks. The problem is that these
techniques require considerable knowledge to be applied correctly, necessitating
participation by skilled professionals. This makes applications expensive to design
and maintain. There is therefore a common need for better engineering methods and
tools. This paper describes start of the development of a systematic engineering dis-
cipline for algorithmic and knowledge-intensive intelligent systems and services. The
rationale behind this idea is that advanced technologies and algorithms cannot be
economically feasible unless standardised design practices, tools and system com-
ponents are available. The focus of the research on the early stages of design gave
rise to two issues of design reuse: 1) how to model the application’s needs for intelli-
gence and the features of potential solutions stored in solution libraries, and 2) how
to help the designer search the libraries for solutions that provide the best match with
the application needs.

ISBN
978-951-38-7480-3 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number
VTT Working Papers
1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)

34570

Date Language Pages
February 2010 English 44 p. + app. 4 p.

Name of project Commissioned by
Intelligent Engineering Framework VTT

Keywords Publisher
Semantics, modelling, design, intelligent
systems, ontology, design pattern

VTT Technical Research Centre of Finland
P.O. Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4520
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

 A4

Preface

The Intelligence Engineering Framework (IEF) project aimed to provide a systematic
way to develop and maintain the next generation of “intelligent” systems. It was argued
that such a framework was needed to take full advantage of the numerous advanced
algorithms, methods, and solutions that have been developed in recent years. The in-
tended applications of the IEF covered a wide range of areas in industry and society.
Several research groups with different backgrounds were therefore involved in the pro-
ject. This report summarises the results of the IEF project carried out during the period
from September 2006 to December 2009.

The IEF is a part of the Complex System Design Technology Theme funded by VTT.
The authors would like to acknowledge the Steering Group of the project for fruitful
guidance and support. Moreover we would like to thank the members of the Industrial
Support Group for rewarding discussions about the contents of the project. The mem-
bers of the Industrial Support Group came from the following major Finnish companies:
ABB, GE Healthcare, KCL, Metso Automation, Neste-Jacobs, Pöyry, and SavCor.

The project members came from various Knowledge Centres of VTT representing a
broad scale of expertise in various fields of technology. Juhani Hirvonen D.Sc. (Tech.),
Teemu Tommila M.Sc. (Eng.), Olli Ventä D.Sc. (Tech.), Janne Valkonen M.Sc. (Eng.),
Antti Pakonen M.Sc. (Eng.) and Jussi Lahtinen M.Sc. (Eng.) represent knowledge in
automation systems and their design. Leena Norros Res. Prof., Eija Kaasinen D.Sc.
(Tech.), and Leena Salo M.Sc. (Eng.) are experts in human-technology interaction theo-
ries and practises. Mark van Gils Ph.D., Docent, Luc Cluitmans Ph.D. represents knowl-
edge in applications of intelligent methods on medical instruments. Ville Kotovirta
M.Sc. (Eng.) and Mika Timonen M.Sc. brought environmental monitoring expertise and
Ville Vidqvist’s M.Sc. (Eng.) speciality is rolling machine condition monitoring.

Espoo Feb 11th 2010

Authors

5

Contents

Preface ... 4

1. Introduction ... 6
1.1 The problem.. 6
1.2 Document structure... 8
1.3 The definition of intelligence.. 8
1.4 The development approach .. 10

2. Issues of algorithmic, intelligent systems and their design 11
2.1 System characteristics .. 11
2.2 The concept of the Joint Intelligent System (JIS) .. 13

3. Trends in design.. 15
3.1 General systems engineering and design research .. 15
3.2 Software development – trends and practices .. 17

3.2.1 Software development process .. 17
3.2.2 Requirements engineering ... 18
3.2.3 UML and SysML in software and systems modelling ... 18

3.3 Broadening the human-centred design approach ... 19
3.4 Reusable libraries and design patterns... 20

4. Key technical solutions.. 22
4.1 Situation awareness of technical systems and their users.. 22
4.2 Semantic modelling... 25

5. IEF pattern language... 27

6. Requirements for IEF modelling concepts .. 32

7. IEF toolset ... 34
7.1 IEF toolset requirements... 34
7.2 IEF toolset usage scenario.. 34

8. IEF demonstration software .. 37
8.1 Structure of the IEF tool demonstration .. 37
8.2 IEF tool demonstration, search details.. 38

9. Conclusions and next steps .. 41

References ... 43

Appendices

Appendix A: IEF Ontologies

1. Introduction

 6

1. Introduction

The Intelligence Engineering Framework (IEF) project aimed to provide a systematic
way to develop and maintain the next generation of “intelligent” systems. It was argued
that such a framework was needed to take full advantage of the numerous advanced
methods and solutions that have been developed in recent years. The intended applica-
tions of the IEF covered a wide range of areas in industry and society. Several research
groups with different backgrounds were therefore involved in the project. This report
summarises the results of the IEF project carried out during the period from September
2006 to December 2009.

1.1 The problem

A large number of advanced algorithms and mostly software-based technologies have
been developed in recent decades in order to solve complex problems in technical sys-
tems (Figure 1). Examples that have been actively studied include machine learning,
artificial intelligence, pattern recognition, neural networks, fuzzy logic, statistical meth-
ods, operation analysis and, most recently, sensor networks. The applications in which
these techniques are employed are often referred to as intelligent systems. The problem
is that these techniques require considerable knowledge to be applied correctly, necessi-
tating participation by skilled professionals. This makes applications expensive to de-
sign and maintain. Extensive research in this field has generated numerous demonstra-
tions and pilots but few practical solutions or commercial products. A further challenge
is posed by the need for large-scale integration and continuous system modifications.
Systems are becoming more complicated even if no advanced techniques are used.
There is therefore a common need for better engineering methods and tools.

1. Introduction

7

Figure 1. Well-known, popular, intelligent algorithms that have been extensively studied and
piloted for decades.

The goal of the IEF project was to start the development of a systematic engineering
discipline for algorithmic and knowledge-intensive intelligent systems and services. The
rationale behind this idea is that advanced technologies and algorithms cannot be eco-
nomically feasible unless standardised design practices, tools and system components
are available.

Figure 2 clarifies the focus of the project. A product or system life cycle normally
starts with user needs and requirements, and then goes into more depth on product de-
sign, realisation, verification and validation, ending up with a ready-to-deliver product
or system. Effective and mature systems engineering processes are already in wide in-
dustrial use and are adequate to manage most of the product problem space and subse-
quent engineering tasks. Nowadays, however, it is more common for system and prod-
uct developers to be faced with problems or requirements that cannot be solved using
state-of-the-art methods. It is widely known that advanced algorithms may have great
potential, often piloted in other contexts, but due to their impractical applicability they
are neglected in the engineering processes.

The aim of the IEF project was thus to develop an engineering process (models and
tools) which supports the selection and use of advanced solutions that match the specific
“intelligence needs” of the application. The design process must be suitable for: 1) iden-
tifying the definition of the “specific” problem or opportunity to be dealt with, 2) per-
forming the required engineering steps in outlining the design options, and 3) carrying
along the actual design and implementing tasks, eventually ending in a high-end intelli-
gent solution seamlessly integrated with the context.

1. Introduction

 8

State-of-the-art
Engineering

Process

Product Problem or
Opportunity Space

Product / System ready

Intelligence
Engineering

Process

Algorithms,
design

patterns,
knowledge,
experiences

Identified needs for
”intelligent” solutions

Integrated
Intelligent solution

Figure 2. The research problem of the IEF project: how can advanced techniques be used to
create systems that function in an intelligent way?

1.2 Document structure

The rest of this report is organised as follows. Chapter 2 gives an introduction to the
problem domain of the IEF, i.e., a kind of “big picture”. The role of Chapters 3 and 4 is
to discuss the current state of the art in design processes and implementation technolo-
gies that could be used to tackle the challenges created by intelligent systems. Accord-
ing to the project scope, the reviews focus on the issues considered most relevant to our
purposes. Chapter 5 describes the developed IEF Design Pattern Language used to de-
scribe the solutions in the IEF knowledge base. The IEF toolset is described in Chapters 6,
7, and 8. Finally, Chapter 9 includes some conclusions and recommendations for the next
steps. Appendices contain information about the ontologies and semantic modelling.

1.3 The definition of intelligence

Intelligence engineering is intended for applications used to monitor or control complex
systems in areas like industry, health care, environmental monitoring and infrastructures
of society. While the emphasis was on technical systems based on information and
communication technologies (ICT), human-system interaction is foreseen as important

1. Introduction

9

in these application areas. As fully automatic solutions are often impractical, successful
intelligence emerges mostly from the joint action of people and computers. The techni-
cal system itself typically has a hybrid character, as it must combine various information
systems, technologies and algorithms in order to implement the required functionality.

In order to outline the problem space and the design aim of intelligence engineering,
we took a pragmatic view by interpreting the term “intelligence” in the following way:

“A system is intelligent if it behaves appropriately with respect to its purposes, not
only in circumstances it was explicitly designed for, but also in rare, unexpected and
even new kinds of situations.”

Firstly, it should be noted that our definition of intelligence refers to the functionality
of a system not its static features. Secondly, the appropriateness of the behaviour is
evaluated in terms of system values and goals. Thirdly, intelligence requires the system
to adapt itself to changing and unfamiliar situations. To enable intelligent behaviour,
systems must have more concrete capabilities, such as:

• advanced computation and reasoning

• plug & play, reconfiguration, adaptation, learning, co-operation

• associating values with goals, data and alternative actions, rational decision-
making

• proactive, goal-oriented planning

• management of conflicting goals, uncertainty and mistrust

• fault tolerance and recovery from failures.

As can be seen, the definition of intelligence and the required technical capabilities lead
to a broad and challenging research area. We therefore selected a narrower scope by
focusing on intelligent systems that exploit computationally intensive algorithms for
identifying system states and adapting to varying circumstances. With regard to design
methods, we focused on model-based approaches, as they appear to offer the best tools
for the design of complex entities.

The aim of the Intelligence Engineering Framework was to define an efficient and
practical design flow by augmenting current mainstream engineering methods with new
concepts needed for intelligence, as defined above. It is largely based on design reuse,
i.e., matching existing solutions to the specific design challenges of intelligent systems.
Thus, the primary focus of IEF lies on the following issues:

• selection and application of advanced algorithms appropriate for the problem at
hand

• modelling techniques

• solution libraries.

1. Introduction

 10

1.4 The development approach

The goal of the IEF is challenging, so we proceeded iteratively and focused on the early
stages of design. In addition to reviewing related research, we selected four application
cases to be analysed and used as the basis for the IEF. Although they come from differ-
ent domains, they share the need for computationally intensive algorithms to analyse
heterogeneous data sets. In fact, all the cases discussed the problem of identifying spe-
cific episodes, e.g., situations or anomalies (also called artefacts) in measurement data.
The applications also represented complex entities that required advanced modelling
techniques in their design.

2. Issues of algorithmic, intelligent systems and their design

11

2. Issues of algorithmic, intelligent systems and
their design

The purpose of this chapter is to draw a “big picture” of the problem domain. The topics
can be divided into two groups: 1) characteristics of intelligent systems and 2) the con-
cept of joint intelligent systems.

2.1 System characteristics

The IEF focuses on the design process of intelligent systems, not their technical realisa-
tion. In order to discuss the current design issues properly, it is of course necessary to
outline what is understood by an intelligent system. This need is more important still
because some of the difficulties experienced in present design practice relate to insuffi-
cient insight into what the intrinsic characteristics of an intelligent system are. As indi-
cated in section 2.1, our general definition of intelligence requires systems to have sev-
eral capabilities. In the following we elaborate the most important ones.

Intelligent system

Figure 3. Intelligent systems typically connect various kinds of actors and subsystems.

2. Issues of algorithmic, intelligent systems and their design

 12

Integration of heterogeneous components

Although there are stand-alone intelligent systems, there is often a need to com-
bine the knowledge and services provided by several more or less intelligent sys-
tems (Figure 3). Such combinations can be referred to as “systems of systems”.
They are characterised by large-scale networked integration of heterogeneous
(technical and human) components (ARTEMIS 2006). Consequently, intelligent
systems are typically geographically distributed and combine services provided
by different nodes and subsystems developed, owned and maintained by separate
companies. As a service can be used in more than one distributed application,
various intelligent systems can overlap, i.e., system boundaries depend on the
viewpoint.

Rationality

Intelligent behaviour should be guided by stated or implied goals. These goals
may, however, be in conflict with each other. In addition, the actors within an in-
telligent system must base their actions on lacking and uncertain information.
Rational decision-making and management of uncertainty are therefore features
required for real intelligence.

Adaptation

Intelligence, by definition, requires a system to change its behaviour according
to the current situation. In other words, adaptation is considered a key character-
istic of intelligence. Adaptation can be achieved by, for example, modifying sys-
tem composition (reconfiguration) or fine-tuning the functionality of existing
parts. Adaptation can also be achieved by making use of the human actor’s ca-
pability to interpret situational requirements and change behaviour accordingly
to maintain the results aimed for.

Encapsulated and emergent intelligence

The intelligence can be encapsulated within individual components or, perhaps
more importantly, emerge from the co-operation and dynamic reconfiguration of
less intelligent system elements. In both cases the mechanisms required for intel-
ligent behaviour call for flexible system architectures, powerful data models and
computationally advanced algorithms. In the case of “encapsulated intelligence”,
the emphasis is often on the use of known algorithmic solutions, whereas “emer-
gent intelligence” is based on complex interaction patterns.

2. Issues of algorithmic, intelligent systems and their design

13

2.2 The concept of the Joint Intelligent System (JIS)

As a conclusion of the characteristics above, systems consisting of multiple co-
operating actors can be taken as a general framework for intelligent systems. Due to the
limitations of any technology, however advanced, these systems have both technical and
human components.

The concept of Joint Cognitive Systems (Hollnagel & Woods 1983, Woods & Holl-
nagel 2006, Norros & Salo 2009) focuses on the joint functioning of human beings and
technology in intelligent systems. A joint cognitive system is composed of human and
technical components that work together to produce certain behaviour. The essential
feature of intelligence, adaptiveness, emerges from co-operation between the elements
of the Joint Intelligent System. As we want to emphasise the joint nature of the human-
technology system, on the one hand, and the intelligent features of the system, on the
other, we have adopted the term Joint Intelligent System. Figure 4 illustrates the envi-
ronment in which joint intelligent systems function. The joint intelligent systems are
located inside the integrated system and can be seen as functional units that combine
elements of human and technical intelligence.

Users and maintainers

Intelligent technical system

Target system to be controlled and/or monitored

JIS JISJIS

Operational environment

Integrated system

Figure 4. The environment of joint intelligent systems is the integrated system which consists of
several technical and human elements located in the operational environment.

2. Issues of algorithmic, intelligent systems and their design

 14

Adaptive patterns indicate general modes of acting and coping with the situational de-
mands of Joint Intelligent Systems. The aim of the design is to identify appropriate
adaptive patterns and develop generic and reusable technical solutions, or design pat-
terns, for their implementation in different applications. Situation awareness is an ex-
ample of an adaptive pattern according to which an intelligent system should function.
Good situation awareness is not a result of simple recording of information. Instead be-
coming aware of the situation assumes active search for information and interaction
between the technical system and the human user. Intelligent systems may also have
other kinds of adaptive patterns, i.e., patterns of coordination, that relate to the temporal
organisation of system functioning and the allocation of responsibility by different ele-
ments of the system.

3. Trends in design

15

3. Trends in design

The main goal of the IEF was to define a design process that supports the use of ad-
vanced techniques in developing complex software applications for intelligent systems.
It was not realistic to start from scratch. Instead, the current mainstream design tech-
niques had to be augmented with features that support our goals. We therefore had to
consider the best practices of relevant areas of engineering. The following sections give
a short overview of a few topics in design.

3.1 General systems engineering and design research

Historically, design has been a mixture of art, engineering practices and craftsmanship
based on trial and error. With its growing complexity, more systematic approaches have
become necessary. Design has also developed as an academic discipline in its own right,
often termed “design theory”, “design science” or “design research”.

Design has been studied before, partly separately in different fields of science and en-
gineering. General systems thinking, systems theory and cybernetics can be seen as a
common basis. They bring together principles from ontology, philosophy of science,
physics, biology and engineering. The focus of systems thinking, however, is on the
analysis of existing (natural or technical) systems rather than on designing, i.e., synthe-
sising new ones. Systems Engineering (SE) is an interdisciplinary approach to enable
the realisation of successful systems (see, for example, http://www.incose.org and Sy-
denham 2004). It focuses on defining customer needs and required functionality early in
the development cycle, documenting requirements and then proceeding with design
synthesis and system validation. Systems engineering considers both the business and
the technical needs of all customers. In addition to the technical design processes, sys-
tems engineering includes activities like project management, customer agreement and
procurement.

Systems engineering is a universal concept for managing complexity, and a way of
thinking rather than a fixed set of rules. While technical designers tend to place strong
emphasis on the details of a specific field, systems engineering tries to bring in more

http://www.incose.org

3. Trends in design

 16

abstract thinking and a generalist view. Traditionally, a design problem would be di-
vided into sub-problems that could be solved. This reductionistic thinking cannot pro-
vide all the solutions to the complex problems encountered today. This has led to the
emergence of so-called soft system methodologies that starts with the statement that the
problem is unclear and cannot easily be decomposed (Checkland 1999). Such design
problems typically contain a big human element in addition to the technical components.

Systems engineering is fostered, for example, by the International Council on Sys-
tems Engineering (INCOSE, http://www.incose.org). Although systems engineering had
its start in the aerospace and defence industry, the universality of systems thinking has
caused it to outgrow that realm. While the principles are intended for all application
areas, the work seems to have some focus on software engineering (Tommila et al.
2007). For example, one of the important activities is the development of the OMG Sys-
tems Modelling Language (SysML) that has its basis in the Unified Modelling Lan-
guage (UML). This makes sense, as systematic software development processes have
been an important research area for many years.

Figure 5. Research space as proposed by FIDR (1999).

Despite interactions between academic researchers and industry, research in general is
not always well correlated with the realities of design practice (NSF 1996). In 1999, a
group of researchers and industrialists (FIDR 1999) came to the conclusion that particu-
lar emphasis should be put on the conceptual and soft research areas (Figure 5) and,
consequently, on inter-disciplinary co-operation in research.

http://www.incose.org

3. Trends in design

17

3.2 Software development – trends and practices

3.2.1 Software development process

Software is typically a long-living product which is updated, improved and corrected
along with its life cycle. The paradigm of software development can also be seen as a
cycle, which includes requirements, design, implementation, testing and maintenance.
These recognised life-cycle steps involve different kinds of analysis activities, which
should also be identified in the life-cycle model.

The best-known life-cycle model is probably the one known as the waterfall model, but
alternative models also exist, such as the traditional spiral model and several incremental
agile processes, which are described in the sections below. An important starting point for
any process model is to put emphasis on the requirements and their understanding through
the different life-cycle stages. A framework for analysing the similarities and differences
between the traditional life-cycle models is given in Davis et al., 1988.

Each life-cycle model provides a high-level view of phases and reviews and the order
in which they occur. While they incorporate the same basic activities, the different
models differ in the details related to their repetition, overlapping, etc. Notwithstanding
these differences, the efficiency and success of the systems development effort probably
depend more on a clear and complete definition of the products, processes and services
expected at each step. An important task is therefore to establish the requirements engi-
neering practices that yield such definitions.

Agile methods are lightweight processes that make use of short iterative cycles and
involve users to actively establish, prioritise and verify requirements, and rely on a
team’s tacit knowledge and face-to-face communication over heavy loads of written
documentation. Agile development is a general, descriptive term for approaches that are
implemented by a number of different software development methods, such as XP (Ex-
treme Programming), Scrum and DSDM (Dynamic Systems Development Method).

Agile methods are iterative and incremental, meaning that each iteration round is an
entire software project including planning, requirements analysis, design, coding, test-
ing and documentation. One iteration round does not necessarily bring much functional-
ity to release the product to market, but the goal is to have a bug-free release at the end
of each iteration. The agile way of developing software includes self-organising teams
which determine the best way to handle work. The way of thinking and organising
things is emergent, meaning that processes, principles and work structures are recog-
nised during the project rather than being predetermined.

Agile processes have been criticised for their wild way of organising things and their
lack of structure and necessary documentation. It has also been said that agile methods
only work with senior-level developers and require much cultural change to be adopted.
It all depends on the project and the organisation that try to be agile. The agile process is

3. Trends in design

 18

definitely not the best solution for all kinds of projects, but the real challenge is to rec-
ognise the potential it has and where it can be used most effectively.

3.2.2 Requirements engineering

System requirements are capabilities that the system must supply or qualities it must
possess in order to fit its intended use. Typically, requirements form a complex set of
needs and wishes of people related to the system (stakeholders), and constraints and
boundary conditions concerning the environment in which the system is supposed to
operate. In traditional software development methods such as, for example, the waterfall
model, the requirements play a very important role because they form the foundation on
which the design and all the other parts of the system are based. If the requirements are
changed during the later development phases (e.g., design or implementation), it is pos-
sible that the same changes will have to be carried out all the way through the develop-
ment cycle and that parts have to be changed that have been finished once already. In
agile methods, the development cycles are fast and the requirements can be updated in
each round. Even in agile methods, however, the development is incremental and changes
to the early phase requirements may cause as much trouble later in the project as in tradi-
tional methods. Agile methods have more and faster iterations, and the final design should
be a result of several simple mock-ups, refactoring and tests (test-driven design).

There are several commercial requirements management tools that are meant to im-
prove the requirements engineering process. The focus of the tools is mostly on the in-
formation management aspect of requirements management. They provide means for
gathering, storing and editing information, as well as for managing the relations be-
tween different viewpoints and different parts of the requirements. People who do not
know the area of requirements engineering well often think that a requirements man-
agement tool is the ultimate solution to the problems of requirements handling. This is
not true, as the tool only offers a platform for requirements management. The tool itself
does not solve anything. There is still a need to create a requirements process which best
suits the purposes of the project at hand. The type and comprehensiveness of the re-
quirements process depend on several things: the people and their experience, habits
and working methods, application area and type and size of the project.

3.2.3 UML and SysML in software and systems modelling

UML has become one of the most popular modelling languages for software-intensive
systems. UML consists of thirteen types of diagrams which are used for describing the
architecture and design of the software. In addition to describing the software architec-
ture, UML can also be used to model the requirements. Botaschanjan et al. (2004) sug-
gest that the benefit of using UML for requirements modelling as well as for describing

3. Trends in design

19

the software architecture is that the developers do not have to handle different and in-
compatible modelling languages within the same project. Nonetheless, by using the
same description language, there are some distinctions between the design and require-
ments models: requirements models are usually less detailed than design models, re-
quirements models describe properties of the system as a black box and do not describe
the internal structure, and requirements models often refer to the system as well as to the
environment (neighbour systems as well as user behaviour), whereas design and imple-
mentation models concentrate on the system under development.

The Systems Modelling Language (SysML) is a domain-specific modelling language for
systems engineering applications. It supports the specification, analysis, design, verification
and validation of a broad range of systems and systems of systems. These systems may
include hardware, software, information, processes, personnel and facilities. (SysML 2007)

SysML is meant to be used for representing systems and product architectures as well as
their behaviour and functionality. It builds on the experience gained in the software engi-
neering discipline from building software architectures with UML. The architecture SysML
describes and represents the elements, realizing the functional aspect of the system.

3.3 Broadening the human-centred design approach

Intelligent systems usually consist of multiple, co-operating human and technical com-
ponents. Hence, the design of these systems must incorporate knowledge and design
practices that deal with both technical and human issues. The integration of human fac-
tors in technical design already has traditions. Human-centred design as defined by the
ISO13407:1999 standard (ISO 1999) is a well-established practice for the design of sin-
gle software applications. With regard to the design of intelligent systems, the human-
centred design approach has three major shortcomings:

1. An intelligent system may consist of several subsystems to be implemented
gradually, and the users, contexts of use and tasks cannot be fully defined at the
beginning of the design phase.

2. The design of intelligent systems should focus on the ways the system functions.
Therefore, the understanding of cognitive and collaborative processes must be
interwoven into the technical design in a much deeper manner than the human-
centred design approach assumes.

3. The iterative prototyping defined by ISO13407:1999 considers iterations as
more or less repetitive. As intelligent systems are complex, and the emergence
of their capabilities are difficult to anticipate, they cannot be developed itera-
tively. Instead, the design should proceed via qualitatively different design steps
in which targets and challenges vary.

3. Trends in design

 20

Kaasinen and Norros (2007) propose a theoretical basis for a new design framework for
intelligent systems. The ecological approach to designing intelligent environments fo-
cuses on the entity of people and technologies embedded in the environment – the mod-
ern ecosystem. According to the ecological approach, the aim of the design is not mere
technology but the practices made possible by technology. Joint Intelligent Systems can
be seen as units of intelligent environments, and their adaptive patterns can be consid-
ered to be the practices for which the design should aim. It appears that the basic ideas
of the ecological approach could be applied to the design of Joint Intelligent Systems.

The ecological approach (Kaasinen & Norros 2007) states that the traditional product
design approach needs to be extended with two new design levels: 1) immediate design
and 2) remote design. Immediate design focuses on immediate user needs and local ex-
periences, and emphasises the increasing role of users in the design. Design alone can-
not create practices but offers possibilities that users utilise and shape into practices.
Remote design aims to distance itself from the immediate needs and create more general
solutions and infrastructures that provide possibilities for future services and applica-
tions. The identification of the two qualitatively different design levels provides the
possibility to construct a new progressive (instead of iterative) design cycle.

Combining human factors with current model-based software engineering approaches
is one of the key challenges of developing tools for a new design process for intelligent
systems. Some attempts to broaden human-centred design towards the model-based
design approach have been described (e.g., Constantine & Lockwood 2002). Agile de-
sign approaches often focus on customer rather than user participation. VTT’s Mobile-
D™ Agile computing approach (http://agile.vtt.fi/mobiled.html) allows active user in-
volvement and supports gradual implementation of complex systems. Pattern-based
design is a promising approach to connect human-centred design with model-based de-
sign approaches (e.g., Juristo et al. 2003; Bass & John 2003).

3.4 Reusable libraries and design patterns

In software development, design patterns offer the possibility of reuse. There are several
established levels of reuse. The use of concrete software elements such as functions,
classes and components is already well established and practised. However, if we speak
about reuse at higher levels of abstraction, e.g., software patterns, reuse is still in its
infancy.

Software patterns are usually presented in informal and loosely structured documents.
These documents consist of several fields (e.g., name, context, forces, problem, result-
ing context, solution, implementation, etc) given as textual descriptions. They are in-
tended to help developers in the understanding of the patterns, but there are no advanced
knowledge management possibilities. There are also some semi-formal representations,
usually based on UML. These are usually strongly tool supported enabling their inclu-

http://agile.vtt.fi/mobiled.html

3. Trends in design

21

sion into solutions in a straightforward way. These semiformal representations are suc-
cessful in capturing structures and behaviour, but they lack information and knowledge
about high-level aspects such as intent, usability and consequences. To enable sophisti-
cated use of design patterns, fully formal representations are needed. Within the design
pattern community, the main goals in formalizing design patterns are:

• Better understanding of patterns and their composition. It helps to know when
and how to use patterns properly in order to take full advantage of them.

• Resolving issues regarding relationships between patterns. It is not only relevant
which design patterns are used to solve a problem but it is also important in
which order they are applied.

• Allowing the development of tool support in activities related to patterns.

Following these lines there have been attempts to describe design patterns by semantic
techniques. A sample approach, see Figure 6, is given in Pavlič et al. (2009).

Figure 6. A sketch of Design Pattern Ontology.

4. Key technical solutions

 22

4. Key technical solutions

Of the characteristics of intelligent systems, the IEF focuses on situation awareness and
reuse of design knowledge. Situation awareness is an obvious pre-requisite for adapta-
tion, and it links the human and technical agents in an intelligent system in a practical
way. Reuse, in turn, seems to be the most appropriate way to turn advanced techniques
into design practice.

4.1 Situation awareness of technical systems and their users

Adaptation to varying circumstances is essential in algorithmic, intelligent systems. This
need is not new, and situation and context awareness have been widely studied in sev-
eral domains, such as, for example, military operations, aviation, environmental moni-
toring, health care and monitoring of industrial plants. The two main communities look-
ing at situational information are the human factors community and the engineering
research community working on information fusion. The development of mobile and
ubiquitous devices is an emerging area of context awareness.

Many definitions can be found for the terms “situation” and “context”. Endsley (1988
and 1995), for example, defines situation awareness as the perception of the elements in
the environment within a volume of time and space, the comprehension of their mean-
ing and the projection of their status in the near future. Dey (2001) sees context as any
information that can be used to characterise the situation of an entity that is considered
relevant to the interaction between a user and an application, including the user and the
application themselves. A system is context aware if it uses context to provide relevant
information and/or services to the user.

While these definitions have different backgrounds, they contain common elements,
such as time, meaning and relevance. We took the freedom to combine existing formu-
lations for the purposes of the IEF. We are interested in several application domains and
looked at communities consisting of human as well as software agents, both of which
should be situation aware. This led us to the following informal characterisations of
situation and situation awareness to be used in the IEF (Figure 7).

4. Key technical solutions

23

• A Situation is a compilation of information that characterises the state of affairs
of an entity or group of entities existing in space and time in a way that has
meaning for a specific viewpoint.

• A system or component is situation aware if it maintains situational information
and uses it to guide its actions towards its goals.

Internal

Situation of X

External

Entity
X

Environment of X

Viewpoint
Observer

looking at X

Figure 7. The IEF situation is understood as an information object that describes the status of
an entity and its environment in the eyes of an interested observer (which in some cases is the
entity itself).

In everyday language, the other widely used term “context” is understood as a set of
circumstances or facts that surround a particular event. So, we might use it to refer to
the world surrounding the entity of interest, e.g., the case of a mobile phone being aware
of its user. Some researchers, e.g., Dey (2001), however, seem to understand context as
lower-level observations that characterise situations. To avoid confusion, hereafter we
limit our discussion to situation awareness, which in our minds also includes context
awareness.

Due to our focus on software-based systems it is convenient to define situations as in-
formation objects, in other words, models that describe some relevant features of real-
world entities. Situations contain information on entities as well as their environment
(including users). They distil low-level information into knowledge that is meaningful
from a determined viewpoint, for example, by a goal, activity or concrete domain entity.
The meaning is created by understanding the relations between the available facts and
their implications with respect to the goals associated with the viewpoint. Situations
must therefore relate status information to goals in a way that helps in situation assess-
ment. To make this possible, status information is not limited to the present state and
should include recent history and anticipated future. Furthermore, to enable adaptation,
situations should be linked to the means (e.g., resources and procedures) the actors can
use to correct deviations between goals and the current status.

4. Key technical solutions

 24

At the highest level, states of affairs can be abstracted to categories of states that are
equivalent from the selected viewpoint, for example, “starting up” and “in maintenance”
can describe the overall situation of a technical system. This leads to: 1) situations that
can have names that refer to a category, i.e., they are instances of a situation type or
template, and 2) situations that are occurrences, i.e., they exist for a limited period of
time and are eventually replaced by new ones. In a similar way to the hierarchical struc-
ture of real-world entities, situations can be described in terms of lower-level situations.
Consequently, here the evolution of situations is understood as a network of sequential
and nested periods of time, each describing an episode in the history of the entity of
interest (Figure 8).

Situation 1 Situation 3
Situation 2.2 Situation 2.4

Time
Start time Now Expected

end time

Situation 2.1

Situation 2.3

Group of entities
characterised by
situation objects

Interested actor

Transition
condition and

associated event

Past Current Planned

Figure 8. Evolution of situations in time.

Intelligent systems, as understood in the IEF, are typically communities of more or less
situation-aware actors (humans and software agents) that share their intentions and
situations. This joint activity improves the accuracy of the situational information of
each actor. As a result, the situation awareness of the integrated system emerges from
the co-operation of its less intelligent components.

In terms of technical implementation, situation awareness poses great challenges to
developers, e.g., the evolution of situations over time, incomplete and uncertain infor-
mation and the integration of heterogeneous data sources. Formal ontology languages
and ontology-based reasoning are today’s approach to tackling these problems. As fun-
damental concepts, implementations and design processes are very diverse; no estab-
lished design methods have been defined for situation-aware computer applications.

4. Key technical solutions

25

Important targets for further development are therefore concepts and methods that guide
designers in situation management from requirements specification to system imple-
mentation and maintenance. The first step is to identify typical and important situations
in the application domain and to analyse their features in terms of complexity, safety,
relevance, etc. Operational states of subsystems and major disturbances detected in
safety analysis are examples of good candidates for situations. As computers typically
have a supportive role to carry out situation-specific tasks, known good principles of
task allocation and information presentation are a starting point for situation support.
“Computerised situation awareness” calls for new and more advanced solutions how-
ever. This has raised the following research issues for consideration in the continued
work on the IEF:

• Formal situation ontologies and semantic reasoning

• Characterisation of situations in terms of features that allow the search for appro-
priate solutions for situation management (e.g., algorithms and design patterns)

• Technical images, i.e., a new pictorial language for making abstractions of situ-
ational information.

4.2 Semantic modelling

As the amount of stored data increases, the need for automated knowledge discovery,
analysis, storage and utilisation is emphasised. These automated knowledge-handling
processes face similar problems: heterogeneity of data sources, lack of common vocabu-
lary and lack of support for reasoning. If the data are stored in a manner that holds
knowledge about the hierarchical structure, relationships and usage of the data, auto-
mated knowledge discovery and utilisation will be easier.

Ontologies in information technology provide a common vocabulary for a specific
problem domain. A common vocabulary holds the concepts, relations and axioms which
give a formal definition of the problem domain. Knowledge of the domain can therefore
be presented in an unambiguous way, readable both by humans and computer programs.
If the ontology is well designed, programs in the same problem domain will be able to
utilise each other’s knowledge bases. Even if ontologies are not the same between two
programs in the same domain, if the vocabularies are known, the knowledge bases can
be shared and even integrated. The concepts in the ontologies can be mapped between
different ontologies.

There are a few methodologies available for designing and implementing ontology.
The three main methods are TOVE, EOM and Methodology (Fernandez, 1999, Gruber
et al., 1995, Grüningen et al., 1995). Even though these methods are different they have
the same basic process structure: identify motivation and scope (design/specification),

4. Key technical solutions

 26

formalise concepts (conceptualisation), implement the ontology and evaluate the ontology.
Timonen (2007) presents a general model for ontology development. The model inte-
grates the process structures of all three main ontology development methods of our
applications. We need a knowledge base in which we can query the semantic relations
between applications, their data processing tasks, their design and usage, and the algo-
rithms they use. By analysing the analogies between different applications, we can utilise
the best architectural concepts of one application in the design of another, or algorithms
utilised in one application to solve the data processing tasks of another application.

5. IEF pattern language

27

5. IEF pattern language

In the IEF, pattern discovery is about finding suitable guidelines for designing algo-
rithm-intensive or intelligent systems. Basically, everything that can be found in the IEF
knowledge base can be considered to be a pattern. A pattern is a composition of sub-
patterns, and related and suggested patterns that give the designer guidelines in his/her
task. In this document we describe a semantic pattern language related to signal valida-
tion. As an example, we concentrate on well-known approaches to diagnose instruments
and/or actuators in industrial processes. These approaches are usually called “Instru-
ment fault detection and isolation” (IFDI) (Betta, 2000) or simply “Fault detection and
isolation” (FDI) (Mattila, 2008). These patterns contain, as a sub-pattern, data pre-
processing, which is actually a very generic pattern and as such is applicable to the de-
sign of any intelligent system. As mentioned in a wider scope, part of the FDI can be
seen as a special case of SIGNAL VALIDATION. In addition to validation, IFDI and
FDI also contain isolation of the reason for the invalidity of the signal.

In describing FDI, we restrict ourselves to continuous processes, i.e., the process indus-
try, but the pre-processing pattern is generic and not restricted to the process industry.

The discovery process itself should be requirement driven. This means that at least the
most general patterns should be found according to a semantic description of the re-
quirements of the design process at hand.

In addition to the Coplien form, we will model the patterns semantically, see Figure 9.

5. IEF pattern language

 28

Figure 9. Pattern description.

Figure 10. A sample IEF pattern road map.

5. IEF pattern language

29

A road map of the pattern language is shown in Figure 10. In this road map the starting
point is the VALIDATE SIGNAL, REQUIREMENT and APPLICATION CONTEXT
patterns (not described formally here). The number in parentheses after each pattern
name is the number of the chapter below. We will also use other patterns which are not
described here. All the patterns are written in capital letters, e.g., CONTROL SYSTEM.

In the pattern description, we will also refer to certain techniques and concepts de-
fined in the IEF Core ontology. These will be denoted by UPPERCASE BOLD
ITALICS. Figure 11 depicts some modelling techniques used by the BUILD MODEL
pattern.

APPLICATION
CONTEXTMODELLING TECHNIQUES

STATIC

BLACK BOX

GREY
BOX

STATISTICAL

SPACE-TIME

WHITE BOX

TRANSFER
FUNCTION

MATHEMATICAL

MASS/ENERGY
BALANCE

CONCEPTUAL

NEURAL
NETWORKS

GENETIC
ALGORITHMS

STATE SPACE

BEHAVIOURAL

PARTIAL
DIFFERENTIAL /

DIFFERENCE
EQUATIONS

DIFFERENTIAL /
DIFFERENCE
EQUATIONS

HYBRIDFIRST
PRINCIPLE

MONTE
CARLO

QUALITATIVE

FUZZY

BAYES

Figure 11. Simplified relationships between MODELLING TECHNIQUES.

1. BUILD MODEL

Context: APPLICATION CONTEXT: ANY

Problem: A MATHEMETICAL MODEL of a system is required for some
reason.

Forces: Describing the whole essence of building a MATHEMETICAL
MODEL is beyond the scope of this document. To build a dynamic
model, the reader is advised to consult, for example, Fishwick
(2007).

Solution: See above.

Resulting context: Model created and verified.

5. IEF pattern language

 30

2. SELECT TYPE

Context: APPLICATION CONTEXT

Problem: While building a MATHEMETICAL MODEL of a system, one
task is the selection of model type.

Forces: The selection of model type depends on the following factors:

1) The purpose of the model has a profound effect on the choice of
it. It could be said that the opposite ends are qualitative models
that can give a rough estimate of the behaviour of the system to
be modelled. On the other extreme, there are FIRST
PRINCIPLE models that are based on the laws of physics and
chemistry.

2) Data availability: in the case of industrial processes there are
usually enough data in the history database.

3) The amount of data required depends heavily on the model type,
e.g., some neural network models require excessive amounts of
data.

4) When the model is built for fault detection, the amount of data
available can be scarce due to the rarity of the fault.

5) Some model types are applicable to steady state situations and
some to transients; this has an effect on the amount of usable
data.

6) To model the system according to FIRST PRINCIPLE equations
(physics and chemistry) requires deep knowledge about the sys-
tem and can be computationally too demanding.

Solution: In the case of FDI, a model should be chosen that predicts the be-
haviour of the system to be modelled as accurately as possible.

Resulting context: Model type selected.

5. IEF pattern language

31

3. TUNE MODEL

Context: APPLICATION CONTEXT

Problem: When the model type has been selected and the modelling work has
been done, the model has to be calibrated so that its behaviour is
similar to that of the real system.

Forces: 1) Different model types require different calibration methods.

Solution: 1) In the case of the NEURAL NETWORK MODEL, use the
TEACH NN pattern.

 2) In the case of the PARAMETRISED MODEL, use the
IDENTIFY PARAMETERS pattern.

Resulting context: The model is operating as expected.

4. VERIFY MODEL

Context: APPLICATION CONTEXT

Problem: After the TUNE MODEL (3), the model’s validity for the given
purpose has to be evaluated.

Forces: 1) Verifying a model requires data that are independent of the data
used in the TUNE MODEL (3) patterns.

 2) Complete verification is usually not possible.

 3) The developed models are usually valid in certain operational
regions.

Solution: 1) Acquire enough data for the verification task.

 2) Define test cases.

 3) Analyse test results.

Resulting context: Model is verified.

6. Requirements for IEF modelling concepts

 32

6. Requirements for IEF modelling concepts

There will be different types of development projects using different versions (or pro-
files) of the IEF. Firstly, there is a difference between the components of stand-alone
systems (e.g., an intelligent machine), typically developed by one company to be used
within an overall (open or company-specific) framework, and integrated applications
which need to integrate components from several vendors. Secondly, the development
of products and platforms obviously calls for approaches that are different from those of
application development.

The IEF will provide consistent concepts, modelling methods and tools, methods and
criteria to analyse the quality of design, recommendations for their usage, and a recom-
mended design process for various types of development projects.

A major part of the IEF is obviously based on the current best practices and standards
of systems engineering and software engineering.

The IEF will use the model-based design approach (e.g., MDA) right from the domain
analysis and requirements specification. The focus, however, will be on the specific
issues related to the selection and use of intelligent algorithms.

It is claimed that design must be based on some kind of component architecture to be
efficient in practice. This means that existing, intelligent algorithms could be encapsu-
lated into the components. The intelligent functionality is generated not only by indi-
vidual intelligent components, but also through collaboration between those compo-
nents. The orchestration of the overall behaviour is based on the intelligent interaction
mechanisms provided by the platform. Ways have to be created for joint functioning of
human and technical elements, i.e., mechanisms of coordination and communication.

Consequently, there is no need for the IEF to know about the internal structure and
algorithms of various components. It should be enough that the developers obey the
platform rules and provide the information needed for using their components. This
includes, at least, interface specifications and guidance on the application of the compo-
nents (e.g., where it is good and where it is not).

6. Requirements for IEF modelling concepts

33

The IEF design approach should include the idea of alternation between different
modes of research and design during the development process of intelligent systems.
This results from the need for both specific and generic solutions.

• The models created during the IEF-based design process should cover both the
intelligent technical system itself and its environment (process to monitored
etc.). In addition, they will describe the current situation and other input infor-
mation to be designed.

• Models should also include various types of information at different abstraction
levels, including, for example, requirements for engineering data (problems,
goals, design constraints, etc.), system functions and implementation (e.g., HW
and SW).

• Models and human readable documents generated thereof should be understand-
able by the relevant design parties.

• Models must be well structured (formal) and computer-processable, allowing
electronic information management and exchange, as a minimum. As far as pos-
sible, however, the models should be “computer-understandable” so that they
support advanced analysis, inference and integration of partial models.

• Complex applications are hard to understand, learn and test. The models should
therefore be executable. This will allow system animation and simulation early
during the design stage.

• The IEF must rely heavily on the reuse of design knowledge. For the early de-
sign stages it needs, for example, patterns and measurable features for applica-
tion domains, requirements and available solutions.

• Powerful libraries and methods like similarity measures or case-based reasoning
must be used to match application requirements with suitable solutions such as
architectural patterns and advanced algorithms.

For subsequent design stages (detailed design and implementation), a combination of
two approaches can be imagined: automatic model transformation and code generation,
and the aggregation of applications from ready-made components.

7. IEF toolset

 34

7. IEF toolset

7.1 IEF toolset requirements

The future IEF toolset should provide several design-support activities. Some of these
activities are listed below.

• Guidance in the design process

• Possibility to browse and edit context models

• Importing and exporting data from and to context models

• Adding and editing target system requirements, and tracking changes in them

• Searching for solutions (patterns, techniques) matching target system require-
ment(s)

• Browsing and evaluating found candidate solutions

• Generating application instances from patterns

• Storing design rationale (search criteria, user inputs).

7.2 IEF toolset usage scenario

The following example illustrates a simplified use case of the future IEF tool in the con-
text of process diagnostics in a paper mill. The basic assumptions behind the use case are:

• The context has been modelled semantically in the IEF knowledge base, i.e.,
there exist models of

o The target process and its physical entities (paper mill, paper machine, etc.)
o The mission of the integrated system (produce paper)
o The people (plant operators, maintenance personnel, etc.)
o Other technical systems

• The operational environment is modelled in the IEF knowledge base.

7. IEF toolset

35

• The context model in the IEF knowledge base is structured in a way that allows
traceable references to

o Requirements (original and updated design requirements)
o Data and functions (logical view of the production process)
o Hardware involved in the production (paper machine, control system, etc.)

During the night shift in normal operation, the operator of the paper machine PM1
makes a note in the operator’s diary: “Noticed unwanted oscillation in headbox consis-
tency. The frequency of oscillation varies from approx 1 cycle/min to 2 cycles/min.
During my shift the amplitude seems to be increasing. The oscillation could not be
dampened with standard procedures.”

In the morning, the maintenance person reads the note in the operator’s diary and sets
up a new design project in the plant’s IEF system.

• First he selects the system: PM1, headbox.

• Second, using the requirement description language tool, he writes the require-
ments of the project into the IEF system in natural language. The requirement
reads: “Find reason for oscillation in consistency.” He also inputs the oscillation
frequency.

• Third, he inputs the situational context: normal operation, duration, PM1 speed,
grade changes.

• Fourth, he inputs (selects) additional design constraints and rationalities like:
“This is troubleshooting, fully automatic system not required, etc.”

• After the input, he commands the IEF to create a solution. Based on the informa-
tion that exists in the IEF knowledge base and fed by the designer, the IEF sys-
tem proposes to use the FDI (Failure Detection and Isolation) pattern located in
the Industrial Pattern Library. He creates an instance of the FDI in his design
workdesk.

• According to the FDI pattern, the new system requires redundant information.
Furthermore, according to the FDI pattern and context, the designer makes the
decision that the future system must use analytical redundancy, i.e., he must cre-
ate a reference model of the paper machine PM1.

• Consulting the Create Analytical Redundancy pattern, he moves to the Build
Model pattern. According to Chapter 5 this pattern has several sub-patterns. The
first is Model Type Selection. After checking the data availability (during last
night PM1 was running in normal in a steady state), he notes that there are
enough data for almost any model in the history database.

7. IEF toolset

 36

• Given this information, the IEF system recommends several possible modelling
techniques, one of which is MAR modelling (Multivariate Autoregressive). Af-
ter consulting the solutions stored in the IEF knowledge base, the designer de-
cides to use MAR modelling and creates an instance of the MAR model in his
desktop.

Continuing in an obvious way, after having selected the variables, time windows, and
pre-processing algorithms, the designer creates a reference model of the PM1 which he
verifies using data from similar operational states recorded in the plant history database.

The final steps in the FDI pattern are detection of the fault in the created residual and
isolation of the fault. According to the design constraints and rationalities, he decides to
leave these tasks to the human user, concluding his design task. The newly created sys-
tem is stored in the IEF knowledge base as an example for possible reuse.

Figure 12 illustrates the functionality of the IEF system in finding matching solutions.
The IEF system consults upper level ontologies and the knowledge base, suggesting
solutions according to the context models and requirements.

Figure 12. Ontologies binding problems and solutions.

8. IEF demonstration software

37

8. IEF demonstration software

8.1 Structure of the IEF tool demonstration

The IEF Core and Application Area ontologies were developed with Protégé V3.4. The
Protégé software provides a flexible base for application development. For these reasons
the demo software was developed as a plugin to the Protégé ontology editor.

The demo software is a tab widget built on top of the plugin framework developed at
Stanford University. The plugin framework resembles the OSGi technology, which is
used in later Protégé versions (4.x).
The demo software realises the intermediate activities of the future IEF toolset:

• Possibility to browse and edit context models:

o It is possible to browse a design database. The design database consists of
projects and the requirements and other statements concerning the projects.

o The software allows the user to open and edit the resources in Protégé (a
separate Protégé window is opened).

• Importing and exporting data from and to context models:

o Projects, requirements or some other statements concerning the projects
can be chosen as the search basis. The proper search terms are added
automatically.

o Importing of data is not implemented.

• Adding and editing target system requirements:

o The search criteria can be edited by the user. The search criteria hierar-
chies (application area, functional category, information semantic) can be
browsed and each criterion can be added separately as a search term.

8. IEF demonstration software

 38

• Searching for solutions (patterns, techniques) matching target system require-
ment(s):

o According to the search terms, the matching patterns, techniques and
projects can be found.

• Browsing and evaluating found candidate solutions:

o The candidate solutions can be browsed. Additional information on the
solution is shown. Related solutions, related libraries and applied solu-
tions are also shown. Links to external resources can be used to provide
even more information.

Figure 13. IEF tool demonstration, solution search.

8.2 IEF tool demonstration, search details

The IEF Core and Application Area ontologies exploit Full OWL description logic.
Hence, for the time being, there are no suitable reasoning machines available. The IEF
tool demonstration software implements the solution search as follows.

8. IEF demonstration software

39

Search criteria

The search is conducted using three different search criteria: application area, func-
tional category and information content (time series, image, list, etc.). The hierar-
chies of the criteria are extracted from the ontology and the hierarchies are graphi-
cally represented as trees in the software. An arbitrary number of search terms can
be chosen from each tree. The three search criteria all carry the same weight (33%)
to the search.

Match relevance

The search sorts the solutions according to their relevance to the chosen search
terms. A solution is looked for that satisfies each criterion as well as possible. The
candidate solutions are examined one by one. The suitability of each solution is
evaluated with respect to the search terms. A search criterion is completely fulfilled
if the candidate solution has at least one of the searched terms of this criterion. If an
exact match cannot be found, a numerical suitability value is calculated for each of
the solution’s values. The highest value determines how well the solution corre-
sponds to the search terms.

Suitability calculation

If an exact match is not found between a solution value and a search term, the suit-
ability between these two values must be given a numerical value. The suitability is
determined from the tree structure of the criterion. The search term represents one
of the tree nodes. The solution value is also one of the tree nodes. First, a path be-
tween these nodes must be found. This is done by travelling towards the root node
from both nodes until a common ancestor is found. This combined path is then
travelled from the searched node towards the node that has the solution value. Each
step in the path decreases the relevance of the node with respect to the searched
node. The amount of reduction to the relevance is estimated according to a certain
coefficient. If the path goes upwards in the hierarchy, a relatively small coefficient
(0.3) is used because going upwards means that the new node also encompasses
things that are irrelevant to the searched node. When the path goes downwards, a
rather big coefficient (0.95) is used as the relevance with respect to the previous
node does not disappear. The depth of the path in the hierarchy adds an extra coef-
ficient to the suitability value.

8. IEF demonstration software

 40

Depth

The search logic takes into account the depth of the examined path in the hierarchy.
This is because it is more likely that two closely located nodes in the hierarchy re-
semble each other if the nodes are located deep in the hierarchy. The depth of a
path is determined by the ancestor node of the path (the distance from the root node
to the ancestor +1). The depth of the path adds another coefficient to the numerical
value. The depth coefficient is (1–0.5^depth).

Figure 14 shows the search implemented in the demonstration software.

Figure 14. Search semantics.

9. Conclusions and next steps

41

9. Conclusions and next steps

The key research question was how the application of advanced algorithmic methods,
such as neural networks or statistical analysis, could be made more efficient. This chal-
lenge was approached from different directions. Firstly, in addition to reviewing related
research results, we analysed two application examples, namely supervision of an indus-
trial process and patient monitoring in an intensive care unit. The aim was to maintain a
practical touch and to combine the various competence areas available at VTT. The fo-
cus at this stage was on the early stages of the design process, a grey area of design
widely known as problematic. Secondly, while the initial problem statement was rather
technical, we first discussed the elements of “intelligence” and outlined the general
characteristics and complex, sociotechnical systems.

One of the main conclusions was that rather than being contained by a single compo-
nent, intelligence is often an emergent feature of several heterogeneous (technical and
human) actors. It was obvious that the design of such systems is a big challenge. We
therefore narrowed the scope of the IEF down to situation awareness, which, according
to our definition, is one of the main elements of “intelligence”. This directed our interest
towards the design of intelligent systems that exploit computationally intensive algo-
rithms for identifying system states and adapting to varying situations.

While the IEF cannot be given an exact shape at this stage, the overall picture started
to emerge from our research. Firstly, as intelligent behaviour is typically embedded into
a larger application, its design must be seen in the context of current engineering prac-
tices. In other words, the IEF augments current mainstream modelling methods and de-
sign processes with some new features. Secondly, the major challenge of the IEF lies in
reducing the inherent complexity of intelligent systems. This is partly related to the
known difficulties of applying advanced algorithms and maintaining their applications.
The challenges are partly caused by the fundamentally new kinds of phenomena that
result from complex interactions in large-scale dynamic systems. The obvious approach
for the IEF is to enhance the reuse of design knowledge in all phases of the product or
system life cycle, leaving it in the form of application examples, guidelines, design pat-
terns or software components. This is a widely recognised problem area in which the

9. Conclusions and next steps

 42

IEF should focus on issues related to intelligence, for example, system architectures and
algorithms that support adaptation, reconfiguration, management of uncertainties and
goal-oriented, value-driven behaviour. As design practices are partly domain-specific
and change continuously, the core of the IEF should be rather general so that it allows
more practical approaches and tools to be developed for different application areas.

The focus of the IEF on the early stages of design gives rise to two issues of design
reuse: 1) how to model the application’s needs for intelligence and the features of poten-
tial solutions stored in solution libraries, and 2) how to help the designer search the li-
braries for solutions that provide the best match with the application needs. This opens
widely studied research fields such as case-based reasoning and the use of analogies and
similarity measures to find solutions to the problem at hand. While recognising the dif-
ficulties associated with these approaches, we suggest them as a basis for the develop-
ment of the IEF, especially for the early steps such as the requirements specification and
conceptual design. We feel that the emerging techniques of the semantic web will be a
good enhancement to the more traditional methods of design reuse. As appropriate
modelling of the application domain and the overall integrated system are the basis of
any design, we should augment the various domain ontologies with semantic informa-
tion that serves the purposes of the IEF. Similarly, solution models in design libraries
should be given additional information that describes their intelligence capabilities and
limitations. Search methods and reasoning using this information would be the basis of
new design processes and tools.

Keeping in mind that the IEF should support the whole life cycle of intelligent sys-
tems, we can list the following research issues to be considered in the continuation of
the IEF:

• Ontology-based reuse of design knowledge, design patterns and algorithms

• Automated model transformations and code generation

• Analysis and model checking of intelligent system.

43

References
ARTEMIS (2006). ARTEMIS – European Platform on Intelligent Embedded Systems Strategic

Research Agenda – Design Methods and Tools, version 1. http://www.artemis-
office.org/DotNetNuke/Portals/0/Documents/RAPPORT_DMT.pdf.

Bass, L. & John, B.E. (2003). Linking usability to software architecture patterns through general sce-
narios. Journal of Systems and Software, Vol. 66, Issue 3, 15 June 2003, pp. 187–197.

Betta, G. (2000). Instrument Fault Detection and Isolation: State of the Art and New Research
Trends. IEEE Transactions on Instrumentation and Measurement, Vol. 49, No. 1, Feb-
ruary 2000.

Botaschanjan, J., Pister, M. & Rumpe, B. (2004). Testing Agile Requirements Models, Ed.: Wu
Xiufang. Journal of Zhejiang University Science, 2004, Vol. 5, No. 5, ISSN 1009-3095.

Checkland, P. (1999). Systems Thinking, Systems Practice (Includes a 30-year retrospective).
John Wiley & Sons Ltd. 330 p.

Constantine, L.L & Lockwood, L.A.D. (2002). Usage-centered Engineering for Web Applications.
IEEE Software, March/April 2002, pp. 42–50.

Davis, A.M., Bershoff, E.H. & Comer, E.R. (1988). A strategy for comparing alternative life cycle
models. IEEE Trans. Software Engineering, 14, 10 (Oct. 1988), pp. 1453–1461.

Dey, A.K. (2001). Understanding and using context. Personal and Ubiquitous Computing, 5,
pp. 20–24.

Endsley, M. R. (1988). Situation awareness global assessment technique (SAGAT). Proc. of the
National Aerospace and Electronics Conference (NAECON).

Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems. Human
Factors, 1995, 37(1), pp. 32–64.

Fernandez Lopez, M. (1999). Overview of methodologies for building ontologies. Workshop on
Ontologies and Problem Solving Methods (IJCAI99), Stockholm, Sweden, July 31–
August 6, 1999.

FIDR (1999). Future Issues For Design Research (Fidr) Workshop, Bath 18.–20.2.1999, final
report, http://people.bath.ac.uk/enssjc/fidr/fidr_title.html.

Fishwick, P.A. (2007). (Ed.). Handbook of Dynamic System Modeling, Taylor & Francis Group,
Boca Ration, Fl, USA.

Gruber, T. (1995). Towards Principles for the Design of Ontologies Used for Knowledge Shar-
ing. International Journal of Human Computer Studies 43, 5 (1995), pp. 907–928.

http://www.artemis-office.org/DotNetNuke/Portals/0/Documents/RAPPORT_DMT.pdf
http://www.artemis-office.org/DotNetNuke/Portals/0/Documents/RAPPORT_DMT.pdf
http://people.bath.ac.uk/enssjc/fidr/fidr_title.html

 44

Grüningen, M. & Fox, M. (1995). Methodology for the Design and Evaluation of Ontologies. In:
Proceedings of IJCAI Workshop on Basic Ontological Issues in Knowledge Sharing,
Montreal, Canada.

Hollnagel, E. & Woods, D. (1983). Cognitive systems engineering: New wine in new bottles.
International Journal of Man-Machine Studies (18), pp. 583–600.

ISO 13407:1999. (1999). Human-centred design processes for interactive systems. International
standard. International Standardization Organization, Geneva, Switzerland, 1999.

Juristo, N., Lopez, M., Moreno, A.M. & Sánchez, M.I. (2003). Improving software usability
through architectural patterns. Workshop Bridging the Gaps between SE and HCI –
ICSE03. http://www.se-hci.org/bridging/icse/p12-19.pdf.

Kaasinen, E. & Norros, L. (eds.) (2007). Älykkäiden ympäristöjen suunnittelu – Kohti ekologista
systeemiajattelua. Teknologiateollisuus ry. ISBN 978-951-817-944-6.
http://www.teknologiainfo.net/default.asp?docId=12360&productId=14903&fromSearc
h=true.

NSF (1996). Research opportunities in engineering design – NSF strategic planning workshop,
April 1996, http://asudesign.eas.asu.edu/events/NSF/report.html.

Mattila, M. (2008). Improving the robustness and reliability of industrial online analyzers using
condition monitoring technologies and remote support, Helsinki University of Technol-
ogy, Information and Computer Systems in Automation, Report 14, Espoo 2008.

Norros, L. & Salo, L. (2009). Design of joint systems – a theoretical challenge for cognitive sys-
tems engineering. Cognition Technology and Work, 11, pp. 43–56.

Pavlič, L., Heričko, M., Podgorelec, V. & Rozman, I. (2009). Improving Design Pattern Adoption
with an Ontology-Based Repository. Informatica 33 (2009), pp. 189–197.

Sydenham, P. (2004). Systems Approach to Engineering Design. London, Artech House, Inc.
333 p.

SysML webpages (2007) (http://www.sysml.org).

Timonen, M. (2007). Implementation of Ontology-Based Biological Knowledge Base. Master’s
Thesis, University of Helsinki.

Tommila, T., Jansson, K., Karhela, T., Kiviniemi, A., Koivisto, R. & Sääski, J. (2007). Industrial
engineering road map (INDERO) – A pre-study in the Finnish process industry. VTT
working paper. Unpublished. 63 p.

Woods, D. & Hollnagel, E. (2006). Joint cognitive systems – patterns in cognitive systems engi-
neering. Boca Raton: Taylor & Francis.

http://www.se-hci.org/bridging/icse/p12-19.pdf
http://www.teknologiainfo.net/default.asp?docId=12360&productId=14903&fromSearch=true
http://asudesign.eas.asu.edu/events/NSF/report.html
http://www.sysml.org

Appendix A: IEF Ontologies

 A1

Appendix A: IEF Ontologies

IEF Core ontology

The IEF Core ontology was developed with Protégé V3.4. It contains all common con-
cepts. Application ontologies extend the core ontology with application-depended con-
cepts. A complete IEF tool will include the core ontology, application area ontologies and
tool user’s knowledge. Figure A1 depicts the top level concepts of the core ontology.

Figure A1. IEF Core ontology top-level concepts.

Domain_entity branch contains generic application modelling ontology and is depicted
in Figure A2.

Figure A2. Domain entities.

Branch Characteristic (Figure A3) contains various dimensions characterising the de-
sign task. Furthermore, it contains taxonomy Functional_category for the “intelligent”
functions that can be realised by advanced algorithms.

Appendix A: IEF Ontologies

 A2

Figure A3. Characteristic concept with sub-concepts.

Figure A4. Intelligent functions concepts.

The functions in A4 are abstract and they are usually specialised in application area on-
tology. Some samples of the definitions of the concepts are given in Table A1.

Appendix A: IEF Ontologies

 A3

Table A1. Examples of functions of algorithmic systems.

Concept Definition

Functional_category/Observe Inputting information from external and/or internal SOA (SOA refers to “State of
Affairs”)

Functional_category/Act Causing changes in external and internal SOA

Act//Produce Producing a desired SOA

Act/Maintain Keeping a desired SOA

Process_Information/Detect Becoming aware of a certain (predefined) kind of SOA

Process_Information/Validate Ensuring that information or a statement about SOA is correct or true

Process_Information/Classify Determining the category to which an entity being classified belongs

Process_Information/Filter Changing, removing or reducing entities by amplifying relevant aspects or attenuat-
ing/removing irrelevant aspects

Process_Information/Match Testing an entity for being similar to a template entity

Process_Information/Estimate Calculating the approximation of (a part of) SOA which is usable even if input data
may be incomplete, uncertain or noisy.

Estimate/Predict A rigorous statement forecasting what will happen under specific conditions

Figure A5 shows the other branches of the core ontology.

Figure A5. Design library, Solution and Statement concepts.

Application area ontologies

Application area ontologies apply the IEF Core ontology. As an example, some features
of Industrial ontology are depicted here. The Industrial ontology imports the IEF Core
ontology and extends it with various concepts typical to process control and monitoring.

Appendix A: IEF Ontologies

 A4

Figure A6. Some of the industrial extensions to the IEF Core Act branch.

Figure A7. Example of industrial extensions to the Application area.

VTT CREATES BUSINESS FROM TECHNOLOGY
�Technology and market foresight • Strategic research • Product and service development • IPR and licensing
• Assessments, testing, inspection, certification • Technology and innovation management • Technology partnership

• • • VTT W
O

R
KIN

G
 PA

PER
S 140 Inte

lligen

c
e Engineering

Fra

m

ework

ISBN 978-951-38-7480-3 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1459-7683 (URL: http://www.vtt.fi/publications/index.jsp)

VTT Working Papers

122	 Bettina Lemström, Juha Kiviluoma, Hannele Holttinen & Lasse Peltonen. Impact of
wind power on regional power balance and transfer. 2009. 43 p.

123	 Juha Forsström. Euroopan kaasunhankinnan malli. 2009. 80 s.
124	 Jyrki Tervo, Antti Manninen, Risto Ilola & Hannu Hänninen. State-of-the-art of

Thermoelectric Materials Processing, Properties and Applications. 2009. 29 p.
125	 Salla Lind, Björn Johansson, Johan Stahre, Cecilia Berlin, Åsa Fasth, Juhani Heilala,

Kaj Helin, Sauli Kiviranta, Boris Krassi, Jari Montonen, Hannele Tonteri, Saija
Vatanen & Juhani Viitaniemi. SIMTER. A Joint Simulation Tool for Production
Development. 2009. 49 p.

126	 Mikko Metso. NoTA L_INdown Layer Implementation in FGPA Design results. 2009.
20 p.

127	 Marinka Lanne & Ville Ojanen. Teollisen palveluliiketoiminnan menestystekijät ja
yhteistyösuhteen hallinta - Fleet asset management - hankkeen työraportti 1. 2009.
65 s. + liitt. 10 s.

128	 Alternative fuels with heavy-duty engines and vehicles. VTT´s contribution. 2009.
109 p. + app. 8 p.

129	 Stephen Fox. Generative production systems for sustainable product greation. 2009.
104 p.

130	 Jukka Hemilä, Jyri Pötry & Kai Häkkinen. Tuotannonohjaus ja tietojärjestelmät:
kokemuksia sekä kehittämisperiaatteita. 2009. 37 s.

131	 Ilkka Hannula. Hydrogen production via thermal gasification of biomass in near-
to-medium term. 2009. 41 p.

132	 Hannele Holttinen & Anders Stenberg. Tuulivoiman tuotantotilastot. Vuosiraportti
2008. 2009. 47 s. + liitt. 8 s.

133	 Elisa Rautioaho & Leena Korkiala-Tanttu. Bentomap: Survey of bentonite and
tunnel backfill knowledge – State-of-the-art. 2009. 112 p. + app. 7 p.

134	 Totti Könnölä, Javier Carrillo-Hermosilla, Torsti Loikkanen & Robert van der Have.
Governance of Energy System Transition. Analytical Framework and Empirical
Cases in Europe and Beyond. GoReNEST Project, Task 3. 2009. 49 p.

136	 Toni Ahonen & Markku Reunanen. Elinkaaritiedon hyödyntäminen teollisen palvelu-
liiketoiminnan kehittämisessä. 2009. 62 s. + liitt. 8 s.

137	 Eija Kupi, Jaana Keränen & Marinka Lanne. Riskienhallinta osana pk-yritysten
strategista johtamista. 2009. 51 s. + liitt. 8 s.

139	 Jukka Hietaniemi & Esko Mikkola. Design Fires for Fire Safety Engineering. 2010.
100 p.

140	 Juhani Hirvonen, Eija Kaasinen, Ville Kotovirta, Jussi Lahtinen, Leena Norros, Leena
Salo, Mika Timonen, Teemu Tommila, Janne Valkonen, Mark van Gils & Olli Ventä.
Intelligence engineering framework. 2010. 44 p. + app. 4 p.

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Preface
	Contents
	1. Introduction
	1.1 The problem
	1.2 Document structure
	1.3 The definition of intelligence
	1.4 The development approach

	2. Issues of algorithmic, intelligent systems andtheir design
	2.1 System characteristics
	2.2 The concept of the Joint Intelligent System (JIS)

	3. Trends in design
	3.1 General systems engineering and design research
	3.2 Software development – trends and practices
	3.2.1 Software development process
	3.2.2 Requirements engineering
	3.2.3 UML and SysML in software and systems modelling

	3.3 Broadening the human-centred design approach
	3.4 Reusable libraries and design patterns

	4. Key technical solutions
	4.1 Situation awareness of technical systems and their users
	4.2 Semantic modelling

	5. IEF pattern language
	6. Requirements for IEF modelling concepts
	7. IEF toolset
	7.1 IEF toolset requirements
	7.2 IEF toolset usage scenario

	8. IEF demonstration software
	8.1 Structure of the IEF tool demonstration
	8.2 IEF tool demonstration, search details

	9. Conclusions and next steps
	References
	Appendix A: IEF Ontologies

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b0073006900610020007000610069006e006f006f006e0020006d0065006e0065007600690073007300e40020007400f600690073007300e4002e0020004e00e4006d00e4002000610073006500740075006b00730065007400200076006100610074006900760061007400200061007300690061006b006b00610061006c007400610020007600e400680069006e007400e400e4006e0020004100630072006f00620061007400200035002e00300020002d00790068007400650065006e0073006f0070006900760061006e0020006a00e40072006a0065007300740065006c006d00e4006e002e0020004b00610069006b006b006900200066006f006e007400690074002000750070006f00740065007400610061006e0020006d0075006b00610061006e002e0020>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

